1 //===-- JITMemoryManager.cpp - Memory Allocator for JIT'd code ------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines the DefaultJITMemoryManager class.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #define DEBUG_TYPE "jit"
15 #include "llvm/ExecutionEngine/JITMemoryManager.h"
16 #include "llvm/ADT/SmallPtrSet.h"
17 #include "llvm/ADT/Statistic.h"
18 #include "llvm/ADT/Twine.h"
19 #include "llvm/GlobalValue.h"
20 #include "llvm/Support/Allocator.h"
21 #include "llvm/Support/Compiler.h"
22 #include "llvm/Support/Debug.h"
23 #include "llvm/Support/ErrorHandling.h"
24 #include "llvm/Support/raw_ostream.h"
25 #include "llvm/Support/Memory.h"
26 #include <vector>
27 #include <cassert>
28 #include <climits>
29 #include <cstring>
30 using namespace llvm;
31
32 STATISTIC(NumSlabs, "Number of slabs of memory allocated by the JIT");
33
~JITMemoryManager()34 JITMemoryManager::~JITMemoryManager() {}
35
36 //===----------------------------------------------------------------------===//
37 // Memory Block Implementation.
38 //===----------------------------------------------------------------------===//
39
40 namespace {
41 /// MemoryRangeHeader - For a range of memory, this is the header that we put
42 /// on the block of memory. It is carefully crafted to be one word of memory.
43 /// Allocated blocks have just this header, free'd blocks have FreeRangeHeader
44 /// which starts with this.
45 struct FreeRangeHeader;
46 struct MemoryRangeHeader {
47 /// ThisAllocated - This is true if this block is currently allocated. If
48 /// not, this can be converted to a FreeRangeHeader.
49 unsigned ThisAllocated : 1;
50
51 /// PrevAllocated - Keep track of whether the block immediately before us is
52 /// allocated. If not, the word immediately before this header is the size
53 /// of the previous block.
54 unsigned PrevAllocated : 1;
55
56 /// BlockSize - This is the size in bytes of this memory block,
57 /// including this header.
58 uintptr_t BlockSize : (sizeof(intptr_t)*CHAR_BIT - 2);
59
60
61 /// getBlockAfter - Return the memory block immediately after this one.
62 ///
getBlockAfter__anon387d1ce70111::MemoryRangeHeader63 MemoryRangeHeader &getBlockAfter() const {
64 return *(MemoryRangeHeader*)((char*)this+BlockSize);
65 }
66
67 /// getFreeBlockBefore - If the block before this one is free, return it,
68 /// otherwise return null.
getFreeBlockBefore__anon387d1ce70111::MemoryRangeHeader69 FreeRangeHeader *getFreeBlockBefore() const {
70 if (PrevAllocated) return 0;
71 intptr_t PrevSize = ((intptr_t *)this)[-1];
72 return (FreeRangeHeader*)((char*)this-PrevSize);
73 }
74
75 /// FreeBlock - Turn an allocated block into a free block, adjusting
76 /// bits in the object headers, and adding an end of region memory block.
77 FreeRangeHeader *FreeBlock(FreeRangeHeader *FreeList);
78
79 /// TrimAllocationToSize - If this allocated block is significantly larger
80 /// than NewSize, split it into two pieces (where the former is NewSize
81 /// bytes, including the header), and add the new block to the free list.
82 FreeRangeHeader *TrimAllocationToSize(FreeRangeHeader *FreeList,
83 uint64_t NewSize);
84 };
85
86 /// FreeRangeHeader - For a memory block that isn't already allocated, this
87 /// keeps track of the current block and has a pointer to the next free block.
88 /// Free blocks are kept on a circularly linked list.
89 struct FreeRangeHeader : public MemoryRangeHeader {
90 FreeRangeHeader *Prev;
91 FreeRangeHeader *Next;
92
93 /// getMinBlockSize - Get the minimum size for a memory block. Blocks
94 /// smaller than this size cannot be created.
getMinBlockSize__anon387d1ce70111::FreeRangeHeader95 static unsigned getMinBlockSize() {
96 return sizeof(FreeRangeHeader)+sizeof(intptr_t);
97 }
98
99 /// SetEndOfBlockSizeMarker - The word at the end of every free block is
100 /// known to be the size of the free block. Set it for this block.
