1 //===-- Instructions.cpp - Implement the LLVM instructions ----------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements all of the non-inline methods for the LLVM instruction
11 // classes.
12 //
13 //===----------------------------------------------------------------------===//
14
15 #include "LLVMContextImpl.h"
16 #include "llvm/Constants.h"
17 #include "llvm/DerivedTypes.h"
18 #include "llvm/Function.h"
19 #include "llvm/Instructions.h"
20 #include "llvm/Module.h"
21 #include "llvm/Operator.h"
22 #include "llvm/Support/ErrorHandling.h"
23 #include "llvm/Support/CallSite.h"
24 #include "llvm/Support/ConstantRange.h"
25 #include "llvm/Support/MathExtras.h"
26 using namespace llvm;
27
28 //===----------------------------------------------------------------------===//
29 // CallSite Class
30 //===----------------------------------------------------------------------===//
31
getCallee() const32 User::op_iterator CallSite::getCallee() const {
33 Instruction *II(getInstruction());
34 return isCall()
35 ? cast<CallInst>(II)->op_end() - 1 // Skip Callee
36 : cast<InvokeInst>(II)->op_end() - 3; // Skip BB, BB, Callee
37 }
38
39 //===----------------------------------------------------------------------===//
40 // TerminatorInst Class
41 //===----------------------------------------------------------------------===//
42
43 // Out of line virtual method, so the vtable, etc has a home.
~TerminatorInst()44 TerminatorInst::~TerminatorInst() {
45 }
46
47 //===----------------------------------------------------------------------===//
48 // UnaryInstruction Class
49 //===----------------------------------------------------------------------===//
50
51 // Out of line virtual method, so the vtable, etc has a home.
~UnaryInstruction()52 UnaryInstruction::~UnaryInstruction() {
53 }
54
55 //===----------------------------------------------------------------------===//
56 // SelectInst Class
57 //===----------------------------------------------------------------------===//
58
59 /// areInvalidOperands - Return a string if the specified operands are invalid
60 /// for a select operation, otherwise return null.
areInvalidOperands(Value * Op0,Value * Op1,Value * Op2)61 const char *SelectInst::areInvalidOperands(Value *Op0, Value *Op1, Value *Op2) {
62 if (Op1->getType() != Op2->getType())
63 return "both values to select must have same type";
64
65 if (VectorType *VT = dyn_cast<VectorType>(Op0->getType())) {
66 // Vector select.
67 if (VT->getElementType() != Type::getInt1Ty(Op0->getContext()))
68 return "vector select condition element type must be i1";
69 VectorType *ET = dyn_cast<VectorType>(Op1->getType());
70 if (ET == 0)
71 return "selected values for vector select must be vectors";
72 if (ET->getNumElements() != VT->getNumElements())
73 return "vector select requires selected vectors to have "
74 "the same vector length as select condition";
75 } else if (Op0->getType() != Type::getInt1Ty(Op0->getContext())) {
76 return "select condition must be i1 or <n x i1>";
77 }
78 return 0;
79 }
80
81
82 //===----------------------------------------------------------------------===//
83 // PHINode Class
84 //===----------------------------------------------------------------------===//
85
PHINode(const PHINode & PN)86 PHINode::PHINode(const PHINode &PN)
87 : Instruction(PN.getType(), Instruction::PHI,
88 allocHungoffUses(PN.getNumOperands()), PN.getNumOperands()),
89 ReservedSpace(PN.getNumOperands()) {
90 std::copy(PN.op_begin(), PN.op_end(), op_begin());
91 std::copy(PN.block_begin(), PN.block_end(), block_begin());
92 SubclassOptionalData = PN.SubclassOptionalData;
93 }
94
~PHINode()95 PHINode::~PHINode() {
96 dropHungoffUses();
97 }
98
allocHungoffUses(unsigned N) const99 Use *PHINode::allocHungoffUses(unsigned N) const {
100 // Allocate the array of Uses of the incoming values, followed by a pointer
101 // (with bottom bit set) to the User, followed by the array of pointers to
102 // the incoming basic blocks.
103 size_t size = N * sizeof(Use) + sizeof(Use::UserRef)
104 + N * sizeof(BasicBlock*);
105 Use *Begin = static_cast<Use*>(::operator new(size));
106 Use *End = Begin + N;
107 (void) new(End) Use::UserRef(const_cast<PHINode*>(this), 1);
108 return Use::initTags(Begin, End);
109 }
110
111 // removeIncomingValue - Remove an incoming value. This is useful if a
112 // predecessor basic block is deleted.
removeIncomingValue(unsigned Idx,bool DeletePHIIfEmpty)113 Value *PHINode::removeIncomingValue(unsigned Idx, bool DeletePHIIfEmpty) {
114 Value *Removed = getIncomingValue(Idx);
115
116 // Move everything after this operand down.
117 //
118 // FIXME: we could just swap with the end of the list, then erase. However,
119 // clients might not expect this to happen. The code as it is thrashes the
120 // use/def lists, which is kinda lame.
121 std::copy(op_begin() + Idx + 1, op_end(), op_begin() + Idx);
122 std::copy(block_begin() + Idx + 1, block_end(), block_begin() + Idx);
123
124 // Nuke the last value.
125 Op<-1>().set(0);
126 --NumOperands;
127
128 // If the PHI node is dead, because it has zero entries, nuke it now.
129 if (getNumOperands() == 0 && DeletePHIIfEmpty) {
130 // If anyone is using this PHI, make them use a dummy value instead...
131 replaceAllUsesWith(UndefValue::get(getType()));
132 eraseFromParent();
133 }
134 return Removed;
135 }
136
137 /// growOperands - grow operands - This grows the operand list in response
138 /// to a push_back style of operation. This grows the number of ops by 1.5
139 /// times.
140 ///
growOperands()141 void PHINode::growOperands() {
142 unsigned e = getNumOperands();
143 unsigned NumOps = e + e / 2;
144 if (NumOps < 2) NumOps = 2; // 2 op PHI nodes are VERY common.
145
146 Use *OldOps = op_begin();
147 BasicBlock **OldBlocks = block_begin();
148
149 ReservedSpace = NumOps;
150 OperandList = allocHungoffUses(ReservedSpace);
151
152 std::copy(OldOps, OldOps + e, op_begin());
153 std::copy(OldBlocks, OldBlocks + e, block_begin());
154
155 Use::zap(OldOps, OldOps + e, true);
156 }
157
158 /// hasConstantValue - If the specified PHI node always merges together the same
159 /// value, return the value, otherwise return null.
hasConstantValue() const160 Value *PHINode::hasConstantValue() const {
161 // Exploit the fact that phi nodes always have at least one entry.
162 Value *ConstantValue = getIncomingValue(0);
163 for (unsigned i = 1, e = getNumIncomingValues(); i != e; ++i)
164 if (getIncomingValue(i) != ConstantValue)
165 return 0; // Incoming values not all the same.
166 return ConstantValue;
167 }
168
169 //===----------------------------------------------------------------------===//
170 // LandingPadInst Implementation
171 //===----------------------------------------------------------------------===//
172
LandingPadInst(Type * RetTy,Value * PersonalityFn,unsigned NumReservedValues,const Twine & NameStr,Instruction * InsertBefore)173 LandingPadInst::LandingPadInst(Type *RetTy, Value *PersonalityFn,
174 unsigned NumReservedValues, const Twine &NameStr,
175 Instruction *InsertBefore)
176 : Instruction(RetTy, Instruction::LandingPad, 0, 0, InsertBefore) {
177 init(PersonalityFn, 1 + NumReservedValues, NameStr);
178 }
179
LandingPadInst(Type * RetTy,Value * PersonalityFn,unsigned NumReservedValues,const Twine & NameStr,BasicBlock * InsertAtEnd)180 LandingPadInst::LandingPadInst(Type *RetTy, Value *PersonalityFn,
181 unsigned NumReservedValues, const Twine &NameStr,
182 BasicBlock *InsertAtEnd)
183 : Instruction(RetTy, Instruction::LandingPad, 0, 0, InsertAtEnd) {
184 init(PersonalityFn, 1 + NumReservedValues, NameStr);
185 }
186
LandingPadInst(const LandingPadInst & LP)187 LandingPadInst::LandingPadInst(const LandingPadInst &LP)
188 : Instruction(LP.getType(), Instruction::LandingPad,
189 allocHungoffUses(LP.getNumOperands()), LP.getNumOperands()),
190 ReservedSpace(LP.getNumOperands()) {
191 Use *OL = OperandList, *InOL = LP.OperandList;
192 for (unsigned I = 0, E = ReservedSpace; I != E; ++I)
193 OL[I] = InOL[I];
194
195 setCleanup(LP.isCleanup());
196 }
197
~LandingPadInst()198 LandingPadInst::~LandingPadInst() {
199 dropHungoffUses();
200 }
201
Create(Type * RetTy,Value * PersonalityFn,unsigned NumReservedClauses,const Twine & NameStr,Instruction * InsertBefore)202 LandingPadInst *LandingPadInst::Create(Type *RetTy, Value *PersonalityFn,
203 unsigned NumReservedClauses,
204 const Twine &NameStr,
205 Instruction *InsertBefore) {
206 return new LandingPadInst(RetTy, PersonalityFn, NumReservedClauses, NameStr,
207 InsertBefore);
208 }
209
Create(Type * RetTy,Value * PersonalityFn,unsigned NumReservedClauses,const Twine & NameStr,BasicBlock * InsertAtEnd)210 LandingPadInst *LandingPadInst::Create(Type *RetTy, Value *PersonalityFn,
211 unsigned NumReservedClauses,
212 const Twine &NameStr,
213 BasicBlock *InsertAtEnd) {
214 return new LandingPadInst(RetTy, PersonalityFn, NumReservedClauses, NameStr,
215 InsertAtEnd);
216 }
217
init(Value * PersFn,unsigned NumReservedValues,const Twine & NameStr)218 void LandingPadInst::init(Value *PersFn, unsigned NumReservedValues,
219 const Twine &NameStr) {
220 ReservedSpace = NumReservedValues;
221 NumOperands = 1;
222 OperandList = allocHungoffUses(ReservedSpace);
223 OperandList[0] = PersFn;
224 setName(NameStr);
225 setCleanup(false);
226 }
227
228 /// growOperands - grow operands - This grows the operand list in response to a
229 /// push_back style of operation. This grows the number of ops by 2 times.
growOperands(unsigned Size)230 void LandingPadInst::growOperands(unsigned Size) {
231 unsigned e = getNumOperands();
232 if (ReservedSpace >= e + Size) return;
233 ReservedSpace = (e + Size / 2) * 2;
234
235 Use *NewOps = allocHungoffUses(ReservedSpace);
236 Use *OldOps = OperandList;
237 for (unsigned i = 0; i != e; ++i)
238 NewOps[i] = OldOps[i];
239
240 OperandList = NewOps;
241 Use::zap(OldOps, OldOps + e, true);
242 }
243
addClause(Value * Val)244 void LandingPadInst::addClause(Value *Val) {
245 unsigned OpNo = getNumOperands();
246 growOperands(1);
247 assert(OpNo < ReservedSpace && "Growing didn't work!");
248 ++NumOperands;
249 OperandList[OpNo] = Val;
250 }
251
252 //===----------------------------------------------------------------------===//
253 // CallInst Implementation
254 //===----------------------------------------------------------------------===//
255
~CallInst()256 CallInst::~CallInst() {
257 }
258
init(Value * Func,ArrayRef<Value * > Args,const Twine & NameStr)259 void CallInst::init(Value *Func, ArrayRef<Value *> Args, const Twine &NameStr) {
260 assert(NumOperands == Args.size() + 1 && "NumOperands not set up?");
261 Op<-1>() = Func;
262
263 #ifndef NDEBUG
264 FunctionType *FTy =
265 cast<FunctionType>(cast<PointerType>(Func->getType())->getElementType());
266
267 assert((Args.size() == FTy->getNumParams() ||
268 (FTy->isVarArg() && Args.size() > FTy->getNumParams())) &&
269 "Calling a function with bad signature!");
270
271 for (unsigned i = 0; i != Args.size(); ++i)
272 assert((i >= FTy->getNumParams() ||
273 FTy->getParamType(i) == Args[i]->getType()) &&
274 "Calling a function with a bad signature!");
275 #endif
276
277 std::copy(Args.begin(), Args.end(), op_begin());
278 setName(NameStr);
279 }
280
init(Value * Func,const Twine & NameStr)281 void CallInst::init(Value *Func, const Twine &NameStr) {
282 assert(NumOperands == 1 && "NumOperands not set up?");
283 Op<-1>() = Func;
284
285 #ifndef NDEBUG
286 FunctionType *FTy =
287 cast<FunctionType>(cast<PointerType>(Func->getType())->getElementType());
288
289 assert(FTy->getNumParams() == 0 && "Calling a function with bad signature");
290 #endif
291
292 setName(NameStr);
293 }
294
CallInst(Value * Func,const Twine & Name,Instruction * InsertBefore)295 CallInst::CallInst(Value *Func, const Twine &Name,
296 Instruction *InsertBefore)
297 : Instruction(cast<FunctionType>(cast<PointerType>(Func->getType())
298 ->getElementType())->getReturnType(),
299 Instruction::Call,
300 OperandTraits<CallInst>::op_end(this) - 1,
301 1, InsertBefore) {
302 init(Func, Name);
303 }
304
CallInst(Value * Func,const Twine & Name,BasicBlock * InsertAtEnd)305 CallInst::CallInst(Value *Func, const Twine &Name,
306 BasicBlock *InsertAtEnd)
307 : Instruction(cast<FunctionType>(cast<PointerType>(Func->getType())
308 ->getElementType())->getReturnType(),
309 Instruction::Call,
310 OperandTraits<CallInst>::op_end(this) - 1,
311 1, InsertAtEnd) {
312 init(Func, Name);
313 }
314
CallInst(const CallInst & CI)315 CallInst::CallInst(const CallInst &CI)
316 : Instruction(CI.getType(), Instruction::Call,
317 OperandTraits<CallInst>::op_end(this) - CI.getNumOperands(),
318 CI.getNumOperands()) {
319 setAttributes(CI.getAttributes());
320 setTailCall(CI.isTailCall());
321 setCallingConv(CI.getCallingConv());
322
323 std::copy(CI.op_begin(), CI.op_end(), op_begin());
324 SubclassOptionalData = CI.SubclassOptionalData;
325 }
326
addAttribute(unsigned i,Attributes attr)327 void CallInst::addAttribute(unsigned i, Attributes attr) {
328 AttrListPtr PAL = getAttributes();
329 PAL = PAL.addAttr(i, attr);
330 setAttributes(PAL);
331 }
332
removeAttribute(unsigned i,Attributes attr)333 void CallInst::removeAttribute(unsigned i, Attributes attr) {
334 AttrListPtr PAL = getAttributes();
335 PAL = PAL.removeAttr(i, attr);
336 setAttributes(PAL);
337 }
338
paramHasAttr(unsigned i,Attributes attr) const339 bool CallInst::paramHasAttr(unsigned i, Attributes attr) const {
340 if (AttributeList.paramHasAttr(i, attr))
341 return true;
342 if (const Function *F = getCalledFunction())
343 return F->paramHasAttr(i, attr);
344 return false;
345 }
346
347 /// IsConstantOne - Return true only if val is constant int 1
IsConstantOne(Value * val)348 static bool IsConstantOne(Value *val) {
349 assert(val && "IsConstantOne does not work with NULL val");
350 return isa<ConstantInt>(val) && cast<ConstantInt>(val)->isOne();
351 }
352
createMalloc(Instruction * InsertBefore,BasicBlock * InsertAtEnd,Type * IntPtrTy,Type * AllocTy,Value * AllocSize,Value * ArraySize,Function * MallocF,const Twine & Name)353 static Instruction *createMalloc(Instruction *InsertBefore,
354 BasicBlock *InsertAtEnd, Type *IntPtrTy,
355 Type *AllocTy, Value *AllocSize,
356 Value *ArraySize, Function *MallocF,
357 const Twine &Name) {
358 assert(((!InsertBefore && InsertAtEnd) || (InsertBefore && !InsertAtEnd)) &&
359 "createMalloc needs either InsertBefore or InsertAtEnd");
360
361 // malloc(type) becomes:
362 // bitcast (i8* malloc(typeSize)) to type*
363 // malloc(type, arraySize) becomes:
364 // bitcast (i8 *malloc(typeSize*arraySize)) to type*
365 if (!ArraySize)
366 ArraySize = ConstantInt::get(IntPtrTy, 1);
367 else if (ArraySize->getType() != IntPtrTy) {
368 if (InsertBefore)
369 ArraySize = CastInst::CreateIntegerCast(ArraySize, IntPtrTy, false,
370 "", InsertBefore);
371 else
372 ArraySize = CastInst::CreateIntegerCast(ArraySize, IntPtrTy, false,
373 "", InsertAtEnd);
374 }
375
376 if (!IsConstantOne(ArraySize)) {
377 if (IsConstantOne(AllocSize)) {
378 AllocSize = ArraySize; // Operand * 1 = Operand
379 } else if (Constant *CO = dyn_cast<Constant>(ArraySize)) {
380 Constant *Scale = ConstantExpr::getIntegerCast(CO, IntPtrTy,
381 false /*ZExt*/);
382 // Malloc arg is constant product of type size and array size
383 AllocSize = ConstantExpr::getMul(Scale, cast<Constant>(AllocSize));
384 } else {
385 // Multiply type size by the array size...
