• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /* -*- c++ -*- */
2 /*
3  * Copyright © 2011-2015 Intel Corporation
4  *
5  * Permission is hereby granted, free of charge, to any person obtaining a
6  * copy of this software and associated documentation files (the "Software"),
7  * to deal in the Software without restriction, including without limitation
8  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9  * and/or sell copies of the Software, and to permit persons to whom the
10  * Software is furnished to do so, subject to the following conditions:
11  *
12  * The above copyright notice and this permission notice (including the next
13  * paragraph) shall be included in all copies or substantial portions of the
14  * Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
19  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
21  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
22  * IN THE SOFTWARE.
23  */
24 
25 #ifndef BRW_IR_VEC4_H
26 #define BRW_IR_VEC4_H
27 
28 #include "brw_shader.h"
29 #include "brw_context.h"
30 
31 namespace brw {
32 
33 class dst_reg;
34 
35 class src_reg : public backend_reg
36 {
37 public:
38    DECLARE_RALLOC_CXX_OPERATORS(src_reg)
39 
40    void init();
41 
42    src_reg(enum brw_reg_file file, int nr, const glsl_type *type);
43    src_reg();
44    src_reg(struct ::brw_reg reg);
45 
46    bool equals(const src_reg &r) const;
47 
48    src_reg(class vec4_visitor *v, const struct glsl_type *type);
49    src_reg(class vec4_visitor *v, const struct glsl_type *type, int size);
50 
51    explicit src_reg(const dst_reg &reg);
52 
53    src_reg *reladdr;
54 };
55 
56 static inline src_reg
retype(src_reg reg,enum brw_reg_type type)57 retype(src_reg reg, enum brw_reg_type type)
58 {
59    reg.type = type;
60    return reg;
61 }
62 
63 namespace detail {
64 
65 static inline void
add_byte_offset(backend_reg * reg,unsigned bytes)66 add_byte_offset(backend_reg *reg, unsigned bytes)
67 {
68    switch (reg->file) {
69       case BAD_FILE:
70          break;
71       case VGRF:
72       case ATTR:
73       case UNIFORM:
74          reg->offset += bytes;
75          assert(reg->offset % 16 == 0);
76          break;
77       case MRF: {
78          const unsigned suboffset = reg->offset + bytes;
79          reg->nr += suboffset / REG_SIZE;
80          reg->offset = suboffset % REG_SIZE;
81          assert(reg->offset % 16 == 0);
82          break;
83       }
84       case ARF:
85       case FIXED_GRF: {
86          const unsigned suboffset = reg->subnr + bytes;
87          reg->nr += suboffset / REG_SIZE;
88          reg->subnr = suboffset % REG_SIZE;
89          assert(reg->subnr % 16 == 0);
90          break;
91       }
92       default:
93          assert(bytes == 0);
94    }
95 }
96 
97 } /* namepace detail */
98 
99 static inline src_reg
byte_offset(src_reg reg,unsigned bytes)100 byte_offset(src_reg reg, unsigned bytes)
101 {
102    detail::add_byte_offset(&reg, bytes);
103    return reg;
104 }
105 
106 static inline src_reg
offset(src_reg reg,unsigned width,unsigned delta)107 offset(src_reg reg, unsigned width, unsigned delta)
108 {
109    const unsigned stride = (reg.file == UNIFORM ? 0 : 4);
110    const unsigned num_components = MAX2(width / 4 * stride, 4);
111    return byte_offset(reg, num_components * type_sz(reg.type) * delta);
112 }
113 
114 static inline src_reg
horiz_offset(src_reg reg,unsigned delta)115 horiz_offset(src_reg reg, unsigned delta)
116 {
117    return byte_offset(reg, delta * type_sz(reg.type));
118 }
119 
120 /**
121  * Reswizzle a given source register.
122  * \sa brw_swizzle().