SetEndOfBlockSizeMarker__anon387d1ce70111::FreeRangeHeader101 void SetEndOfBlockSizeMarker() {
102 void *EndOfBlock = (char*)this + BlockSize;
103 ((intptr_t *)EndOfBlock)[-1] = BlockSize;
104 }
105
RemoveFromFreeList__anon387d1ce70111::FreeRangeHeader106 FreeRangeHeader *RemoveFromFreeList() {
107 assert(Next->Prev == this && Prev->Next == this && "Freelist broken!");
108 Next->Prev = Prev;
109 return Prev->Next = Next;
110 }
111
AddToFreeList__anon387d1ce70111::FreeRangeHeader112 void AddToFreeList(FreeRangeHeader *FreeList) {
113 Next = FreeList;
114 Prev = FreeList->Prev;
115 Prev->Next = this;
116 Next->Prev = this;
117 }
118
119 /// GrowBlock - The block after this block just got deallocated. Merge it
120 /// into the current block.
121 void GrowBlock(uintptr_t NewSize);
122
123 /// AllocateBlock - Mark this entire block allocated, updating freelists
124 /// etc. This returns a pointer to the circular free-list.
125 FreeRangeHeader *AllocateBlock();
126 };
127 }
128
129
130 /// AllocateBlock - Mark this entire block allocated, updating freelists
131 /// etc. This returns a pointer to the circular free-list.
AllocateBlock()132 FreeRangeHeader *FreeRangeHeader::AllocateBlock() {
133 assert(!ThisAllocated && !getBlockAfter().PrevAllocated &&
134 "Cannot allocate an allocated block!");
135 // Mark this block allocated.
136 ThisAllocated = 1;
137 getBlockAfter().PrevAllocated = 1;
138
139 // Remove it from the free list.
140 return RemoveFromFreeList();
141 }
142
143 /// FreeBlock - Turn an allocated block into a free block, adjusting
144 /// bits in the object headers, and adding an end of region memory block.
145 /// If possible, coalesce this block with neighboring blocks. Return the
146 /// FreeRangeHeader to allocate from.
FreeBlock(FreeRangeHeader * FreeList)147 FreeRangeHeader *MemoryRangeHeader::FreeBlock(FreeRangeHeader *FreeList) {
148 MemoryRangeHeader *FollowingBlock = &getBlockAfter();
149 assert(ThisAllocated && "This block is already free!");
150 assert(FollowingBlock->PrevAllocated && "Flags out of sync!");
151
152 FreeRangeHeader *FreeListToReturn = FreeList;
153
154 // If the block after this one is free, merge it into this block.
155 if (!FollowingBlock->ThisAllocated) {
156 FreeRangeHeader &FollowingFreeBlock = *(FreeRangeHeader *)FollowingBlock;
157 // "FreeList" always needs to be a valid free block. If we're about to
158 // coalesce with it, update our notion of what the free list is.
159 if (&FollowingFreeBlock == FreeList) {
160 FreeList = FollowingFreeBlock.Next;
161 FreeListToReturn = 0;
162 assert(&FollowingFreeBlock != FreeList && "No tombstone block?");
163 }
164 FollowingFreeBlock.RemoveFromFreeList();
165
166 // Include the following block into this one.
167 BlockSize += FollowingFreeBlock.BlockSize;
168 FollowingBlock = &FollowingFreeBlock.getBlockAfter();
169
170 // Tell the block after the block we are coalescing that this block is
171 // allocated.
172 FollowingBlock->PrevAllocated = 1;
173 }
174
175 assert(FollowingBlock->ThisAllocated && "Missed coalescing?");
176
177 if (FreeRangeHeader *PrevFreeBlock = getFreeBlockBefore()) {
178 PrevFreeBlock->GrowBlock(PrevFreeBlock->BlockSize + BlockSize);
179 return FreeListToReturn ? FreeListToReturn : PrevFreeBlock;
180 }
181
182 // Otherwise, mark this block free.
183 FreeRangeHeader &FreeBlock = *(FreeRangeHeader*)this;
184 FollowingBlock->PrevAllocated = 0;
185 FreeBlock.ThisAllocated = 0;
186
187 // Link this into the linked list of free blocks.
188 FreeBlock.AddToFreeList(FreeList);
189
190 // Add a marker at the end of the block, indicating the size of this free
191 // block.
