1 /*
2 * Copyright (c) 2010 The WebM project authors. All Rights Reserved.
3 *
4 * Use of this source code is governed by a BSD-style license
5 * that can be found in the LICENSE file in the root of the source
6 * tree. An additional intellectual property rights grant can be found
7 * in the file PATENTS. All contributing project authors may
8 * be found in the AUTHORS file in the root of the source tree.
9 */
10
11 #include "./vpx_config.h"
12 #include "./vpx_dsp_rtcd.h"
13 #include "vp9/common/vp9_loopfilter.h"
14 #include "vp9/common/vp9_onyxc_int.h"
15 #include "vp9/common/vp9_reconinter.h"
16 #include "vpx_dsp/vpx_dsp_common.h"
17 #include "vpx_mem/vpx_mem.h"
18 #include "vpx_ports/mem.h"
19
20 #include "vp9/common/vp9_seg_common.h"
21
22 // 64 bit masks for left transform size. Each 1 represents a position where
23 // we should apply a loop filter across the left border of an 8x8 block
24 // boundary.
25 //
26 // In the case of TX_16X16-> ( in low order byte first we end up with
27 // a mask that looks like this
28 //
29 // 10101010
30 // 10101010
31 // 10101010
32 // 10101010
33 // 10101010
34 // 10101010
35 // 10101010
36 // 10101010
37 //
38 // A loopfilter should be applied to every other 8x8 horizontally.
39 static const uint64_t left_64x64_txform_mask[TX_SIZES] = {
40 0xffffffffffffffffULL, // TX_4X4
41 0xffffffffffffffffULL, // TX_8x8
42 0x5555555555555555ULL, // TX_16x16
43 0x1111111111111111ULL, // TX_32x32
44 };
45
46 // 64 bit masks for above transform size. Each 1 represents a position where
47 // we should apply a loop filter across the top border of an 8x8 block
48 // boundary.
49 //
50 // In the case of TX_32x32 -> ( in low order byte first we end up with
51 // a mask that looks like this
52 //
53 // 11111111
54 // 00000000
55 // 00000000
56 // 00000000
57 // 11111111
58 // 00000000
59 // 00000000
60 // 00000000
61 //
62 // A loopfilter should be applied to every other 4 the row vertically.
63 static const uint64_t above_64x64_txform_mask[TX_SIZES] = {
64 0xffffffffffffffffULL, // TX_4X4
65 0xffffffffffffffffULL, // TX_8x8
66 0x00ff00ff00ff00ffULL, // TX_16x16
67 0x000000ff000000ffULL, // TX_32x32
68 };
69
70 // 64 bit masks for prediction sizes (left). Each 1 represents a position
71 // where left border of an 8x8 block. These are aligned to the right most
72 // appropriate bit, and then shifted into place.
73 //
74 // In the case of TX_16x32 -> ( low order byte first ) we end up with
75 // a mask that looks like this :
76 //
77 // 10000000
78 // 10000000
79 // 10000000
80 // 10000000
81 // 00000000
82 // 00000000
83 // 00000000
84 // 00000000
85 static const uint64_t left_prediction_mask[BLOCK_SIZES] = {
86 0x0000000000000001ULL, // BLOCK_4X4,
87 0x0000000000000001ULL, // BLOCK_4X8,
88 0x0000000000000001ULL, // BLOCK_8X4,
89 0x0000000000000001ULL, // BLOCK_8X8,
90 0x0000000000000101ULL, // BLOCK_8X16,
91 0x0000000000000001ULL, // BLOCK_16X8,
92 0x0000000000000101ULL, // BLOCK_16X16,
93 0x0000000001010101ULL, // BLOCK_16X32,
94 0x0000000000000101ULL, // BLOCK_32X16,
95 0x0000000001010101ULL, // BLOCK_32X32,
96 0x0101010101010101ULL, // BLOCK_32X64,
97 0x0000000001010101ULL, // BLOCK_64X32,
98 0x0101010101010101ULL, // BLOCK_64X64
99 };
100
101 // 64 bit mask to shift and set for each prediction size.
102 static const uint64_t above_prediction_mask[BLOCK_SIZES] = {
103 0x0000000000000001ULL, // BLOCK_4X4
104 0x0000000000000001ULL, // BLOCK_4X8
105 0x0000000000000001ULL, // BLOCK_8X4
106 0x0000000000000001ULL, // BLOCK_8X8
107 0x0000000000000001ULL, // BLOCK_8X16,
108 0x0000000000000003ULL, // BLOCK_16X8
109 0x0000000000000003ULL, // BLOCK_16X16
110 0x0000000000000003ULL, // BLOCK_16X32,
111 0x000000000000000fULL, // BLOCK_32X16,
112 0x000000000000000fULL, // BLOCK_32X32,
113 0x000000000000000fULL, // BLOCK_32X64,
114 0x00000000000000ffULL, // BLOCK_64X32,
115 0x00000000000000ffULL, // BLOCK_64X64
116 };
117 // 64 bit mask to shift and set for each prediction size. A bit is set for
118 // each 8x8 block that would be in the left most block of the given block
119 // size in the 64x64 block.
120 static const uint64_t size_mask[BLOCK_SIZES] = {
121 0x0000000000000001ULL, // BLOCK_4X4
122 0x0000000000000001ULL, // BLOCK_4X8
123 0x0000000000000001ULL, // BLOCK_8X4
124 0x0000000000000001ULL, // BLOCK_8X8
125 0x0000000000000101ULL, // BLOCK_8X16,
126 0x0000000000000003ULL, // BLOCK_16X8
127 0x0000000000000303ULL, // BLOCK_16X16
128 0x0000000003030303ULL, // BLOCK_16X32,
129 0x0000000000000f0fULL, // BLOCK_32X16,
130 0x000000000f0f0f0fULL, // BLOCK_32X32,
131 0x0f0f0f0f0f0f0f0fULL, // BLOCK_32X64,
132 0x00000000ffffffffULL, // BLOCK_64X32,
133 0xffffffffffffffffULL, // BLOCK_64X64
134 };
135
136 // These are used for masking the left and above borders.
137 static const uint64_t left_border = 0x1111111111111111ULL;
138 static const uint64_t above_border = 0x000000ff000000ffULL;
139
140 // 16 bit masks for uv transform sizes.
141 static const uint16_t left_64x64_txform_mask_uv[TX_SIZES] = {
142 0xffff, // TX_4X4
143 0xffff, // TX_8x8
144 0x5555, // TX_16x16
145 0x1111, // TX_32x32
146 };
147
148 static const uint16_t above_64x64_txform_mask_uv[TX_SIZES] = {
149 0xffff, // TX_4X4
150 0xffff, // TX_8x8
151 0x0f0f, // TX_16x16
152 0x000f, // TX_32x32
153 };
154
155 // 16 bit left mask to shift and set for each uv prediction size.
156 static const uint16_t left_prediction_mask_uv[BLOCK_SIZES] = {
157 0x0001, // BLOCK_4X4,
158 0x0001, // BLOCK_4X8,
159 0x0001, // BLOCK_8X4,
160 0x0001, // BLOCK_8X8,
161 0x0001, // BLOCK_8X16,
162 0x0001, // BLOCK_16X8,
163 0x0001, // BLOCK_16X16,
164 0x0011, // BLOCK_16X32,
165 0x0001, // BLOCK_32X16,
166 0x0011, // BLOCK_32X32,
167 0x1111, // BLOCK_32X64
168 0x0011, // BLOCK_64X32,
169 0x1111, // BLOCK_64X64
170 };
171 // 16 bit above mask to shift and set for uv each prediction size.
172 static const uint16_t above_prediction_mask_uv[BLOCK_SIZES] = {
173 0x0001, // BLOCK_4X4
174 0x0001, // BLOCK_4X8
175 0x0001, // BLOCK_8X4
176 0x0001, // BLOCK_8X8
177 0x0001, // BLOCK_8X16,
178 0x0001, // BLOCK_16X8
179 0x0001, // BLOCK_16X16
180 0x0001, // BLOCK_16X32,
181 0x0003, // BLOCK_32X16,
182 0x0003, // BLOCK_32X32,
183 0x0003, // BLOCK_32X64,
184 0x000f, // BLOCK_64X32,
185 0x000f, // BLOCK_64X64
186 };
187
188 // 64 bit mask to shift and set for each uv prediction size
189 static const uint16_t size_mask_uv[BLOCK_SIZES] = {
190 0x0001, // BLOCK_4X4
191 0x0001, // BLOCK_4X8
192 0x0001, // BLOCK_8X4
193 0x0001, // BLOCK_8X8
194 0x0001, // BLOCK_8X16,
195 0x0001, // BLOCK_16X8
196 0x0001, // BLOCK_16X16
197 0x0011, // BLOCK_16X32,
198 0x0003, // BLOCK_32X16,
199 0x0033, // BLOCK_32X32,
200 0x3333, // BLOCK_32X64,
201 0x00ff, // BLOCK_64X32,
202 0xffff, // BLOCK_64X64
203 };
204 static const uint16_t left_border_uv = 0x1111;
205 static const uint16_t above_border_uv = 0x000f;
206
207 static const int mode_lf_lut[MB_MODE_COUNT] = {
208 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // INTRA_MODES
209 1, 1, 0, 1 // INTER_MODES (ZEROMV == 0)
210 };
211
update_sharpness(loop_filter_info_n * lfi,int sharpness_lvl)212 static void update_sharpness(loop_filter_info_n *lfi, int sharpness_lvl) {
213 int lvl;
214
215 // For each possible value for the loop filter fill out limits
216 for (lvl = 0; lvl <= MAX_LOOP_FILTER; lvl++) {
217 // Set loop filter parameters that control sharpness.
