1 //===- StrongPHIElimination.cpp - Eliminate PHI nodes by inserting copies -===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This pass eliminates PHI instructions by aggressively coalescing the copies
11 // that would be inserted by a naive algorithm and only inserting the copies
12 // that are necessary. The coalescing technique initially assumes that all
13 // registers appearing in a PHI instruction do not interfere. It then eliminates
14 // proven interferences, using dominators to only perform a linear number of
15 // interference tests instead of the quadratic number of interference tests
16 // that this would naively require. This is a technique derived from:
17 //
18 // Budimlic, et al. Fast copy coalescing and live-range identification.
19 // In Proceedings of the ACM SIGPLAN 2002 Conference on Programming Language
20 // Design and Implementation (Berlin, Germany, June 17 - 19, 2002).
21 // PLDI '02. ACM, New York, NY, 25-32.
22 //
23 // The original implementation constructs a data structure they call a dominance
24 // forest for this purpose. The dominance forest was shown to be unnecessary,
25 // as it is possible to emulate the creation and traversal of a dominance forest
26 // by directly using the dominator tree, rather than actually constructing the
27 // dominance forest. This technique is explained in:
28 //
29 // Boissinot, et al. Revisiting Out-of-SSA Translation for Correctness, Code
30 // Quality and Efficiency,
31 // In Proceedings of the 7th annual IEEE/ACM International Symposium on Code
32 // Generation and Optimization (Seattle, Washington, March 22 - 25, 2009).
33 // CGO '09. IEEE, Washington, DC, 114-125.
34 //
35 // Careful implementation allows for all of the dominator forest interference
36 // checks to be performed at once in a single depth-first traversal of the
37 // dominator tree, which is what is implemented here.
38 //
39 //===----------------------------------------------------------------------===//
40
41 #define DEBUG_TYPE "strongphielim"
42 #include "PHIEliminationUtils.h"
43 #include "llvm/CodeGen/Passes.h"
44 #include "llvm/CodeGen/LiveIntervalAnalysis.h"
45 #include "llvm/CodeGen/MachineDominators.h"
46 #include "llvm/CodeGen/MachineFunctionPass.h"
47 #include "llvm/CodeGen/MachineInstrBuilder.h"
48 #include "llvm/CodeGen/MachineRegisterInfo.h"
49 #include "llvm/Target/TargetInstrInfo.h"
50 #include "llvm/ADT/DenseSet.h"
51 #include "llvm/ADT/Statistic.h"
52 #include "llvm/Support/Debug.h"
53 using namespace llvm;
54
55 namespace {
56 class StrongPHIElimination : public MachineFunctionPass {
57 public:
58 static char ID; // Pass identification, replacement for typeid
StrongPHIElimination()59 StrongPHIElimination() : MachineFunctionPass(ID) {
60 initializeStrongPHIEliminationPass(*PassRegistry::getPassRegistry());
61 }
62
63 virtual void getAnalysisUsage(AnalysisUsage&) const;
64 bool runOnMachineFunction(MachineFunction&);
65
66 private:
67 /// This struct represents a single node in the union-find data structure
68 /// representing the variable congruence classes. There is one difference
69 /// from a normal union-find data structure. We steal two bits from the parent
70 /// pointer . One of these bits is used to represent whether the register
71 /// itself has been isolated, and the other is used to represent whether the
72 /// PHI with that register as its destination has been isolated.
73 ///
74 /// Note that this leads to the strange situation where the leader of a
75 /// congruence class may no longer logically be a member, due to being
76 /// isolated.
77 struct Node {
78 enum Flags {
79 kRegisterIsolatedFlag = 1,
80 kPHIIsolatedFlag = 2
81 };
Node__anonce5ca7d80111::StrongPHIElimination::Node82 Node(unsigned v) : value(v), rank(0) { parent.setPointer(this); }
83
84 Node *getLeader();
85
86 PointerIntPair<Node*, 2> parent;
87 unsigned value;
88 unsigned rank;
89 };
90
91 /// Add a register in a new congruence class containing only itself.
92 void addReg(unsigned);
93
94 /// Join the congruence classes of two registers. This function is biased
95 /// towards the left argument, i.e. after
96 ///
97 /// addReg(r2);
98 /// unionRegs(r1, r2);
99 ///
100 /// the leader of the unioned congruence class is the same as the leader of
101 /// r1's congruence class prior to the union. This is actually relied upon
102 /// in the copy insertion code.
103 void unionRegs(unsigned, unsigned);
104
105 /// Get the color of a register. The color is 0 if the register has been
106 /// isolated.
107 unsigned getRegColor(unsigned);
108
109 // Isolate a register.
110 void isolateReg(unsigned);
111
112 /// Get the color of a PHI. The color of a PHI is 0 if the PHI has been
113 /// isolated. Otherwise, it is the original color of its destination and
114 /// all of its operands (before they were isolated, if they were).