192 FreeBlock.SetEndOfBlockSizeMarker();
193 return FreeListToReturn ? FreeListToReturn : &FreeBlock;
194 }
195
196 /// GrowBlock - The block after this block just got deallocated. Merge it
197 /// into the current block.
GrowBlock(uintptr_t NewSize)198 void FreeRangeHeader::GrowBlock(uintptr_t NewSize) {
199 assert(NewSize > BlockSize && "Not growing block?");
200 BlockSize = NewSize;
201 SetEndOfBlockSizeMarker();
202 getBlockAfter().PrevAllocated = 0;
203 }
204
205 /// TrimAllocationToSize - If this allocated block is significantly larger
206 /// than NewSize, split it into two pieces (where the former is NewSize
207 /// bytes, including the header), and add the new block to the free list.
208 FreeRangeHeader *MemoryRangeHeader::
TrimAllocationToSize(FreeRangeHeader * FreeList,uint64_t NewSize)209 TrimAllocationToSize(FreeRangeHeader *FreeList, uint64_t NewSize) {
210 assert(ThisAllocated && getBlockAfter().PrevAllocated &&
211 "Cannot deallocate part of an allocated block!");
212
213 // Don't allow blocks to be trimmed below minimum required size
214 NewSize = std::max<uint64_t>(FreeRangeHeader::getMinBlockSize(), NewSize);
215
216 // Round up size for alignment of header.
217 unsigned HeaderAlign = __alignof(FreeRangeHeader);
218 NewSize = (NewSize+ (HeaderAlign-1)) & ~(HeaderAlign-1);
219
220 // Size is now the size of the block we will remove from the start of the
221 // current block.
222 assert(NewSize <= BlockSize &&
223 "Allocating more space from this block than exists!");
224
225 // If splitting this block will cause the remainder to be too small, do not
226 // split the block.
227 if (BlockSize <= NewSize+FreeRangeHeader::getMinBlockSize())
228 return FreeList;
229
230 // Otherwise, we splice the required number of bytes out of this block, form
231 // a new block immediately after it, then mark this block allocated.
232 MemoryRangeHeader &FormerNextBlock = getBlockAfter();
233
234 // Change the size of this block.
235 BlockSize = NewSize;
236
237 // Get the new block we just sliced out and turn it into a free block.
238 FreeRangeHeader &NewNextBlock = (FreeRangeHeader &)getBlockAfter();
239 NewNextBlock.BlockSize = (char*)&FormerNextBlock - (char*)&NewNextBlock;
240 NewNextBlock.ThisAllocated = 0;
241 NewNextBlock.PrevAllocated = 1;
242 NewNextBlock.SetEndOfBlockSizeMarker();
243 FormerNextBlock.PrevAllocated = 0;
244 NewNextBlock.AddToFreeList(FreeList);
245 return &NewNextBlock;
246 }
247
248 //===----------------------------------------------------------------------===//
249 // Memory Block Implementation.
250 //===----------------------------------------------------------------------===//
251
252 namespace {
253
254 class DefaultJITMemoryManager;
255
256 class JITSlabAllocator : public SlabAllocator {
257 DefaultJITMemoryManager &JMM;
258 public:
JITSlabAllocator(DefaultJITMemoryManager & jmm)259 JITSlabAllocator(DefaultJITMemoryManager &jmm) : JMM(jmm) { }
~JITSlabAllocator()260 virtual ~JITSlabAllocator() { }
261 virtual MemSlab *Allocate(size_t Size);
262 virtual void Deallocate(MemSlab *Slab);
263 };
264
265 /// DefaultJITMemoryManager - Manage memory for the JIT code generation.
266 /// This splits a large block of MAP_NORESERVE'd memory into two
267 /// sections, one for function stubs, one for the functions themselves. We
268 /// have to do this because we may need to emit a function stub while in the
269 /// middle of emitting a function, and we don't know how large the function we
270 /// are emitting is.
271 class DefaultJITMemoryManager : public JITMemoryManager {
272
273 // Whether to poison freed memory.
274 bool PoisonMemory;
275
276 /// LastSlab - This points to the last slab allocated and is used as the
277 /// NearBlock parameter to AllocateRWX so that we can attempt to lay out all
278 /// stubs, data, and code contiguously in memory. In general, however, this
279 /// is not possible because the NearBlock parameter is ignored on Windows
280 /// platforms and even on Unix it works on a best-effort pasis.