218 int block_inside_limit = lvl >> ((sharpness_lvl > 0) + (sharpness_lvl > 4));
219
220 if (sharpness_lvl > 0) {
221 if (block_inside_limit > (9 - sharpness_lvl))
222 block_inside_limit = (9 - sharpness_lvl);
223 }
224
225 if (block_inside_limit < 1) block_inside_limit = 1;
226
227 memset(lfi->lfthr[lvl].lim, block_inside_limit, SIMD_WIDTH);
228 memset(lfi->lfthr[lvl].mblim, (2 * (lvl + 2) + block_inside_limit),
229 SIMD_WIDTH);
230 }
231 }
232
get_filter_level(const loop_filter_info_n * lfi_n,const MODE_INFO * mi)233 static uint8_t get_filter_level(const loop_filter_info_n *lfi_n,
234 const MODE_INFO *mi) {
235 return lfi_n->lvl[mi->segment_id][mi->ref_frame[0]][mode_lf_lut[mi->mode]];
236 }
237
vp9_loop_filter_init(VP9_COMMON * cm)238 void vp9_loop_filter_init(VP9_COMMON *cm) {
239 loop_filter_info_n *lfi = &cm->lf_info;
240 struct loopfilter *lf = &cm->lf;
241 int lvl;
242
243 // init limits for given sharpness
244 update_sharpness(lfi, lf->sharpness_level);
245 lf->last_sharpness_level = lf->sharpness_level;
246
247 // init hev threshold const vectors
248 for (lvl = 0; lvl <= MAX_LOOP_FILTER; lvl++)
249 memset(lfi->lfthr[lvl].hev_thr, (lvl >> 4), SIMD_WIDTH);
250 }
251
vp9_loop_filter_frame_init(VP9_COMMON * cm,int default_filt_lvl)252 void vp9_loop_filter_frame_init(VP9_COMMON *cm, int default_filt_lvl) {
253 int seg_id;
254 // n_shift is the multiplier for lf_deltas
255 // the multiplier is 1 for when filter_lvl is between 0 and 31;
256 // 2 when filter_lvl is between 32 and 63
257 const int scale = 1 << (default_filt_lvl >> 5);
258 loop_filter_info_n *const lfi = &cm->lf_info;
259 struct loopfilter *const lf = &cm->lf;
260 const struct segmentation *const seg = &cm->seg;
261
262 // update limits if sharpness has changed
263 if (lf->last_sharpness_level != lf->sharpness_level) {
264 update_sharpness(lfi, lf->sharpness_level);
265 lf->last_sharpness_level = lf->sharpness_level;
266 }
267
268 for (seg_id = 0; seg_id < MAX_SEGMENTS; seg_id++) {
269 int lvl_seg = default_filt_lvl;
270 if (segfeature_active(seg, seg_id, SEG_LVL_ALT_LF)) {
271 const int data = get_segdata(seg, seg_id, SEG_LVL_ALT_LF);
272 lvl_seg = clamp(
273 seg->abs_delta == SEGMENT_ABSDATA ? data : default_filt_lvl + data, 0,
274 MAX_LOOP_FILTER);
275 }
276
277 if (!lf->mode_ref_delta_enabled) {
278 // we could get rid of this if we assume that deltas are set to
279 // zero when not in use; encoder always uses deltas
280 memset(lfi->lvl[seg_id], lvl_seg, sizeof(lfi->lvl[seg_id]));
281 } else {
282 int ref, mode;
283 const int intra_lvl = lvl_seg + lf->ref_deltas[INTRA_FRAME] * scale;
284 lfi->lvl[seg_id][INTRA_FRAME][0] = clamp(intra_lvl, 0, MAX_LOOP_FILTER);
285
286 for (ref = LAST_FRAME; ref < MAX_REF_FRAMES; ++ref) {
287 for (mode = 0; mode < MAX_MODE_LF_DELTAS; ++mode) {
288 const int inter_lvl = lvl_seg + lf->ref_deltas[ref] * scale +
289 lf->mode_deltas[mode] * scale;
290 lfi->lvl[seg_id][ref][mode] = clamp(inter_lvl, 0, MAX_LOOP_FILTER);
291 }
292 }
293 }
294 }
295 }
296
filter_selectively_vert_row2(int subsampling_factor,uint8_t * s,int pitch,unsigned int mask_16x16,unsigned int mask_8x8,unsigned int mask_4x4,unsigned int mask_4x4_int,const loop_filter_thresh * lfthr,const uint8_t * lfl)297 static void filter_selectively_vert_row2(
298 int subsampling_factor, uint8_t *s, int pitch, unsigned int mask_16x16,
299 unsigned int mask_8x8, unsigned int mask_4x4, unsigned int mask_4x4_int,
300 const loop_filter_thresh *lfthr, const uint8_t *lfl) {
301 const int dual_mask_cutoff = subsampling_factor ? 0xff : 0xffff;
302 const int lfl_forward = subsampling_factor ? 4 : 8;
303 const unsigned int dual_one = 1 | (1 << lfl_forward);
304 unsigned int mask;
305 uint8_t *ss[2];
306 ss[0] = s;
307
308 for (mask =
309 (mask_16x16 | mask_8x8 | mask_4x4 | mask_4x4_int) & dual_mask_cutoff;
310 mask; mask = (mask & ~dual_one) >> 1) {
311 if (mask & dual_one) {
312 const loop_filter_thresh *lfis[2];
313 lfis[0] = lfthr + *lfl;
314 lfis[1] = lfthr + *(lfl + lfl_forward);
315 ss[1] = ss[0] + 8 * pitch;
316
317 if (mask_16x16 & dual_one) {
318 if ((mask_16x16 & dual_one) == dual_one) {
319 vpx_lpf_vertical_16_dual(ss[0], pitch, lfis[0]->mblim, lfis[0]->lim,
320 lfis[0]->hev_thr);
321 } else {
322 const loop_filter_thresh *lfi = lfis[!(mask_16x16 & 1)];
323 vpx_lpf_vertical_16(ss[!(mask_16x16 & 1)], pitch, lfi->mblim,
324 lfi->lim, lfi->hev_thr);
325 }
326 }
327
328 if (mask_8x8 & dual_one) {
329 if ((mask_8x8 & dual_one) == dual_one) {
330 vpx_lpf_vertical_8_dual(ss[0], pitch, lfis[0]->mblim, lfis[0]->lim,
331 lfis[0]->hev_thr, lfis[1]->mblim,
332 lfis[1]->lim, lfis[1]->hev_thr);
333 } else {
334 const loop_filter_thresh *lfi = lfis[!(mask_8x8 & 1)];
335 vpx_lpf_vertical_8(ss[!(mask_8x8 & 1)], pitch, lfi->mblim, lfi->lim,
336 lfi->hev_thr);
337 }
338 }
339
340 if (mask_4x4 & dual_one) {
341 if ((mask_4x4 & dual_one) == dual_one) {
342 vpx_lpf_vertical_4_dual(ss[0], pitch, lfis[0]->mblim, lfis[0]->lim,
343 lfis[0]->hev_thr, lfis[1]->mblim,
344 lfis[1]->lim, lfis[1]->hev_thr);
345 } else {
346 const loop_filter_thresh *lfi = lfis[!(mask_4x4 & 1)];
347 vpx_lpf_vertical_4(ss[!(mask_4x4 & 1)], pitch, lfi->mblim, lfi->lim,
348 lfi->hev_thr);
349 }
350 }
351
352 if (mask_4x4_int & dual_one) {
353 if ((mask_4x4_int & dual_one) == dual_one) {
354 vpx_lpf_vertical_4_dual(
355 ss[0] + 4, pitch, lfis[0]->mblim, lfis[0]->lim, lfis[0]->hev_thr,
356 lfis[1]->mblim, lfis[1]->lim, lfis[1]->hev_thr);
357 } else {
358 const loop_filter_thresh *lfi = lfis[!(mask_4x4_int & 1)];
359 vpx_lpf_vertical_4(ss[!(mask_4x4_int & 1)] + 4, pitch, lfi->mblim,
360 lfi->lim, lfi->hev_thr);
361 }
362 }
363 }
364
365 ss[0] += 8;
366 lfl += 1;
367 mask_16x16 >>= 1;
368 mask_8x8 >>= 1;
369 mask_4x4 >>= 1;
370 mask_4x4_int >>= 1;
371 }
372 }
373
374 #if CONFIG_VP9_HIGHBITDEPTH
highbd_filter_selectively_vert_row2(int subsampling_factor,uint16_t * s,int pitch,unsigned int mask_16x16,unsigned int mask_8x8,unsigned int mask_4x4,unsigned int mask_4x4_int,const loop_filter_thresh * lfthr,const uint8_t * lfl,int bd)375 static void highbd_filter_selectively_vert_row2(
376 int subsampling_factor, uint16_t *s, int pitch, unsigned int mask_16x16,
377 unsigned int mask_8x8, unsigned int mask_4x4, unsigned int mask_4x4_int,
378 const loop_filter_thresh *lfthr, const uint8_t *lfl, int bd) {
379 const int dual_mask_cutoff = subsampling_factor ? 0xff : 0xffff;
380 const int lfl_forward = subsampling_factor ? 4 : 8;
381 const unsigned int dual_one = 1 | (1 << lfl_forward);
382 unsigned int mask;
383 uint16_t *ss[2];
384 ss[0] = s;
385
386 for (mask =
387 (mask_16x16 | mask_8x8 | mask_4x4 | mask_4x4_int) & dual_mask_cutoff;
388 mask; mask = (mask & ~dual_one) >> 1) {
389 if (mask & dual_one) {
390 const loop_filter_thresh *lfis[2];
391 lfis[0] = lfthr + *lfl;
392 lfis[1] = lfthr + *(lfl + lfl_forward);
393 ss[1] = ss[0] + 8 * pitch;
394
395 if (mask_16x16 & dual_one) {
396 if ((mask_16x16 & dual_one) == dual_one) {
397 vpx_highbd_lpf_vertical_16_dual(ss[0], pitch, lfis[0]->mblim,
398 lfis[0]->lim, lfis[0]->hev_thr, bd);
399 } else {
400 const loop_filter_thresh *lfi = lfis[!(mask_16x16 & 1)];
401 vpx_highbd_lpf_vertical_16(ss[!(mask_16x16 & 1)], pitch, lfi->mblim,
402 lfi->lim, lfi->hev_thr, bd);
403 }
404 }
405
406 if (mask_8x8 & dual_one) {
407 if ((mask_8x8 & dual_one) == dual_one) {
408 vpx_highbd_lpf_vertical_8_dual(
409 ss[0], pitch, lfis[0]->mblim, lfis[0]->lim, lfis[0]->hev_thr,
410 lfis[1]->mblim, lfis[1]->lim, lfis[1]->hev_thr, bd);
411 } else {
412 const loop_filter_thresh *lfi = lfis[!(mask_8x8 & 1)];
413 vpx_highbd_lpf_vertical_8(ss[!(mask_8x8 & 1)], pitch, lfi->mblim,
414 lfi->lim, lfi->hev_thr, bd);
415 }
416 }
417
418 if (mask_4x4 & dual_one) {
419 if ((mask_4x4 & dual_one) == dual_one) {
420 vpx_highbd_lpf_vertical_4_dual(
421 ss[0], pitch, lfis[0]->mblim, lfis[0]->lim, lfis[0]->hev_thr,
422 lfis[1]->mblim, lfis[1]->lim, lfis[1]->hev_thr, bd);
423 } else {
424 const loop_filter_thresh *lfi = lfis[!(mask_4x4 & 1)];
425 vpx_highbd_lpf_vertical_4(ss[!(mask_4x4 & 1)], pitch, lfi->mblim,
426 lfi->lim, lfi->hev_thr, bd);
427 }
428 }
429
430 if (mask_4x4_int & dual_one) {
431 if ((mask_4x4_int & dual_one) == dual_one) {
432 vpx_highbd_lpf_vertical_4_dual(
433 ss[0] + 4, pitch, lfis[0]->mblim, lfis[0]->lim, lfis[0]->hev_thr,
434 lfis[1]->mblim, lfis[1]->lim, lfis[1]->hev_thr, bd);
435 } else {
436 const loop_filter_thresh *lfi = lfis[!(mask_4x4_int & 1)];
437 vpx_highbd_lpf_vertical_4(ss[!(mask_4x4_int & 1)] + 4, pitch,
438 lfi->mblim, lfi->lim, lfi->hev_thr, bd);
439 }
440 }
441 }
442
443 ss[0] += 8;
444 lfl += 1;
445 mask_16x16 >>= 1;
446 mask_8x8 >>= 1;
447 mask_4x4 >>= 1;
448 mask_4x4_int >>= 1;
449 }
450 }
451 #endif // CONFIG_VP9_HIGHBITDEPTH
452
filter_selectively_horiz(uint8_t * s,int pitch,unsigned int mask_16x16,unsigned int mask_8x8,unsigned int mask_4x4,unsigned int mask_4x4_int,const loop_filter_thresh * lfthr,const uint8_t * lfl)453 static void filter_selectively_horiz(
454 uint8_t *s, int pitch, unsigned int mask_16x16, unsigned int mask_8x8,
455 unsigned int mask_4x4, unsigned int mask_4x4_int,
456 const loop_filter_thresh *lfthr, const uint8_t *lfl) {
457 unsigned int mask;
458 int count;
459
460 for (mask = mask_16x16 | mask_8x8 | mask_4x4 | mask_4x4_int; mask;
461 mask >>= count) {
462 count = 1;
463 if (mask & 1) {
464 const loop_filter_thresh *lfi = lfthr + *lfl;
465
466 if (mask_16x16 & 1) {
467 if ((mask_16x16 & 3) == 3) {
468 vpx_lpf_horizontal_16_dual(s, pitch, lfi->mblim, lfi->lim,
469 lfi->hev_thr);
470 count = 2;
471 } else {
472 vpx_lpf_horizontal_16(s, pitch, lfi->mblim, lfi->lim, lfi->hev_thr);
473 }
474 } else if (mask_8x8 & 1) {
475 if ((mask_8x8 & 3) == 3) {
476 // Next block's thresholds.
