• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2 * Copyright 2016 Google Inc.
3 *
4 * Use of this source code is governed by a BSD-style license that can be
5 * found in the LICENSE file.
6 */
7 
8 #include "GrVkUniformHandler.h"
9 #include "glsl/GrGLSLProgramBuilder.h"
10 
11 // To determine whether a current offset is aligned, we can just 'and' the lowest bits with the
12 // alignment mask. A value of 0 means aligned, any other value is how many bytes past alignment we
13 // are. This works since all alignments are powers of 2. The mask is always (alignment - 1).
14 // This alignment mask will give correct alignments for using the std430 block layout. If you want
15 // the std140 alignment, you can use this, but then make sure if you have an array type it is
16 // aligned to 16 bytes (i.e. has mask of 0xF).
grsltype_to_alignment_mask(GrSLType type)17 uint32_t grsltype_to_alignment_mask(GrSLType type) {
18     switch(type) {
19         case kInt_GrSLType:
20             return 0x3;
21         case kUint_GrSLType:
22             return 0x3;
23         case kFloat_GrSLType:
24             return 0x3;
25         case kVec2f_GrSLType:
26             return 0x7;
27         case kVec3f_GrSLType:
28             return 0xF;
29         case kVec4f_GrSLType:
30             return 0xF;
31         case kVec2i_GrSLType:
32             return 0x7;
33         case kVec3i_GrSLType:
34             return 0xF;
35         case kVec4i_GrSLType:
36             return 0xF;
37         case kMat22f_GrSLType:
38             return 0x7;
39         case kMat33f_GrSLType:
40             return 0xF;
41         case kMat44f_GrSLType:
42             return 0xF;
43 
44         // This query is only valid for certain types.
45         case kVoid_GrSLType:
46         case kBool_GrSLType:
47         case kTexture2DSampler_GrSLType:
48         case kITexture2DSampler_GrSLType:
49         case kTextureExternalSampler_GrSLType:
50         case kTexture2DRectSampler_GrSLType:
51         case kBufferSampler_GrSLType:
52         case kTexture2D_GrSLType:
53         case kSampler_GrSLType:
54         case kImageStorage2D_GrSLType:
55         case kIImageStorage2D_GrSLType:
56             break;
57     }
58     SkFAIL("Unexpected type");
59     return 0;
60 }
61 
62 /** Returns the size in bytes taken up in vulkanbuffers for floating point GrSLTypes.
63     For non floating point type returns 0. Currently this reflects the std140 alignment
64     so a mat22 takes up 8 floats. */
grsltype_to_vk_size(GrSLType type)65 static inline uint32_t grsltype_to_vk_size(GrSLType type) {
66     switch(type) {
67         case kInt_GrSLType:
68             return sizeof(int32_t);
69         case kUint_GrSLType:
70             return sizeof(int32_t);
71         case kFloat_GrSLType:
72             return sizeof(float);
73         case kVec2f_GrSLType:
74             return 2 * sizeof(float);
75         case kVec3f_GrSLType:
76             return 3 * sizeof(float);
77         case kVec4f_GrSLType:
78             return 4 * sizeof(float);
79         case kVec2i_GrSLType:
80             return 2 * sizeof(int32_t);
81         case kVec3i_GrSLType:
82             return 3 * sizeof(int32_t);
83         case kVec4i_GrSLType:
84             return 4 * sizeof(int32_t);
85         case kMat22f_GrSLType:
86             //TODO: this will be 4 * szof(float) on std430.
87             return 8 * sizeof(float);
88         case kMat33f_GrSLType:
89             return 12 * sizeof(float);
90         case kMat44f_GrSLType:
91             return 16 * sizeof(float);
92 
93         // This query is only valid for certain types.