281 sys::MemoryBlock LastSlab;
282
283 // Memory slabs allocated by the JIT. We refer to them as slabs so we don't
284 // confuse them with the blocks of memory described above.
285 std::vector<sys::MemoryBlock> CodeSlabs;
286 JITSlabAllocator BumpSlabAllocator;
287 BumpPtrAllocator StubAllocator;
288 BumpPtrAllocator DataAllocator;
289
290 // Circular list of free blocks.
291 FreeRangeHeader *FreeMemoryList;
292
293 // When emitting code into a memory block, this is the block.
294 MemoryRangeHeader *CurBlock;
295
296 uint8_t *GOTBase; // Target Specific reserved memory
297 public:
298 DefaultJITMemoryManager();
299 ~DefaultJITMemoryManager();
300
301 /// allocateNewSlab - Allocates a new MemoryBlock and remembers it as the
302 /// last slab it allocated, so that subsequent allocations follow it.
303 sys::MemoryBlock allocateNewSlab(size_t size);
304
305 /// DefaultCodeSlabSize - When we have to go map more memory, we allocate at
306 /// least this much unless more is requested.
307 static const size_t DefaultCodeSlabSize;
308
309 /// DefaultSlabSize - Allocate data into slabs of this size unless we get
310 /// an allocation above SizeThreshold.
311 static const size_t DefaultSlabSize;
312
313 /// DefaultSizeThreshold - For any allocation larger than this threshold, we
314 /// should allocate a separate slab.
315 static const size_t DefaultSizeThreshold;
316
317 void AllocateGOT();
318
319 // Testing methods.
320 virtual bool CheckInvariants(std::string &ErrorStr);
GetDefaultCodeSlabSize()321 size_t GetDefaultCodeSlabSize() { return DefaultCodeSlabSize; }
GetDefaultDataSlabSize()322 size_t GetDefaultDataSlabSize() { return DefaultSlabSize; }
GetDefaultStubSlabSize()323 size_t GetDefaultStubSlabSize() { return DefaultSlabSize; }
GetNumCodeSlabs()324 unsigned GetNumCodeSlabs() { return CodeSlabs.size(); }
GetNumDataSlabs()325 unsigned GetNumDataSlabs() { return DataAllocator.GetNumSlabs(); }
GetNumStubSlabs()326 unsigned GetNumStubSlabs() { return StubAllocator.GetNumSlabs(); }
327
328 /// startFunctionBody - When a function starts, allocate a block of free
329 /// executable memory, returning a pointer to it and its actual size.
startFunctionBody(const Function * F,uintptr_t & ActualSize)330 uint8_t *startFunctionBody(const Function *F, uintptr_t &ActualSize) {
331
332 FreeRangeHeader* candidateBlock = FreeMemoryList;
333 FreeRangeHeader* head = FreeMemoryList;
334 FreeRangeHeader* iter = head->Next;
335
336 uintptr_t largest = candidateBlock->BlockSize;
337
338 // Search for the largest free block
339 while (iter != head) {
340 if (iter->BlockSize > largest) {
341 largest = iter->BlockSize;
342 candidateBlock = iter;
343 }
344 iter = iter->Next;
345 }
346
347 largest = largest - sizeof(MemoryRangeHeader);
348
349 // If this block isn't big enough for the allocation desired, allocate
350 // another block of memory and add it to the free list.
351 if (largest < ActualSize ||
352 largest <= FreeRangeHeader::getMinBlockSize()) {
353 DEBUG(dbgs() << "JIT: Allocating another slab of memory for function.");
354 candidateBlock = allocateNewCodeSlab((size_t)ActualSize);
355 }
356
357 // Select this candidate block for allocation
358 CurBlock = candidateBlock;
359
360 // Allocate the entire memory block.
361 FreeMemoryList = candidateBlock->AllocateBlock();
362 ActualSize = CurBlock->BlockSize - sizeof(MemoryRangeHeader);
363 return (uint8_t *)(CurBlock + 1);
364 }
365
366 /// allocateNewCodeSlab - Helper method to allocate a new slab of code
367 /// memory from the OS and add it to the free list. Returns the new
368 /// FreeRangeHeader at the base of the slab.
allocateNewCodeSlab(size_t MinSize)369 FreeRangeHeader *allocateNewCodeSlab(size_t MinSize) {
370 // If the user needs at least MinSize free memory, then we account for
371 // two MemoryRangeHeaders: the one in the user's block, and the one at the
372 // end of the slab.