477 const loop_filter_thresh *lfin = lfthr + *(lfl + 1);
478
479 vpx_lpf_horizontal_8_dual(s, pitch, lfi->mblim, lfi->lim,
480 lfi->hev_thr, lfin->mblim, lfin->lim,
481 lfin->hev_thr);
482
483 if ((mask_4x4_int & 3) == 3) {
484 vpx_lpf_horizontal_4_dual(s + 4 * pitch, pitch, lfi->mblim,
485 lfi->lim, lfi->hev_thr, lfin->mblim,
486 lfin->lim, lfin->hev_thr);
487 } else {
488 if (mask_4x4_int & 1)
489 vpx_lpf_horizontal_4(s + 4 * pitch, pitch, lfi->mblim, lfi->lim,
490 lfi->hev_thr);
491 else if (mask_4x4_int & 2)
492 vpx_lpf_horizontal_4(s + 8 + 4 * pitch, pitch, lfin->mblim,
493 lfin->lim, lfin->hev_thr);
494 }
495 count = 2;
496 } else {
497 vpx_lpf_horizontal_8(s, pitch, lfi->mblim, lfi->lim, lfi->hev_thr);
498
499 if (mask_4x4_int & 1)
500 vpx_lpf_horizontal_4(s + 4 * pitch, pitch, lfi->mblim, lfi->lim,
501 lfi->hev_thr);
502 }
503 } else if (mask_4x4 & 1) {
504 if ((mask_4x4 & 3) == 3) {
505 // Next block's thresholds.
506 const loop_filter_thresh *lfin = lfthr + *(lfl + 1);
507
508 vpx_lpf_horizontal_4_dual(s, pitch, lfi->mblim, lfi->lim,
509 lfi->hev_thr, lfin->mblim, lfin->lim,
510 lfin->hev_thr);
511 if ((mask_4x4_int & 3) == 3) {
512 vpx_lpf_horizontal_4_dual(s + 4 * pitch, pitch, lfi->mblim,
513 lfi->lim, lfi->hev_thr, lfin->mblim,
514 lfin->lim, lfin->hev_thr);
515 } else {
516 if (mask_4x4_int & 1)
517 vpx_lpf_horizontal_4(s + 4 * pitch, pitch, lfi->mblim, lfi->lim,
518 lfi->hev_thr);
519 else if (mask_4x4_int & 2)
520 vpx_lpf_horizontal_4(s + 8 + 4 * pitch, pitch, lfin->mblim,
521 lfin->lim, lfin->hev_thr);
522 }
523 count = 2;
524 } else {
525 vpx_lpf_horizontal_4(s, pitch, lfi->mblim, lfi->lim, lfi->hev_thr);
526
527 if (mask_4x4_int & 1)
528 vpx_lpf_horizontal_4(s + 4 * pitch, pitch, lfi->mblim, lfi->lim,
529 lfi->hev_thr);
530 }
531 } else {
532 vpx_lpf_horizontal_4(s + 4 * pitch, pitch, lfi->mblim, lfi->lim,
533 lfi->hev_thr);
534 }
535 }
536 s += 8 * count;
537 lfl += count;
538 mask_16x16 >>= count;
539 mask_8x8 >>= count;
540 mask_4x4 >>= count;
541 mask_4x4_int >>= count;
542 }
543 }
544
545 #if CONFIG_VP9_HIGHBITDEPTH
highbd_filter_selectively_horiz(uint16_t * s,int pitch,unsigned int mask_16x16,unsigned int mask_8x8,unsigned int mask_4x4,unsigned int mask_4x4_int,const loop_filter_thresh * lfthr,const uint8_t * lfl,int bd)546 static void highbd_filter_selectively_horiz(
547 uint16_t *s, int pitch, unsigned int mask_16x16, unsigned int mask_8x8,
548 unsigned int mask_4x4, unsigned int mask_4x4_int,
549 const loop_filter_thresh *lfthr, const uint8_t *lfl, int bd) {
550 unsigned int mask;
551 int count;
552
553 for (mask = mask_16x16 | mask_8x8 | mask_4x4 | mask_4x4_int; mask;
554 mask >>= count) {
555 count = 1;
556 if (mask & 1) {
557 const loop_filter_thresh *lfi = lfthr + *lfl;
558
559 if (mask_16x16 & 1) {
560 if ((mask_16x16 & 3) == 3) {
561 vpx_highbd_lpf_horizontal_16_dual(s, pitch, lfi->mblim, lfi->lim,
562 lfi->hev_thr, bd);
563 count = 2;
564 } else {
565 vpx_highbd_lpf_horizontal_16(s, pitch, lfi->mblim, lfi->lim,
566 lfi->hev_thr, bd);
567 }
568 } else if (mask_8x8 & 1) {
569 if ((mask_8x8 & 3) == 3) {
570 // Next block's thresholds.
571 const loop_filter_thresh *lfin = lfthr + *(lfl + 1);
572
573 vpx_highbd_lpf_horizontal_8_dual(s, pitch, lfi->mblim, lfi->lim,
574 lfi->hev_thr, lfin->mblim, lfin->lim,
575 lfin->hev_thr, bd);
576
577 if ((mask_4x4_int & 3) == 3) {
578 vpx_highbd_lpf_horizontal_4_dual(
579 s + 4 * pitch, pitch, lfi->mblim, lfi->lim, lfi->hev_thr,
580 lfin->mblim, lfin->lim, lfin->hev_thr, bd);
581 } else {
582 if (mask_4x4_int & 1) {
583 vpx_highbd_lpf_horizontal_4(s + 4 * pitch, pitch, lfi->mblim,
584 lfi->lim, lfi->hev_thr, bd);
585 } else if (mask_4x4_int & 2) {
586 vpx_highbd_lpf_horizontal_4(s + 8 + 4 * pitch, pitch, lfin->mblim,
587 lfin->lim, lfin->hev_thr, bd);
588 }
589 }
590 count = 2;
591 } else {
592 vpx_highbd_lpf_horizontal_8(s, pitch, lfi->mblim, lfi->lim,
593 lfi->hev_thr, bd);
594
595 if (mask_4x4_int & 1) {
596 vpx_highbd_lpf_horizontal_4(s + 4 * pitch, pitch, lfi->mblim,
597 lfi->lim, lfi->hev_thr, bd);
598 }
599 }
600 } else if (mask_4x4 & 1) {
601 if ((mask_4x4 & 3) == 3) {
602 // Next block's thresholds.
603 const loop_filter_thresh *lfin = lfthr + *(lfl + 1);
604
605 vpx_highbd_lpf_horizontal_4_dual(s, pitch, lfi->mblim, lfi->lim,
606 lfi->hev_thr, lfin->mblim, lfin->lim,
607 lfin->hev_thr, bd);
608 if ((mask_4x4_int & 3) == 3) {
609 vpx_highbd_lpf_horizontal_4_dual(
610 s + 4 * pitch, pitch, lfi->mblim, lfi->lim, lfi->hev_thr,
611 lfin->mblim, lfin->lim, lfin->hev_thr, bd);
612 } else {
613 if (mask_4x4_int & 1) {
614 vpx_highbd_lpf_horizontal_4(s + 4 * pitch, pitch, lfi->mblim,
615 lfi->lim, lfi->hev_thr, bd);
616 } else if (mask_4x4_int & 2) {
617 vpx_highbd_lpf_horizontal_4(s + 8 + 4 * pitch, pitch, lfin->mblim,
618 lfin->lim, lfin->hev_thr, bd);
619 }
620 }
621 count = 2;
622 } else {
623 vpx_highbd_lpf_horizontal_4(s, pitch, lfi->mblim, lfi->lim,
624 lfi->hev_thr, bd);
625
626 if (mask_4x4_int & 1) {
627 vpx_highbd_lpf_horizontal_4(s + 4 * pitch, pitch, lfi->mblim,
628 lfi->lim, lfi->hev_thr, bd);
629 }
630 }
631 } else {
632 vpx_highbd_lpf_horizontal_4(s + 4 * pitch, pitch, lfi->mblim, lfi->lim,
633 lfi->hev_thr, bd);
634 }
635 }
636 s += 8 * count;
637 lfl += count;
638 mask_16x16 >>= count;
639 mask_8x8 >>= count;
640 mask_4x4 >>= count;
641 mask_4x4_int >>= count;
642 }
643 }
644 #endif // CONFIG_VP9_HIGHBITDEPTH
645
646 // This function ors into the current lfm structure, where to do loop
647 // filters for the specific mi we are looking at. It uses information
648 // including the block_size_type (32x16, 32x32, etc.), the transform size,
649 // whether there were any coefficients encoded, and the loop filter strength
650 // block we are currently looking at. Shift is used to position the
651 // 1's we produce.
build_masks(const loop_filter_info_n * const lfi_n,const MODE_INFO * mi,const int shift_y,const int shift_uv,LOOP_FILTER_MASK * lfm)652 static void build_masks(const loop_filter_info_n *const lfi_n,
653 const MODE_INFO *mi, const int shift_y,
654 const int shift_uv, LOOP_FILTER_MASK *lfm) {
655 const BLOCK_SIZE block_size = mi->sb_type;
656 const TX_SIZE tx_size_y = mi->tx_size;
657 const TX_SIZE tx_size_uv = uv_txsize_lookup[block_size][tx_size_y][1][1];
658 const int filter_level = get_filter_level(lfi_n, mi);
659 uint64_t *const left_y = &lfm->left_y[tx_size_y];
660 uint64_t *const above_y = &lfm->above_y[tx_size_y];
661 uint64_t *const int_4x4_y = &lfm->int_4x4_y;
662 uint16_t *const left_uv = &lfm->left_uv[tx_size_uv];
663 uint16_t *const above_uv = &lfm->above_uv[tx_size_uv];
664 uint16_t *const int_4x4_uv = &lfm->int_4x4_uv;
665 int i;
666
667 // If filter level is 0 we don't loop filter.