94         case kVoid_GrSLType:
95         case kBool_GrSLType:
96         case kTexture2DSampler_GrSLType:
97         case kITexture2DSampler_GrSLType:
98         case kTextureExternalSampler_GrSLType:
99         case kTexture2DRectSampler_GrSLType:
100         case kBufferSampler_GrSLType:
101         case kTexture2D_GrSLType:
102         case kSampler_GrSLType:
103         case kImageStorage2D_GrSLType:
104         case kIImageStorage2D_GrSLType:
105             break;
106     }
107     SkFAIL("Unexpected type");
108     return 0;
109 }
110 
111 
112 // Given the current offset into the ubo, calculate the offset for the uniform we're trying to add
113 // taking into consideration all alignment requirements. The uniformOffset is set to the offset for
114 // the new uniform, and currentOffset is updated to be the offset to the end of the new uniform.
get_ubo_aligned_offset(uint32_t * uniformOffset,uint32_t * currentOffset,GrSLType type,int arrayCount)115 void get_ubo_aligned_offset(uint32_t* uniformOffset,
116                             uint32_t* currentOffset,
117                             GrSLType type,
118                             int arrayCount) {
119     uint32_t alignmentMask = grsltype_to_alignment_mask(type);
120     // We want to use the std140 layout here, so we must make arrays align to 16 bytes.
121     if (arrayCount || type == kMat22f_GrSLType) {
122         alignmentMask = 0xF;
123     }
124     uint32_t offsetDiff = *currentOffset & alignmentMask;
125     if (offsetDiff != 0) {
126         offsetDiff = alignmentMask - offsetDiff + 1;
127     }
128     *uniformOffset = *currentOffset + offsetDiff;
129     SkASSERT(sizeof(float) == 4);
130     if (arrayCount) {
131         uint32_t elementSize = SkTMax<uint32_t>(16, grsltype_to_vk_size(type));
132         SkASSERT(0 == (elementSize & 0xF));
133         *currentOffset = *uniformOffset + elementSize * arrayCount;
134     } else {
135         *currentOffset = *uniformOffset + grsltype_to_vk_size(type);
136     }
137 }
138 
internalAddUniformArray(uint32_t visibility,GrSLType type,GrSLPrecision precision,const char * name,bool mangleName,int arrayCount,const char ** outName)139 GrGLSLUniformHandler::UniformHandle GrVkUniformHandler::internalAddUniformArray(
140                                                                             uint32_t visibility,
141                                                                             GrSLType type,
142                                                                             GrSLPrecision precision,
143                                                                             const char* name,
144                                                                             bool mangleName,
145                                                                             int arrayCount,
146                                                                             const char** outName) {
147     SkASSERT(name && strlen(name));
148     // For now asserting the the visibility is either geometry types (vertex, tesselation, geometry,
149     // etc.) or only fragment.
150     SkASSERT(kVertex_GrShaderFlag == visibility ||
151              kGeometry_GrShaderFlag == visibility ||
152              (kVertex_GrShaderFlag | kGeometry_GrShaderFlag) == visibility ||
153              kFragment_GrShaderFlag == visibility);
154     SkASSERT(kDefault_GrSLPrecision == precision || GrSLTypeIsFloatType(type));
155     GrSLTypeIsFloatType(type);
156 
157     UniformInfo& uni = fUniforms.push_back();
158     uni.fVariable.setType(type);
159     // TODO this is a bit hacky, lets think of a better way.  Basically we need to be able to use
160     // the uniform view matrix name in the GP, and the GP is immutable so it has to tell the PB
161     // exactly what name it wants to use for the uniform view matrix.  If we prefix anythings, then
162     // the names will mismatch.  I think the correct solution is to have all GPs which need the
163     // uniform view matrix, they should upload the view matrix in their setData along with regular
164     // uniforms.
165     char prefix = 'u';
166     if ('u' == name[0]) {
167         prefix = '\0';
168     }
169     fProgramBuilder->nameVariable(uni.fVariable.accessName(), prefix, name, mangleName);
170     uni.fVariable.setArrayCount(arrayCount);
171     uni.fVisibility = visibility;
172     uni.fVariable.setPrecision(precision);
173     // When outputing the GLSL, only the outer uniform block will get the Uniform modifier. Thus
174     // we set the modifier to none for all uniforms declared inside the block.