373 size_t PaddedMin = MinSize + 2 * sizeof(MemoryRangeHeader);
374 size_t SlabSize = std::max(DefaultCodeSlabSize, PaddedMin);
375 sys::MemoryBlock B = allocateNewSlab(SlabSize);
376 CodeSlabs.push_back(B);
377 char *MemBase = (char*)(B.base());
378
379 // Put a tiny allocated block at the end of the memory chunk, so when
380 // FreeBlock calls getBlockAfter it doesn't fall off the end.
381 MemoryRangeHeader *EndBlock =
382 (MemoryRangeHeader*)(MemBase + B.size()) - 1;
383 EndBlock->ThisAllocated = 1;
384 EndBlock->PrevAllocated = 0;
385 EndBlock->BlockSize = sizeof(MemoryRangeHeader);
386
387 // Start out with a vast new block of free memory.
388 FreeRangeHeader *NewBlock = (FreeRangeHeader*)MemBase;
389 NewBlock->ThisAllocated = 0;
390 // Make sure getFreeBlockBefore doesn't look into unmapped memory.
391 NewBlock->PrevAllocated = 1;
392 NewBlock->BlockSize = (uintptr_t)EndBlock - (uintptr_t)NewBlock;
393 NewBlock->SetEndOfBlockSizeMarker();
394 NewBlock->AddToFreeList(FreeMemoryList);
395
396 assert(NewBlock->BlockSize - sizeof(MemoryRangeHeader) >= MinSize &&
397 "The block was too small!");
398 return NewBlock;
399 }
400
401 /// endFunctionBody - The function F is now allocated, and takes the memory
402 /// in the range [FunctionStart,FunctionEnd).
endFunctionBody(const Function * F,uint8_t * FunctionStart,uint8_t * FunctionEnd)403 void endFunctionBody(const Function *F, uint8_t *FunctionStart,
404 uint8_t *FunctionEnd) {
405 assert(FunctionEnd > FunctionStart);
406 assert(FunctionStart == (uint8_t *)(CurBlock+1) &&
407 "Mismatched function start/end!");
408
409 uintptr_t BlockSize = FunctionEnd - (uint8_t *)CurBlock;
410
411 // Release the memory at the end of this block that isn't needed.
412 FreeMemoryList =CurBlock->TrimAllocationToSize(FreeMemoryList, BlockSize);
413 }
414
415 /// allocateSpace - Allocate a memory block of the given size. This method
416 /// cannot be called between calls to startFunctionBody and endFunctionBody.
allocateSpace(intptr_t Size,unsigned Alignment)417 uint8_t *allocateSpace(intptr_t Size, unsigned Alignment) {
418 CurBlock = FreeMemoryList;
419 FreeMemoryList = FreeMemoryList->AllocateBlock();
420
421 uint8_t *result = (uint8_t *)(CurBlock + 1);
422
423 if (Alignment == 0) Alignment = 1;
424 result = (uint8_t*)(((intptr_t)result+Alignment-1) &
425 ~(intptr_t)(Alignment-1));
426
427 uintptr_t BlockSize = result + Size - (uint8_t *)CurBlock;
428 FreeMemoryList =CurBlock->TrimAllocationToSize(FreeMemoryList, BlockSize);
429
430 return result;
431 }
432
433 /// allocateStub - Allocate memory for a function stub.
allocateStub(const GlobalValue * F,unsigned StubSize,unsigned Alignment)434 uint8_t *allocateStub(const GlobalValue* F, unsigned StubSize,
435 unsigned Alignment) {
436 return (uint8_t*)StubAllocator.Allocate(StubSize, Alignment);
437 }
438
439 /// allocateGlobal - Allocate memory for a global.
allocateGlobal(uintptr_t Size,unsigned Alignment)440 uint8_t *allocateGlobal(uintptr_t Size, unsigned Alignment) {
441 return (uint8_t*)DataAllocator.Allocate(Size, Alignment);
442 }
443
444 /// startExceptionTable - Use startFunctionBody to allocate memory for the
445 /// function's exception table.
startExceptionTable(const Function * F,uintptr_t & ActualSize)446 uint8_t* startExceptionTable(const Function* F, uintptr_t &ActualSize) {
447 return startFunctionBody(F, ActualSize);
448 }
449
450 /// endExceptionTable - The exception table of F is now allocated,
451 /// and takes the memory in the range [TableStart,TableEnd).