668 if (!filter_level) {
669 return;
670 } else {
671 const int w = num_8x8_blocks_wide_lookup[block_size];
672 const int h = num_8x8_blocks_high_lookup[block_size];
673 int index = shift_y;
674 for (i = 0; i < h; i++) {
675 memset(&lfm->lfl_y[index], filter_level, w);
676 index += 8;
677 }
678 }
679
680 // These set 1 in the current block size for the block size edges.
681 // For instance if the block size is 32x16, we'll set:
682 // above = 1111
683 // 0000
684 // and
685 // left = 1000
686 // = 1000
687 // NOTE : In this example the low bit is left most ( 1000 ) is stored as
688 // 1, not 8...
689 //
690 // U and V set things on a 16 bit scale.
691 //
692 *above_y |= above_prediction_mask[block_size] << shift_y;
693 *above_uv |= above_prediction_mask_uv[block_size] << shift_uv;
694 *left_y |= left_prediction_mask[block_size] << shift_y;
695 *left_uv |= left_prediction_mask_uv[block_size] << shift_uv;
696
697 // If the block has no coefficients and is not intra we skip applying
698 // the loop filter on block edges.
699 if (mi->skip && is_inter_block(mi)) return;
700
701 // Here we are adding a mask for the transform size. The transform
702 // size mask is set to be correct for a 64x64 prediction block size. We
703 // mask to match the size of the block we are working on and then shift it
704 // into place..
705 *above_y |= (size_mask[block_size] & above_64x64_txform_mask[tx_size_y])
706 << shift_y;
707 *above_uv |=
708 (size_mask_uv[block_size] & above_64x64_txform_mask_uv[tx_size_uv])
709 << shift_uv;
710
711 *left_y |= (size_mask[block_size] & left_64x64_txform_mask[tx_size_y])
712 << shift_y;
713 *left_uv |= (size_mask_uv[block_size] & left_64x64_txform_mask_uv[tx_size_uv])
714 << shift_uv;
715
716 // Here we are trying to determine what to do with the internal 4x4 block
717 // boundaries. These differ from the 4x4 boundaries on the outside edge of
718 // an 8x8 in that the internal ones can be skipped and don't depend on
719 // the prediction block size.
720 if (tx_size_y == TX_4X4) *int_4x4_y |= size_mask[block_size] << shift_y;
721
722 if (tx_size_uv == TX_4X4)
723 *int_4x4_uv |= (size_mask_uv[block_size] & 0xffff) << shift_uv;
724 }
725
726 // This function does the same thing as the one above with the exception that
727 // it only affects the y masks. It exists because for blocks < 16x16 in size,
728 // we only update u and v masks on the first block.
build_y_mask(const loop_filter_info_n * const lfi_n,const MODE_INFO * mi,const int shift_y,LOOP_FILTER_MASK * lfm)729 static void build_y_mask(const loop_filter_info_n *const lfi_n,
730 const MODE_INFO *mi, const int shift_y,
731 LOOP_FILTER_MASK *lfm) {
732 const BLOCK_SIZE block_size = mi->sb_type;
733 const TX_SIZE tx_size_y = mi->tx_size;
734 const int filter_level = get_filter_level(lfi_n, mi);
735 uint64_t *const left_y = &lfm->left_y[tx_size_y];
736 uint64_t *const above_y = &lfm->above_y[tx_size_y];
737 uint64_t *const int_4x4_y = &lfm->int_4x4_y;
738 int i;
739
740 if (!filter_level) {
741 return;
742 } else {
743 const int w = num_8x8_blocks_wide_lookup[block_size];
744 const int h = num_8x8_blocks_high_lookup[block_size];
745 int index = shift_y;
746 for (i = 0; i < h; i++) {
747 memset(&lfm->lfl_y[index], filter_level, w);
748 index += 8;
749 }
750 }
751
752 *above_y |= above_prediction_mask[block_size] << shift_y;
753 *left_y |= left_prediction_mask[block_size] << shift_y;
754
755 if (mi->skip && is_inter_block(mi)) return;
756
757 *above_y |= (size_mask[block_size] & above_64x64_txform_mask[tx_size_y])
758 << shift_y;
759
760 *left_y |= (size_mask[block_size] & left_64x64_txform_mask[tx_size_y])
761 << shift_y;
762
763 if (tx_size_y == TX_4X4) *int_4x4_y |= size_mask[block_size] << shift_y;
764 }
765
vp9_adjust_mask(VP9_COMMON * const cm,const int mi_row,const int mi_col,LOOP_FILTER_MASK * lfm)766 void vp9_adjust_mask(VP9_COMMON *const cm, const int mi_row, const int mi_col,
767 LOOP_FILTER_MASK *lfm) {
768 int i;
769
770 // The largest loopfilter we have is 16x16 so we use the 16x16 mask
771 // for 32x32 transforms also.
772 lfm->left_y[TX_16X16] |= lfm->left_y[TX_32X32];
773 lfm->above_y[TX_16X16] |= lfm->above_y[TX_32X32];
774 lfm->left_uv[TX_16X16] |= lfm->left_uv[TX_32X32];
775 lfm->above_uv[TX_16X16] |= lfm->above_uv[TX_32X32];
776
777 // We do at least 8 tap filter on every 32x32 even if the transform size
778 // is 4x4. So if the 4x4 is set on a border pixel add it to the 8x8 and
779 // remove it from the 4x4.
780 lfm->left_y[TX_8X8] |= lfm->left_y[TX_4X4] & left_border;
781 lfm->left_y[TX_4X4] &= ~left_border;
782 lfm->above_y[TX_8X8] |= lfm->above_y[TX_4X4] & above_border;
783 lfm->above_y[TX_4X4] &= ~above_border;
784 lfm->left_uv[TX_8X8] |= lfm->left_uv[TX_4X4] & left_border_uv;
785 lfm->left_uv[TX_4X4] &= ~left_border_uv;
786 lfm->above_uv[TX_8X8] |= lfm->above_uv[TX_4X4] & above_border_uv;
787 lfm->above_uv[TX_4X4] &= ~above_border_uv;
788
789 // We do some special edge handling.
790 if (mi_row + MI_BLOCK_SIZE > cm->mi_rows) {
791 const uint64_t rows = cm->mi_rows - mi_row;
792
793 // Each pixel inside the border gets a 1,
794 const uint64_t mask_y = (((uint64_t)1 << (rows << 3)) - 1);
795 const uint16_t mask_uv = (((uint16_t)1 << (((rows + 1) >> 1) << 2)) - 1);
796
797 // Remove values completely outside our border.
798 for (i = 0; i < TX_32X32; i++) {
799 lfm->left_y[i] &= mask_y;
800 lfm->above_y[i] &= mask_y;
801 lfm->left_uv[i] &= mask_uv;
802 lfm->above_uv[i] &= mask_uv;
803 }
804 lfm->int_4x4_y &= mask_y;
805 lfm->int_4x4_uv &= mask_uv;
806
807 // We don't apply a wide loop filter on the last uv block row. If set
808 // apply the shorter one instead.
809 if (rows == 1) {
810 lfm->above_uv[TX_8X8] |= lfm->above_uv[TX_16X16];
811 lfm->above_uv[TX_16X16] = 0;
812 }
813 if (rows == 5) {
814 lfm->above_uv[TX_8X8] |= lfm->above_uv[TX_16X16] & 0xff00;
815 lfm->above_uv[TX_16X16] &= ~(lfm->above_uv[TX_16X16] & 0xff00);
816 }
817 }
818
819 if (mi_col + MI_BLOCK_SIZE > cm->mi_cols) {
820 const uint64_t columns = cm->mi_cols - mi_col;
821
822 // Each pixel inside the border gets a 1, the multiply copies the border
823 // to where we need it.
824 const uint64_t mask_y = (((1 << columns) - 1)) * 0x0101010101010101ULL;
825 const uint16_t mask_uv = ((1 << ((columns + 1) >> 1)) - 1) * 0x1111;
826
827 // Internal edges are not applied on the last column of the image so
828 // we mask 1 more for the internal edges
829 const uint16_t mask_uv_int = ((1 << (columns >> 1)) - 1) * 0x1111;
830
831 // Remove the bits outside the image edge.
832 for (i = 0; i < TX_32X32; i++) {
833 lfm->left_y[i] &= mask_y;
834 lfm->above_y[i] &= mask_y;
835 lfm->left_uv[i] &= mask_uv;
836 lfm->above_uv[i] &= mask_uv;
837 }
838 lfm->int_4x4_y &= mask_y;
839 lfm->int_4x4_uv &= mask_uv_int;
840
841 // We don't apply a wide loop filter on the last uv column. If set
842 // apply the shorter one instead.
843 if (columns == 1) {
844 lfm->left_uv[TX_8X8] |= lfm->left_uv[TX_16X16];
845 lfm->left_uv[TX_16X16] = 0;
846 }
847 if (columns == 5) {
848 lfm->left_uv[TX_8X8] |= (lfm->left_uv[TX_16X16] & 0xcccc);
849 lfm->left_uv[TX_16X16] &= ~(lfm->left_uv[TX_16X16] & 0xcccc);
850 }
851 }
852 // We don't apply a loop filter on the first column in the image, mask that
853 // out.