386 if (InsertBefore)
387 AllocSize = BinaryOperator::CreateMul(ArraySize, AllocSize,
388 "mallocsize", InsertBefore);
389 else
390 AllocSize = BinaryOperator::CreateMul(ArraySize, AllocSize,
391 "mallocsize", InsertAtEnd);
392 }
393 }
394
395 assert(AllocSize->getType() == IntPtrTy && "malloc arg is wrong size");
396 // Create the call to Malloc.
397 BasicBlock* BB = InsertBefore ? InsertBefore->getParent() : InsertAtEnd;
398 Module* M = BB->getParent()->getParent();
399 Type *BPTy = Type::getInt8PtrTy(BB->getContext());
400 Value *MallocFunc = MallocF;
401 if (!MallocFunc)
402 // prototype malloc as "void *malloc(size_t)"
403 MallocFunc = M->getOrInsertFunction("malloc", BPTy, IntPtrTy, NULL);
404 PointerType *AllocPtrType = PointerType::getUnqual(AllocTy);
405 CallInst *MCall = NULL;
406 Instruction *Result = NULL;
407 if (InsertBefore) {
408 MCall = CallInst::Create(MallocFunc, AllocSize, "malloccall", InsertBefore);
409 Result = MCall;
410 if (Result->getType() != AllocPtrType)
411 // Create a cast instruction to convert to the right type...
412 Result = new BitCastInst(MCall, AllocPtrType, Name, InsertBefore);
413 } else {
414 MCall = CallInst::Create(MallocFunc, AllocSize, "malloccall");
415 Result = MCall;
416 if (Result->getType() != AllocPtrType) {
417 InsertAtEnd->getInstList().push_back(MCall);
418 // Create a cast instruction to convert to the right type...
419 Result = new BitCastInst(MCall, AllocPtrType, Name);
420 }
421 }
422 MCall->setTailCall();
423 if (Function *F = dyn_cast<Function>(MallocFunc)) {
424 MCall->setCallingConv(F->getCallingConv());
425 if (!F->doesNotAlias(0)) F->setDoesNotAlias(0);
426 }
427 assert(!MCall->getType()->isVoidTy() && "Malloc has void return type");
428
429 return Result;
430 }
431
432 /// CreateMalloc - Generate the IR for a call to malloc:
433 /// 1. Compute the malloc call's argument as the specified type's size,
434 /// possibly multiplied by the array size if the array size is not
435 /// constant 1.
436 /// 2. Call malloc with that argument.
437 /// 3. Bitcast the result of the malloc call to the specified type.
CreateMalloc(Instruction * InsertBefore,Type * IntPtrTy,Type * AllocTy,Value * AllocSize,Value * ArraySize,Function * MallocF,const Twine & Name)438 Instruction *CallInst::CreateMalloc(Instruction *InsertBefore,
439 Type *IntPtrTy, Type *AllocTy,
440 Value *AllocSize, Value *ArraySize,
441 Function * MallocF,
442 const Twine &Name) {
443 return createMalloc(InsertBefore, NULL, IntPtrTy, AllocTy, AllocSize,
444 ArraySize, MallocF, Name);
445 }
446
447 /// CreateMalloc - Generate the IR for a call to malloc:
448 /// 1. Compute the malloc call's argument as the specified type's size,
449 /// possibly multiplied by the array size if the array size is not
450 /// constant 1.
451 /// 2. Call malloc with that argument.
452 /// 3. Bitcast the result of the malloc call to the specified type.
453 /// Note: This function does not add the bitcast to the basic block, that is the
454 /// responsibility of the caller.
CreateMalloc(BasicBlock * InsertAtEnd,Type * IntPtrTy,Type * AllocTy,Value * AllocSize,Value * ArraySize,Function * MallocF,const Twine & Name)455 Instruction *CallInst::CreateMalloc(BasicBlock *InsertAtEnd,
456 Type *IntPtrTy, Type *AllocTy,
457 Value *AllocSize, Value *ArraySize,
458 Function *MallocF, const Twine &Name) {
459 return createMalloc(NULL, InsertAtEnd, IntPtrTy, AllocTy, AllocSize,
460 ArraySize, MallocF, Name);
461 }
462
createFree(Value * Source,Instruction * InsertBefore,BasicBlock * InsertAtEnd)463 static Instruction* createFree(Value* Source, Instruction *InsertBefore,
464 BasicBlock *InsertAtEnd) {
465 assert(((!InsertBefore && InsertAtEnd) || (InsertBefore && !InsertAtEnd)) &&
466 "createFree needs either InsertBefore or InsertAtEnd");
467 assert(Source->getType()->isPointerTy() &&
468 "Can not free something of nonpointer type!");
469
470 BasicBlock* BB = InsertBefore ? InsertBefore->getParent() : InsertAtEnd;
471 Module* M = BB->getParent()->getParent();
472
473 Type *VoidTy = Type::getVoidTy(M->getContext());
474 Type *IntPtrTy = Type::getInt8PtrTy(M->getContext());
475 // prototype free as "void free(void*)"
476 Value *FreeFunc = M->getOrInsertFunction("free", VoidTy, IntPtrTy, NULL);
477 CallInst* Result = NULL;
478 Value *PtrCast = Source;
479 if (InsertBefore) {
480 if (Source->getType() != IntPtrTy)
481 PtrCast = new BitCastInst(Source, IntPtrTy, "", InsertBefore);
482 Result = CallInst::Create(FreeFunc, PtrCast, "", InsertBefore);
483 } else {
484 if (Source->getType() != IntPtrTy)
485 PtrCast = new BitCastInst(Source, IntPtrTy, "", InsertAtEnd);
486 Result = CallInst::Create(FreeFunc, PtrCast, "");
487 }
488 Result->setTailCall();
489 if (Function *F = dyn_cast<Function>(FreeFunc))
490 Result->setCallingConv(F->getCallingConv());
491
492 return Result;
493 }
494
495 /// CreateFree - Generate the IR for a call to the builtin free function.
CreateFree(Value * Source,Instruction * InsertBefore)496 Instruction * CallInst::CreateFree(Value* Source, Instruction *InsertBefore) {
497 return createFree(Source, InsertBefore, NULL);
498 }
499
500 /// CreateFree - Generate the IR for a call to the builtin free function.
501 /// Note: This function does not add the call to the basic block, that is the
502 /// responsibility of the caller.
CreateFree(Value * Source,BasicBlock * InsertAtEnd)503 Instruction* CallInst::CreateFree(Value* Source, BasicBlock *InsertAtEnd) {
504 Instruction* FreeCall = createFree(Source, NULL, InsertAtEnd);
505 assert(FreeCall && "CreateFree did not create a CallInst");
506 return FreeCall;
507 }
508
509 //===----------------------------------------------------------------------===//
510 // InvokeInst Implementation
511 //===----------------------------------------------------------------------===//
512
init(Value * Fn,BasicBlock * IfNormal,BasicBlock * IfException,ArrayRef<Value * > Args,const Twine & NameStr)513 void InvokeInst::init(Value *Fn, BasicBlock *IfNormal, BasicBlock *IfException,
514 ArrayRef<Value *> Args, const Twine &NameStr) {
515 assert(NumOperands == 3 + Args.size() && "NumOperands not set up?");
516 Op<-3>() = Fn;
517 Op<-2>() = IfNormal;
518 Op<-1>() = IfException;
519
520 #ifndef NDEBUG
521 FunctionType *FTy =
522 cast<FunctionType>(cast<PointerType>(Fn->getType())->getElementType());
523
524 assert(((Args.size() == FTy->getNumParams()) ||
525 (FTy->isVarArg() && Args.size() > FTy->getNumParams())) &&
526 "Invoking a function with bad signature");
527
528 for (unsigned i = 0, e = Args.size(); i != e; i++)
529 assert((i >= FTy->getNumParams() ||
530 FTy->getParamType(i) == Args[i]->getType()) &&
531 "Invoking a function with a bad signature!");
532 #endif
533
534 std::copy(Args.begin(), Args.end(), op_begin());
535 setName(NameStr);
536 }
537
InvokeInst(const InvokeInst & II)538 InvokeInst::InvokeInst(const InvokeInst &II)
539 : TerminatorInst(II.getType(), Instruction::Invoke,
540 OperandTraits<InvokeInst>::op_end(this)
541 - II.getNumOperands(),
542 II.getNumOperands()) {
543 setAttributes(II.getAttributes());
544 setCallingConv(II.getCallingConv());
545 std::copy(II.op_begin(), II.op_end(), op_begin());
546 SubclassOptionalData = II.SubclassOptionalData;
547 }
548
getSuccessorV(unsigned idx) const549 BasicBlock *InvokeInst::getSuccessorV(unsigned idx) const {
550 return getSuccessor(idx);
551 }
getNumSuccessorsV() const552 unsigned InvokeInst::getNumSuccessorsV() const {
553 return getNumSuccessors();
554 }
setSuccessorV(unsigned idx,BasicBlock * B)555 void InvokeInst::setSuccessorV(unsigned idx, BasicBlock *B) {
556 return setSuccessor(idx, B);
557 }
558
paramHasAttr(unsigned i,Attributes attr) const559 bool InvokeInst::paramHasAttr(unsigned i, Attributes attr) const {
560 if (AttributeList.paramHasAttr(i, attr))
561 return true;
562 if (const Function *F = getCalledFunction())
563 return F->paramHasAttr(i, attr);
564 return false;
565 }
566
addAttribute(unsigned i,Attributes attr)567 void InvokeInst::addAttribute(unsigned i, Attributes attr) {
568 AttrListPtr PAL = getAttributes();
569 PAL = PAL.addAttr(i, attr);
570 setAttributes(PAL);
571 }
572
removeAttribute(unsigned i,Attributes attr)573 void InvokeInst::removeAttribute(unsigned i, Attributes attr) {
574 AttrListPtr PAL = getAttributes();
575 PAL = PAL.removeAttr(i, attr);
576 setAttributes(PAL);
577 }
578
getLandingPadInst() const579 LandingPadInst *InvokeInst::getLandingPadInst() const {
580 return cast<LandingPadInst>(getUnwindDest()->getFirstNonPHI());
581 }
582
583 //===----------------------------------------------------------------------===//
584 // ReturnInst Implementation
585 //===----------------------------------------------------------------------===//
586
ReturnInst(const ReturnInst & RI)587 ReturnInst::ReturnInst(const ReturnInst &RI)
588 : TerminatorInst(Type::getVoidTy(RI.getContext()), Instruction::Ret,
589 OperandTraits<ReturnInst>::op_end(this) -
590 RI.getNumOperands(),
591 RI.getNumOperands()) {
592 if (RI.getNumOperands())
593 Op<0>() = RI.Op<0>();
594 SubclassOptionalData = RI.SubclassOptionalData;
595 }
596
ReturnInst(LLVMContext & C,Value * retVal,Instruction * InsertBefore)597 ReturnInst::ReturnInst(LLVMContext &C, Value *retVal, Instruction *InsertBefore)
598 : TerminatorInst(Type::getVoidTy(C), Instruction::Ret,
599 OperandTraits<ReturnInst>::op_end(this) - !!retVal, !!retVal,
600 InsertBefore) {
601 if (retVal)
602 Op<0>() = retVal;
603 }
ReturnInst(LLVMContext & C,Value * retVal,BasicBlock * InsertAtEnd)604 ReturnInst::ReturnInst(LLVMContext &C, Value *retVal, BasicBlock *InsertAtEnd)
605 : TerminatorInst(Type::getVoidTy(C), Instruction::Ret,
606 OperandTraits<ReturnInst>::op_end(this) - !!retVal, !!retVal,
607 InsertAtEnd) {
608 if (retVal)
609 Op<0>() = retVal;
610 }
ReturnInst(LLVMContext & Context,BasicBlock * InsertAtEnd)611 ReturnInst::ReturnInst(LLVMContext &Context, BasicBlock *InsertAtEnd)
612 : TerminatorInst(Type::getVoidTy(Context), Instruction::Ret,
613 OperandTraits<ReturnInst>::op_end(this), 0, InsertAtEnd) {
614 }
615
getNumSuccessorsV() const616 unsigned ReturnInst::getNumSuccessorsV() const {
617 return getNumSuccessors();
618 }
619
620 /// Out-of-line ReturnInst method, put here so the C++ compiler can choose to
621 /// emit the vtable for the class in this translation unit.