175     uni.fVariable.setTypeModifier(GrShaderVar::kNone_TypeModifier);
176 
177     uint32_t* currentOffset;
178     uint32_t geomStages = kVertex_GrShaderFlag | kGeometry_GrShaderFlag;
179     if (geomStages & visibility) {
180         currentOffset = &fCurrentGeometryUBOOffset;
181     } else {
182         SkASSERT(kFragment_GrShaderFlag == visibility);
183         currentOffset = &fCurrentFragmentUBOOffset;
184     }
185     get_ubo_aligned_offset(&uni.fUBOffset, currentOffset, type, arrayCount);
186 
187     SkString layoutQualifier;
188     layoutQualifier.appendf("offset=%d", uni.fUBOffset);
189     uni.fVariable.addLayoutQualifier(layoutQualifier.c_str());
190 
191     if (outName) {
192         *outName = uni.fVariable.c_str();
193     }
194 
195     return GrGLSLUniformHandler::UniformHandle(fUniforms.count() - 1);
196 }
197 
addSampler(uint32_t visibility,GrSwizzle swizzle,GrSLType type,GrSLPrecision precision,const char * name)198 GrGLSLUniformHandler::SamplerHandle GrVkUniformHandler::addSampler(uint32_t visibility,
199                                                                    GrSwizzle swizzle,
200                                                                    GrSLType type,
201                                                                    GrSLPrecision precision,
202                                                                    const char* name) {
203     SkASSERT(name && strlen(name));
204     // For now asserting the the visibility is either only vertex, geometry, or fragment
205     SkASSERT(kVertex_GrShaderFlag == visibility ||
206              kFragment_GrShaderFlag == visibility ||
207              kGeometry_GrShaderFlag == visibility);
208     SkString mangleName;
209     char prefix = 'u';
210     fProgramBuilder->nameVariable(&mangleName, prefix, name, true);
211 
212     UniformInfo& info = fSamplers.push_back();
213     SkASSERT(GrSLTypeIsCombinedSamplerType(type));
214     info.fVariable.setType(type);
215     info.fVariable.setTypeModifier(GrShaderVar::kUniform_TypeModifier);
216     info.fVariable.setPrecision(precision);
217     info.fVariable.setName(mangleName);
218     SkString layoutQualifier;
219     layoutQualifier.appendf("set=%d, binding=%d", kSamplerDescSet, fSamplers.count() - 1);
220     info.fVariable.addLayoutQualifier(layoutQualifier.c_str());
221     info.fVisibility = visibility;
222     info.fUBOffset = 0;
223     fSamplerSwizzles.push_back(swizzle);
224     SkASSERT(fSamplerSwizzles.count() == fSamplers.count());
225     return GrGLSLUniformHandler::SamplerHandle(fSamplers.count() - 1);
226 }
227 
addTexelBuffer(uint32_t visibility,GrSLPrecision precision,const char * name)228 GrGLSLUniformHandler::TexelBufferHandle GrVkUniformHandler::addTexelBuffer(uint32_t visibility,
229                                                                            GrSLPrecision precision,
230                                                                            const char* name) {
231     SkASSERT(name && strlen(name));
232     SkDEBUGCODE(static const uint32_t kVisMask = kVertex_GrShaderFlag |
233                                                  kGeometry_GrShaderFlag |
234                                                  kFragment_GrShaderFlag);
235     SkASSERT(0 == (~kVisMask & visibility));
236     SkASSERT(0 != visibility);
237     SkString mangleName;
238     char prefix = 'u';
239     fProgramBuilder->nameVariable(&mangleName, prefix, name, true);
240 
241     UniformInfo& info = fTexelBuffers.push_back();
242     info.fVariable.setType(kBufferSampler_GrSLType);
243     info.fVariable.setTypeModifier(GrShaderVar::kUniform_TypeModifier);
244     info.fVariable.setPrecision(precision);
245     info.fVariable.setName(mangleName);
246     SkString layoutQualifier;
247     layoutQualifier.appendf("set=%d, binding=%d", kTexelBufferDescSet, fTexelBuffers.count()- 1);