115 unsigned getPHIColor(MachineInstr*);
116
117 /// Isolate a PHI.
118 void isolatePHI(MachineInstr*);
119
120 /// Traverses a basic block, splitting any interferences found between
121 /// registers in the same congruence class. It takes two DenseMaps as
122 /// arguments that it also updates: CurrentDominatingParent, which maps
123 /// a color to the register in that congruence class whose definition was
124 /// most recently seen, and ImmediateDominatingParent, which maps a register
125 /// to the register in the same congruence class that most immediately
126 /// dominates it.
127 ///
128 /// This function assumes that it is being called in a depth-first traversal
129 /// of the dominator tree.
130 void SplitInterferencesForBasicBlock(
131 MachineBasicBlock&,
132 DenseMap<unsigned, unsigned> &CurrentDominatingParent,
133 DenseMap<unsigned, unsigned> &ImmediateDominatingParent);
134
135 // Lowers a PHI instruction, inserting copies of the source and destination
136 // registers as necessary.
137 void InsertCopiesForPHI(MachineInstr*, MachineBasicBlock*);
138
139 // Merges the live interval of Reg into NewReg and renames Reg to NewReg
140 // everywhere that Reg appears. Requires Reg and NewReg to have non-
141 // overlapping lifetimes.
142 void MergeLIsAndRename(unsigned Reg, unsigned NewReg);
143
144 MachineRegisterInfo *MRI;
145 const TargetInstrInfo *TII;
146 MachineDominatorTree *DT;
147 LiveIntervals *LI;
148
149 BumpPtrAllocator Allocator;
150
151 DenseMap<unsigned, Node*> RegNodeMap;
152
153 // Maps a basic block to a list of its defs of registers that appear as PHI
154 // sources.
155 DenseMap<MachineBasicBlock*, std::vector<MachineInstr*> > PHISrcDefs;
156
157 // Maps a color to a pair of a MachineInstr* and a virtual register, which
158 // is the operand of that PHI corresponding to the current basic block.
159 DenseMap<unsigned, std::pair<MachineInstr*, unsigned> > CurrentPHIForColor;
160
161 // FIXME: Can these two data structures be combined? Would a std::multimap
162 // be any better?
163
164 // Stores pairs of predecessor basic blocks and the source registers of
165 // inserted copy instructions.
166 typedef DenseSet<std::pair<MachineBasicBlock*, unsigned> > SrcCopySet;
167 SrcCopySet InsertedSrcCopySet;
168
169 // Maps pairs of predecessor basic blocks and colors to their defining copy
170 // instructions.
171 typedef DenseMap<std::pair<MachineBasicBlock*, unsigned>, MachineInstr*>
172 SrcCopyMap;
173 SrcCopyMap InsertedSrcCopyMap;
174
175 // Maps inserted destination copy registers to their defining copy
176 // instructions.
177 typedef DenseMap<unsigned, MachineInstr*> DestCopyMap;
178 DestCopyMap InsertedDestCopies;
179 };
180
181 struct MIIndexCompare {
MIIndexCompare__anonce5ca7d80111::MIIndexCompare182 MIIndexCompare(LiveIntervals *LiveIntervals) : LI(LiveIntervals) { }
183
operator ()__anonce5ca7d80111::MIIndexCompare184 bool operator()(const MachineInstr *LHS, const MachineInstr *RHS) const {
185 return LI->getInstructionIndex(LHS) < LI->getInstructionIndex(RHS);
186 }
187
188 LiveIntervals *LI;
189 };
190 } // namespace
191
192 STATISTIC(NumPHIsLowered, "Number of PHIs lowered");
193 STATISTIC(NumDestCopiesInserted, "Number of destination copies inserted");
194 STATISTIC(NumSrcCopiesInserted, "Number of source copies inserted");
195
196 char StrongPHIElimination::ID = 0;
197 INITIALIZE_PASS_BEGIN(StrongPHIElimination, "strong-phi-node-elimination",
198 "Eliminate PHI nodes for register allocation, intelligently", false, false)
199 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
200 INITIALIZE_PASS_DEPENDENCY(SlotIndexes)
201 INITIALIZE_PASS_DEPENDENCY(LiveIntervals)
202 INITIALIZE_PASS_END(StrongPHIElimination, "strong-phi-node-elimination",
203 "Eliminate PHI nodes for register allocation, intelligently", false, false)
204
205 char &llvm::StrongPHIEliminationID = StrongPHIElimination::ID;
206
getAnalysisUsage(AnalysisUsage & AU) const207 void StrongPHIElimination::getAnalysisUsage(AnalysisUsage &AU) const {
208 AU.setPreservesCFG();
209 AU.addRequired<MachineDominatorTree>();
210 AU.addRequired<SlotIndexes>();
211 AU.addPreserved<SlotIndexes>();
212 AU.addRequired<LiveIntervals>();
213 AU.addPreserved<LiveIntervals>();
214 MachineFunctionPass::getAnalysisUsage(AU);
215 }
216
findLastUse(MachineBasicBlock * MBB,unsigned Reg)217 static MachineOperand *findLastUse(MachineBasicBlock *MBB, unsigned Reg) {
218 // FIXME: This only needs to check from the first terminator, as only the
219 // first terminator can use a virtual register.