123  */
124 static inline src_reg
swizzle(src_reg reg,unsigned swizzle)125 swizzle(src_reg reg, unsigned swizzle)
126 {
127    if (reg.file == IMM)
128       reg.ud = brw_swizzle_immediate(reg.type, reg.ud, swizzle);
129    else
130       reg.swizzle = brw_compose_swizzle(swizzle, reg.swizzle);
131 
132    return reg;
133 }
134 
135 static inline src_reg
negate(src_reg reg)136 negate(src_reg reg)
137 {
138    assert(reg.file != IMM);
139    reg.negate = !reg.negate;
140    return reg;
141 }
142 
143 static inline bool
is_uniform(const src_reg & reg)144 is_uniform(const src_reg &reg)
145 {
146    return (reg.file == IMM || reg.file == UNIFORM || reg.is_null()) &&
147           (!reg.reladdr || is_uniform(*reg.reladdr));
148 }
149 
150 class dst_reg : public backend_reg
151 {
152 public:
153    DECLARE_RALLOC_CXX_OPERATORS(dst_reg)
154 
155    void init();
156 
157    dst_reg();
158    dst_reg(enum brw_reg_file file, int nr);
159    dst_reg(enum brw_reg_file file, int nr, const glsl_type *type,
160            unsigned writemask);
161    dst_reg(enum brw_reg_file file, int nr, brw_reg_type type,
162            unsigned writemask);
163    dst_reg(struct ::brw_reg reg);
164    dst_reg(class vec4_visitor *v, const struct glsl_type *type);
165 
166    explicit dst_reg(const src_reg &reg);
167 
168    bool equals(const dst_reg &r) const;
169 
170    src_reg *reladdr;
171 };
172 
173 static inline dst_reg
retype(dst_reg reg,enum brw_reg_type type)174 retype(dst_reg reg, enum brw_reg_type type)
175 {
176    reg.type = type;
177    return reg;
178 }
179 
180 static inline dst_reg
byte_offset(dst_reg reg,unsigned bytes)181 byte_offset(dst_reg reg, unsigned bytes)
182 {
183    detail::add_byte_offset(&reg, bytes);
184    return reg;
185 }
186 
187 static inline dst_reg
offset(dst_reg reg,unsigned width,unsigned delta)188 offset(dst_reg reg, unsigned width, unsigned delta)
189 {
190    const unsigned stride = (reg.file == UNIFORM ? 0 : 4);
191    const unsigned num_components = MAX2(width / 4 * stride, 4);
192    return byte_offset(reg, num_components * type_sz(reg.type) * delta);
193 }
194 
195 static inline dst_reg
horiz_offset(dst_reg reg,unsigned delta)196 horiz_offset(dst_reg reg, unsigned delta)
197 {
198    return byte_offset(reg, delta * type_sz(reg.type));
199 }
200 
201 static inline dst_reg
writemask(dst_reg reg,unsigned mask)202 writemask(dst_reg reg, unsigned mask)
203 {
204    assert(reg.file != IMM);
205    assert((reg.writemask & mask) != 0);
206    reg.writemask &= mask;
207    return reg;
208 }
209 
210 /**
211  * Return an integer identifying the discrete address space a register is
212  * contained in.  A register is by definition fully contained in the single
213  * reg_space it belongs to, so two registers with different reg_space ids are
214  * guaranteed not to overlap.  Most register files are a single reg_space of
215  * its own, only the VGRF file is composed of multiple discrete address
216  * spaces, one for each VGRF allocation.
217  */
218 static inline uint32_t
reg_space(const backend_reg & r)219 reg_space(const backend_reg &r)
220 {
221    return r.file << 16 | (r.file == VGRF ? r.nr : 0);
222 }
223 
224 /**
225  * Return the base offset in bytes of a register relative to the start of its
226  * reg_space().
227  */
228 static inline unsigned
reg_offset(const backend_reg & r)229 reg_offset(const backend_reg &r)
230 {
231    return (r.file == VGRF || r.file == IMM ? 0 : r.nr) *
232           (r.file == UNIFORM ? 16 : REG_SIZE) + r.offset +
233           (r.file == ARF || r.file == FIXED_GRF ? r.subnr : 0);
234 }
235 
236 /**
237  * Return whether the register region starting at \p r and spanning \p dr
238  * bytes could potentially overlap the register region starting at \p s and
239  * spanning \p ds bytes.
240  */
241 static inline bool
regions_overlap(const backend_reg & r,unsigned dr,const backend_reg & s,unsigned ds)242 regions_overlap(const backend_reg &r, unsigned dr,
243                 const backend_reg &s, unsigned ds)
244 {
245    if (r.file == MRF && (r.nr & BRW_MRF_COMPR4)) {
246       /* COMPR4 regions are translated by the hardware during decompression
247        * into two separate half-regions 4 MRFs apart from each other.
