• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Licensed to the Apache Software Foundation (ASF) under one or more
3  * contributor license agreements.  See the NOTICE file distributed with
4  * this work for additional information regarding copyright ownership.
5  * The ASF licenses this file to You under the Apache License, Version 2.0
6  * (the "License"); you may not use this file except in compliance with
7  * the License.  You may obtain a copy of the License at
8  *
9  *      http://www.apache.org/licenses/LICENSE-2.0
10  *
11  * Unless required by applicable law or agreed to in writing, software
12  * distributed under the License is distributed on an "AS IS" BASIS,
13  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14  * See the License for the specific language governing permissions and
15  * limitations under the License.
16  */
17 
18 package org.apache.commons.math.linear;
19 
20 import java.util.Arrays;
21 
22 import org.apache.commons.math.util.FastMath;
23 
24 
25 /**
26  * Class transforming a symmetrical matrix to tridiagonal shape.
27  * <p>A symmetrical m &times; m matrix A can be written as the product of three matrices:
28  * A = Q &times; T &times; Q<sup>T</sup> with Q an orthogonal matrix and T a symmetrical
29  * tridiagonal matrix. Both Q and T are m &times; m matrices.</p>
30  * <p>This implementation only uses the upper part of the matrix, the part below the
31  * diagonal is not accessed at all.</p>
32  * <p>Transformation to tridiagonal shape is often not a goal by itself, but it is
33  * an intermediate step in more general decomposition algorithms like {@link
34  * EigenDecomposition eigen decomposition}. This class is therefore intended for internal
35  * use by the library and is not public. As a consequence of this explicitly limited scope,
36  * many methods directly returns references to internal arrays, not copies.</p>
37  * @version $Revision: 990655 $ $Date: 2010-08-29 23:49:40 +0200 (dim. 29 août 2010) $
38  * @since 2.0
39  */
40 class TriDiagonalTransformer {
41 
42     /** Householder vectors. */
43     private final double householderVectors[][];
44 
45     /** Main diagonal. */
46     private final double[] main;
47 
48     /** Secondary diagonal. */
49     private final double[] secondary;
50 
51     /** Cached value of Q. */
52     private RealMatrix cachedQ;
53 
54     /** Cached value of Qt. */
55     private RealMatrix cachedQt;
56 
57     /** Cached value of T. */
58     private RealMatrix cachedT;
59 
60     /**
61      * Build the transformation to tridiagonal shape of a symmetrical matrix.
62      * <p>The specified matrix is assumed to be symmetrical without any check.
63      * Only the upper triangular part of the matrix is used.</p>
64      * @param matrix the symmetrical matrix to transform.
65      * @exception InvalidMatrixException if matrix is not square
66      */
TriDiagonalTransformer(RealMatrix matrix)67     public TriDiagonalTransformer(RealMatrix matrix)
68         throws InvalidMatrixException {
69         if (!matrix.isSquare()) {
70             throw new NonSquareMatrixException(matrix.getRowDimension(), matrix.getColumnDimension());
71         }
72 
73         final int m = matrix.getRowDimension();
74         householderVectors = matrix.getData();
75         main      = new double[m];
76         secondary = new double[m - 1];
77         cachedQ   = null;
78         cachedQt  = null;
79         cachedT   = null;
80 
81         // transform matrix
82         transform();
83 
84     }
85 
86     /**
87      * Returns the matrix Q of the transform.
88      * <p>Q is an orthogonal matrix, i.e. its transpose is also its inverse.</p>
89      * @return the Q matrix
90      */
getQ()91     public RealMatrix getQ() {
92         if (cachedQ == null) {
93             cachedQ = getQT().transpose();
94         }
95         return cachedQ;
96     }
97 
98     /**
99      * Returns the transpose of the matrix Q of the transform.
100      * <p>Q is an orthogonal matrix, i.e. its transpose is also its inverse.</p>
101      * @return the Q matrix
102      */
getQT()103     public RealMatrix getQT() {
104 
105         if (cachedQt == null) {
106 
107             final int m = householderVectors.length;
108             cachedQt = MatrixUtils.createRealMatrix(m, m);
109 
110             // build up first part of the matrix by applying Householder transforms
111             for (int k = m - 1; k >= 1; --k) {
112                 final double[] hK = householderVectors[k - 1];
113                 final double inv = 1.0 / (secondary[k - 1] * hK[k]);
114                 cachedQt.setEntry(k, k, 1);
115                 if (hK[k] != 0.0) {
116                     double beta = 1.0 / secondary[k - 1];
117                     cachedQt.setEntry(k, k, 1 + beta * hK[k]);
118                     for (int i = k + 1; i < m; ++i) {
119                         cachedQt.setEntry(k, i, beta * hK[i]);
120                     }
121                     for (int j = k + 1; j < m; ++j) {
122                         beta = 0;
123                         for (int i = k + 1; i < m; ++i) {
124                             beta += cachedQt.getEntry(j, i) * hK[i];
125                         }
126                         beta *= inv;
127                         cachedQt.setEntry(j, k, beta * hK[k]);
128                         for (int i = k + 1; i < m; ++i) {
129                             cachedQt.addToEntry(j, i, beta * hK[i]);
130                         }
131                     }
132                 }
133             }
134             cachedQt.setEntry(0, 0, 1);
135 
136         }
137 
138         // return the cached matrix
139         return cachedQt;
140 
141     }
142 
143     /**
144      * Returns the tridiagonal matrix T of the transform.