220 for (MachineBasicBlock::reverse_iterator RI = MBB->rbegin(); ; ++RI) {
221 assert (RI != MBB->rend());
222 MachineInstr *MI = &*RI;
223
224 for (MachineInstr::mop_iterator OI = MI->operands_begin(),
225 OE = MI->operands_end(); OI != OE; ++OI) {
226 MachineOperand &MO = *OI;
227 if (MO.isReg() && MO.isUse() && MO.getReg() == Reg)
228 return &MO;
229 }
230 }
231 return NULL;
232 }
233
runOnMachineFunction(MachineFunction & MF)234 bool StrongPHIElimination::runOnMachineFunction(MachineFunction &MF) {
235 MRI = &MF.getRegInfo();
236 TII = MF.getTarget().getInstrInfo();
237 DT = &getAnalysis<MachineDominatorTree>();
238 LI = &getAnalysis<LiveIntervals>();
239
240 for (MachineFunction::iterator I = MF.begin(), E = MF.end();
241 I != E; ++I) {
242 for (MachineBasicBlock::iterator BBI = I->begin(), BBE = I->end();
243 BBI != BBE && BBI->isPHI(); ++BBI) {
244 unsigned DestReg = BBI->getOperand(0).getReg();
245 addReg(DestReg);
246 PHISrcDefs[I].push_back(BBI);
247
248 for (unsigned i = 1; i < BBI->getNumOperands(); i += 2) {
249 MachineOperand &SrcMO = BBI->getOperand(i);
250 unsigned SrcReg = SrcMO.getReg();
251 addReg(SrcReg);
252 unionRegs(DestReg, SrcReg);
253
254 MachineInstr *DefMI = MRI->getVRegDef(SrcReg);
255 if (DefMI)
256 PHISrcDefs[DefMI->getParent()].push_back(DefMI);
257 }
258 }
259 }
260
261 // Perform a depth-first traversal of the dominator tree, splitting
262 // interferences amongst PHI-congruence classes.
263 DenseMap<unsigned, unsigned> CurrentDominatingParent;
264 DenseMap<unsigned, unsigned> ImmediateDominatingParent;
265 for (df_iterator<MachineDomTreeNode*> DI = df_begin(DT->getRootNode()),
266 DE = df_end(DT->getRootNode()); DI != DE; ++DI) {
267 SplitInterferencesForBasicBlock(*DI->getBlock(),
268 CurrentDominatingParent,
269 ImmediateDominatingParent);
270 }
271
272 // Insert copies for all PHI source and destination registers.
273 for (MachineFunction::iterator I = MF.begin(), E = MF.end();
274 I != E; ++I) {
275 for (MachineBasicBlock::iterator BBI = I->begin(), BBE = I->end();
276 BBI != BBE && BBI->isPHI(); ++BBI) {
277 InsertCopiesForPHI(BBI, I);
278 }
279 }
280
281 // FIXME: Preserve the equivalence classes during copy insertion and use
282 // the preversed equivalence classes instead of recomputing them.
283 RegNodeMap.clear();
284 for (MachineFunction::iterator I = MF.begin(), E = MF.end();
285 I != E; ++I) {
286 for (MachineBasicBlock::iterator BBI = I->begin(), BBE = I->end();
287 BBI != BBE && BBI->isPHI(); ++BBI) {
288 unsigned DestReg = BBI->getOperand(0).getReg();
289 addReg(DestReg);
290
291 for (unsigned i = 1; i < BBI->getNumOperands(); i += 2) {
292 unsigned SrcReg = BBI->getOperand(i).getReg();
293 addReg(SrcReg);
294 unionRegs(DestReg, SrcReg);
295 }
296 }
297 }
298
299 DenseMap<unsigned, unsigned> RegRenamingMap;
300 bool Changed = false;
301 for (MachineFunction::iterator I = MF.begin(), E = MF.end();
302 I != E; ++I) {
303 MachineBasicBlock::iterator BBI = I->begin(), BBE = I->end();
304 while (BBI != BBE && BBI->isPHI()) {
305 MachineInstr *PHI = BBI;
306
307 assert(PHI->getNumOperands() > 0);
308
309 unsigned SrcReg = PHI->getOperand(1).getReg();
310 unsigned SrcColor = getRegColor(SrcReg);
311 unsigned NewReg = RegRenamingMap[SrcColor];
312 if (!NewReg) {
313 NewReg = SrcReg;
314 RegRenamingMap[SrcColor] = SrcReg;
315 }
316 MergeLIsAndRename(SrcReg, NewReg);
317
318 unsigned DestReg = PHI->getOperand(0).getReg();
319 if (!InsertedDestCopies.count(DestReg))
320 MergeLIsAndRename(DestReg, NewReg);
321
322 for (unsigned i = 3; i < PHI->getNumOperands(); i += 2) {
323 unsigned SrcReg = PHI->getOperand(i).getReg();
324 MergeLIsAndRename(SrcReg, NewReg);
325 }
326
327 ++BBI;
328 LI->RemoveMachineInstrFromMaps(PHI);
329 PHI->eraseFromParent();
330 Changed = true;
331 }
332 }
333
334 // Due to the insertion of copies to split live ranges, the live intervals are
335 // guaranteed to not overlap, except in one case: an original PHI source and a
336 // PHI destination copy. In this case, they have the same value and thus don't
337 // truly intersect, so we merge them into the value live at that point.