248     info.fVariable.addLayoutQualifier(layoutQualifier.c_str());
249     info.fVisibility = visibility;
250     info.fUBOffset = 0;
251     return GrGLSLUniformHandler::TexelBufferHandle(fTexelBuffers.count() - 1);
252 }
253 
appendUniformDecls(GrShaderFlags visibility,SkString * out) const254 void GrVkUniformHandler::appendUniformDecls(GrShaderFlags visibility, SkString* out) const {
255     SkASSERT(kVertex_GrShaderFlag == visibility ||
256              kGeometry_GrShaderFlag == visibility ||
257              kFragment_GrShaderFlag == visibility);
258 
259     for (int i = 0; i < fSamplers.count(); ++i) {
260         const UniformInfo& sampler = fSamplers[i];
261         SkASSERT(sampler.fVariable.getType() == kTexture2DSampler_GrSLType);
262         if (visibility == sampler.fVisibility) {
263             sampler.fVariable.appendDecl(fProgramBuilder->shaderCaps(), out);
264             out->append(";\n");
265         }
266     }
267 
268     for (int i = 0; i < fTexelBuffers.count(); ++i) {
269         const UniformInfo& texelBuffer = fTexelBuffers[i];
270         if (visibility == texelBuffer.fVisibility) {
271             texelBuffer.fVariable.appendDecl(fProgramBuilder->shaderCaps(), out);
272             out->append(";\n");
273         }
274     }
275 
276 #ifdef SK_DEBUG
277     bool firstGeomOffsetCheck = false;
278     bool firstFragOffsetCheck = false;
279     for (int i = 0; i < fUniforms.count(); ++i) {
280         const UniformInfo& localUniform = fUniforms[i];
281         if (kVertex_GrShaderFlag == localUniform.fVisibility ||
282             kGeometry_GrShaderFlag == localUniform.fVisibility ||
283             (kVertex_GrShaderFlag | kGeometry_GrShaderFlag) == localUniform.fVisibility) {
284             if (!firstGeomOffsetCheck) {
285                 // Check to make sure we are starting our offset at 0 so the offset qualifier we
286                 // set on each variable in the uniform block is valid.
287                 SkASSERT(0 == localUniform.fUBOffset);
288                 firstGeomOffsetCheck = true;
289             }
290         } else {
291             SkASSERT(kFragment_GrShaderFlag == localUniform.fVisibility);
292             if (!firstFragOffsetCheck) {
293                 // Check to make sure we are starting our offset at 0 so the offset qualifier we
294                 // set on each variable in the uniform block is valid.
295                 SkASSERT(0 == localUniform.fUBOffset);
296                 firstFragOffsetCheck = true;
297             }
298         }
299     }
300 #endif
301 
302     SkString uniformsString;
303     for (int i = 0; i < fUniforms.count(); ++i) {
304         const UniformInfo& localUniform = fUniforms[i];
305         if (visibility & localUniform.fVisibility) {
306             if (GrSLTypeIsFloatType(localUniform.fVariable.getType())) {
307                 localUniform.fVariable.appendDecl(fProgramBuilder->shaderCaps(), &uniformsString);
308                 uniformsString.append(";\n");
309             }
310         }
311     }
312 
313     if (!uniformsString.isEmpty()) {
314         uint32_t uniformBinding;
315         const char* stage;
316         if (kVertex_GrShaderFlag == visibility) {
317             uniformBinding = kGeometryBinding;
318             stage = "vertex";
319         } else if (kGeometry_GrShaderFlag == visibility) {
320             uniformBinding = kGeometryBinding;
321             stage = "geometry";
322         } else {
323             SkASSERT(kFragment_GrShaderFlag == visibility);
324             uniformBinding = kFragBinding;
325             stage = "fragment";
326         }
327         out->appendf("layout (set=%d, binding=%d) uniform %sUniformBuffer\n{\n",
328                      kUniformBufferDescSet, uniformBinding, stage);
329         out->appendf("%s\n};\n", uniformsString.c_str());
330     }
331 }
332