endExceptionTable(const Function * F,uint8_t * TableStart,uint8_t * TableEnd,uint8_t * FrameRegister)452 void endExceptionTable(const Function *F, uint8_t *TableStart,
453 uint8_t *TableEnd, uint8_t* FrameRegister) {
454 assert(TableEnd > TableStart);
455 assert(TableStart == (uint8_t *)(CurBlock+1) &&
456 "Mismatched table start/end!");
457
458 uintptr_t BlockSize = TableEnd - (uint8_t *)CurBlock;
459
460 // Release the memory at the end of this block that isn't needed.
461 FreeMemoryList =CurBlock->TrimAllocationToSize(FreeMemoryList, BlockSize);
462 }
463
getGOTBase() const464 uint8_t *getGOTBase() const {
465 return GOTBase;
466 }
467
deallocateBlock(void * Block)468 void deallocateBlock(void *Block) {
469 // Find the block that is allocated for this function.
470 MemoryRangeHeader *MemRange = static_cast<MemoryRangeHeader*>(Block) - 1;
471 assert(MemRange->ThisAllocated && "Block isn't allocated!");
472
473 // Fill the buffer with garbage!
474 if (PoisonMemory) {
475 memset(MemRange+1, 0xCD, MemRange->BlockSize-sizeof(*MemRange));
476 }
477
478 // Free the memory.
479 FreeMemoryList = MemRange->FreeBlock(FreeMemoryList);
480 }
481
482 /// deallocateFunctionBody - Deallocate all memory for the specified
483 /// function body.
deallocateFunctionBody(void * Body)484 void deallocateFunctionBody(void *Body) {
485 if (Body) deallocateBlock(Body);
486 }
487
488 /// deallocateExceptionTable - Deallocate memory for the specified
489 /// exception table.
deallocateExceptionTable(void * ET)490 void deallocateExceptionTable(void *ET) {
491 if (ET) deallocateBlock(ET);
492 }
493
494 /// setMemoryWritable - When code generation is in progress,
495 /// the code pages may need permissions changed.
setMemoryWritable()496 void setMemoryWritable()
497 {
498 for (unsigned i = 0, e = CodeSlabs.size(); i != e; ++i)
499 sys::Memory::setWritable(CodeSlabs[i]);
500 }
501 /// setMemoryExecutable - When code generation is done and we're ready to
502 /// start execution, the code pages may need permissions changed.
setMemoryExecutable()503 void setMemoryExecutable()
504 {
505 for (unsigned i = 0, e = CodeSlabs.size(); i != e; ++i)
506 sys::Memory::setExecutable(CodeSlabs[i]);
507 }
508
509 /// setPoisonMemory - Controls whether we write garbage over freed memory.
510 ///
setPoisonMemory(bool poison)511 void setPoisonMemory(bool poison) {
512 PoisonMemory = poison;
513 }
514 };
515 }
516
Allocate(size_t Size)517 MemSlab *JITSlabAllocator::Allocate(size_t Size) {
518 sys::MemoryBlock B = JMM.allocateNewSlab(Size);
519 MemSlab *Slab = (MemSlab*)B.base();
520 Slab->Size = B.size();
521 Slab->NextPtr = 0;
522 return Slab;
523 }
524
Deallocate(MemSlab * Slab)525 void JITSlabAllocator::Deallocate(MemSlab *Slab) {
526 sys::MemoryBlock B(Slab, Slab->Size);
527 sys::Memory::ReleaseRWX(B);
528 }
529
DefaultJITMemoryManager()530 DefaultJITMemoryManager::DefaultJITMemoryManager()
531 :
532 #ifdef NDEBUG
533 PoisonMemory(false),
534 #else
535 PoisonMemory(true),
536 #endif
537 LastSlab(0, 0),
538 BumpSlabAllocator(*this),
539 StubAllocator(DefaultSlabSize, DefaultSizeThreshold, BumpSlabAllocator),
540 DataAllocator(DefaultSlabSize, DefaultSizeThreshold, BumpSlabAllocator) {
541
542 // Allocate space for code.