338 // FIXME: Is there some better way we can handle this?
339 for (DestCopyMap::iterator I = InsertedDestCopies.begin(),
340 E = InsertedDestCopies.end(); I != E; ++I) {
341 unsigned DestReg = I->first;
342 unsigned DestColor = getRegColor(DestReg);
343 unsigned NewReg = RegRenamingMap[DestColor];
344
345 LiveInterval &DestLI = LI->getInterval(DestReg);
346 LiveInterval &NewLI = LI->getInterval(NewReg);
347
348 assert(DestLI.ranges.size() == 1
349 && "PHI destination copy's live interval should be a single live "
350 "range from the beginning of the BB to the copy instruction.");
351 LiveRange *DestLR = DestLI.begin();
352 VNInfo *NewVNI = NewLI.getVNInfoAt(DestLR->start);
353 if (!NewVNI) {
354 NewVNI = NewLI.createValueCopy(DestLR->valno, LI->getVNInfoAllocator());
355 MachineInstr *CopyInstr = I->second;
356 CopyInstr->getOperand(1).setIsKill(true);
357 }
358
359 LiveRange NewLR(DestLR->start, DestLR->end, NewVNI);
360 NewLI.addRange(NewLR);
361
362 LI->removeInterval(DestReg);
363 MRI->replaceRegWith(DestReg, NewReg);
364 }
365
366 // Adjust the live intervals of all PHI source registers to handle the case
367 // where the PHIs in successor blocks were the only later uses of the source
368 // register.
369 for (SrcCopySet::iterator I = InsertedSrcCopySet.begin(),
370 E = InsertedSrcCopySet.end(); I != E; ++I) {
371 MachineBasicBlock *MBB = I->first;
372 unsigned SrcReg = I->second;
373 if (unsigned RenamedRegister = RegRenamingMap[getRegColor(SrcReg)])
374 SrcReg = RenamedRegister;
375
376 LiveInterval &SrcLI = LI->getInterval(SrcReg);
377
378 bool isLiveOut = false;
379 for (MachineBasicBlock::succ_iterator SI = MBB->succ_begin(),
380 SE = MBB->succ_end(); SI != SE; ++SI) {
381 if (SrcLI.liveAt(LI->getMBBStartIdx(*SI))) {
382 isLiveOut = true;
383 break;
384 }
385 }
386
387 if (isLiveOut)
388 continue;
389
390 MachineOperand *LastUse = findLastUse(MBB, SrcReg);
391 assert(LastUse);
392 SlotIndex LastUseIndex = LI->getInstructionIndex(LastUse->getParent());
393 SrcLI.removeRange(LastUseIndex.getDefIndex(), LI->getMBBEndIdx(MBB));
394 LastUse->setIsKill(true);
395 }
396
397 LI->renumber();
398
399 Allocator.Reset();
400 RegNodeMap.clear();
401 PHISrcDefs.clear();
402 InsertedSrcCopySet.clear();
403 InsertedSrcCopyMap.clear();
404 InsertedDestCopies.clear();
405
406 return Changed;
407 }
408
addReg(unsigned Reg)409 void StrongPHIElimination::addReg(unsigned Reg) {
410 if (RegNodeMap.count(Reg))
411 return;
412 RegNodeMap[Reg] = new (Allocator) Node(Reg);
413 }
414
415 StrongPHIElimination::Node*
getLeader()416 StrongPHIElimination::Node::getLeader() {
417 Node *N = this;
418 Node *Parent = parent.getPointer();
419 Node *Grandparent = Parent->parent.getPointer();
420
421 while (Parent != Grandparent) {
422 N->parent.setPointer(Grandparent);
423 N = Grandparent;
424 Parent = Parent->parent.getPointer();
425 Grandparent = Parent->parent.getPointer();
426 }
427
428 return Parent;
429 }
430
getRegColor(unsigned Reg)431 unsigned StrongPHIElimination::getRegColor(unsigned Reg) {
432 DenseMap<unsigned, Node*>::iterator RI = RegNodeMap.find(Reg);
433 if (RI == RegNodeMap.end())
434 return 0;
435 Node *Node = RI->second;
436 if (Node->parent.getInt() & Node::kRegisterIsolatedFlag)
437 return 0;
438 return Node->getLeader()->value;
439 }
440
unionRegs(unsigned Reg1,unsigned Reg2)441 void StrongPHIElimination::unionRegs(unsigned Reg1, unsigned Reg2) {
442 Node *Node1 = RegNodeMap[Reg1]->getLeader();
443 Node *Node2 = RegNodeMap[Reg2]->getLeader();
444
445 if (Node1->rank > Node2->rank) {
446 Node2->parent.setPointer(Node1->getLeader());
447 } else if (Node1->rank < Node2->rank) {
448 Node1->parent.setPointer(Node2->getLeader());
449 } else if (Node1 != Node2) {
450 Node2->parent.setPointer(Node1->getLeader());
451 Node1->rank++;
452 }
453 }
454