setSuccessorV(unsigned idx,BasicBlock * NewSucc)622 void ReturnInst::setSuccessorV(unsigned idx, BasicBlock *NewSucc) {
623 llvm_unreachable("ReturnInst has no successors!");
624 }
625
getSuccessorV(unsigned idx) const626 BasicBlock *ReturnInst::getSuccessorV(unsigned idx) const {
627 llvm_unreachable("ReturnInst has no successors!");
628 return 0;
629 }
630
~ReturnInst()631 ReturnInst::~ReturnInst() {
632 }
633
634 //===----------------------------------------------------------------------===//
635 // UnwindInst Implementation
636 //===----------------------------------------------------------------------===//
637
UnwindInst(LLVMContext & Context,Instruction * InsertBefore)638 UnwindInst::UnwindInst(LLVMContext &Context, Instruction *InsertBefore)
639 : TerminatorInst(Type::getVoidTy(Context), Instruction::Unwind,
640 0, 0, InsertBefore) {
641 }
UnwindInst(LLVMContext & Context,BasicBlock * InsertAtEnd)642 UnwindInst::UnwindInst(LLVMContext &Context, BasicBlock *InsertAtEnd)
643 : TerminatorInst(Type::getVoidTy(Context), Instruction::Unwind,
644 0, 0, InsertAtEnd) {
645 }
646
647
getNumSuccessorsV() const648 unsigned UnwindInst::getNumSuccessorsV() const {
649 return getNumSuccessors();
650 }
651
setSuccessorV(unsigned idx,BasicBlock * NewSucc)652 void UnwindInst::setSuccessorV(unsigned idx, BasicBlock *NewSucc) {
653 llvm_unreachable("UnwindInst has no successors!");
654 }
655
getSuccessorV(unsigned idx) const656 BasicBlock *UnwindInst::getSuccessorV(unsigned idx) const {
657 llvm_unreachable("UnwindInst has no successors!");
658 return 0;
659 }
660
661 //===----------------------------------------------------------------------===//
662 // ResumeInst Implementation
663 //===----------------------------------------------------------------------===//
664
ResumeInst(const ResumeInst & RI)665 ResumeInst::ResumeInst(const ResumeInst &RI)
666 : TerminatorInst(Type::getVoidTy(RI.getContext()), Instruction::Resume,
667 OperandTraits<ResumeInst>::op_begin(this), 1) {
668 Op<0>() = RI.Op<0>();
669 }
670
ResumeInst(Value * Exn,Instruction * InsertBefore)671 ResumeInst::ResumeInst(Value *Exn, Instruction *InsertBefore)
672 : TerminatorInst(Type::getVoidTy(Exn->getContext()), Instruction::Resume,
673 OperandTraits<ResumeInst>::op_begin(this), 1, InsertBefore) {
674 Op<0>() = Exn;
675 }
676
ResumeInst(Value * Exn,BasicBlock * InsertAtEnd)677 ResumeInst::ResumeInst(Value *Exn, BasicBlock *InsertAtEnd)
678 : TerminatorInst(Type::getVoidTy(Exn->getContext()), Instruction::Resume,
679 OperandTraits<ResumeInst>::op_begin(this), 1, InsertAtEnd) {
680 Op<0>() = Exn;
681 }
682
getNumSuccessorsV() const683 unsigned ResumeInst::getNumSuccessorsV() const {
684 return getNumSuccessors();
685 }
686
setSuccessorV(unsigned idx,BasicBlock * NewSucc)687 void ResumeInst::setSuccessorV(unsigned idx, BasicBlock *NewSucc) {
688 llvm_unreachable("ResumeInst has no successors!");
689 }
690
getSuccessorV(unsigned idx) const691 BasicBlock *ResumeInst::getSuccessorV(unsigned idx) const {
692 llvm_unreachable("ResumeInst has no successors!");
693 return 0;
694 }
695
696 //===----------------------------------------------------------------------===//
697 // UnreachableInst Implementation
698 //===----------------------------------------------------------------------===//
699
UnreachableInst(LLVMContext & Context,Instruction * InsertBefore)700 UnreachableInst::UnreachableInst(LLVMContext &Context,
701 Instruction *InsertBefore)
702 : TerminatorInst(Type::getVoidTy(Context), Instruction::Unreachable,
703 0, 0, InsertBefore) {
704 }
UnreachableInst(LLVMContext & Context,BasicBlock * InsertAtEnd)705 UnreachableInst::UnreachableInst(LLVMContext &Context, BasicBlock *InsertAtEnd)
706 : TerminatorInst(Type::getVoidTy(Context), Instruction::Unreachable,
707 0, 0, InsertAtEnd) {
708 }
709
getNumSuccessorsV() const710 unsigned UnreachableInst::getNumSuccessorsV() const {
711 return getNumSuccessors();
712 }
713
setSuccessorV(unsigned idx,BasicBlock * NewSucc)714 void UnreachableInst::setSuccessorV(unsigned idx, BasicBlock *NewSucc) {
715 llvm_unreachable("UnwindInst has no successors!");
716 }
717
getSuccessorV(unsigned idx) const718 BasicBlock *UnreachableInst::getSuccessorV(unsigned idx) const {
719 llvm_unreachable("UnwindInst has no successors!");
720 return 0;
721 }
722
723 //===----------------------------------------------------------------------===//
724 // BranchInst Implementation
725 //===----------------------------------------------------------------------===//
726
AssertOK()727 void BranchInst::AssertOK() {
728 if (isConditional())
729 assert(getCondition()->getType()->isIntegerTy(1) &&
730 "May only branch on boolean predicates!");
731 }
732
BranchInst(BasicBlock * IfTrue,Instruction * InsertBefore)733 BranchInst::BranchInst(BasicBlock *IfTrue, Instruction *InsertBefore)
734 : TerminatorInst(Type::getVoidTy(IfTrue->getContext()), Instruction::Br,
735 OperandTraits<BranchInst>::op_end(this) - 1,
736 1, InsertBefore) {
737 assert(IfTrue != 0 && "Branch destination may not be null!");
738 Op<-1>() = IfTrue;
739 }
BranchInst(BasicBlock * IfTrue,BasicBlock * IfFalse,Value * Cond,Instruction * InsertBefore)740 BranchInst::BranchInst(BasicBlock *IfTrue, BasicBlock *IfFalse, Value *Cond,
741 Instruction *InsertBefore)
742 : TerminatorInst(Type::getVoidTy(IfTrue->getContext()), Instruction::Br,
743 OperandTraits<BranchInst>::op_end(this) - 3,
744 3, InsertBefore) {
745 Op<-1>() = IfTrue;
746 Op<-2>() = IfFalse;
747 Op<-3>() = Cond;
748 #ifndef NDEBUG
749 AssertOK();
750 #endif
751 }
752
BranchInst(BasicBlock * IfTrue,BasicBlock * InsertAtEnd)753 BranchInst::BranchInst(BasicBlock *IfTrue, BasicBlock *InsertAtEnd)
754 : TerminatorInst(Type::getVoidTy(IfTrue->getContext()), Instruction::Br,
755 OperandTraits<BranchInst>::op_end(this) - 1,
756 1, InsertAtEnd) {
757 assert(IfTrue != 0 && "Branch destination may not be null!");
758 Op<-1>() = IfTrue;
759 }
760
BranchInst(BasicBlock * IfTrue,BasicBlock * IfFalse,Value * Cond,BasicBlock * InsertAtEnd)761 BranchInst::BranchInst(BasicBlock *IfTrue, BasicBlock *IfFalse, Value *Cond,
762 BasicBlock *InsertAtEnd)
763 : TerminatorInst(Type::getVoidTy(IfTrue->getContext()), Instruction::Br,
764 OperandTraits<BranchInst>::op_end(this) - 3,
765 3, InsertAtEnd) {
766 Op<-1>() = IfTrue;
767 Op<-2>() = IfFalse;
768 Op<-3>() = Cond;
769 #ifndef NDEBUG
770 AssertOK();
771 #endif
772 }
773
774
BranchInst(const BranchInst & BI)775 BranchInst::BranchInst(const BranchInst &BI) :
776 TerminatorInst(Type::getVoidTy(BI.getContext()), Instruction::Br,
777 OperandTraits<BranchInst>::op_end(this) - BI.getNumOperands(),
778 BI.getNumOperands()) {
779 Op<-1>() = BI.Op<-1>();
780 if (BI.getNumOperands() != 1) {
781 assert(BI.getNumOperands() == 3 && "BR can have 1 or 3 operands!");
782 Op<-3>() = BI.Op<-3>();
783 Op<-2>() = BI.Op<-2>();
784 }
785 SubclassOptionalData = BI.SubclassOptionalData;
786 }
787
swapSuccessors()788 void BranchInst::swapSuccessors() {
789 assert(isConditional() &&
790 "Cannot swap successors of an unconditional branch");
791 Op<-1>().swap(Op<-2>());
792
793 // Update profile metadata if present and it matches our structural
794 // expectations.
795 MDNode *ProfileData = getMetadata(LLVMContext::MD_prof);
796 if (!ProfileData || ProfileData->getNumOperands() != 3)
797 return;
798
799 // The first operand is the name. Fetch them backwards and build a new one.
800 Value *Ops[] = {
801 ProfileData->getOperand(0),
802 ProfileData->getOperand(2),
803 ProfileData->getOperand(1)
804 };
805 setMetadata(LLVMContext::MD_prof,
806 MDNode::get(ProfileData->getContext(), Ops));
807 }
808
getSuccessorV(unsigned idx) const809 BasicBlock *BranchInst::getSuccessorV(unsigned idx) const {
810 return getSuccessor(idx);
811 }
getNumSuccessorsV() const812 unsigned BranchInst::getNumSuccessorsV() const {
813 return getNumSuccessors();
814 }
setSuccessorV(unsigned idx,BasicBlock * B)815 void BranchInst::setSuccessorV(unsigned idx, BasicBlock *B) {
816 setSuccessor(idx, B);
817 }
818
819
820 //===----------------------------------------------------------------------===//
821 // AllocaInst Implementation
822 //===----------------------------------------------------------------------===//
823
getAISize(LLVMContext & Context,Value * Amt)824 static Value *getAISize(LLVMContext &Context, Value *Amt) {
825 if (!Amt)
826 Amt = ConstantInt::get(Type::getInt32Ty(Context), 1);
827 else {
828 assert(!isa<BasicBlock>(Amt) &&
829 "Passed basic block into allocation size parameter! Use other ctor");
830 assert(Amt->getType()->isIntegerTy() &&
831 "Allocation array size is not an integer!");
832 }
833 return Amt;
834 }
835
AllocaInst(Type * Ty,Value * ArraySize,const Twine & Name,Instruction * InsertBefore)836 AllocaInst::AllocaInst(Type *Ty, Value *ArraySize,
837 const Twine &Name, Instruction *InsertBefore)
838 : UnaryInstruction(PointerType::getUnqual(Ty), Alloca,
839 getAISize(Ty->getContext(), ArraySize), InsertBefore) {
840 setAlignment(0);
841 assert(!Ty->isVoidTy() && "Cannot allocate void!");
842 setName(Name);
843 }
844
AllocaInst(Type * Ty,Value * ArraySize,const Twine & Name,BasicBlock * InsertAtEnd)845 AllocaInst::AllocaInst(Type *Ty, Value *ArraySize,
846 const Twine &Name, BasicBlock *InsertAtEnd)
847 : UnaryInstruction(PointerType::getUnqual(Ty), Alloca,
848 getAISize(Ty->getContext(), ArraySize), InsertAtEnd) {
849 setAlignment(0);
850 assert(!Ty->isVoidTy() && "Cannot allocate void!");
851 setName(Name);
852 }
853
AllocaInst(Type * Ty,const Twine & Name,Instruction * InsertBefore)854 AllocaInst::AllocaInst(Type *Ty, const Twine &Name,
855 Instruction *InsertBefore)
856 : UnaryInstruction(PointerType::getUnqual(Ty), Alloca,
857 getAISize(Ty->getContext(), 0), InsertBefore) {
858 setAlignment(0);
859 assert(!Ty->isVoidTy() && "Cannot allocate void!");
860 setName(Name);
861 }
862
AllocaInst(Type * Ty,const Twine & Name,BasicBlock * InsertAtEnd)863 AllocaInst::AllocaInst(Type *Ty, const Twine &Name,
864 BasicBlock *InsertAtEnd)
865 : UnaryInstruction(PointerType::getUnqual(Ty), Alloca,
866 getAISize(Ty->getContext(), 0), InsertAtEnd) {
867 setAlignment(0);
868 assert(!Ty->isVoidTy() && "Cannot allocate void!");
869 setName(Name);
870 }
871
AllocaInst(Type * Ty,Value * ArraySize,unsigned Align,const Twine & Name,Instruction * InsertBefore)872 AllocaInst::AllocaInst(Type *Ty, Value *ArraySize, unsigned Align,
873 const Twine &Name, Instruction *InsertBefore)
874 : UnaryInstruction(PointerType::getUnqual(Ty), Alloca,
875 getAISize(Ty->getContext(), ArraySize), InsertBefore) {
876 setAlignment(Align);
877 assert(!Ty->isVoidTy() && "Cannot allocate void!");
878 setName(Name);
879 }
880
AllocaInst(Type * Ty,Value * ArraySize,unsigned Align,const Twine & Name,BasicBlock * InsertAtEnd)881 AllocaInst::AllocaInst(Type *Ty, Value *ArraySize, unsigned Align,
882 const Twine &Name, BasicBlock *InsertAtEnd)
883 : UnaryInstruction(PointerType::getUnqual(Ty), Alloca,
884 getAISize(Ty->getContext(), ArraySize), InsertAtEnd) {
885 setAlignment(Align);
886 assert(!Ty->isVoidTy() && "Cannot allocate void!");
887 setName(Name);
888 }
889
890 // Out of line virtual method, so the vtable, etc has a home.