543 sys::MemoryBlock MemBlock = allocateNewSlab(DefaultCodeSlabSize);
544 CodeSlabs.push_back(MemBlock);
545 uint8_t *MemBase = (uint8_t*)MemBlock.base();
546
547 // We set up the memory chunk with 4 mem regions, like this:
548 // [ START
549 // [ Free #0 ] -> Large space to allocate functions from.
550 // [ Allocated #1 ] -> Tiny space to separate regions.
551 // [ Free #2 ] -> Tiny space so there is always at least 1 free block.
552 // [ Allocated #3 ] -> Tiny space to prevent looking past end of block.
553 // END ]
554 //
555 // The last three blocks are never deallocated or touched.
556
557 // Add MemoryRangeHeader to the end of the memory region, indicating that
558 // the space after the block of memory is allocated. This is block #3.
559 MemoryRangeHeader *Mem3 = (MemoryRangeHeader*)(MemBase+MemBlock.size())-1;
560 Mem3->ThisAllocated = 1;
561 Mem3->PrevAllocated = 0;
562 Mem3->BlockSize = sizeof(MemoryRangeHeader);
563
564 /// Add a tiny free region so that the free list always has one entry.
565 FreeRangeHeader *Mem2 =
566 (FreeRangeHeader *)(((char*)Mem3)-FreeRangeHeader::getMinBlockSize());
567 Mem2->ThisAllocated = 0;
568 Mem2->PrevAllocated = 1;
569 Mem2->BlockSize = FreeRangeHeader::getMinBlockSize();
570 Mem2->SetEndOfBlockSizeMarker();
571 Mem2->Prev = Mem2; // Mem2 *is* the free list for now.
572 Mem2->Next = Mem2;
573
574 /// Add a tiny allocated region so that Mem2 is never coalesced away.
575 MemoryRangeHeader *Mem1 = (MemoryRangeHeader*)Mem2-1;
576 Mem1->ThisAllocated = 1;
577 Mem1->PrevAllocated = 0;
578 Mem1->BlockSize = sizeof(MemoryRangeHeader);
579
580 // Add a FreeRangeHeader to the start of the function body region, indicating
581 // that the space is free. Mark the previous block allocated so we never look
582 // at it.
583 FreeRangeHeader *Mem0 = (FreeRangeHeader*)MemBase;
584 Mem0->ThisAllocated = 0;
585 Mem0->PrevAllocated = 1;
586 Mem0->BlockSize = (char*)Mem1-(char*)Mem0;
587 Mem0->SetEndOfBlockSizeMarker();
588 Mem0->AddToFreeList(Mem2);
589
590 // Start out with the freelist pointing to Mem0.
591 FreeMemoryList = Mem0;
592
593 GOTBase = NULL;
594 }
595
AllocateGOT()596 void DefaultJITMemoryManager::AllocateGOT() {
597 assert(GOTBase == 0 && "Cannot allocate the got multiple times");
598 GOTBase = new uint8_t[sizeof(void*) * 8192];
599 HasGOT = true;
600 }
601
~DefaultJITMemoryManager()602 DefaultJITMemoryManager::~DefaultJITMemoryManager() {
603 for (unsigned i = 0, e = CodeSlabs.size(); i != e; ++i)
604 sys::Memory::ReleaseRWX(CodeSlabs[i]);
605
606 delete[] GOTBase;
607 }
608
allocateNewSlab(size_t size)609 sys::MemoryBlock DefaultJITMemoryManager::allocateNewSlab(size_t size) {
610 // Allocate a new block close to the last one.
611 std::string ErrMsg;
612 sys::MemoryBlock *LastSlabPtr = LastSlab.base() ? &LastSlab : 0;
613 sys::MemoryBlock B = sys::Memory::AllocateRWX(size, LastSlabPtr, &ErrMsg);
614 if (B.base() == 0) {
615 report_fatal_error("Allocation failed when allocating new memory in the"
616 " JIT\n" + Twine(ErrMsg));
617 }
618 LastSlab = B;
619 ++NumSlabs;
620 // Initialize the slab to garbage when debugging.
621 if (PoisonMemory) {
622 memset(B.base(), 0xCD, B.size());
623 }
624 return B;
625 }
626
627 /// CheckInvariants - For testing only. Return "" if all internal invariants
628 /// are preserved, and a helpful error message otherwise. For free and
629 /// allocated blocks, make sure that adding BlockSize gives a valid block.