isolateReg(unsigned Reg)455 void StrongPHIElimination::isolateReg(unsigned Reg) {
456 Node *Node = RegNodeMap[Reg];
457 Node->parent.setInt(Node->parent.getInt() | Node::kRegisterIsolatedFlag);
458 }
459
getPHIColor(MachineInstr * PHI)460 unsigned StrongPHIElimination::getPHIColor(MachineInstr *PHI) {
461 assert(PHI->isPHI());
462
463 unsigned DestReg = PHI->getOperand(0).getReg();
464 Node *DestNode = RegNodeMap[DestReg];
465 if (DestNode->parent.getInt() & Node::kPHIIsolatedFlag)
466 return 0;
467
468 for (unsigned i = 1; i < PHI->getNumOperands(); i += 2) {
469 unsigned SrcColor = getRegColor(PHI->getOperand(i).getReg());
470 if (SrcColor)
471 return SrcColor;
472 }
473 return 0;
474 }
475
isolatePHI(MachineInstr * PHI)476 void StrongPHIElimination::isolatePHI(MachineInstr *PHI) {
477 assert(PHI->isPHI());
478 Node *Node = RegNodeMap[PHI->getOperand(0).getReg()];
479 Node->parent.setInt(Node->parent.getInt() | Node::kPHIIsolatedFlag);
480 }
481
482 /// SplitInterferencesForBasicBlock - traverses a basic block, splitting any
483 /// interferences found between registers in the same congruence class. It
484 /// takes two DenseMaps as arguments that it also updates:
485 ///
486 /// 1) CurrentDominatingParent, which maps a color to the register in that
487 /// congruence class whose definition was most recently seen.
488 ///
489 /// 2) ImmediateDominatingParent, which maps a register to the register in the
490 /// same congruence class that most immediately dominates it.
491 ///
492 /// This function assumes that it is being called in a depth-first traversal
493 /// of the dominator tree.
494 ///
495 /// The algorithm used here is a generalization of the dominance-based SSA test
496 /// for two variables. If there are variables a_1, ..., a_n such that
497 ///
498 /// def(a_1) dom ... dom def(a_n),
499 ///
500 /// then we can test for an interference between any two a_i by only using O(n)
501 /// interference tests between pairs of variables. If i < j and a_i and a_j
502 /// interfere, then a_i is alive at def(a_j), so it is also alive at def(a_i+1).
503 /// Thus, in order to test for an interference involving a_i, we need only check
504 /// for a potential interference with a_i+1.
505 ///
506 /// This method can be generalized to arbitrary sets of variables by performing
507 /// a depth-first traversal of the dominator tree. As we traverse down a branch
508 /// of the dominator tree, we keep track of the current dominating variable and
509 /// only perform an interference test with that variable. However, when we go to
510 /// another branch of the dominator tree, the definition of the current dominating
511 /// variable may no longer dominate the current block. In order to correct this,
512 /// we need to use a stack of past choices of the current dominating variable
513 /// and pop from this stack until we find a variable whose definition actually
514 /// dominates the current block.
515 ///
516 /// There will be one push on this stack for each variable that has become the
517 /// current dominating variable, so instead of using an explicit stack we can
518 /// simply associate the previous choice for a current dominating variable with
519 /// the new choice. This works better in our implementation, where we test for
520 /// interference in multiple distinct sets at once.
521 void
SplitInterferencesForBasicBlock(MachineBasicBlock & MBB,DenseMap<unsigned,unsigned> & CurrentDominatingParent,DenseMap<unsigned,unsigned> & ImmediateDominatingParent)522 StrongPHIElimination::SplitInterferencesForBasicBlock(
523 MachineBasicBlock &MBB,
524 DenseMap<unsigned, unsigned> &CurrentDominatingParent,
525 DenseMap<unsigned, unsigned> &ImmediateDominatingParent) {
526 // Sort defs by their order in the original basic block, as the code below
527 // assumes that it is processing definitions in dominance order.