145      * @return the T matrix
146      */
getT()147     public RealMatrix getT() {
148 
149         if (cachedT == null) {
150 
151             final int m = main.length;
152             cachedT = MatrixUtils.createRealMatrix(m, m);
153             for (int i = 0; i < m; ++i) {
154                 cachedT.setEntry(i, i, main[i]);
155                 if (i > 0) {
156                     cachedT.setEntry(i, i - 1, secondary[i - 1]);
157                 }
158                 if (i < main.length - 1) {
159                     cachedT.setEntry(i, i + 1, secondary[i]);
160                 }
161             }
162 
163         }
164 
165         // return the cached matrix
166         return cachedT;
167 
168     }
169 
170     /**
171      * Get the Householder vectors of the transform.
172      * <p>Note that since this class is only intended for internal use,
173      * it returns directly a reference to its internal arrays, not a copy.</p>
174      * @return the main diagonal elements of the B matrix
175      */
getHouseholderVectorsRef()176     double[][] getHouseholderVectorsRef() {
177         return householderVectors;
178     }
179 
180     /**
181      * Get the main diagonal elements of the matrix T of the transform.
182      * <p>Note that since this class is only intended for internal use,
183      * it returns directly a reference to its internal arrays, not a copy.</p>
184      * @return the main diagonal elements of the T matrix
185      */
getMainDiagonalRef()186     double[] getMainDiagonalRef() {
187         return main;
188     }
189 
190     /**
191      * Get the secondary diagonal elements of the matrix T of the transform.
192      * <p>Note that since this class is only intended for internal use,
193      * it returns directly a reference to its internal arrays, not a copy.</p>
194      * @return the secondary diagonal elements of the T matrix
195      */
getSecondaryDiagonalRef()196     double[] getSecondaryDiagonalRef() {
197         return secondary;
198     }
199 
200     /**
201      * Transform original matrix to tridiagonal form.
202      * <p>Transformation is done using Householder transforms.</p>
203      */
transform()204     private void transform() {
205 
206         final int m = householderVectors.length;
207         final double[] z = new double[m];
208         for (int k = 0; k < m - 1; k++) {
209 
210             //zero-out a row and a column simultaneously
211             final double[] hK = householderVectors[k];
212             main[k] = hK[k];
213             double xNormSqr = 0;
214             for (int j = k + 1; j < m; ++j) {
215                 final double c = hK[j];
216                 xNormSqr += c * c;
217             }
218             final double a = (hK[k + 1] > 0) ? -FastMath.sqrt(xNormSqr) : FastMath.sqrt(xNormSqr);
219             secondary[k] = a;
220             if (a != 0.0) {
221                 // apply Householder transform from left and right simultaneously
222 
223                 hK[k + 1] -= a;
224                 final double beta = -1 / (a * hK[k + 1]);
225 
226                 // compute a = beta A v, where v is the Householder vector
227                 // this loop is written in such a way
228                 //   1) only the upper triangular part of the matrix is accessed
229                 //   2) access is cache-friendly for a matrix stored in rows
230                 Arrays.fill(z, k + 1, m, 0);
231                 for (int i = k + 1; i < m; ++i) {
232                     final double[] hI = householderVectors[i];
233                     final double hKI = hK[i];
234                     double zI = hI[i] * hKI;
235                     for (int j = i + 1; j < m; ++j) {
236                         final double hIJ = hI[j];
237                         zI   += hIJ * hK[j];
238                         z[j] += hIJ * hKI;
239                     }
240                     z[i] = beta * (z[i] + zI);
241                 }
242 
243                 // compute gamma = beta vT z / 2
244                 double gamma = 0;
245                 for (int i = k + 1; i < m; ++i) {
246                     gamma += z[i] * hK[i];
247                 }
248                 gamma *= beta / 2;
249 
250                 // compute z = z - gamma v
251                 for (int i = k + 1; i < m; ++i) {
252                     z[i] -= gamma * hK[i];
253                 }
254 
255                 // update matrix: A = A - v zT - z vT
256                 // only the upper triangular part of the matrix is updated
257                 for (int i = k + 1; i < m; ++i) {
258                     final double[] hI = householderVectors[i];
259                     for (int j = i; j < m; ++j) {
260                         hI[j] -= hK[i] * z[j] + z[i] * hK[j];
261                     }
262                 }
263 
264             }
265 
266         }
267         main[m - 1] = householderVectors[m - 1][m - 1];
268     }
269 
270 }
271