854 if (mi_col == 0) {
855 for (i = 0; i < TX_32X32; i++) {
856 lfm->left_y[i] &= 0xfefefefefefefefeULL;
857 lfm->left_uv[i] &= 0xeeee;
858 }
859 }
860
861 // Assert if we try to apply 2 different loop filters at the same position.
862 assert(!(lfm->left_y[TX_16X16] & lfm->left_y[TX_8X8]));
863 assert(!(lfm->left_y[TX_16X16] & lfm->left_y[TX_4X4]));
864 assert(!(lfm->left_y[TX_8X8] & lfm->left_y[TX_4X4]));
865 assert(!(lfm->int_4x4_y & lfm->left_y[TX_16X16]));
866 assert(!(lfm->left_uv[TX_16X16] & lfm->left_uv[TX_8X8]));
867 assert(!(lfm->left_uv[TX_16X16] & lfm->left_uv[TX_4X4]));
868 assert(!(lfm->left_uv[TX_8X8] & lfm->left_uv[TX_4X4]));
869 assert(!(lfm->int_4x4_uv & lfm->left_uv[TX_16X16]));
870 assert(!(lfm->above_y[TX_16X16] & lfm->above_y[TX_8X8]));
871 assert(!(lfm->above_y[TX_16X16] & lfm->above_y[TX_4X4]));
872 assert(!(lfm->above_y[TX_8X8] & lfm->above_y[TX_4X4]));
873 assert(!(lfm->int_4x4_y & lfm->above_y[TX_16X16]));
874 assert(!(lfm->above_uv[TX_16X16] & lfm->above_uv[TX_8X8]));
875 assert(!(lfm->above_uv[TX_16X16] & lfm->above_uv[TX_4X4]));
876 assert(!(lfm->above_uv[TX_8X8] & lfm->above_uv[TX_4X4]));
877 assert(!(lfm->int_4x4_uv & lfm->above_uv[TX_16X16]));
878 }
879
880 // This function sets up the bit masks for the entire 64x64 region represented
881 // by mi_row, mi_col.
vp9_setup_mask(VP9_COMMON * const cm,const int mi_row,const int mi_col,MODE_INFO ** mi,const int mode_info_stride,LOOP_FILTER_MASK * lfm)882 void vp9_setup_mask(VP9_COMMON *const cm, const int mi_row, const int mi_col,
883 MODE_INFO **mi, const int mode_info_stride,
884 LOOP_FILTER_MASK *lfm) {
885 int idx_32, idx_16, idx_8;
886 const loop_filter_info_n *const lfi_n = &cm->lf_info;
887 MODE_INFO **mip = mi;
888 MODE_INFO **mip2 = mi;
889
890 // These are offsets to the next mi in the 64x64 block. It is what gets
891 // added to the mi ptr as we go through each loop. It helps us to avoid
892 // setting up special row and column counters for each index. The last step
893 // brings us out back to the starting position.
894 const int offset_32[] = { 4, (mode_info_stride << 2) - 4, 4,
895 -(mode_info_stride << 2) - 4 };
896 const int offset_16[] = { 2, (mode_info_stride << 1) - 2, 2,
897 -(mode_info_stride << 1) - 2 };
898 const int offset[] = { 1, mode_info_stride - 1, 1, -mode_info_stride - 1 };
899
900 // Following variables represent shifts to position the current block
901 // mask over the appropriate block. A shift of 36 to the left will move
902 // the bits for the final 32 by 32 block in the 64x64 up 4 rows and left
903 // 4 rows to the appropriate spot.
904 const int shift_32_y[] = { 0, 4, 32, 36 };
905 const int shift_16_y[] = { 0, 2, 16, 18 };
906 const int shift_8_y[] = { 0, 1, 8, 9 };
907 const int shift_32_uv[] = { 0, 2, 8, 10 };
908 const int shift_16_uv[] = { 0, 1, 4, 5 };
909 const int max_rows =
910 (mi_row + MI_BLOCK_SIZE > cm->mi_rows ? cm->mi_rows - mi_row
911 : MI_BLOCK_SIZE);
912 const int max_cols =
913 (mi_col + MI_BLOCK_SIZE > cm->mi_cols ? cm->mi_cols - mi_col
914 : MI_BLOCK_SIZE);
915
916 vp9_zero(*lfm);
917 assert(mip[0] != NULL);
918
919 switch (mip[0]->sb_type) {
920 case BLOCK_64X64: build_masks(lfi_n, mip[0], 0, 0, lfm); break;
921 case BLOCK_64X32:
922 build_masks(lfi_n, mip[0], 0, 0, lfm);
923 mip2 = mip + mode_info_stride * 4;
924 if (4 >= max_rows) break;
925 build_masks(lfi_n, mip2[0], 32, 8, lfm);
926 break;
927 case BLOCK_32X64:
928 build_masks(lfi_n, mip[0], 0, 0, lfm);
929 mip2 = mip + 4;
930 if (4 >= max_cols) break;
931 build_masks(lfi_n, mip2[0], 4, 2, lfm);
932 break;
933 default:
934 for (idx_32 = 0; idx_32 < 4; mip += offset_32[idx_32], ++idx_32) {
935 const int shift_y = shift_32_y[idx_32];
936 const int shift_uv = shift_32_uv[idx_32];
937 const int mi_32_col_offset = ((idx_32 & 1) << 2);
938 const int mi_32_row_offset = ((idx_32 >> 1) << 2);
939 if (mi_32_col_offset >= max_cols || mi_32_row_offset >= max_rows)
940 continue;
941 switch (mip[0]->sb_type) {
942 case BLOCK_32X32:
943 build_masks(lfi_n, mip[0], shift_y, shift_uv, lfm);
944 break;
945 case BLOCK_32X16:
946 build_masks(lfi_n, mip[0], shift_y, shift_uv, lfm);
947 if (mi_32_row_offset + 2 >= max_rows) continue;
948 mip2 = mip + mode_info_stride * 2;
949 build_masks(lfi_n, mip2[0], shift_y + 16, shift_uv + 4, lfm);
950 break;
951 case BLOCK_16X32:
952 build_masks(lfi_n, mip[0], shift_y, shift_uv, lfm);
953 if (mi_32_col_offset + 2 >= max_cols) continue;
954 mip2 = mip + 2;
955 build_masks(lfi_n, mip2[0], shift_y + 2, shift_uv + 1, lfm);
956 break;
957 default:
958 for (idx_16 = 0; idx_16 < 4; mip += offset_16[idx_16], ++idx_16) {
959 const int shift_y = shift_32_y[idx_32] + shift_16_y[idx_16];
960 const int shift_uv = shift_32_uv[idx_32] + shift_16_uv[idx_16];
961 const int mi_16_col_offset =
962 mi_32_col_offset + ((idx_16 & 1) << 1);
963 const int mi_16_row_offset =
964 mi_32_row_offset + ((idx_16 >> 1) << 1);
965
966 if (mi_16_col_offset >= max_cols || mi_16_row_offset >= max_rows)
967 continue;
968
969 switch (mip[0]->sb_type) {
970 case BLOCK_16X16:
971 build_masks(lfi_n, mip[0], shift_y, shift_uv, lfm);
972 break;
973 case BLOCK_16X8:
974 build_masks(lfi_n, mip[0], shift_y, shift_uv, lfm);
975 if (mi_16_row_offset + 1 >= max_rows) continue;
976 mip2 = mip + mode_info_stride;
977 build_y_mask(lfi_n, mip2[0], shift_y + 8, lfm);
978 break;
979 case BLOCK_8X16:
980 build_masks(lfi_n, mip[0], shift_y, shift_uv, lfm);
981 if (mi_16_col_offset + 1 >= max_cols) continue;
982 mip2 = mip + 1;
983 build_y_mask(lfi_n, mip2[0], shift_y + 1, lfm);
984 break;
985 default: {
986 const int shift_y =
987 shift_32_y[idx_32] + shift_16_y[idx_16] + shift_8_y[0];
988 build_masks(lfi_n, mip[0], shift_y, shift_uv, lfm);
989 mip += offset[0];
990 for (idx_8 = 1; idx_8 < 4; mip += offset[idx_8], ++idx_8) {
991 const int shift_y = shift_32_y[idx_32] +
992 shift_16_y[idx_16] + shift_8_y[idx_8];
993 const int mi_8_col_offset =
994 mi_16_col_offset + ((idx_8 & 1));
995 const int mi_8_row_offset =
996 mi_16_row_offset + ((idx_8 >> 1));
997
998 if (mi_8_col_offset >= max_cols ||
999 mi_8_row_offset >= max_rows)
1000 continue;
1001 build_y_mask(lfi_n, mip[0], shift_y, lfm);
1002 }
1003 break;
1004 }
1005 }
1006 }
1007 break;
1008 }
1009 }
1010 break;
1011 }
1012 }
1013
filter_selectively_vert(uint8_t * s,int pitch,unsigned int mask_16x16,unsigned int mask_8x8,unsigned int mask_4x4,unsigned int mask_4x4_int,const loop_filter_thresh * lfthr,const uint8_t * lfl)1014 static void filter_selectively_vert(
1015 uint8_t *s, int pitch, unsigned int mask_16x16, unsigned int mask_8x8,
1016 unsigned int mask_4x4, unsigned int mask_4x4_int,
1017 const loop_filter_thresh *lfthr, const uint8_t *lfl) {
1018 unsigned int mask;
1019
1020 for (mask = mask_16x16 | mask_8x8 | mask_4x4 | mask_4x4_int; mask;
1021 mask >>= 1) {
1022 const loop_filter_thresh *lfi = lfthr + *lfl;
1023
1024 if (mask & 1) {
1025 if (mask_16x16 & 1) {
1026 vpx_lpf_vertical_16(s, pitch, lfi->mblim, lfi->lim, lfi->hev_thr);
1027 } else if (mask_8x8 & 1) {
1028 vpx_lpf_vertical_8(s, pitch, lfi->mblim, lfi->lim, lfi->hev_thr);
1029 } else if (mask_4x4 & 1) {
1030 vpx_lpf_vertical_4(s, pitch, lfi->mblim, lfi->lim, lfi->hev_thr);
1031 }
1032 }
1033 if (mask_4x4_int & 1)
1034 vpx_lpf_vertical_4(s + 4, pitch, lfi->mblim, lfi->lim, lfi->hev_thr);
1035 s += 8;
1036 lfl += 1;
1037 mask_16x16 >>= 1;
1038 mask_8x8 >>= 1;
1039 mask_4x4 >>= 1;
1040 mask_4x4_int >>= 1;
1041 }
1042 }
1043
1044 #if CONFIG_VP9_HIGHBITDEPTH
highbd_filter_selectively_vert(uint16_t * s,int pitch,unsigned int mask_16x16,unsigned int mask_8x8,unsigned int mask_4x4,unsigned int mask_4x4_int,const loop_filter_thresh * lfthr,const uint8_t * lfl,int bd)1045 static void highbd_filter_selectively_vert(