528 std::vector<MachineInstr*> &DefInstrs = PHISrcDefs[&MBB];
529 std::sort(DefInstrs.begin(), DefInstrs.end(), MIIndexCompare(LI));
530
531 for (std::vector<MachineInstr*>::const_iterator BBI = DefInstrs.begin(),
532 BBE = DefInstrs.end(); BBI != BBE; ++BBI) {
533 for (MachineInstr::const_mop_iterator I = (*BBI)->operands_begin(),
534 E = (*BBI)->operands_end(); I != E; ++I) {
535 const MachineOperand &MO = *I;
536
537 // FIXME: This would be faster if it were possible to bail out of checking
538 // an instruction's operands after the explicit defs, but this is incorrect
539 // for variadic instructions, which may appear before register allocation
540 // in the future.
541 if (!MO.isReg() || !MO.isDef())
542 continue;
543
544 unsigned DestReg = MO.getReg();
545 if (!DestReg || !TargetRegisterInfo::isVirtualRegister(DestReg))
546 continue;
547
548 // If the virtual register being defined is not used in any PHI or has
549 // already been isolated, then there are no more interferences to check.
550 unsigned DestColor = getRegColor(DestReg);
551 if (!DestColor)
552 continue;
553
554 // The input to this pass sometimes is not in SSA form in every basic
555 // block, as some virtual registers have redefinitions. We could eliminate
556 // this by fixing the passes that generate the non-SSA code, or we could
557 // handle it here by tracking defining machine instructions rather than
558 // virtual registers. For now, we just handle the situation conservatively
559 // in a way that will possibly lead to false interferences.
560 unsigned &CurrentParent = CurrentDominatingParent[DestColor];
561 unsigned NewParent = CurrentParent;
562 if (NewParent == DestReg)
563 continue;
564
565 // Pop registers from the stack represented by ImmediateDominatingParent
566 // until we find a parent that dominates the current instruction.
567 while (NewParent && (!DT->dominates(MRI->getVRegDef(NewParent), *BBI)
568 || !getRegColor(NewParent)))
569 NewParent = ImmediateDominatingParent[NewParent];
570
571 // If NewParent is nonzero, then its definition dominates the current
572 // instruction, so it is only necessary to check for the liveness of
573 // NewParent in order to check for an interference.
574 if (NewParent
575 && LI->getInterval(NewParent).liveAt(LI->getInstructionIndex(*BBI))) {
576 // If there is an interference, always isolate the new register. This
577 // could be improved by using a heuristic that decides which of the two
578 // registers to isolate.
579 isolateReg(DestReg);
580 CurrentParent = NewParent;
581 } else {
582 // If there is no interference, update ImmediateDominatingParent and set
583 // the CurrentDominatingParent for this color to the current register.
584 ImmediateDominatingParent[DestReg] = NewParent;
585 CurrentParent = DestReg;
586 }
587 }
588 }
589
590 // We now walk the PHIs in successor blocks and check for interferences. This
591 // is necessary because the use of a PHI's operands are logically contained in
592 // the predecessor block. The def of a PHI's destination register is processed
593 // along with the other defs in a basic block.
594
595 CurrentPHIForColor.clear();
596
597 for (MachineBasicBlock::succ_iterator SI = MBB.succ_begin(),
598 SE = MBB.succ_end(); SI != SE; ++SI) {
599 for (MachineBasicBlock::iterator BBI = (*SI)->begin(), BBE = (*SI)->end();
600 BBI != BBE && BBI->isPHI(); ++BBI) {
601 MachineInstr *PHI = BBI;
602
603 // If a PHI is already isolated, either by being isolated directly or
604 // having all of its operands isolated, ignore it.
605 unsigned Color = getPHIColor(PHI);
606 if (!Color)
607 continue;
608
609 // Find the index of the PHI operand that corresponds to this basic block.
610 unsigned PredIndex;
611 for (PredIndex = 1; PredIndex < PHI->getNumOperands(); PredIndex += 2) {
612 if (PHI->getOperand(PredIndex + 1).getMBB() == &MBB)
613 break;
614 }
615 assert(PredIndex < PHI->getNumOperands());
616 unsigned PredOperandReg = PHI->getOperand(PredIndex).getReg();
617
618 // Pop registers from the stack represented by ImmediateDominatingParent
619 // until we find a parent that dominates the current instruction.
620 unsigned &CurrentParent = CurrentDominatingParent[Color];
621 unsigned NewParent = CurrentParent;
622 while (NewParent
623 && (!DT->dominates(MRI->getVRegDef(NewParent)->getParent(), &MBB)
624 || !getRegColor(NewParent)))
625 NewParent = ImmediateDominatingParent[NewParent];
626 CurrentParent = NewParent;
627
628 // If there is an interference with a register, always isolate the
629 // register rather than the PHI. It is also possible to isolate the
630 // PHI, but that introduces copies for all of the registers involved
631 // in that PHI.