630 /// For free blocks, make sure they're in the free list and that their end of
631 /// block size marker is correct. This function should return an error before
632 /// accessing bad memory. This function is defined here instead of in
633 /// JITMemoryManagerTest.cpp so that we don't have to expose all of the
634 /// implementation details of DefaultJITMemoryManager.
CheckInvariants(std::string & ErrorStr)635 bool DefaultJITMemoryManager::CheckInvariants(std::string &ErrorStr) {
636 raw_string_ostream Err(ErrorStr);
637
638 // Construct a the set of FreeRangeHeader pointers so we can query it
639 // efficiently.
640 llvm::SmallPtrSet<MemoryRangeHeader*, 16> FreeHdrSet;
641 FreeRangeHeader* FreeHead = FreeMemoryList;
642 FreeRangeHeader* FreeRange = FreeHead;
643
644 do {
645 // Check that the free range pointer is in the blocks we've allocated.
646 bool Found = false;
647 for (std::vector<sys::MemoryBlock>::iterator I = CodeSlabs.begin(),
648 E = CodeSlabs.end(); I != E && !Found; ++I) {
649 char *Start = (char*)I->base();
650 char *End = Start + I->size();
651 Found = (Start <= (char*)FreeRange && (char*)FreeRange < End);
652 }
653 if (!Found) {
654 Err << "Corrupt free list; points to " << FreeRange;
655 return false;
656 }
657
658 if (FreeRange->Next->Prev != FreeRange) {
659 Err << "Next and Prev pointers do not match.";
660 return false;
661 }
662
663 // Otherwise, add it to the set.
664 FreeHdrSet.insert(FreeRange);
665 FreeRange = FreeRange->Next;
666 } while (FreeRange != FreeHead);
667
668 // Go over each block, and look at each MemoryRangeHeader.
669 for (std::vector<sys::MemoryBlock>::iterator I = CodeSlabs.begin(),
670 E = CodeSlabs.end(); I != E; ++I) {
671 char *Start = (char*)I->base();
672 char *End = Start + I->size();
673
674 // Check each memory range.
675 for (MemoryRangeHeader *Hdr = (MemoryRangeHeader*)Start, *LastHdr = NULL;
676 Start <= (char*)Hdr && (char*)Hdr < End;
677 Hdr = &Hdr->getBlockAfter()) {
678 if (Hdr->ThisAllocated == 0) {
679 // Check that this range is in the free list.
680 if (!FreeHdrSet.count(Hdr)) {
681 Err << "Found free header at " << Hdr << " that is not in free list.";
682 return false;
683 }
684
685 // Now make sure the size marker at the end of the block is correct.
686 uintptr_t *Marker = ((uintptr_t*)&Hdr->getBlockAfter()) - 1;
687 if (!(Start <= (char*)Marker && (char*)Marker < End)) {
688 Err << "Block size in header points out of current MemoryBlock.";
689 return false;
690 }
691 if (Hdr->BlockSize != *Marker) {
692 Err << "End of block size marker (" << *Marker << ") "
693 << "and BlockSize (" << Hdr->BlockSize << ") don't match.";
694 return false;
695 }
696 }
697
698 if (LastHdr && LastHdr->ThisAllocated != Hdr->PrevAllocated) {
699 Err << "Hdr->PrevAllocated (" << Hdr->PrevAllocated << ") != "
700 << "LastHdr->ThisAllocated (" << LastHdr->ThisAllocated << ")";
701 return false;
702 } else if (!LastHdr && !Hdr->PrevAllocated) {
703 Err << "The first header should have PrevAllocated true.";
704 return false;
705 }
706
707 // Remember the last header.
708 LastHdr = Hdr;
709 }
710 }
711
712 // All invariants are preserved.
713 return true;
714 }
715
CreateDefaultMemManager()716 JITMemoryManager *JITMemoryManager::CreateDefaultMemManager() {
717 return new DefaultJITMemoryManager();
718 }
719
720 // Allocate memory for code in 512K slabs.
721 const size_t DefaultJITMemoryManager::DefaultCodeSlabSize = 512 * 1024;
722
723 // Allocate globals and stubs in slabs of 64K. (probably 16 pages)
724 const size_t DefaultJITMemoryManager::DefaultSlabSize = 64 * 1024;
725
726 // Waste at most 16K at the end of each bump slab. (probably 4 pages)
727 const size_t DefaultJITMemoryManager::DefaultSizeThreshold = 16 * 1024;
728