~AllocaInst()891 AllocaInst::~AllocaInst() {
892 }
893
setAlignment(unsigned Align)894 void AllocaInst::setAlignment(unsigned Align) {
895 assert((Align & (Align-1)) == 0 && "Alignment is not a power of 2!");
896 assert(Align <= MaximumAlignment &&
897 "Alignment is greater than MaximumAlignment!");
898 setInstructionSubclassData(Log2_32(Align) + 1);
899 assert(getAlignment() == Align && "Alignment representation error!");
900 }
901
isArrayAllocation() const902 bool AllocaInst::isArrayAllocation() const {
903 if (ConstantInt *CI = dyn_cast<ConstantInt>(getOperand(0)))
904 return !CI->isOne();
905 return true;
906 }
907
getAllocatedType() const908 Type *AllocaInst::getAllocatedType() const {
909 return getType()->getElementType();
910 }
911
912 /// isStaticAlloca - Return true if this alloca is in the entry block of the
913 /// function and is a constant size. If so, the code generator will fold it
914 /// into the prolog/epilog code, so it is basically free.
isStaticAlloca() const915 bool AllocaInst::isStaticAlloca() const {
916 // Must be constant size.
917 if (!isa<ConstantInt>(getArraySize())) return false;
918
919 // Must be in the entry block.
920 const BasicBlock *Parent = getParent();
921 return Parent == &Parent->getParent()->front();
922 }
923
924 //===----------------------------------------------------------------------===//
925 // LoadInst Implementation
926 //===----------------------------------------------------------------------===//
927
AssertOK()928 void LoadInst::AssertOK() {
929 assert(getOperand(0)->getType()->isPointerTy() &&
930 "Ptr must have pointer type.");
931 assert(!(isAtomic() && getAlignment() == 0) &&
932 "Alignment required for atomic load");
933 }
934
LoadInst(Value * Ptr,const Twine & Name,Instruction * InsertBef)935 LoadInst::LoadInst(Value *Ptr, const Twine &Name, Instruction *InsertBef)
936 : UnaryInstruction(cast<PointerType>(Ptr->getType())->getElementType(),
937 Load, Ptr, InsertBef) {
938 setVolatile(false);
939 setAlignment(0);
940 setAtomic(NotAtomic);
941 AssertOK();
942 setName(Name);
943 }
944
LoadInst(Value * Ptr,const Twine & Name,BasicBlock * InsertAE)945 LoadInst::LoadInst(Value *Ptr, const Twine &Name, BasicBlock *InsertAE)
946 : UnaryInstruction(cast<PointerType>(Ptr->getType())->getElementType(),
947 Load, Ptr, InsertAE) {
948 setVolatile(false);
949 setAlignment(0);
950 setAtomic(NotAtomic);
951 AssertOK();
952 setName(Name);
953 }
954
LoadInst(Value * Ptr,const Twine & Name,bool isVolatile,Instruction * InsertBef)955 LoadInst::LoadInst(Value *Ptr, const Twine &Name, bool isVolatile,
956 Instruction *InsertBef)
957 : UnaryInstruction(cast<PointerType>(Ptr->getType())->getElementType(),
958 Load, Ptr, InsertBef) {
959 setVolatile(isVolatile);
960 setAlignment(0);
961 setAtomic(NotAtomic);
962 AssertOK();
963 setName(Name);
964 }
965
LoadInst(Value * Ptr,const Twine & Name,bool isVolatile,BasicBlock * InsertAE)966 LoadInst::LoadInst(Value *Ptr, const Twine &Name, bool isVolatile,
967 BasicBlock *InsertAE)
968 : UnaryInstruction(cast<PointerType>(Ptr->getType())->getElementType(),
969 Load, Ptr, InsertAE) {
970 setVolatile(isVolatile);
971 setAlignment(0);
972 setAtomic(NotAtomic);
973 AssertOK();
974 setName(Name);
975 }
976
LoadInst(Value * Ptr,const Twine & Name,bool isVolatile,unsigned Align,Instruction * InsertBef)977 LoadInst::LoadInst(Value *Ptr, const Twine &Name, bool isVolatile,
978 unsigned Align, Instruction *InsertBef)
979 : UnaryInstruction(cast<PointerType>(Ptr->getType())->getElementType(),
980 Load, Ptr, InsertBef) {
981 setVolatile(isVolatile);
982 setAlignment(Align);
983 setAtomic(NotAtomic);
984 AssertOK();
985 setName(Name);
986 }
987
LoadInst(Value * Ptr,const Twine & Name,bool isVolatile,unsigned Align,BasicBlock * InsertAE)988 LoadInst::LoadInst(Value *Ptr, const Twine &Name, bool isVolatile,
989 unsigned Align, BasicBlock *InsertAE)
990 : UnaryInstruction(cast<PointerType>(Ptr->getType())->getElementType(),
991 Load, Ptr, InsertAE) {
992 setVolatile(isVolatile);
993 setAlignment(Align);
994 setAtomic(NotAtomic);
995 AssertOK();
996 setName(Name);
997 }
998
LoadInst(Value * Ptr,const Twine & Name,bool isVolatile,unsigned Align,AtomicOrdering Order,SynchronizationScope SynchScope,Instruction * InsertBef)999 LoadInst::LoadInst(Value *Ptr, const Twine &Name, bool isVolatile,
1000 unsigned Align, AtomicOrdering Order,
1001 SynchronizationScope SynchScope,
1002 Instruction *InsertBef)
1003 : UnaryInstruction(cast<PointerType>(Ptr->getType())->getElementType(),
1004 Load, Ptr, InsertBef) {
1005 setVolatile(isVolatile);
1006 setAlignment(Align);
1007 setAtomic(Order, SynchScope);
1008 AssertOK();
1009 setName(Name);
1010 }
1011
LoadInst(Value * Ptr,const Twine & Name,bool isVolatile,unsigned Align,AtomicOrdering Order,SynchronizationScope SynchScope,BasicBlock * InsertAE)1012 LoadInst::LoadInst(Value *Ptr, const Twine &Name, bool isVolatile,
1013 unsigned Align, AtomicOrdering Order,
1014 SynchronizationScope SynchScope,
1015 BasicBlock *InsertAE)
1016 : UnaryInstruction(cast<PointerType>(Ptr->getType())->getElementType(),
1017 Load, Ptr, InsertAE) {
1018 setVolatile(isVolatile);
1019 setAlignment(Align);
1020 setAtomic(Order, SynchScope);
1021 AssertOK();
1022 setName(Name);
1023 }
1024
LoadInst(Value * Ptr,const char * Name,Instruction * InsertBef)1025 LoadInst::LoadInst(Value *Ptr, const char *Name, Instruction *InsertBef)
1026 : UnaryInstruction(cast<PointerType>(Ptr->getType())->getElementType(),
1027 Load, Ptr, InsertBef) {
1028 setVolatile(false);
1029 setAlignment(0);
1030 setAtomic(NotAtomic);
1031 AssertOK();
1032 if (Name && Name[0]) setName(Name);
1033 }
1034
LoadInst(Value * Ptr,const char * Name,BasicBlock * InsertAE)1035 LoadInst::LoadInst(Value *Ptr, const char *Name, BasicBlock *InsertAE)
1036 : UnaryInstruction(cast<PointerType>(Ptr->getType())->getElementType(),
1037 Load, Ptr, InsertAE) {
1038 setVolatile(false);
1039 setAlignment(0);
1040 setAtomic(NotAtomic);
1041 AssertOK();
1042 if (Name && Name[0]) setName(Name);
1043 }
1044
LoadInst(Value * Ptr,const char * Name,bool isVolatile,Instruction * InsertBef)1045 LoadInst::LoadInst(Value *Ptr, const char *Name, bool isVolatile,
1046 Instruction *InsertBef)
1047 : UnaryInstruction(cast<PointerType>(Ptr->getType())->getElementType(),
1048 Load, Ptr, InsertBef) {
1049 setVolatile(isVolatile);
1050 setAlignment(0);
1051 setAtomic(NotAtomic);
1052 AssertOK();
1053 if (Name && Name[0]) setName(Name);
1054 }
1055
LoadInst(Value * Ptr,const char * Name,bool isVolatile,BasicBlock * InsertAE)1056 LoadInst::LoadInst(Value *Ptr, const char *Name, bool isVolatile,
1057 BasicBlock *InsertAE)
1058 : UnaryInstruction(cast<PointerType>(Ptr->getType())->getElementType(),
1059 Load, Ptr, InsertAE) {
1060 setVolatile(isVolatile);
1061 setAlignment(0);
1062 setAtomic(NotAtomic);
1063 AssertOK();
1064 if (Name && Name[0]) setName(Name);
1065 }
1066
setAlignment(unsigned Align)1067 void LoadInst::setAlignment(unsigned Align) {
1068 assert((Align & (Align-1)) == 0 && "Alignment is not a power of 2!");
1069 assert(Align <= MaximumAlignment &&
1070 "Alignment is greater than MaximumAlignment!");
1071 setInstructionSubclassData((getSubclassDataFromInstruction() & ~(31 << 1)) |
1072 ((Log2_32(Align)+1)<<1));
1073 assert(getAlignment() == Align && "Alignment representation error!");
1074 }
1075
1076 //===----------------------------------------------------------------------===//
1077 // StoreInst Implementation
1078 //===----------------------------------------------------------------------===//
1079
AssertOK()1080 void StoreInst::AssertOK() {
1081 assert(getOperand(0) && getOperand(1) && "Both operands must be non-null!");
1082 assert(getOperand(1)->getType()->isPointerTy() &&
1083 "Ptr must have pointer type!");
1084 assert(getOperand(0)->getType() ==
1085 cast<PointerType>(getOperand(1)->getType())->getElementType()
1086 && "Ptr must be a pointer to Val type!");
1087 assert(!(isAtomic() && getAlignment() == 0) &&
1088 "Alignment required for atomic load");
1089 }
1090
1091
StoreInst(Value * val,Value * addr,Instruction * InsertBefore)1092 StoreInst::StoreInst(Value *val, Value *addr, Instruction *InsertBefore)
1093 : Instruction(Type::getVoidTy(val->getContext()), Store,
1094 OperandTraits<StoreInst>::op_begin(this),
1095 OperandTraits<StoreInst>::operands(this),
1096 InsertBefore) {
1097 Op<0>() = val;
1098 Op<1>() = addr;
1099 setVolatile(false);
1100 setAlignment(0);
1101 setAtomic(NotAtomic);
1102 AssertOK();
1103 }
1104
StoreInst(Value * val,Value * addr,BasicBlock * InsertAtEnd)1105 StoreInst::StoreInst(Value *val, Value *addr, BasicBlock *InsertAtEnd)
1106 : Instruction(Type::getVoidTy(val->getContext()), Store,
1107 OperandTraits<StoreInst>::op_begin(this),
1108 OperandTraits<StoreInst>::operands(this),
1109 InsertAtEnd) {
1110 Op<0>() = val;
1111 Op<1>() = addr;
1112 setVolatile(false);
1113 setAlignment(0);
1114 setAtomic(NotAtomic);
1115 AssertOK();
1116 }
1117
StoreInst(Value * val,Value * addr,bool isVolatile,Instruction * InsertBefore)1118 StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile,
1119 Instruction *InsertBefore)
1120 : Instruction(Type::getVoidTy(val->getContext()), Store,
1121 OperandTraits<StoreInst>::op_begin(this),
1122 OperandTraits<StoreInst>::operands(this),
1123 InsertBefore) {
1124 Op<0>() = val;
1125 Op<1>() = addr;
1126 setVolatile(isVolatile);
1127 setAlignment(0);
1128 setAtomic(NotAtomic);
1129 AssertOK();
1130 }
1131
StoreInst(Value * val,Value * addr,bool isVolatile,unsigned Align,Instruction * InsertBefore)1132 StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile,
1133 unsigned Align, Instruction *InsertBefore)
1134 : Instruction(Type::getVoidTy(val->getContext()), Store,
1135 OperandTraits<StoreInst>::op_begin(this),
1136 OperandTraits<StoreInst>::operands(this),
1137 InsertBefore) {
1138 Op<0>() = val;
1139 Op<1>() = addr;
1140 setVolatile(isVolatile);
1141 setAlignment(Align);
1142 setAtomic(NotAtomic);
1143 AssertOK();
1144 }
1145
StoreInst(Value * val,Value * addr,bool isVolatile,unsigned Align,AtomicOrdering Order,SynchronizationScope SynchScope,Instruction * InsertBefore)1146 StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile,
1147 unsigned Align, AtomicOrdering Order,
1148 SynchronizationScope SynchScope,
1149 Instruction *InsertBefore)
1150 : Instruction(Type::getVoidTy(val->getContext()), Store,
1151 OperandTraits<StoreInst>::op_begin(this),
1152 OperandTraits<StoreInst>::operands(this),
1153 InsertBefore) {
1154 Op<0>() = val;
1155 Op<1>() = addr;
1156 setVolatile(isVolatile);
1157 setAlignment(Align);
1158 setAtomic(Order, SynchScope);
1159 AssertOK();
1160 }
1161
StoreInst(Value * val,Value * addr,bool isVolatile,BasicBlock * InsertAtEnd)1162 StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile,
1163 BasicBlock *InsertAtEnd)
1164 : Instruction(Type::getVoidTy(val->getContext()), Store,
1165 OperandTraits<StoreInst>::op_begin(this),
1166 OperandTraits<StoreInst>::operands(this),
1167 InsertAtEnd) {
1168 Op<0>() = val;
1169 Op<1>() = addr;
1170 setVolatile(isVolatile);
1171 setAlignment(0);
1172 setAtomic(NotAtomic);
1173 AssertOK();
1174 }
1175
StoreInst(Value * val,Value * addr,bool isVolatile,unsigned Align,BasicBlock * InsertAtEnd)1176 StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile,
1177 unsigned Align, BasicBlock *InsertAtEnd)
1178 : Instruction(Type::getVoidTy(val->getContext()), Store,
1179 OperandTraits<StoreInst>::op_begin(this),
1180 OperandTraits<StoreInst>::operands(this),
1181 InsertAtEnd) {
1182 Op<0>() = val;
1183 Op<1>() = addr;
1184 setVolatile(isVolatile);
1185 setAlignment(Align);
1186 setAtomic(NotAtomic);
1187 AssertOK();
1188 }
1189
StoreInst(Value * val,Value * addr,bool isVolatile,unsigned Align,AtomicOrdering Order,SynchronizationScope SynchScope,BasicBlock * InsertAtEnd)1190 StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile,
1191 unsigned Align, AtomicOrdering Order,
1192 SynchronizationScope SynchScope,
1193 BasicBlock *InsertAtEnd)
1194 : Instruction(Type::getVoidTy(val->getContext()), Store,
1195 OperandTraits<StoreInst>::op_begin(this),
1196 OperandTraits<StoreInst>::operands(this),
1197 InsertAtEnd) {
1198 Op<0>() = val;
1199 Op<1>() = addr;
1200 setVolatile(isVolatile);
1201 setAlignment(Align);
1202 setAtomic(Order, SynchScope);
1203 AssertOK();
1204 }
1205
setAlignment(unsigned Align)1206 void StoreInst::setAlignment(unsigned Align) {
1207 assert((Align & (Align-1)) == 0 && "Alignment is not a power of 2!");
1208 assert(Align <= MaximumAlignment &&
1209 "Alignment is greater than MaximumAlignment!");
1210 setInstructionSubclassData((getSubclassDataFromInstruction() & ~(31 << 1)) |
1211 ((Log2_32(Align)+1) << 1));
1212 assert(getAlignment() == Align && "Alignment representation error!");
1213 }
1214
1215 //===----------------------------------------------------------------------===//