248        */
249       backend_reg t0 = r;
250       t0.nr &= ~BRW_MRF_COMPR4;
251       backend_reg t1 = t0;
252       t1.offset += 4 * REG_SIZE;
253       return regions_overlap(t0, dr / 2, s, ds) ||
254              regions_overlap(t1, dr / 2, s, ds);
255 
256    } else if (s.file == MRF && (s.nr & BRW_MRF_COMPR4)) {
257       return regions_overlap(s, ds, r, dr);
258 
259    } else {
260       return reg_space(r) == reg_space(s) &&
261              !(reg_offset(r) + dr <= reg_offset(s) ||
262                reg_offset(s) + ds <= reg_offset(r));
263    }
264 }
265 
266 class vec4_instruction : public backend_instruction {
267 public:
268    DECLARE_RALLOC_CXX_OPERATORS(vec4_instruction)
269 
270    vec4_instruction(enum opcode opcode,
271                     const dst_reg &dst = dst_reg(),
272                     const src_reg &src0 = src_reg(),
273                     const src_reg &src1 = src_reg(),
274                     const src_reg &src2 = src_reg());
275 
276    dst_reg dst;
277    src_reg src[3];
278 
279    enum brw_urb_write_flags urb_write_flags;
280 
281    unsigned sol_binding; /**< gen6: SOL binding table index */
282    bool sol_final_write; /**< gen6: send commit message */
283    unsigned sol_vertex; /**< gen6: used for setting dst index in SVB header */
284 
285    bool is_send_from_grf();
286    unsigned size_read(unsigned arg) const;
287    bool can_reswizzle(const struct gen_device_info *devinfo, int dst_writemask,
288                       int swizzle, int swizzle_mask);
289    void reswizzle(int dst_writemask, int swizzle);
290    bool can_do_source_mods(const struct gen_device_info *devinfo);
291    bool can_do_writemask(const struct gen_device_info *devinfo);
292    bool can_change_types() const;
293    bool has_source_and_destination_hazard() const;
294 
is_align1_partial_write()295    bool is_align1_partial_write()
296    {
297       return opcode == VEC4_OPCODE_SET_LOW_32BIT ||
298              opcode == VEC4_OPCODE_SET_HIGH_32BIT;
299    }
300 
reads_flag()301    bool reads_flag()
302    {
303       return predicate || opcode == VS_OPCODE_UNPACK_FLAGS_SIMD4X2;
304    }
305 
reads_flag(unsigned c)306    bool reads_flag(unsigned c)
307    {
308       if (opcode == VS_OPCODE_UNPACK_FLAGS_SIMD4X2)
309          return true;
310 
311       switch (predicate) {
312       case BRW_PREDICATE_NONE:
313          return false;
314       case BRW_PREDICATE_ALIGN16_REPLICATE_X:
315          return c == 0;
316       case BRW_PREDICATE_ALIGN16_REPLICATE_Y:
317          return c == 1;
318       case BRW_PREDICATE_ALIGN16_REPLICATE_Z:
319          return c == 2;
320       case BRW_PREDICATE_ALIGN16_REPLICATE_W:
321          return c == 3;
322       default:
323          return true;
324       }
325    }
326 
writes_flag()327    bool writes_flag()
328    {
329       return (conditional_mod && (opcode != BRW_OPCODE_SEL &&
330                                   opcode != BRW_OPCODE_IF &&
331                                   opcode != BRW_OPCODE_WHILE));
332    }
333 };
334 
335 /**
336  * Make the execution of \p inst dependent on the evaluation of a possibly
337  * inverted predicate.
338  */
339 inline vec4_instruction *
set_predicate_inv(enum brw_predicate pred,bool inverse,vec4_instruction * inst)340 set_predicate_inv(enum brw_predicate pred, bool inverse,
341                   vec4_instruction *inst)
342 {
343    inst->predicate = pred;
344    inst->predicate_inverse = inverse;
345    return inst;
346 }
347 
348 /**
349  * Make the execution of \p inst dependent on the evaluation of a predicate.
350  */
351 inline vec4_instruction *
set_predicate(enum brw_predicate pred,vec4_instruction * inst)352 set_predicate(enum brw_predicate pred, vec4_instruction *inst)
353 {
354    return set_predicate_inv(pred, false, inst);
355 }
356 
357 /**
358  * Write the result of evaluating the condition given by \p mod to a flag
359  * register.
360  */
361 inline vec4_instruction *
set_condmod(enum brw_conditional_mod mod,vec4_instruction * inst)362 set_condmod(enum brw_conditional_mod mod, vec4_instruction *inst)
363 {
364    inst->conditional_mod = mod;
365    return inst;
366 }
367 
368 /**
369  * Clamp the result of \p inst to the saturation range of its destination
370  * datatype.
371  */
372 inline vec4_instruction *
set_saturate(bool saturate,vec4_instruction * inst)373 set_saturate(bool saturate, vec4_instruction *inst)
374 {
375    inst->saturate = saturate;
376    return inst;
377 }
378 
379 /**
380  * Return the number of dataflow registers written by the instruction (either
381  * fully or partially) counted from 'floor(reg_offset(inst->dst) /
382  * register_size)'.  The somewhat arbitrary register size unit is 16B for the
383  * UNIFORM and IMM files and 32B for all other files.
384  */
385 inline unsigned
regs_written(const vec4_instruction * inst)386 regs_written(const vec4_instruction *inst)
387 {
388    assert(inst->dst.file != UNIFORM && inst->dst.file != IMM);
389    return DIV_ROUND_UP(reg_offset(inst->dst) % REG_SIZE + inst->size_written,
390                        REG_SIZE);
391 }
392 
393 /**
394  * Return the number of dataflow registers read by the instruction (either
395  * fully or partially) counted from 'floor(reg_offset(inst->src[i]) /
396  * register_size)'.  The somewhat arbitrary register size unit is 16B for the
397  * UNIFORM and IMM files and 32B for all other files.
398  */
399 inline unsigned
regs_read(const vec4_instruction * inst,unsigned i)400 regs_read(const vec4_instruction *inst, unsigned i)
401 {
402    const unsigned reg_size =
403       inst->src[i].file == UNIFORM || inst->src[i].file == IMM ? 16 : REG_SIZE;
404    return DIV_ROUND_UP(reg_offset(inst->src[i]) % reg_size + inst->size_read(i),
405                        reg_size);
406 }
407 
408 } /* namespace brw */
409 
410 #endif
411