1046 uint16_t *s, int pitch, unsigned int mask_16x16, unsigned int mask_8x8,
1047 unsigned int mask_4x4, unsigned int mask_4x4_int,
1048 const loop_filter_thresh *lfthr, const uint8_t *lfl, int bd) {
1049 unsigned int mask;
1050
1051 for (mask = mask_16x16 | mask_8x8 | mask_4x4 | mask_4x4_int; mask;
1052 mask >>= 1) {
1053 const loop_filter_thresh *lfi = lfthr + *lfl;
1054
1055 if (mask & 1) {
1056 if (mask_16x16 & 1) {
1057 vpx_highbd_lpf_vertical_16(s, pitch, lfi->mblim, lfi->lim, lfi->hev_thr,
1058 bd);
1059 } else if (mask_8x8 & 1) {
1060 vpx_highbd_lpf_vertical_8(s, pitch, lfi->mblim, lfi->lim, lfi->hev_thr,
1061 bd);
1062 } else if (mask_4x4 & 1) {
1063 vpx_highbd_lpf_vertical_4(s, pitch, lfi->mblim, lfi->lim, lfi->hev_thr,
1064 bd);
1065 }
1066 }
1067 if (mask_4x4_int & 1)
1068 vpx_highbd_lpf_vertical_4(s + 4, pitch, lfi->mblim, lfi->lim,
1069 lfi->hev_thr, bd);
1070 s += 8;
1071 lfl += 1;
1072 mask_16x16 >>= 1;
1073 mask_8x8 >>= 1;
1074 mask_4x4 >>= 1;
1075 mask_4x4_int >>= 1;
1076 }
1077 }
1078 #endif // CONFIG_VP9_HIGHBITDEPTH
1079
vp9_filter_block_plane_non420(VP9_COMMON * cm,struct macroblockd_plane * plane,MODE_INFO ** mi_8x8,int mi_row,int mi_col)1080 void vp9_filter_block_plane_non420(VP9_COMMON *cm,
1081 struct macroblockd_plane *plane,
1082 MODE_INFO **mi_8x8, int mi_row, int mi_col) {
1083 const int ss_x = plane->subsampling_x;
1084 const int ss_y = plane->subsampling_y;
1085 const int row_step = 1 << ss_y;
1086 const int col_step = 1 << ss_x;
1087 const int row_step_stride = cm->mi_stride * row_step;
1088 struct buf_2d *const dst = &plane->dst;
1089 uint8_t *const dst0 = dst->buf;
1090 unsigned int mask_16x16[MI_BLOCK_SIZE] = { 0 };
1091 unsigned int mask_8x8[MI_BLOCK_SIZE] = { 0 };
1092 unsigned int mask_4x4[MI_BLOCK_SIZE] = { 0 };
1093 unsigned int mask_4x4_int[MI_BLOCK_SIZE] = { 0 };
1094 uint8_t lfl[MI_BLOCK_SIZE * MI_BLOCK_SIZE];
1095 int r, c;
1096
1097 for (r = 0; r < MI_BLOCK_SIZE && mi_row + r < cm->mi_rows; r += row_step) {
1098 unsigned int mask_16x16_c = 0;
1099 unsigned int mask_8x8_c = 0;
1100 unsigned int mask_4x4_c = 0;
1101 unsigned int border_mask;
1102
1103 // Determine the vertical edges that need filtering
1104 for (c = 0; c < MI_BLOCK_SIZE && mi_col + c < cm->mi_cols; c += col_step) {
1105 const MODE_INFO *mi = mi_8x8[c];
1106 const BLOCK_SIZE sb_type = mi[0].sb_type;
1107 const int skip_this = mi[0].skip && is_inter_block(mi);
1108 // left edge of current unit is block/partition edge -> no skip
1109 const int block_edge_left =
1110 (num_4x4_blocks_wide_lookup[sb_type] > 1)
1111 ? !(c & (num_8x8_blocks_wide_lookup[sb_type] - 1))
1112 : 1;
1113 const int skip_this_c = skip_this && !block_edge_left;
1114 // top edge of current unit is block/partition edge -> no skip
1115 const int block_edge_above =
1116 (num_4x4_blocks_high_lookup[sb_type] > 1)
1117 ? !(r & (num_8x8_blocks_high_lookup[sb_type] - 1))
1118 : 1;
1119 const int skip_this_r = skip_this && !block_edge_above;
1120 const TX_SIZE tx_size = get_uv_tx_size(mi, plane);
1121 const int skip_border_4x4_c = ss_x && mi_col + c == cm->mi_cols - 1;
1122 const int skip_border_4x4_r = ss_y && mi_row + r == cm->mi_rows - 1;
1123
1124 // Filter level can vary per MI
1125 if (!(lfl[(r << 3) + (c >> ss_x)] = get_filter_level(&cm->lf_info, mi)))
1126 continue;
1127
1128 // Build masks based on the transform size of each block
1129 if (tx_size == TX_32X32) {
1130 if (!skip_this_c && ((c >> ss_x) & 3) == 0) {
1131 if (!skip_border_4x4_c)
1132 mask_16x16_c |= 1 << (c >> ss_x);
1133 else
1134 mask_8x8_c |= 1 << (c >> ss_x);
1135 }
1136 if (!skip_this_r && ((r >> ss_y) & 3) == 0) {
1137 if (!skip_border_4x4_r)
1138 mask_16x16[r] |= 1 << (c >> ss_x);
1139 else
1140 mask_8x8[r] |= 1 << (c >> ss_x);
1141 }
1142 } else if (tx_size == TX_16X16) {
1143 if (!skip_this_c && ((c >> ss_x) & 1) == 0) {
1144 if (!skip_border_4x4_c)
1145 mask_16x16_c |= 1 << (c >> ss_x);
1146 else
1147 mask_8x8_c |= 1 << (c >> ss_x);
1148 }
1149 if (!skip_this_r && ((r >> ss_y) & 1) == 0) {
1150 if (!skip_border_4x4_r)
1151 mask_16x16[r] |= 1 << (c >> ss_x);
1152 else
1153 mask_8x8[r] |= 1 << (c >> ss_x);
1154 }
1155 } else {
1156 // force 8x8 filtering on 32x32 boundaries
1157 if (!skip_this_c) {
1158 if (tx_size == TX_8X8 || ((c >> ss_x) & 3) == 0)
1159 mask_8x8_c |= 1 << (c >> ss_x);
1160 else
1161 mask_4x4_c |= 1 << (c >> ss_x);
1162 }
1163
1164 if (!skip_this_r) {
1165 if (tx_size == TX_8X8 || ((r >> ss_y) & 3) == 0)
1166 mask_8x8[r] |= 1 << (c >> ss_x);
1167 else
1168 mask_4x4[r] |= 1 << (c >> ss_x);
1169 }
1170
1171 if (!skip_this && tx_size < TX_8X8 && !skip_border_4x4_c)
1172 mask_4x4_int[r] |= 1 << (c >> ss_x);
1173 }
1174 }
1175
1176 // Disable filtering on the leftmost column
1177 border_mask = ~(mi_col == 0);
1178 #if CONFIG_VP9_HIGHBITDEPTH
1179 if (cm->use_highbitdepth) {
1180 highbd_filter_selectively_vert(
1181 CONVERT_TO_SHORTPTR(dst->buf), dst->stride,
1182 mask_16x16_c & border_mask, mask_8x8_c & border_mask,
1183 mask_4x4_c & border_mask, mask_4x4_int[r], cm->lf_info.lfthr,
1184 &lfl[r << 3], (int)cm->bit_depth);
1185 } else {
1186 #endif // CONFIG_VP9_HIGHBITDEPTH
1187 filter_selectively_vert(dst->buf, dst->stride, mask_16x16_c & border_mask,
1188 mask_8x8_c & border_mask,
1189 mask_4x4_c & border_mask, mask_4x4_int[r],
1190 cm->lf_info.lfthr, &lfl[r << 3]);
1191 #if CONFIG_VP9_HIGHBITDEPTH
1192 }
1193 #endif // CONFIG_VP9_HIGHBITDEPTH
1194 dst->buf += 8 * dst->stride;
1195 mi_8x8 += row_step_stride;
1196 }
1197
1198 // Now do horizontal pass
1199 dst->buf = dst0;
1200 for (r = 0; r < MI_BLOCK_SIZE && mi_row + r < cm->mi_rows; r += row_step) {
1201 const int skip_border_4x4_r = ss_y && mi_row + r == cm->mi_rows - 1;
1202 const unsigned int mask_4x4_int_r = skip_border_4x4_r ? 0 : mask_4x4_int[r];
1203
1204 unsigned int mask_16x16_r;
1205 unsigned int mask_8x8_r;
1206 unsigned int mask_4x4_r;
1207
1208 if (mi_row + r == 0) {
1209 mask_16x16_r = 0;
1210 mask_8x8_r = 0;
1211 mask_4x4_r = 0;
1212 } else {
1213 mask_16x16_r = mask_16x16[r];
1214 mask_8x8_r = mask_8x8[r];
1215 mask_4x4_r = mask_4x4[r];
1216 }
1217 #if CONFIG_VP9_HIGHBITDEPTH
1218 if (cm->use_highbitdepth) {
1219 highbd_filter_selectively_horiz(
1220 CONVERT_TO_SHORTPTR(dst->buf), dst->stride, mask_16x16_r, mask_8x8_r,
1221 mask_4x4_r, mask_4x4_int_r, cm->lf_info.lfthr, &lfl[r << 3],
1222 (int)cm->bit_depth);
1223 } else {
1224 #endif // CONFIG_VP9_HIGHBITDEPTH
1225 filter_selectively_horiz(dst->buf, dst->stride, mask_16x16_r, mask_8x8_r,
1226 mask_4x4_r, mask_4x4_int_r, cm->lf_info.lfthr,
1227 &lfl[r << 3]);
1228 #if CONFIG_VP9_HIGHBITDEPTH
1229 }
1230 #endif // CONFIG_VP9_HIGHBITDEPTH
1231 dst->buf += 8 * dst->stride;
1232 }
1233 }
1234
vp9_filter_block_plane_ss00(VP9_COMMON * const cm,struct macroblockd_plane * const plane,int mi_row,LOOP_FILTER_MASK * lfm)1235 void vp9_filter_block_plane_ss00(VP9_COMMON *const cm,
1236 struct macroblockd_plane *const plane,
1237 int mi_row, LOOP_FILTER_MASK *lfm) {
1238 struct buf_2d *const dst = &plane->dst;
1239 uint8_t *const dst0 = dst->buf;
1240 int r;
1241 uint64_t mask_16x16 = lfm->left_y[TX_16X16];
1242 uint64_t mask_8x8 = lfm->left_y[TX_8X8];
1243 uint64_t mask_4x4 = lfm->left_y[TX_4X4];
1244 uint64_t mask_4x4_int = lfm->int_4x4_y;
1245
1246 assert(plane->subsampling_x == 0 && plane->subsampling_y == 0);
1247
1248 // Vertical pass: do 2 rows at one time
1249 for (r = 0; r < MI_BLOCK_SIZE && mi_row + r < cm->mi_rows; r += 2) {
1250 #if CONFIG_VP9_HIGHBITDEPTH
1251 if (cm->use_highbitdepth) {
1252 // Disable filtering on the leftmost column.