1216 // AtomicCmpXchgInst Implementation
1217 //===----------------------------------------------------------------------===//
1218
Init(Value * Ptr,Value * Cmp,Value * NewVal,AtomicOrdering Ordering,SynchronizationScope SynchScope)1219 void AtomicCmpXchgInst::Init(Value *Ptr, Value *Cmp, Value *NewVal,
1220 AtomicOrdering Ordering,
1221 SynchronizationScope SynchScope) {
1222 Op<0>() = Ptr;
1223 Op<1>() = Cmp;
1224 Op<2>() = NewVal;
1225 setOrdering(Ordering);
1226 setSynchScope(SynchScope);
1227
1228 assert(getOperand(0) && getOperand(1) && getOperand(2) &&
1229 "All operands must be non-null!");
1230 assert(getOperand(0)->getType()->isPointerTy() &&
1231 "Ptr must have pointer type!");
1232 assert(getOperand(1)->getType() ==
1233 cast<PointerType>(getOperand(0)->getType())->getElementType()
1234 && "Ptr must be a pointer to Cmp type!");
1235 assert(getOperand(2)->getType() ==
1236 cast<PointerType>(getOperand(0)->getType())->getElementType()
1237 && "Ptr must be a pointer to NewVal type!");
1238 assert(Ordering != NotAtomic &&
1239 "AtomicCmpXchg instructions must be atomic!");
1240 }
1241
AtomicCmpXchgInst(Value * Ptr,Value * Cmp,Value * NewVal,AtomicOrdering Ordering,SynchronizationScope SynchScope,Instruction * InsertBefore)1242 AtomicCmpXchgInst::AtomicCmpXchgInst(Value *Ptr, Value *Cmp, Value *NewVal,
1243 AtomicOrdering Ordering,
1244 SynchronizationScope SynchScope,
1245 Instruction *InsertBefore)
1246 : Instruction(Cmp->getType(), AtomicCmpXchg,
1247 OperandTraits<AtomicCmpXchgInst>::op_begin(this),
1248 OperandTraits<AtomicCmpXchgInst>::operands(this),
1249 InsertBefore) {
1250 Init(Ptr, Cmp, NewVal, Ordering, SynchScope);
1251 }
1252
AtomicCmpXchgInst(Value * Ptr,Value * Cmp,Value * NewVal,AtomicOrdering Ordering,SynchronizationScope SynchScope,BasicBlock * InsertAtEnd)1253 AtomicCmpXchgInst::AtomicCmpXchgInst(Value *Ptr, Value *Cmp, Value *NewVal,
1254 AtomicOrdering Ordering,
1255 SynchronizationScope SynchScope,
1256 BasicBlock *InsertAtEnd)
1257 : Instruction(Cmp->getType(), AtomicCmpXchg,
1258 OperandTraits<AtomicCmpXchgInst>::op_begin(this),
1259 OperandTraits<AtomicCmpXchgInst>::operands(this),
1260 InsertAtEnd) {
1261 Init(Ptr, Cmp, NewVal, Ordering, SynchScope);
1262 }
1263
1264 //===----------------------------------------------------------------------===//
1265 // AtomicRMWInst Implementation
1266 //===----------------------------------------------------------------------===//
1267
Init(BinOp Operation,Value * Ptr,Value * Val,AtomicOrdering Ordering,SynchronizationScope SynchScope)1268 void AtomicRMWInst::Init(BinOp Operation, Value *Ptr, Value *Val,
1269 AtomicOrdering Ordering,
1270 SynchronizationScope SynchScope) {
1271 Op<0>() = Ptr;
1272 Op<1>() = Val;
1273 setOperation(Operation);
1274 setOrdering(Ordering);
1275 setSynchScope(SynchScope);
1276
1277 assert(getOperand(0) && getOperand(1) &&
1278 "All operands must be non-null!");
1279 assert(getOperand(0)->getType()->isPointerTy() &&
1280 "Ptr must have pointer type!");
1281 assert(getOperand(1)->getType() ==
1282 cast<PointerType>(getOperand(0)->getType())->getElementType()
1283 && "Ptr must be a pointer to Val type!");
1284 assert(Ordering != NotAtomic &&
1285 "AtomicRMW instructions must be atomic!");
1286 }
1287
AtomicRMWInst(BinOp Operation,Value * Ptr,Value * Val,AtomicOrdering Ordering,SynchronizationScope SynchScope,Instruction * InsertBefore)1288 AtomicRMWInst::AtomicRMWInst(BinOp Operation, Value *Ptr, Value *Val,
1289 AtomicOrdering Ordering,
1290 SynchronizationScope SynchScope,
1291 Instruction *InsertBefore)
1292 : Instruction(Val->getType(), AtomicRMW,
1293 OperandTraits<AtomicRMWInst>::op_begin(this),
1294 OperandTraits<AtomicRMWInst>::operands(this),
1295 InsertBefore) {
1296 Init(Operation, Ptr, Val, Ordering, SynchScope);
1297 }
1298
AtomicRMWInst(BinOp Operation,Value * Ptr,Value * Val,AtomicOrdering Ordering,SynchronizationScope SynchScope,BasicBlock * InsertAtEnd)1299 AtomicRMWInst::AtomicRMWInst(BinOp Operation, Value *Ptr, Value *Val,
1300 AtomicOrdering Ordering,
1301 SynchronizationScope SynchScope,
1302 BasicBlock *InsertAtEnd)
1303 : Instruction(Val->getType(), AtomicRMW,
1304 OperandTraits<AtomicRMWInst>::op_begin(this),
1305 OperandTraits<AtomicRMWInst>::operands(this),
1306 InsertAtEnd) {
1307 Init(Operation, Ptr, Val, Ordering, SynchScope);
1308 }
1309
1310 //===----------------------------------------------------------------------===//
1311 // FenceInst Implementation
1312 //===----------------------------------------------------------------------===//
1313
FenceInst(LLVMContext & C,AtomicOrdering Ordering,SynchronizationScope SynchScope,Instruction * InsertBefore)1314 FenceInst::FenceInst(LLVMContext &C, AtomicOrdering Ordering,
1315 SynchronizationScope SynchScope,
1316 Instruction *InsertBefore)
1317 : Instruction(Type::getVoidTy(C), Fence, 0, 0, InsertBefore) {
1318 setOrdering(Ordering);
1319 setSynchScope(SynchScope);
1320 }
1321
FenceInst(LLVMContext & C,AtomicOrdering Ordering,SynchronizationScope SynchScope,BasicBlock * InsertAtEnd)1322 FenceInst::FenceInst(LLVMContext &C, AtomicOrdering Ordering,
1323 SynchronizationScope SynchScope,
1324 BasicBlock *InsertAtEnd)
1325 : Instruction(Type::getVoidTy(C), Fence, 0, 0, InsertAtEnd) {
1326 setOrdering(Ordering);
1327 setSynchScope(SynchScope);
1328 }
1329
1330 //===----------------------------------------------------------------------===//
1331 // GetElementPtrInst Implementation
1332 //===----------------------------------------------------------------------===//
1333
init(Value * Ptr,ArrayRef<Value * > IdxList,const Twine & Name)1334 void GetElementPtrInst::init(Value *Ptr, ArrayRef<Value *> IdxList,
1335 const Twine &Name) {
1336 assert(NumOperands == 1 + IdxList.size() && "NumOperands not initialized?");
1337 OperandList[0] = Ptr;
1338 std::copy(IdxList.begin(), IdxList.end(), op_begin() + 1);
1339 setName(Name);
1340 }
1341
GetElementPtrInst(const GetElementPtrInst & GEPI)1342 GetElementPtrInst::GetElementPtrInst(const GetElementPtrInst &GEPI)
1343 : Instruction(GEPI.getType(), GetElementPtr,
1344 OperandTraits<GetElementPtrInst>::op_end(this)
1345 - GEPI.getNumOperands(),
1346 GEPI.getNumOperands()) {
1347 std::copy(GEPI.op_begin(), GEPI.op_end(), op_begin());
1348 SubclassOptionalData = GEPI.SubclassOptionalData;
1349 }
1350
1351 /// getIndexedType - Returns the type of the element that would be accessed with
1352 /// a gep instruction with the specified parameters.
1353 ///
1354 /// The Idxs pointer should point to a continuous piece of memory containing the
1355 /// indices, either as Value* or uint64_t.
1356 ///
1357 /// A null type is returned if the indices are invalid for the specified
1358 /// pointer type.
1359 ///
1360 template <typename IndexTy>
getIndexedTypeInternal(Type * Ptr,ArrayRef<IndexTy> IdxList)1361 static Type *getIndexedTypeInternal(Type *Ptr, ArrayRef<IndexTy> IdxList) {
1362 PointerType *PTy = dyn_cast<PointerType>(Ptr);
1363 if (!PTy) return 0; // Type isn't a pointer type!
1364 Type *Agg = PTy->getElementType();
1365
1366 // Handle the special case of the empty set index set, which is always valid.
1367 if (IdxList.empty())
1368 return Agg;
1369
1370 // If there is at least one index, the top level type must be sized, otherwise
1371 // it cannot be 'stepped over'.
1372 if (!Agg->isSized())
1373 return 0;
1374
1375 unsigned CurIdx = 1;
1376 for (; CurIdx != IdxList.size(); ++CurIdx) {
1377 CompositeType *CT = dyn_cast<CompositeType>(Agg);
1378 if (!CT || CT->isPointerTy()) return 0;
1379 IndexTy Index = IdxList[CurIdx];
1380 if (!CT->indexValid(Index)) return 0;
1381 Agg = CT->getTypeAtIndex(Index);
1382 }
1383 return CurIdx == IdxList.size() ? Agg : 0;
1384 }
1385
getIndexedType(Type * Ptr,ArrayRef<Value * > IdxList)1386 Type *GetElementPtrInst::getIndexedType(Type *Ptr, ArrayRef<Value *> IdxList) {
1387 return getIndexedTypeInternal(Ptr, IdxList);
1388 }
1389
getIndexedType(Type * Ptr,ArrayRef<Constant * > IdxList)1390 Type *GetElementPtrInst::getIndexedType(Type *Ptr,
1391 ArrayRef<Constant *> IdxList) {
1392 return getIndexedTypeInternal(Ptr, IdxList);
1393 }
1394
getIndexedType(Type * Ptr,ArrayRef<uint64_t> IdxList)1395 Type *GetElementPtrInst::getIndexedType(Type *Ptr, ArrayRef<uint64_t> IdxList) {
1396 return getIndexedTypeInternal(Ptr, IdxList);
1397 }
1398
1399 /// hasAllZeroIndices - Return true if all of the indices of this GEP are
1400 /// zeros. If so, the result pointer and the first operand have the same
1401 /// value, just potentially different types.
hasAllZeroIndices() const1402 bool GetElementPtrInst::hasAllZeroIndices() const {
1403 for (unsigned i = 1, e = getNumOperands(); i != e; ++i) {
1404 if (ConstantInt *CI = dyn_cast<ConstantInt>(getOperand(i))) {
1405 if (!CI->isZero()) return false;
1406 } else {
1407 return false;
1408 }
1409 }
1410 return true;
1411 }
1412
1413 /// hasAllConstantIndices - Return true if all of the indices of this GEP are
1414 /// constant integers. If so, the result pointer and the first operand have
1415 /// a constant offset between them.
hasAllConstantIndices() const1416 bool GetElementPtrInst::hasAllConstantIndices() const {
1417 for (unsigned i = 1, e = getNumOperands(); i != e; ++i) {
1418 if (!isa<ConstantInt>(getOperand(i)))
1419 return false;
1420 }
1421 return true;
1422 }
1423
setIsInBounds(bool B)1424 void GetElementPtrInst::setIsInBounds(bool B) {
1425 cast<GEPOperator>(this)->setIsInBounds(B);
1426 }
1427
isInBounds() const1428 bool GetElementPtrInst::isInBounds() const {
1429 return cast<GEPOperator>(this)->isInBounds();
1430 }
1431
1432 //===----------------------------------------------------------------------===//
1433 // ExtractElementInst Implementation
1434 //===----------------------------------------------------------------------===//
1435
ExtractElementInst(Value * Val,Value * Index,const Twine & Name,Instruction * InsertBef)1436 ExtractElementInst::ExtractElementInst(Value *Val, Value *Index,
1437 const Twine &Name,
1438 Instruction *InsertBef)
1439 : Instruction(cast<VectorType>(Val->getType())->getElementType(),
1440 ExtractElement,
1441 OperandTraits<ExtractElementInst>::op_begin(this),
1442 2, InsertBef) {
1443 assert(isValidOperands(Val, Index) &&
1444 "Invalid extractelement instruction operands!");
1445 Op<0>() = Val;
1446 Op<1>() = Index;
1447 setName(Name);
1448 }
1449
ExtractElementInst(Value * Val,Value * Index,const Twine & Name,BasicBlock * InsertAE)1450 ExtractElementInst::ExtractElementInst(Value *Val, Value *Index,
1451 const Twine &Name,
1452 BasicBlock *InsertAE)
1453 : Instruction(cast<VectorType>(Val->getType())->getElementType(),
1454 ExtractElement,
1455 OperandTraits<ExtractElementInst>::op_begin(this),
1456 2, InsertAE) {
1457 assert(isValidOperands(Val, Index) &&
1458 "Invalid extractelement instruction operands!");
1459
1460 Op<0>() = Val;
1461 Op<1>() = Index;
1462 setName(Name);
1463 }
1464
1465
isValidOperands(const Value * Val,const Value * Index)1466 bool ExtractElementInst::isValidOperands(const Value *Val, const Value *Index) {
1467 if (!Val->getType()->isVectorTy() || !Index->getType()->isIntegerTy(32))
1468 return false;
1469 return true;
1470 }
1471
1472
1473 //===----------------------------------------------------------------------===//
1474 // InsertElementInst Implementation
1475 //===----------------------------------------------------------------------===//
1476
InsertElementInst(Value * Vec,Value * Elt,Value * Index,const Twine & Name,Instruction * InsertBef)1477 InsertElementInst::InsertElementInst(Value *Vec, Value *Elt, Value *Index,
1478 const Twine &Name,
1479 Instruction *InsertBef)
1480 : Instruction(Vec->getType(), InsertElement,
1481 OperandTraits<InsertElementInst>::op_begin(this),
1482 3, InsertBef) {
1483 assert(isValidOperands(Vec, Elt, Index) &&
1484 "Invalid insertelement instruction operands!");
1485 Op<0>() = Vec;
1486 Op<1>() = Elt;
1487 Op<2>() = Index;
1488 setName(Name);
1489 }
1490
InsertElementInst(Value * Vec,Value * Elt,Value * Index,const Twine & Name,BasicBlock * InsertAE)1491 InsertElementInst::InsertElementInst(Value *Vec, Value *Elt, Value *Index,
1492 const Twine &Name,
1493 BasicBlock *InsertAE)
1494 : Instruction(Vec->getType(), InsertElement,
1495 OperandTraits<InsertElementInst>::op_begin(this),
1496 3, InsertAE) {
1497 assert(isValidOperands(Vec, Elt, Index) &&
1498 "Invalid insertelement instruction operands!");
1499
1500 Op<0>() = Vec;
1501 Op<1>() = Elt;
1502 Op<2>() = Index;
1503 setName(Name);
1504 }
1505
isValidOperands(const Value * Vec,const Value * Elt,const Value * Index)1506 bool InsertElementInst::isValidOperands(const Value *Vec, const Value *Elt,
1507 const Value *Index) {
1508 if (!Vec->getType()->isVectorTy())
1509 return false; // First operand of insertelement must be vector type.