632 if (NewParent && LI->isLiveOutOfMBB(LI->getInterval(NewParent), &MBB)
633 && NewParent != PredOperandReg)
634 isolateReg(NewParent);
635
636 std::pair<MachineInstr*, unsigned>
637 &CurrentPHI = CurrentPHIForColor[Color];
638
639 // If two PHIs have the same operand from every shared predecessor, then
640 // they don't actually interfere. Otherwise, isolate the current PHI. This
641 // could possibly be improved, e.g. we could isolate the PHI with the
642 // fewest operands.
643 if (CurrentPHI.first && CurrentPHI.second != PredOperandReg)
644 isolatePHI(PHI);
645 else
646 CurrentPHI = std::make_pair(PHI, PredOperandReg);
647 }
648 }
649 }
650
InsertCopiesForPHI(MachineInstr * PHI,MachineBasicBlock * MBB)651 void StrongPHIElimination::InsertCopiesForPHI(MachineInstr *PHI,
652 MachineBasicBlock *MBB) {
653 assert(PHI->isPHI());
654 ++NumPHIsLowered;
655 unsigned PHIColor = getPHIColor(PHI);
656
657 for (unsigned i = 1; i < PHI->getNumOperands(); i += 2) {
658 MachineOperand &SrcMO = PHI->getOperand(i);
659
660 // If a source is defined by an implicit def, there is no need to insert a
661 // copy in the predecessor.
662 if (SrcMO.isUndef())
663 continue;
664
665 unsigned SrcReg = SrcMO.getReg();
666 assert(TargetRegisterInfo::isVirtualRegister(SrcReg) &&
667 "Machine PHI Operands must all be virtual registers!");
668
669 MachineBasicBlock *PredBB = PHI->getOperand(i + 1).getMBB();
670 unsigned SrcColor = getRegColor(SrcReg);
671
672 // If neither the PHI nor the operand were isolated, then we only need to
673 // set the phi-kill flag on the VNInfo at this PHI.
674 if (PHIColor && SrcColor == PHIColor) {
675 LiveInterval &SrcInterval = LI->getInterval(SrcReg);
676 SlotIndex PredIndex = LI->getMBBEndIdx(PredBB);
677 VNInfo *SrcVNI = SrcInterval.getVNInfoBefore(PredIndex);
678 assert(SrcVNI);
679 SrcVNI->setHasPHIKill(true);
680 continue;
681 }
682
683 unsigned CopyReg = 0;
684 if (PHIColor) {
685 SrcCopyMap::const_iterator I
686 = InsertedSrcCopyMap.find(std::make_pair(PredBB, PHIColor));
687 CopyReg
688 = I != InsertedSrcCopyMap.end() ? I->second->getOperand(0).getReg() : 0;
689 }
690
691 if (!CopyReg) {
692 const TargetRegisterClass *RC = MRI->getRegClass(SrcReg);
693 CopyReg = MRI->createVirtualRegister(RC);
694
695 MachineBasicBlock::iterator
696 CopyInsertPoint = findPHICopyInsertPoint(PredBB, MBB, SrcReg);
697 unsigned SrcSubReg = SrcMO.getSubReg();
698 MachineInstr *CopyInstr = BuildMI(*PredBB,
699 CopyInsertPoint,
700 PHI->getDebugLoc(),
701 TII->get(TargetOpcode::COPY),
702 CopyReg).addReg(SrcReg, 0, SrcSubReg);
703 LI->InsertMachineInstrInMaps(CopyInstr);
704 ++NumSrcCopiesInserted;
705
706 // addLiveRangeToEndOfBlock() also adds the phikill flag to the VNInfo for
707 // the newly added range.
708 LI->addLiveRangeToEndOfBlock(CopyReg, CopyInstr);
709 InsertedSrcCopySet.insert(std::make_pair(PredBB, SrcReg));
710
711 addReg(CopyReg);
712 if (PHIColor) {
713 unionRegs(PHIColor, CopyReg);
714 assert(getRegColor(CopyReg) != CopyReg);
715 } else {
716 PHIColor = CopyReg;
717 assert(getRegColor(CopyReg) == CopyReg);
718 }
719
720 if (!InsertedSrcCopyMap.count(std::make_pair(PredBB, PHIColor)))
721 InsertedSrcCopyMap[std::make_pair(PredBB, PHIColor)] = CopyInstr;
722 }
723
724 SrcMO.setReg(CopyReg);
725
726 // If SrcReg is not live beyond the PHI, trim its interval so that it is no
727 // longer live-in to MBB. Note that SrcReg may appear in other PHIs that are
728 // processed later, but this is still correct to do at this point because we
729 // never rely on LiveIntervals being correct while inserting copies.
730 // FIXME: Should this just count uses at PHIs like the normal PHIElimination
731 // pass does?