1253 highbd_filter_selectively_vert_row2(
1254 plane->subsampling_x, CONVERT_TO_SHORTPTR(dst->buf), dst->stride,
1255 (unsigned int)mask_16x16, (unsigned int)mask_8x8,
1256 (unsigned int)mask_4x4, (unsigned int)mask_4x4_int, cm->lf_info.lfthr,
1257 &lfm->lfl_y[r << 3], (int)cm->bit_depth);
1258 } else {
1259 #endif // CONFIG_VP9_HIGHBITDEPTH
1260 // Disable filtering on the leftmost column.
1261 filter_selectively_vert_row2(
1262 plane->subsampling_x, dst->buf, dst->stride, (unsigned int)mask_16x16,
1263 (unsigned int)mask_8x8, (unsigned int)mask_4x4,
1264 (unsigned int)mask_4x4_int, cm->lf_info.lfthr, &lfm->lfl_y[r << 3]);
1265 #if CONFIG_VP9_HIGHBITDEPTH
1266 }
1267 #endif // CONFIG_VP9_HIGHBITDEPTH
1268 dst->buf += 16 * dst->stride;
1269 mask_16x16 >>= 16;
1270 mask_8x8 >>= 16;
1271 mask_4x4 >>= 16;
1272 mask_4x4_int >>= 16;
1273 }
1274
1275 // Horizontal pass
1276 dst->buf = dst0;
1277 mask_16x16 = lfm->above_y[TX_16X16];
1278 mask_8x8 = lfm->above_y[TX_8X8];
1279 mask_4x4 = lfm->above_y[TX_4X4];
1280 mask_4x4_int = lfm->int_4x4_y;
1281
1282 for (r = 0; r < MI_BLOCK_SIZE && mi_row + r < cm->mi_rows; r++) {
1283 unsigned int mask_16x16_r;
1284 unsigned int mask_8x8_r;
1285 unsigned int mask_4x4_r;
1286
1287 if (mi_row + r == 0) {
1288 mask_16x16_r = 0;
1289 mask_8x8_r = 0;
1290 mask_4x4_r = 0;
1291 } else {
1292 mask_16x16_r = mask_16x16 & 0xff;
1293 mask_8x8_r = mask_8x8 & 0xff;
1294 mask_4x4_r = mask_4x4 & 0xff;
1295 }
1296
1297 #if CONFIG_VP9_HIGHBITDEPTH
1298 if (cm->use_highbitdepth) {
1299 highbd_filter_selectively_horiz(
1300 CONVERT_TO_SHORTPTR(dst->buf), dst->stride, mask_16x16_r, mask_8x8_r,
1301 mask_4x4_r, mask_4x4_int & 0xff, cm->lf_info.lfthr,
1302 &lfm->lfl_y[r << 3], (int)cm->bit_depth);
1303 } else {
1304 #endif // CONFIG_VP9_HIGHBITDEPTH
1305 filter_selectively_horiz(dst->buf, dst->stride, mask_16x16_r, mask_8x8_r,
1306 mask_4x4_r, mask_4x4_int & 0xff,
1307 cm->lf_info.lfthr, &lfm->lfl_y[r << 3]);
1308 #if CONFIG_VP9_HIGHBITDEPTH
1309 }
1310 #endif // CONFIG_VP9_HIGHBITDEPTH
1311
1312 dst->buf += 8 * dst->stride;
1313 mask_16x16 >>= 8;
1314 mask_8x8 >>= 8;
1315 mask_4x4 >>= 8;
1316 mask_4x4_int >>= 8;
1317 }
1318 }
1319
vp9_filter_block_plane_ss11(VP9_COMMON * const cm,struct macroblockd_plane * const plane,int mi_row,LOOP_FILTER_MASK * lfm)1320 void vp9_filter_block_plane_ss11(VP9_COMMON *const cm,
1321 struct macroblockd_plane *const plane,
1322 int mi_row, LOOP_FILTER_MASK *lfm) {
1323 struct buf_2d *const dst = &plane->dst;
1324 uint8_t *const dst0 = dst->buf;
1325 int r, c;
1326 uint8_t lfl_uv[16];
1327
1328 uint16_t mask_16x16 = lfm->left_uv[TX_16X16];
1329 uint16_t mask_8x8 = lfm->left_uv[TX_8X8];
1330 uint16_t mask_4x4 = lfm->left_uv[TX_4X4];
1331 uint16_t mask_4x4_int = lfm->int_4x4_uv;
1332
1333 assert(plane->subsampling_x == 1 && plane->subsampling_y == 1);
1334
1335 // Vertical pass: do 2 rows at one time
1336 for (r = 0; r < MI_BLOCK_SIZE && mi_row + r < cm->mi_rows; r += 4) {
1337 for (c = 0; c < (MI_BLOCK_SIZE >> 1); c++) {
1338 lfl_uv[(r << 1) + c] = lfm->lfl_y[(r << 3) + (c << 1)];
1339 lfl_uv[((r + 2) << 1) + c] = lfm->lfl_y[((r + 2) << 3) + (c << 1)];
1340 }
1341
1342 #if CONFIG_VP9_HIGHBITDEPTH
1343 if (cm->use_highbitdepth) {
1344 // Disable filtering on the leftmost column.
1345 highbd_filter_selectively_vert_row2(
1346 plane->subsampling_x, CONVERT_TO_SHORTPTR(dst->buf), dst->stride,
1347 (unsigned int)mask_16x16, (unsigned int)mask_8x8,
1348 (unsigned int)mask_4x4, (unsigned int)mask_4x4_int, cm->lf_info.lfthr,
1349 &lfl_uv[r << 1], (int)cm->bit_depth);
1350 } else {
1351 #endif // CONFIG_VP9_HIGHBITDEPTH
1352 // Disable filtering on the leftmost column.
1353 filter_selectively_vert_row2(
1354 plane->subsampling_x, dst->buf, dst->stride, (unsigned int)mask_16x16,
1355 (unsigned int)mask_8x8, (unsigned int)mask_4x4,
1356 (unsigned int)mask_4x4_int, cm->lf_info.lfthr, &lfl_uv[r << 1]);
1357 #if CONFIG_VP9_HIGHBITDEPTH
1358 }
1359 #endif // CONFIG_VP9_HIGHBITDEPTH
1360
1361 dst->buf += 16 * dst->stride;
1362 mask_16x16 >>= 8;
1363 mask_8x8 >>= 8;
1364 mask_4x4 >>= 8;
1365 mask_4x4_int >>= 8;
1366 }
1367
1368 // Horizontal pass
1369 dst->buf = dst0;
1370 mask_16x16 = lfm->above_uv[TX_16X16];
1371 mask_8x8 = lfm->above_uv[TX_8X8];
1372 mask_4x4 = lfm->above_uv[TX_4X4];
1373 mask_4x4_int = lfm->int_4x4_uv;
1374
1375 for (r = 0; r < MI_BLOCK_SIZE && mi_row + r < cm->mi_rows; r += 2) {
1376 const int skip_border_4x4_r = mi_row + r == cm->mi_rows - 1;
1377 const unsigned int mask_4x4_int_r =
1378 skip_border_4x4_r ? 0 : (mask_4x4_int & 0xf);
1379 unsigned int mask_16x16_r;
1380 unsigned int mask_8x8_r;
1381 unsigned int mask_4x4_r;
1382
1383 if (mi_row + r == 0) {
1384 mask_16x16_r = 0;
1385 mask_8x8_r = 0;
1386 mask_4x4_r = 0;
1387 } else {
1388 mask_16x16_r = mask_16x16 & 0xf;
1389 mask_8x8_r = mask_8x8 & 0xf;
1390 mask_4x4_r = mask_4x4 & 0xf;
1391 }
1392
1393 #if CONFIG_VP9_HIGHBITDEPTH
1394 if (cm->use_highbitdepth) {
1395 highbd_filter_selectively_horiz(
1396 CONVERT_TO_SHORTPTR(dst->buf), dst->stride, mask_16x16_r, mask_8x8_r,
1397 mask_4x4_r, mask_4x4_int_r, cm->lf_info.lfthr, &lfl_uv[r << 1],
1398 (int)cm->bit_depth);
1399 } else {
1400 #endif // CONFIG_VP9_HIGHBITDEPTH
1401 filter_selectively_horiz(dst->buf, dst->stride, mask_16x16_r, mask_8x8_r,
1402 mask_4x4_r, mask_4x4_int_r, cm->lf_info.lfthr,
1403 &lfl_uv[r << 1]);
1404 #if CONFIG_VP9_HIGHBITDEPTH
1405 }
1406 #endif // CONFIG_VP9_HIGHBITDEPTH
1407
1408 dst->buf += 8 * dst->stride;
1409 mask_16x16 >>= 4;
1410 mask_8x8 >>= 4;
1411 mask_4x4 >>= 4;
1412 mask_4x4_int >>= 4;
1413 }
1414 }
1415
loop_filter_rows(YV12_BUFFER_CONFIG * frame_buffer,VP9_COMMON * cm,struct macroblockd_plane planes[MAX_MB_PLANE],int start,int stop,int y_only)1416 static void loop_filter_rows(YV12_BUFFER_CONFIG *frame_buffer, VP9_COMMON *cm,
1417 struct macroblockd_plane planes[MAX_MB_PLANE],
1418 int start, int stop, int y_only) {
1419 const int num_planes = y_only ? 1 : MAX_MB_PLANE;
1420 enum lf_path path;
1421 int mi_row, mi_col;
1422
1423 if (y_only)
1424 path = LF_PATH_444;
1425 else if (planes[1].subsampling_y == 1 && planes[1].subsampling_x == 1)
1426 path = LF_PATH_420;
1427 else if (planes[1].subsampling_y == 0 && planes[1].subsampling_x == 0)
1428 path = LF_PATH_444;
1429 else
1430 path = LF_PATH_SLOW;
1431
1432 for (mi_row = start; mi_row < stop; mi_row += MI_BLOCK_SIZE) {
1433 MODE_INFO **mi = cm->mi_grid_visible + mi_row * cm->mi_stride;
1434 LOOP_FILTER_MASK *lfm = get_lfm(&cm->lf, mi_row, 0);
1435
1436 for (mi_col = 0; mi_col < cm->mi_cols; mi_col += MI_BLOCK_SIZE, ++lfm) {
1437 int plane;
1438
1439 vp9_setup_dst_planes(planes, frame_buffer, mi_row, mi_col);
1440
1441 // TODO(jimbankoski): For 444 only need to do y mask.