1510
1511 if (Elt->getType() != cast<VectorType>(Vec->getType())->getElementType())
1512 return false;// Second operand of insertelement must be vector element type.
1513
1514 if (!Index->getType()->isIntegerTy(32))
1515 return false; // Third operand of insertelement must be i32.
1516 return true;
1517 }
1518
1519
1520 //===----------------------------------------------------------------------===//
1521 // ShuffleVectorInst Implementation
1522 //===----------------------------------------------------------------------===//
1523
ShuffleVectorInst(Value * V1,Value * V2,Value * Mask,const Twine & Name,Instruction * InsertBefore)1524 ShuffleVectorInst::ShuffleVectorInst(Value *V1, Value *V2, Value *Mask,
1525 const Twine &Name,
1526 Instruction *InsertBefore)
1527 : Instruction(VectorType::get(cast<VectorType>(V1->getType())->getElementType(),
1528 cast<VectorType>(Mask->getType())->getNumElements()),
1529 ShuffleVector,
1530 OperandTraits<ShuffleVectorInst>::op_begin(this),
1531 OperandTraits<ShuffleVectorInst>::operands(this),
1532 InsertBefore) {
1533 assert(isValidOperands(V1, V2, Mask) &&
1534 "Invalid shuffle vector instruction operands!");
1535 Op<0>() = V1;
1536 Op<1>() = V2;
1537 Op<2>() = Mask;
1538 setName(Name);
1539 }
1540
ShuffleVectorInst(Value * V1,Value * V2,Value * Mask,const Twine & Name,BasicBlock * InsertAtEnd)1541 ShuffleVectorInst::ShuffleVectorInst(Value *V1, Value *V2, Value *Mask,
1542 const Twine &Name,
1543 BasicBlock *InsertAtEnd)
1544 : Instruction(VectorType::get(cast<VectorType>(V1->getType())->getElementType(),
1545 cast<VectorType>(Mask->getType())->getNumElements()),
1546 ShuffleVector,
1547 OperandTraits<ShuffleVectorInst>::op_begin(this),
1548 OperandTraits<ShuffleVectorInst>::operands(this),
1549 InsertAtEnd) {
1550 assert(isValidOperands(V1, V2, Mask) &&
1551 "Invalid shuffle vector instruction operands!");
1552
1553 Op<0>() = V1;
1554 Op<1>() = V2;
1555 Op<2>() = Mask;
1556 setName(Name);
1557 }
1558
isValidOperands(const Value * V1,const Value * V2,const Value * Mask)1559 bool ShuffleVectorInst::isValidOperands(const Value *V1, const Value *V2,
1560 const Value *Mask) {
1561 if (!V1->getType()->isVectorTy() || V1->getType() != V2->getType())
1562 return false;
1563
1564 VectorType *MaskTy = dyn_cast<VectorType>(Mask->getType());
1565 if (MaskTy == 0 || !MaskTy->getElementType()->isIntegerTy(32))
1566 return false;
1567
1568 // Check to see if Mask is valid.
1569 if (const ConstantVector *MV = dyn_cast<ConstantVector>(Mask)) {
1570 VectorType *VTy = cast<VectorType>(V1->getType());
1571 for (unsigned i = 0, e = MV->getNumOperands(); i != e; ++i) {
1572 if (ConstantInt* CI = dyn_cast<ConstantInt>(MV->getOperand(i))) {
1573 if (CI->uge(VTy->getNumElements()*2))
1574 return false;
1575 } else if (!isa<UndefValue>(MV->getOperand(i))) {
1576 return false;
1577 }
1578 }
1579 }
1580 else if (!isa<UndefValue>(Mask) && !isa<ConstantAggregateZero>(Mask))
1581 return false;
1582
1583 return true;
1584 }
1585
1586 /// getMaskValue - Return the index from the shuffle mask for the specified
1587 /// output result. This is either -1 if the element is undef or a number less
1588 /// than 2*numelements.
getMaskValue(unsigned i) const1589 int ShuffleVectorInst::getMaskValue(unsigned i) const {
1590 const Constant *Mask = cast<Constant>(getOperand(2));
1591 if (isa<UndefValue>(Mask)) return -1;
1592 if (isa<ConstantAggregateZero>(Mask)) return 0;
1593 const ConstantVector *MaskCV = cast<ConstantVector>(Mask);
1594 assert(i < MaskCV->getNumOperands() && "Index out of range");
1595
1596 if (isa<UndefValue>(MaskCV->getOperand(i)))
1597 return -1;
1598 return cast<ConstantInt>(MaskCV->getOperand(i))->getZExtValue();
1599 }
1600
1601 //===----------------------------------------------------------------------===//
1602 // InsertValueInst Class
1603 //===----------------------------------------------------------------------===//
1604
init(Value * Agg,Value * Val,ArrayRef<unsigned> Idxs,const Twine & Name)1605 void InsertValueInst::init(Value *Agg, Value *Val, ArrayRef<unsigned> Idxs,
1606 const Twine &Name) {
1607 assert(NumOperands == 2 && "NumOperands not initialized?");
1608
1609 // There's no fundamental reason why we require at least one index
1610 // (other than weirdness with &*IdxBegin being invalid; see
1611 // getelementptr's init routine for example). But there's no
1612 // present need to support it.
1613 assert(Idxs.size() > 0 && "InsertValueInst must have at least one index");
1614
1615 assert(ExtractValueInst::getIndexedType(Agg->getType(), Idxs) ==
1616 Val->getType() && "Inserted value must match indexed type!");
1617 Op<0>() = Agg;
1618 Op<1>() = Val;
1619
1620 Indices.append(Idxs.begin(), Idxs.end());
1621 setName(Name);
1622 }
1623
InsertValueInst(const InsertValueInst & IVI)1624 InsertValueInst::InsertValueInst(const InsertValueInst &IVI)
1625 : Instruction(IVI.getType(), InsertValue,
1626 OperandTraits<InsertValueInst>::op_begin(this), 2),
1627 Indices(IVI.Indices) {
1628 Op<0>() = IVI.getOperand(0);
1629 Op<1>() = IVI.getOperand(1);
1630 SubclassOptionalData = IVI.SubclassOptionalData;
1631 }
1632
1633 //===----------------------------------------------------------------------===//
1634 // ExtractValueInst Class
1635 //===----------------------------------------------------------------------===//
1636
init(ArrayRef<unsigned> Idxs,const Twine & Name)1637 void ExtractValueInst::init(ArrayRef<unsigned> Idxs, const Twine &Name) {
1638 assert(NumOperands == 1 && "NumOperands not initialized?");
1639
1640 // There's no fundamental reason why we require at least one index.
1641 // But there's no present need to support it.
1642 assert(Idxs.size() > 0 && "ExtractValueInst must have at least one index");
1643
1644 Indices.append(Idxs.begin(), Idxs.end());
1645 setName(Name);
1646 }
1647
ExtractValueInst(const ExtractValueInst & EVI)1648 ExtractValueInst::ExtractValueInst(const ExtractValueInst &EVI)
1649 : UnaryInstruction(EVI.getType(), ExtractValue, EVI.getOperand(0)),
1650 Indices(EVI.Indices) {
1651 SubclassOptionalData = EVI.SubclassOptionalData;
1652 }
1653
1654 // getIndexedType - Returns the type of the element that would be extracted
1655 // with an extractvalue instruction with the specified parameters.
1656 //
1657 // A null type is returned if the indices are invalid for the specified
1658 // pointer type.
1659 //
getIndexedType(Type * Agg,ArrayRef<unsigned> Idxs)1660 Type *ExtractValueInst::getIndexedType(Type *Agg,
1661 ArrayRef<unsigned> Idxs) {
1662 for (unsigned CurIdx = 0; CurIdx != Idxs.size(); ++CurIdx) {
1663 unsigned Index = Idxs[CurIdx];
1664 // We can't use CompositeType::indexValid(Index) here.
1665 // indexValid() always returns true for arrays because getelementptr allows
1666 // out-of-bounds indices. Since we don't allow those for extractvalue and
1667 // insertvalue we need to check array indexing manually.
1668 // Since the only other types we can index into are struct types it's just
1669 // as easy to check those manually as well.
1670 if (ArrayType *AT = dyn_cast<ArrayType>(Agg)) {
1671 if (Index >= AT->getNumElements())
1672 return 0;
1673 } else if (StructType *ST = dyn_cast<StructType>(Agg)) {
1674 if (Index >= ST->getNumElements())
1675 return 0;
1676 } else {
1677 // Not a valid type to index into.
1678 return 0;
1679 }
1680
1681 Agg = cast<CompositeType>(Agg)->getTypeAtIndex(Index);
1682 }
1683 return const_cast<Type*>(Agg);
1684 }
1685
1686 //===----------------------------------------------------------------------===//
1687 // BinaryOperator Class
1688 //===----------------------------------------------------------------------===//
1689
BinaryOperator(BinaryOps iType,Value * S1,Value * S2,Type * Ty,const Twine & Name,Instruction * InsertBefore)1690 BinaryOperator::BinaryOperator(BinaryOps iType, Value *S1, Value *S2,
1691 Type *Ty, const Twine &Name,
1692 Instruction *InsertBefore)
1693 : Instruction(Ty, iType,
1694 OperandTraits<BinaryOperator>::op_begin(this),
1695 OperandTraits<BinaryOperator>::operands(this),
1696 InsertBefore) {
1697 Op<0>() = S1;
1698 Op<1>() = S2;
1699 init(iType);
1700 setName(Name);
1701 }
1702
BinaryOperator(BinaryOps iType,Value * S1,Value * S2,Type * Ty,const Twine & Name,BasicBlock * InsertAtEnd)1703 BinaryOperator::BinaryOperator(BinaryOps iType, Value *S1, Value *S2,
1704 Type *Ty, const Twine &Name,
1705 BasicBlock *InsertAtEnd)
1706 : Instruction(Ty, iType,
1707 OperandTraits<BinaryOperator>::op_begin(this),
1708 OperandTraits<BinaryOperator>::operands(this),
1709 InsertAtEnd) {
1710 Op<0>() = S1;
1711 Op<1>() = S2;
1712 init(iType);
1713 setName(Name);
1714 }
1715
1716
init(BinaryOps iType)1717 void BinaryOperator::init(BinaryOps iType) {
1718 Value *LHS = getOperand(0), *RHS = getOperand(1);
1719 (void)LHS; (void)RHS; // Silence warnings.