732 LiveInterval &SrcLI = LI->getInterval(SrcReg);
733 SlotIndex MBBStartIndex = LI->getMBBStartIdx(MBB);
734 SlotIndex PHIIndex = LI->getInstructionIndex(PHI);
735 SlotIndex NextInstrIndex = PHIIndex.getNextIndex();
736 if (SrcLI.liveAt(MBBStartIndex) && SrcLI.expiredAt(NextInstrIndex))
737 SrcLI.removeRange(MBBStartIndex, PHIIndex, true);
738 }
739
740 unsigned DestReg = PHI->getOperand(0).getReg();
741 unsigned DestColor = getRegColor(DestReg);
742
743 if (PHIColor && DestColor == PHIColor) {
744 LiveInterval &DestLI = LI->getInterval(DestReg);
745
746 // Set the phi-def flag for the VN at this PHI.
747 SlotIndex PHIIndex = LI->getInstructionIndex(PHI);
748 VNInfo *DestVNI = DestLI.getVNInfoAt(PHIIndex.getDefIndex());
749 assert(DestVNI);
750 DestVNI->setIsPHIDef(true);
751
752 // Prior to PHI elimination, the live ranges of PHIs begin at their defining
753 // instruction. After PHI elimination, PHI instructions are replaced by VNs
754 // with the phi-def flag set, and the live ranges of these VNs start at the
755 // beginning of the basic block.
756 SlotIndex MBBStartIndex = LI->getMBBStartIdx(MBB);
757 DestVNI->def = MBBStartIndex;
758 DestLI.addRange(LiveRange(MBBStartIndex,
759 PHIIndex.getDefIndex(),
760 DestVNI));
761 return;
762 }
763
764 const TargetRegisterClass *RC = MRI->getRegClass(DestReg);
765 unsigned CopyReg = MRI->createVirtualRegister(RC);
766
767 MachineInstr *CopyInstr = BuildMI(*MBB,
768 MBB->SkipPHIsAndLabels(MBB->begin()),
769 PHI->getDebugLoc(),
770 TII->get(TargetOpcode::COPY),
771 DestReg).addReg(CopyReg);
772 LI->InsertMachineInstrInMaps(CopyInstr);
773 PHI->getOperand(0).setReg(CopyReg);
774 ++NumDestCopiesInserted;
775
776 // Add the region from the beginning of MBB to the copy instruction to
777 // CopyReg's live interval, and give the VNInfo the phidef flag.
778 LiveInterval &CopyLI = LI->getOrCreateInterval(CopyReg);
779 SlotIndex MBBStartIndex = LI->getMBBStartIdx(MBB);
780 SlotIndex DestCopyIndex = LI->getInstructionIndex(CopyInstr);
781 VNInfo *CopyVNI = CopyLI.getNextValue(MBBStartIndex,
782 CopyInstr,
783 LI->getVNInfoAllocator());
784 CopyVNI->setIsPHIDef(true);
785 CopyLI.addRange(LiveRange(MBBStartIndex,
786 DestCopyIndex.getDefIndex(),
787 CopyVNI));
788
789 // Adjust DestReg's live interval to adjust for its new definition at
790 // CopyInstr.
791 LiveInterval &DestLI = LI->getOrCreateInterval(DestReg);
792 SlotIndex PHIIndex = LI->getInstructionIndex(PHI);
793 DestLI.removeRange(PHIIndex.getDefIndex(), DestCopyIndex.getDefIndex());
794
795 VNInfo *DestVNI = DestLI.getVNInfoAt(DestCopyIndex.getDefIndex());
796 assert(DestVNI);
797 DestVNI->def = DestCopyIndex.getDefIndex();
798
799 InsertedDestCopies[CopyReg] = CopyInstr;
800 }
801
MergeLIsAndRename(unsigned Reg,unsigned NewReg)802 void StrongPHIElimination::MergeLIsAndRename(unsigned Reg, unsigned NewReg) {
803 if (Reg == NewReg)
804 return;
805
806 LiveInterval &OldLI = LI->getInterval(Reg);
807 LiveInterval &NewLI = LI->getInterval(NewReg);
808
809 // Merge the live ranges of the two registers.
810 DenseMap<VNInfo*, VNInfo*> VNMap;
811 for (LiveInterval::iterator LRI = OldLI.begin(), LRE = OldLI.end();
812 LRI != LRE; ++LRI) {
813 LiveRange OldLR = *LRI;
814 VNInfo *OldVN = OldLR.valno;
815
816 VNInfo *&NewVN = VNMap[OldVN];
817 if (!NewVN) {
818 NewVN = NewLI.createValueCopy(OldVN, LI->getVNInfoAllocator());
819 VNMap[OldVN] = NewVN;
820 }
821
822 LiveRange LR(OldLR.start, OldLR.end, NewVN);
823 NewLI.addRange(LR);
824 }
825
826 // Remove the LiveInterval for the register being renamed and replace all
827 // of its defs and uses with the new register.
828 LI->removeInterval(Reg);
829 MRI->replaceRegWith(Reg, NewReg);
830 }
831