1442 vp9_adjust_mask(cm, mi_row, mi_col, lfm);
1443
1444 vp9_filter_block_plane_ss00(cm, &planes[0], mi_row, lfm);
1445 for (plane = 1; plane < num_planes; ++plane) {
1446 switch (path) {
1447 case LF_PATH_420:
1448 vp9_filter_block_plane_ss11(cm, &planes[plane], mi_row, lfm);
1449 break;
1450 case LF_PATH_444:
1451 vp9_filter_block_plane_ss00(cm, &planes[plane], mi_row, lfm);
1452 break;
1453 case LF_PATH_SLOW:
1454 vp9_filter_block_plane_non420(cm, &planes[plane], mi + mi_col,
1455 mi_row, mi_col);
1456 break;
1457 }
1458 }
1459 }
1460 }
1461 }
1462
vp9_loop_filter_frame(YV12_BUFFER_CONFIG * frame,VP9_COMMON * cm,MACROBLOCKD * xd,int frame_filter_level,int y_only,int partial_frame)1463 void vp9_loop_filter_frame(YV12_BUFFER_CONFIG *frame, VP9_COMMON *cm,
1464 MACROBLOCKD *xd, int frame_filter_level, int y_only,
1465 int partial_frame) {
1466 int start_mi_row, end_mi_row, mi_rows_to_filter;
1467 if (!frame_filter_level) return;
1468 start_mi_row = 0;
1469 mi_rows_to_filter = cm->mi_rows;
1470 if (partial_frame && cm->mi_rows > 8) {
1471 start_mi_row = cm->mi_rows >> 1;
1472 start_mi_row &= 0xfffffff8;
1473 mi_rows_to_filter = VPXMAX(cm->mi_rows / 8, 8);
1474 }
1475 end_mi_row = start_mi_row + mi_rows_to_filter;
1476 loop_filter_rows(frame, cm, xd->plane, start_mi_row, end_mi_row, y_only);
1477 }
1478
1479 // Used by the encoder to build the loopfilter masks.
1480 // TODO(slavarnway): Do the encoder the same way the decoder does it and
1481 // build the masks in line as part of the encode process.
vp9_build_mask_frame(VP9_COMMON * cm,int frame_filter_level,int partial_frame)1482 void vp9_build_mask_frame(VP9_COMMON *cm, int frame_filter_level,
1483 int partial_frame) {
1484 int start_mi_row, end_mi_row, mi_rows_to_filter;
1485 int mi_col, mi_row;
1486 if (!frame_filter_level) return;
1487 start_mi_row = 0;
1488 mi_rows_to_filter = cm->mi_rows;
1489 if (partial_frame && cm->mi_rows > 8) {
1490 start_mi_row = cm->mi_rows >> 1;
1491 start_mi_row &= 0xfffffff8;
1492 mi_rows_to_filter = VPXMAX(cm->mi_rows / 8, 8);
1493 }
1494 end_mi_row = start_mi_row + mi_rows_to_filter;
1495
1496 vp9_loop_filter_frame_init(cm, frame_filter_level);
1497
1498 for (mi_row = start_mi_row; mi_row < end_mi_row; mi_row += MI_BLOCK_SIZE) {
1499 MODE_INFO **mi = cm->mi_grid_visible + mi_row * cm->mi_stride;
1500 for (mi_col = 0; mi_col < cm->mi_cols; mi_col += MI_BLOCK_SIZE) {
1501 // vp9_setup_mask() zeros lfm
1502 vp9_setup_mask(cm, mi_row, mi_col, mi + mi_col, cm->mi_stride,
1503 get_lfm(&cm->lf, mi_row, mi_col));
1504 }
1505 }
1506 }
1507
1508 // 8x8 blocks in a superblock. A "1" represents the first block in a 16x16
1509 // or greater area.
1510 static const uint8_t first_block_in_16x16[8][8] = {
1511 { 1, 0, 1, 0, 1, 0, 1, 0 }, { 0, 0, 0, 0, 0, 0, 0, 0 },
1512 { 1, 0, 1, 0, 1, 0, 1, 0 }, { 0, 0, 0, 0, 0, 0, 0, 0 },
1513 { 1, 0, 1, 0, 1, 0, 1, 0 }, { 0, 0, 0, 0, 0, 0, 0, 0 },
1514 { 1, 0, 1, 0, 1, 0, 1, 0 }, { 0, 0, 0, 0, 0, 0, 0, 0 }
1515 };
1516
1517 // This function sets up the bit masks for a block represented
1518 // by mi_row, mi_col in a 64x64 region.
1519 // TODO(SJL): This function only works for yv12.
vp9_build_mask(VP9_COMMON * cm,const MODE_INFO * mi,int mi_row,int mi_col,int bw,int bh)1520 void vp9_build_mask(VP9_COMMON *cm, const MODE_INFO *mi, int mi_row, int mi_col,
1521 int bw, int bh) {
1522 const BLOCK_SIZE block_size = mi->sb_type;
1523 const TX_SIZE tx_size_y = mi->tx_size;
1524 const loop_filter_info_n *const lfi_n = &cm->lf_info;
1525 const int filter_level = get_filter_level(lfi_n, mi);
1526 const TX_SIZE tx_size_uv = uv_txsize_lookup[block_size][tx_size_y][1][1];
1527 LOOP_FILTER_MASK *const lfm = get_lfm(&cm->lf, mi_row, mi_col);
1528 uint64_t *const left_y = &lfm->left_y[tx_size_y];
1529 uint64_t *const above_y = &lfm->above_y[tx_size_y];
1530 uint64_t *const int_4x4_y = &lfm->int_4x4_y;
1531 uint16_t *const left_uv = &lfm->left_uv[tx_size_uv];
1532 uint16_t *const above_uv = &lfm->above_uv[tx_size_uv];
1533 uint16_t *const int_4x4_uv = &lfm->int_4x4_uv;
1534 const int row_in_sb = (mi_row & 7);
1535 const int col_in_sb = (mi_col & 7);
1536 const int shift_y = col_in_sb + (row_in_sb << 3);
1537 const int shift_uv = (col_in_sb >> 1) + ((row_in_sb >> 1) << 2);
1538 const int build_uv = first_block_in_16x16[row_in_sb][col_in_sb];
1539
1540 if (!filter_level) {
1541 return;
1542 } else {
1543 int index = shift_y;
1544 int i;
1545 for (i = 0; i < bh; i++) {
1546 memset(&lfm->lfl_y[index], filter_level, bw);
1547 index += 8;
1548 }
1549 }
1550
1551 // These set 1 in the current block size for the block size edges.
1552 // For instance if the block size is 32x16, we'll set:
1553 // above = 1111
1554 // 0000
1555 // and
1556 // left = 1000
1557 // = 1000
1558 // NOTE : In this example the low bit is left most ( 1000 ) is stored as
1559 // 1, not 8...
1560 //
1561 // U and V set things on a 16 bit scale.
1562 //
1563 *above_y |= above_prediction_mask[block_size] << shift_y;
1564 *left_y |= left_prediction_mask[block_size] << shift_y;
1565
1566 if (build_uv) {
1567 *above_uv |= above_prediction_mask_uv[block_size] << shift_uv;
1568 *left_uv |= left_prediction_mask_uv[block_size] << shift_uv;
1569 }
1570
1571 // If the block has no coefficients and is not intra we skip applying
1572 // the loop filter on block edges.
1573 if (mi->skip && is_inter_block(mi)) return;
1574
1575 // Add a mask for the transform size. The transform size mask is set to
1576 // be correct for a 64x64 prediction block size. Mask to match the size of
1577 // the block we are working on and then shift it into place.
1578 *above_y |= (size_mask[block_size] & above_64x64_txform_mask[tx_size_y])
1579 << shift_y;
1580 *left_y |= (size_mask[block_size] & left_64x64_txform_mask[tx_size_y])
1581 << shift_y;
1582
1583 if (build_uv) {
1584 *above_uv |=
1585 (size_mask_uv[block_size] & above_64x64_txform_mask_uv[tx_size_uv])
1586 << shift_uv;
1587
1588 *left_uv |=
1589 (size_mask_uv[block_size] & left_64x64_txform_mask_uv[tx_size_uv])
1590 << shift_uv;
1591 }
1592
1593 // Try to determine what to do with the internal 4x4 block boundaries. These
1594 // differ from the 4x4 boundaries on the outside edge of an 8x8 in that the
1595 // internal ones can be skipped and don't depend on the prediction block size.
1596 if (tx_size_y == TX_4X4) *int_4x4_y |= size_mask[block_size] << shift_y;
1597
1598 if (build_uv && tx_size_uv == TX_4X4)
1599 *int_4x4_uv |= (size_mask_uv[block_size] & 0xffff) << shift_uv;
1600 }
1601
vp9_loop_filter_data_reset(LFWorkerData * lf_data,YV12_BUFFER_CONFIG * frame_buffer,struct VP9Common * cm,const struct macroblockd_plane planes[MAX_MB_PLANE])1602 void vp9_loop_filter_data_reset(
1603 LFWorkerData *lf_data, YV12_BUFFER_CONFIG *frame_buffer,
1604 struct VP9Common *cm, const struct macroblockd_plane planes[MAX_MB_PLANE]) {
1605 lf_data->frame_buffer = frame_buffer;
1606 lf_data->cm = cm;
1607 lf_data->start = 0;
1608 lf_data->stop = 0;
1609 lf_data->y_only = 0;
1610 memcpy(lf_data->planes, planes, sizeof(lf_data->planes));
1611 }
1612
vp9_reset_lfm(VP9_COMMON * const cm)1613 void vp9_reset_lfm(VP9_COMMON *const cm) {
1614 if (cm->lf.filter_level) {
1615 memset(cm->lf.lfm, 0, ((cm->mi_rows + (MI_BLOCK_SIZE - 1)) >> 3) *
1616 cm->lf.lfm_stride * sizeof(*cm->lf.lfm));
1617 }
1618 }
1619
vp9_loop_filter_worker(LFWorkerData * const lf_data,void * unused)1620 int vp9_loop_filter_worker(LFWorkerData *const lf_data, void *unused) {
1621 (void)unused;
1622 loop_filter_rows(lf_data->frame_buffer, lf_data->cm, lf_data->planes,
1623 lf_data->start, lf_data->stop, lf_data->y_only);
1624 return 1;
1625 }
1626