1720 assert(LHS->getType() == RHS->getType() &&
1721 "Binary operator operand types must match!");
1722 #ifndef NDEBUG
1723 switch (iType) {
1724 case Add: case Sub:
1725 case Mul:
1726 assert(getType() == LHS->getType() &&
1727 "Arithmetic operation should return same type as operands!");
1728 assert(getType()->isIntOrIntVectorTy() &&
1729 "Tried to create an integer operation on a non-integer type!");
1730 break;
1731 case FAdd: case FSub:
1732 case FMul:
1733 assert(getType() == LHS->getType() &&
1734 "Arithmetic operation should return same type as operands!");
1735 assert(getType()->isFPOrFPVectorTy() &&
1736 "Tried to create a floating-point operation on a "
1737 "non-floating-point type!");
1738 break;
1739 case UDiv:
1740 case SDiv:
1741 assert(getType() == LHS->getType() &&
1742 "Arithmetic operation should return same type as operands!");
1743 assert((getType()->isIntegerTy() || (getType()->isVectorTy() &&
1744 cast<VectorType>(getType())->getElementType()->isIntegerTy())) &&
1745 "Incorrect operand type (not integer) for S/UDIV");
1746 break;
1747 case FDiv:
1748 assert(getType() == LHS->getType() &&
1749 "Arithmetic operation should return same type as operands!");
1750 assert(getType()->isFPOrFPVectorTy() &&
1751 "Incorrect operand type (not floating point) for FDIV");
1752 break;
1753 case URem:
1754 case SRem:
1755 assert(getType() == LHS->getType() &&
1756 "Arithmetic operation should return same type as operands!");
1757 assert((getType()->isIntegerTy() || (getType()->isVectorTy() &&
1758 cast<VectorType>(getType())->getElementType()->isIntegerTy())) &&
1759 "Incorrect operand type (not integer) for S/UREM");
1760 break;
1761 case FRem:
1762 assert(getType() == LHS->getType() &&
1763 "Arithmetic operation should return same type as operands!");
1764 assert(getType()->isFPOrFPVectorTy() &&
1765 "Incorrect operand type (not floating point) for FREM");
1766 break;
1767 case Shl:
1768 case LShr:
1769 case AShr:
1770 assert(getType() == LHS->getType() &&
1771 "Shift operation should return same type as operands!");
1772 assert((getType()->isIntegerTy() ||
1773 (getType()->isVectorTy() &&
1774 cast<VectorType>(getType())->getElementType()->isIntegerTy())) &&
1775 "Tried to create a shift operation on a non-integral type!");
1776 break;
1777 case And: case Or:
1778 case Xor:
1779 assert(getType() == LHS->getType() &&
1780 "Logical operation should return same type as operands!");
1781 assert((getType()->isIntegerTy() ||
1782 (getType()->isVectorTy() &&
1783 cast<VectorType>(getType())->getElementType()->isIntegerTy())) &&
1784 "Tried to create a logical operation on a non-integral type!");
1785 break;
1786 default:
1787 break;
1788 }
1789 #endif
1790 }
1791
Create(BinaryOps Op,Value * S1,Value * S2,const Twine & Name,Instruction * InsertBefore)1792 BinaryOperator *BinaryOperator::Create(BinaryOps Op, Value *S1, Value *S2,
1793 const Twine &Name,
1794 Instruction *InsertBefore) {
1795 assert(S1->getType() == S2->getType() &&
1796 "Cannot create binary operator with two operands of differing type!");
1797 return new BinaryOperator(Op, S1, S2, S1->getType(), Name, InsertBefore);
1798 }
1799
Create(BinaryOps Op,Value * S1,Value * S2,const Twine & Name,BasicBlock * InsertAtEnd)1800 BinaryOperator *BinaryOperator::Create(BinaryOps Op, Value *S1, Value *S2,
1801 const Twine &Name,
1802 BasicBlock *InsertAtEnd) {
1803 BinaryOperator *Res = Create(Op, S1, S2, Name);
1804 InsertAtEnd->getInstList().push_back(Res);
1805 return Res;
1806 }
1807
CreateNeg(Value * Op,const Twine & Name,Instruction * InsertBefore)1808 BinaryOperator *BinaryOperator::CreateNeg(Value *Op, const Twine &Name,
1809 Instruction *InsertBefore) {
1810 Value *zero = ConstantFP::getZeroValueForNegation(Op->getType());
1811 return new BinaryOperator(Instruction::Sub,
1812 zero, Op,
1813 Op->getType(), Name, InsertBefore);
1814 }
1815
CreateNeg(Value * Op,const Twine & Name,BasicBlock * InsertAtEnd)1816 BinaryOperator *BinaryOperator::CreateNeg(Value *Op, const Twine &Name,
1817 BasicBlock *InsertAtEnd) {
1818 Value *zero = ConstantFP::getZeroValueForNegation(Op->getType());
1819 return new BinaryOperator(Instruction::Sub,
1820 zero, Op,
1821 Op->getType(), Name, InsertAtEnd);
1822 }
1823
CreateNSWNeg(Value * Op,const Twine & Name,Instruction * InsertBefore)1824 BinaryOperator *BinaryOperator::CreateNSWNeg(Value *Op, const Twine &Name,
1825 Instruction *InsertBefore) {
1826 Value *zero = ConstantFP::getZeroValueForNegation(Op->getType());
1827 return BinaryOperator::CreateNSWSub(zero, Op, Name, InsertBefore);
1828 }
1829
CreateNSWNeg(Value * Op,const Twine & Name,BasicBlock * InsertAtEnd)1830 BinaryOperator *BinaryOperator::CreateNSWNeg(Value *Op, const Twine &Name,
1831 BasicBlock *InsertAtEnd) {
1832 Value *zero = ConstantFP::getZeroValueForNegation(Op->getType());
1833 return BinaryOperator::CreateNSWSub(zero, Op, Name, InsertAtEnd);
1834 }
1835
CreateNUWNeg(Value * Op,const Twine & Name,Instruction * InsertBefore)1836 BinaryOperator *BinaryOperator::CreateNUWNeg(Value *Op, const Twine &Name,
1837 Instruction *InsertBefore) {
1838 Value *zero = ConstantFP::getZeroValueForNegation(Op->getType());
1839 return BinaryOperator::CreateNUWSub(zero, Op, Name, InsertBefore);
1840 }
1841
CreateNUWNeg(Value * Op,const Twine & Name,BasicBlock * InsertAtEnd)1842 BinaryOperator *BinaryOperator::CreateNUWNeg(Value *Op, const Twine &Name,
1843 BasicBlock *InsertAtEnd) {
1844 Value *zero = ConstantFP::getZeroValueForNegation(Op->getType());
1845 return BinaryOperator::CreateNUWSub(zero, Op, Name, InsertAtEnd);
1846 }
1847
CreateFNeg(Value * Op,const Twine & Name,Instruction * InsertBefore)1848 BinaryOperator *BinaryOperator::CreateFNeg(Value *Op, const Twine &Name,
1849 Instruction *InsertBefore) {
1850 Value *zero = ConstantFP::getZeroValueForNegation(Op->getType());
1851 return new BinaryOperator(Instruction::FSub,
1852 zero, Op,
1853 Op->getType(), Name, InsertBefore);
1854 }
1855
CreateFNeg(Value * Op,const Twine & Name,BasicBlock * InsertAtEnd)1856 BinaryOperator *BinaryOperator::CreateFNeg(Value *Op, const Twine &Name,
1857 BasicBlock *InsertAtEnd) {
1858 Value *zero = ConstantFP::getZeroValueForNegation(Op->getType());
1859 return new BinaryOperator(Instruction::FSub,
1860 zero, Op,
1861 Op->getType(), Name, InsertAtEnd);
1862 }
1863
CreateNot(Value * Op,const Twine & Name,Instruction * InsertBefore)1864 BinaryOperator *BinaryOperator::CreateNot(Value *Op, const Twine &Name,
1865 Instruction *InsertBefore) {
1866 Constant *C;
1867 if (VectorType *PTy = dyn_cast<VectorType>(Op->getType())) {
1868 C = Constant::getAllOnesValue(PTy->getElementType());
1869 C = ConstantVector::get(
1870 std::vector<Constant*>(PTy->getNumElements(), C));
1871 } else {
1872 C = Constant::getAllOnesValue(Op->getType());
1873 }
1874
1875 return new BinaryOperator(Instruction::Xor, Op, C,
1876 Op->getType(), Name, InsertBefore);
1877 }
1878
CreateNot(Value * Op,const Twine & Name,BasicBlock * InsertAtEnd)1879 BinaryOperator *BinaryOperator::CreateNot(Value *Op, const Twine &Name,
1880 BasicBlock *InsertAtEnd) {
1881 Constant *AllOnes;
1882 if (VectorType *PTy = dyn_cast<VectorType>(Op->getType())) {
1883 // Create a vector of all ones values.
1884 Constant *Elt = Constant::getAllOnesValue(PTy->getElementType());
1885 AllOnes = ConstantVector::get(
1886 std::vector<Constant*>(PTy->getNumElements(), Elt));
1887 } else {
1888 AllOnes = Constant::getAllOnesValue(Op->getType());
1889 }
1890
1891 return new BinaryOperator(Instruction::Xor, Op, AllOnes,
1892 Op->getType(), Name, InsertAtEnd);
1893 }
1894
1895
1896 // isConstantAllOnes - Helper function for several functions below
isConstantAllOnes(const Value * V)1897 static inline bool isConstantAllOnes(const Value *V) {
1898 if (const ConstantInt *CI = dyn_cast<ConstantInt>(V))
1899 return CI->isAllOnesValue();
1900 if (const ConstantVector *CV = dyn_cast<ConstantVector>(V))
1901 return CV->isAllOnesValue();
1902 return false;
1903 }
1904
isNeg(const Value * V)1905 bool BinaryOperator::isNeg(const Value *V) {
1906 if (const BinaryOperator *Bop = dyn_cast<BinaryOperator>(V))
1907 if (Bop->getOpcode() == Instruction::Sub)
1908 if (Constant* C = dyn_cast<Constant>(Bop->getOperand(0)))
1909 return C->isNegativeZeroValue();
1910 return false;
1911 }
1912
isFNeg(const Value * V)1913 bool BinaryOperator::isFNeg(const Value *V) {
1914 if (const BinaryOperator *Bop = dyn_cast<BinaryOperator>(V))
1915 if (Bop->getOpcode() == Instruction::FSub)
1916 if (Constant* C = dyn_cast<Constant>(Bop->getOperand(0)))
1917 return C->isNegativeZeroValue();
1918 return false;
1919 }
1920
isNot(const Value * V)1921 bool BinaryOperator::isNot(const Value *V) {
1922 if (const BinaryOperator *Bop = dyn_cast<BinaryOperator>(V))
1923 return (Bop->getOpcode() == Instruction::Xor &&
1924 (isConstantAllOnes(Bop->getOperand(1)) ||
1925 isConstantAllOnes(Bop->getOperand(0))));
1926 return false;
1927 }
1928
getNegArgument(Value * BinOp)1929 Value *BinaryOperator::getNegArgument(Value *BinOp) {
1930 return cast<BinaryOperator>(BinOp)->getOperand(1);
1931 }
1932
getNegArgument(const Value * BinOp)1933 const Value *BinaryOperator::getNegArgument(const Value *BinOp) {
1934 return getNegArgument(const_cast<Value*>(BinOp));
1935 }
1936
getFNegArgument(Value * BinOp)1937 Value *BinaryOperator::getFNegArgument(Value *BinOp) {
1938 return cast<BinaryOperator>(BinOp)->getOperand(1);
1939 }
1940
getFNegArgument(const Value * BinOp)1941 const Value *BinaryOperator::getFNegArgument(const Value *BinOp) {
1942 return getFNegArgument(const_cast<Value*>(BinOp));
1943 }
1944
getNotArgument(Value * BinOp)1945 Value *BinaryOperator::getNotArgument(Value *BinOp) {
1946 assert(isNot(BinOp) && "getNotArgument on non-'not' instruction!");
1947 BinaryOperator *BO = cast<BinaryOperator>(BinOp);
1948 Value *Op0 = BO->getOperand(0);
1949 Value *Op1 = BO->getOperand(1);
1950 if (isConstantAllOnes(Op0)) return Op1;
1951
1952 assert(isConstantAllOnes(Op1));
1953 return Op0;
1954 }
1955
getNotArgument(const Value * BinOp)1956 const Value *BinaryOperator::getNotArgument(const Value *BinOp) {
1957 return getNotArgument(const_cast<Value*>(BinOp));
1958 }
1959
1960
1961 // swapOperands - Exchange the two operands to this instruction. This
1962 // instruction is safe to use on any binary instruction and does not
1963 // modify the semantics of the instruction. If the instruction is
1964 // order dependent (SetLT f.e.) the opcode is changed.
1965 //
swapOperands()1966 bool BinaryOperator::swapOperands() {
1967 if (!isCommutative())
1968 return true; // Can't commute operands
1969 Op<0>().swap(Op<1>());
1970 return false;
1971 }
1972
setHasNoUnsignedWrap(bool b)1973 void BinaryOperator::setHasNoUnsignedWrap(bool b) {
1974 cast<OverflowingBinaryOperator>(this)->setHasNoUnsignedWrap(b);
1975 }
1976
setHasNoSignedWrap(bool b)1977 void BinaryOperator::setHasNoSignedWrap(bool b) {
1978 cast<OverflowingBinaryOperator>(this)->setHasNoSignedWrap(b);
1979 }
1980
setIsExact(bool b)1981 void BinaryOperator::setIsExact(bool b) {
1982 cast<PossiblyExactOperator>(this)->setIsExact(b);
1983 }
1984
hasNoUnsignedWrap() const1985 bool BinaryOperator::hasNoUnsignedWrap() const {
1986 return cast<OverflowingBinaryOperator>(this)->hasNoUnsignedWrap();
1987 }
1988
hasNoSignedWrap() const1989 bool BinaryOperator::hasNoSignedWrap() const {
1990 return cast<OverflowingBinaryOperator>(this)->hasNoSignedWrap();
1991 }
1992
isExact() const1993 bool BinaryOperator::isExact() const {
1994 return cast<PossiblyExactOperator>(this)->isExact();
1995 }
1996
1997 //===----------------------------------------------------------------------===//
1998 // CastInst Class
1999 //===----------------------------------------------------------------------===//
2000
2001 // Just determine if this cast only deals with integral->integral conversion.
isIntegerCast() const2002 bool CastInst::isIntegerCast() const {
2003 switch (getOpcode()) {
2004 default: return false;
2005 case Instruction::ZExt:
2006 case Instruction::SExt:
2007 case Instruction::Trunc:
2008 return true;
2009 case Instruction::BitCast:
2010 return getOperand(0)->getType()->isIntegerTy() &&
2011 getType()->isIntegerTy();
2012 }
2013 }
2014
isLosslessCast() const2015 bool CastInst::isLosslessCast() const {
2016 // Only BitCast can be lossless, exit fast if we're not BitCast
2017 if (getOpcode() != Instruction::BitCast)
2018 return false;
2019
2020 // Identity cast is always lossless
2021 Type* SrcTy = getOperand(0)->getType();
2022 Type* DstTy = getType();
2023 if (SrcTy == DstTy)
2024 return true;
2025
2026 // Pointer to pointer is always lossless.
2027 if (SrcTy->isPointerTy())
2028 return DstTy->isPointerTy();
2029 return false; // Other types have no identity values
2030 }
2031
2032 /// This function determines if the CastInst does not require any bits to be
2033 /// changed in order to effect the cast. Essentially, it identifies cases where
2034 /// no code gen is necessary for the cast, hence the name no-op cast. For
2035 /// example, the following are all no-op casts:
2036 /// # bitcast i32* %x to i8*
2037 /// # bitcast <2 x i32> %x to <4 x i16>
2038 /// # ptrtoint i32* %x to i32 ; on 32-bit plaforms only
2039 /// @brief Determine if the described cast is a no-op.
isNoopCast(Instruction::CastOps Opcode,Type * SrcTy,Type * DestTy,Type * IntPtrTy)2040 bool CastInst::isNoopCast(Instruction::CastOps Opcode,
2041 Type *SrcTy,
2042 Type *DestTy,
2043 Type *IntPtrTy) {
2044 switch (Opcode) {
2045 default:
2046 assert(0 && "Invalid CastOp");
2047 case Instruction::Trunc:
2048 case Instruction::ZExt:
2049 case Instruction::SExt:
2050 case Instruction::FPTrunc:
2051 case Instruction::FPExt:
2052 case Instruction::UIToFP:
2053 case Instruction::SIToFP:
2054 case Instruction::FPToUI:
2055 case Instruction::FPToSI:
2056 return false; // These always modify bits
2057 case Instruction::BitCast:
2058 return true; // BitCast never modifies bits.
2059 case Instruction::PtrToInt:
2060 return IntPtrTy->getScalarSizeInBits() ==
2061 DestTy->getScalarSizeInBits();
2062 case Instruction::IntToPtr:
2063 return IntPtrTy->getScalarSizeInBits() ==
2064 SrcTy->getScalarSizeInBits();
2065 }
2066 }
2067
2068 /// @brief Determine if a cast is a no-op.
isNoopCast(Type * IntPtrTy) const2069 bool CastInst::isNoopCast(Type *IntPtrTy) const {
2070 return isNoopCast(getOpcode(), getOperand(0)->getType(), getType(), IntPtrTy);
2071 }
2072
2073 /// This function determines if a pair of casts can be eliminated and what
2074 /// opcode should be used in the elimination. This assumes that there are two
2075 /// instructions like this:
2076 /// * %F = firstOpcode SrcTy %x to MidTy
2077 /// * %S = secondOpcode MidTy %F to DstTy
2078 /// The function returns a resultOpcode so these two casts can be replaced with:
2079 /// * %Replacement = resultOpcode %SrcTy %x to DstTy
2080 /// If no such cast is permited, the function returns 0.
isEliminableCastPair(Instruction::CastOps firstOp,Instruction::CastOps secondOp,Type * SrcTy,Type * MidTy,Type * DstTy,Type * IntPtrTy)2081 unsigned CastInst::isEliminableCastPair(
2082 Instruction::CastOps firstOp, Instruction::CastOps secondOp,
2083 Type *SrcTy, Type *MidTy, Type *DstTy, Type *IntPtrTy) {
2084 // Define the 144 possibilities for these two cast instructions. The values
2085 // in this matrix determine what to do in a given situation and select the
2086 // case in the switch below. The rows correspond to firstOp, the columns
2087 // correspond to secondOp. In looking at the table below, keep in mind
2088 // the following cast properties:
2089 //
2090 // Size Compare Source Destination
2091 // Operator Src ? Size Type Sign Type Sign
2092 // -------- ------------ ------------------- ---------------------
2093 // TRUNC > Integer Any Integral Any
2094 // ZEXT < Integral Unsigned Integer Any
2095 // SEXT < Integral Signed Integer Any
2096 // FPTOUI n/a FloatPt n/a Integral Unsigned
2097 // FPTOSI n/a FloatPt n/a Integral Signed
2098 // UITOFP n/a Integral Unsigned FloatPt n/a
2099 // SITOFP n/a Integral Signed FloatPt n/a
2100 // FPTRUNC > FloatPt n/a FloatPt n/a
2101 // FPEXT < FloatPt n/a FloatPt n/a
2102 // PTRTOINT n/a Pointer n/a Integral Unsigned
2103 // INTTOPTR n/a Integral Unsigned Pointer n/a
2104 // BITCAST = FirstClass n/a FirstClass n/a
2105 //
2106 // NOTE: some transforms are safe, but we consider them to be non-profitable.
2107 // For example, we could merge "fptoui double to i32" + "zext i32 to i64",
2108 // into "fptoui double to i64", but this loses information about the range
2109 // of the produced value (we no longer know the top-part is all zeros).
2110 // Further this conversion is often much more expensive for typical hardware,
2111 // and causes issues when building libgcc. We disallow fptosi+sext for the
2112 // same reason.
2113 const unsigned numCastOps =
2114 Instruction::CastOpsEnd - Instruction::CastOpsBegin;
2115 static const uint8_t CastResults[numCastOps][numCastOps] = {
2116 // T F F U S F F P I B -+
2117 // R Z S P P I I T P 2 N T |
2118 // U E E 2 2 2 2 R E I T C +- secondOp
2119 // N X X U S F F N X N 2 V |
2120 // C T T I I P P C T T P T -+
2121 { 1, 0, 0,99,99, 0, 0,99,99,99, 0, 3 }, // Trunc -+
2122 { 8, 1, 9,99,99, 2, 0,99,99,99, 2, 3 }, // ZExt |
2123 { 8, 0, 1,99,99, 0, 2,99,99,99, 0, 3 }, // SExt |
2124 { 0, 0, 0,99,99, 0, 0,99,99,99, 0, 3 }, // FPToUI |
2125 { 0, 0, 0,99,99, 0, 0,99,99,99, 0, 3 }, // FPToSI |
2126 { 99,99,99, 0, 0,99,99, 0, 0,99,99, 4 }, // UIToFP +- firstOp
2127 { 99,99,99, 0, 0,99,99, 0, 0,99,99, 4 }, // SIToFP |
2128 { 99,99,99, 0, 0,99,99, 1, 0,99,99, 4 }, // FPTrunc |
2129 { 99,99,99, 2, 2,99,99,10, 2,99,99, 4 }, // FPExt |
2130 { 1, 0, 0,99,99, 0, 0,99,99,99, 7, 3 }, // PtrToInt |
2131 { 99,99,99,99,99,99,99,99,99,13,99,12 }, // IntToPtr |
2132 { 5, 5, 5, 6, 6, 5, 5, 6, 6,11, 5, 1 }, // BitCast -+
2133 };
2134
2135 // If either of the casts are a bitcast from scalar to vector, disallow the
2136 // merging. However, bitcast of A->B->A are allowed.
2137 bool isFirstBitcast = (firstOp == Instruction::BitCast);
2138 bool isSecondBitcast = (secondOp == Instruction::BitCast);
2139 bool chainedBitcast = (SrcTy == DstTy && isFirstBitcast && isSecondBitcast);
2140
2141 // Check if any of the bitcasts convert scalars<->vectors.
2142 if ((isFirstBitcast && isa<VectorType>(SrcTy) != isa<VectorType>(MidTy)) ||
2143 (isSecondBitcast && isa<VectorType>(MidTy) != isa<VectorType>(DstTy)))
2144 // Unless we are bitcasing to the original type, disallow optimizations.
2145 if (!chainedBitcast) return 0;
2146
2147 int ElimCase = CastResults[firstOp-Instruction::CastOpsBegin]
2148 [secondOp-Instruction::CastOpsBegin];
2149 switch (ElimCase) {
2150 case 0:
2151 // categorically disallowed
2152 return 0;
2153 case 1:
2154 // allowed, use first cast's opcode
2155 return firstOp;
2156 case 2:
2157 // allowed, use second cast's opcode
2158 return secondOp;
2159 case 3:
2160 // no-op cast in second op implies firstOp as long as the DestTy
2161 // is integer and we are not converting between a vector and a
2162 // non vector type.
2163 if (!SrcTy->isVectorTy() && DstTy->isIntegerTy())
2164 return firstOp;
2165 return 0;
2166 case 4:
2167 // no-op cast in second op implies firstOp as long as the DestTy
2168 // is floating point.
2169 if (DstTy->isFloatingPointTy())
2170 return firstOp;
2171 return 0;
2172 case 5:
2173 // no-op cast in first op implies secondOp as long as the SrcTy
2174 // is an integer.
2175 if (SrcTy->isIntegerTy())
2176 return secondOp;
2177 return 0;
2178 case 6:
2179 // no-op cast in first op implies secondOp as long as the SrcTy
2180 // is a floating point.
2181 if (SrcTy->isFloatingPointTy())
2182 return secondOp;
2183 return 0;
2184 case 7: {
2185 // ptrtoint, inttoptr -> bitcast (ptr -> ptr) if int size is >= ptr size
2186 if (!IntPtrTy)
2187 return 0;
2188 unsigned PtrSize = IntPtrTy->getScalarSizeInBits();
2189 unsigned MidSize = MidTy->getScalarSizeInBits();
2190 if (MidSize >= PtrSize)
2191 return Instruction::BitCast;
2192 return 0;
2193 }
2194 case 8: {
2195 // ext, trunc -> bitcast, if the SrcTy and DstTy are same size
2196 // ext, trunc -> ext, if sizeof(SrcTy) < sizeof(DstTy)
2197 // ext, trunc -> trunc, if sizeof(SrcTy) > sizeof(DstTy)
2198 unsigned SrcSize = SrcTy->getScalarSizeInBits();
2199 unsigned DstSize = DstTy->getScalarSizeInBits();
2200 if (SrcSize == DstSize)
2201 return Instruction::BitCast;
2202 else if (SrcSize < DstSize)
2203 return firstOp;
2204 return secondOp;
2205 }
2206 case 9: // zext, sext -> zext, because sext can't sign extend after zext
2207 return Instruction::ZExt;
2208 case 10:
2209 // fpext followed by ftrunc is allowed if the bit size returned to is
2210 // the same as the original, in which case its just a bitcast
2211 if (SrcTy == DstTy)
2212 return Instruction::BitCast;
2213 return 0; // If the types are not the same we can't eliminate it.
2214 case 11:
2215 // bitcast followed by ptrtoint is allowed as long as the bitcast
2216 // is a pointer to pointer cast.
2217 if (SrcTy->isPointerTy() && MidTy->isPointerTy())
2218 return secondOp;
2219 return 0;
2220 case 12:
2221 // inttoptr, bitcast -> intptr if bitcast is a ptr to ptr cast
2222 if (MidTy->isPointerTy() && DstTy->isPointerTy())
2223 return firstOp;
2224 return 0;
2225 case 13: {
2226 // inttoptr, ptrtoint -> bitcast if SrcSize<=PtrSize and SrcSize==DstSize
2227 if (!IntPtrTy)
2228 return 0;
2229 unsigned PtrSize = IntPtrTy->getScalarSizeInBits();
2230 unsigned SrcSize = SrcTy->getScalarSizeInBits();
2231 unsigned DstSize = DstTy->getScalarSizeInBits();
2232 if (SrcSize <= PtrSize && SrcSize == DstSize)
2233 return Instruction::BitCast;
2234 return 0;
2235 }
2236 case 99:
2237 // cast combination can't happen (error in input). This is for all cases
2238 // where the MidTy is not the same for the two cast instructions.
2239 assert(0 && "Invalid Cast Combination");
2240 return 0;
2241 default:
2242 assert(0 && "Error in CastResults table!!!");
2243 return 0;
2244 }
2245 return 0;
2246 }
2247
Create(Instruction::CastOps op,Value * S,Type * Ty,const Twine & Name,Instruction * InsertBefore)2248 CastInst *CastInst::Create(Instruction::CastOps op, Value *S, Type *Ty,
2249 const Twine &Name, Instruction *InsertBefore) {
2250 assert(castIsValid(op, S, Ty) && "Invalid cast!");
2251 // Construct and return the appropriate CastInst subclass
2252 switch (op) {
2253 case Trunc: return new TruncInst (S, Ty, Name, InsertBefore);
2254 case ZExt: return new ZExtInst (S, Ty, Name, InsertBefore);
2255 case SExt: return new SExtInst (S, Ty, Name, InsertBefore);
2256 case FPTrunc: return new FPTruncInst (S, Ty, Name, InsertBefore);
2257 case FPExt: return new FPExtInst (S, Ty, Name, InsertBefore);
2258 case UIToFP: return new UIToFPInst (S, Ty, Name, InsertBefore);
2259 case SIToFP: return new SIToFPInst (S, Ty, Name, InsertBefore);
2260 case FPToUI: return new FPToUIInst (S, Ty, Name, InsertBefore);
2261 case FPToSI: return new FPToSIInst (S, Ty, Name, InsertBefore);
2262 case PtrToInt: return new PtrToIntInst (S, Ty, Name, InsertBefore);
2263 case IntToPtr: return new IntToPtrInst (S, Ty, Name, InsertBefore);
2264 case BitCast: return new BitCastInst (S, Ty, Name, InsertBefore);
2265 default:
2266 assert(0 && "Invalid opcode provided");
2267 }
2268 return 0;
2269 }
2270
Create(Instruction::CastOps op,Value * S,Type * Ty,const Twine & Name,BasicBlock * InsertAtEnd)2271 CastInst *CastInst::Create(Instruction::CastOps op, Value *S, Type *Ty,
2272 const Twine &Name, BasicBlock *InsertAtEnd) {
2273 assert(castIsValid(op, S, Ty) && "Invalid cast!");
2274 // Construct and return the appropriate CastInst subclass
2275 switch (op) {
2276 case Trunc: return new TruncInst (S, Ty, Name, InsertAtEnd);
2277 case ZExt: return new ZExtInst (S, Ty, Name, InsertAtEnd);
2278 case SExt: return new SExtInst (S, Ty, Name, InsertAtEnd);
2279 case FPTrunc: return new FPTruncInst (S, Ty, Name, InsertAtEnd);
2280 case FPExt: return new FPExtInst (S, Ty, Name, InsertAtEnd);
2281 case UIToFP: return new UIToFPInst (S, Ty, Name, InsertAtEnd);
2282 case SIToFP: return new SIToFPInst (S, Ty, Name, InsertAtEnd);
2283 case FPToUI: return new FPToUIInst (S, Ty, Name, InsertAtEnd);
2284 case FPToSI: return new FPToSIInst (S, Ty, Name, InsertAtEnd);
2285 case PtrToInt: return new PtrToIntInst (S, Ty, Name, InsertAtEnd);
2286 case IntToPtr: return new IntToPtrInst (S, Ty, Name, InsertAtEnd);
2287 case BitCast: return new BitCastInst (S, Ty, Name, InsertAtEnd);
2288 default:
2289 assert(0 && "Invalid opcode provided");
2290 }
2291 return 0;
2292 }
2293
CreateZExtOrBitCast(Value * S,Type * Ty,const Twine & Name,Instruction * InsertBefore)2294 CastInst *CastInst::CreateZExtOrBitCast(Value *S, Type *Ty,
2295 const Twine &Name,
2296 Instruction *InsertBefore) {
2297 if (S->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
2298 return Create(Instruction::BitCast, S, Ty, Name, InsertBefore);
2299 return Create(Instruction::ZExt, S, Ty, Name, InsertBefore);
2300 }
2301
CreateZExtOrBitCast(Value * S,Type * Ty,const Twine & Name,BasicBlock * InsertAtEnd)2302 CastInst *CastInst::CreateZExtOrBitCast(Value *S, Type *Ty,
2303 const Twine &Name,
2304 BasicBlock *InsertAtEnd) {
2305 if (S->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
2306 return Create(Instruction::BitCast, S, Ty, Name, InsertAtEnd);
2307 return Create(Instruction::ZExt, S, Ty, Name, InsertAtEnd);
2308 }
2309
CreateSExtOrBitCast(Value * S,Type * Ty,const Twine & Name,Instruction * InsertBefore)2310 CastInst *CastInst::CreateSExtOrBitCast(Value *S, Type *Ty,
2311 const Twine &Name,
2312 Instruction *InsertBefore) {
2313 if (S->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
2314 return Create(Instruction::BitCast, S, Ty, Name, InsertBefore);
2315 return Create(Instruction::SExt, S, Ty, Name, InsertBefore);
2316 }
2317
CreateSExtOrBitCast(Value * S,Type * Ty,const Twine & Name,BasicBlock * InsertAtEnd)2318 CastInst *CastInst::CreateSExtOrBitCast(Value *S, Type *Ty,
2319 const Twine &Name,
2320 BasicBlock *InsertAtEnd) {
2321 if (S->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
2322 return Create(Instruction::BitCast, S, Ty, Name, InsertAtEnd);
2323 return Create(Instruction::SExt, S, Ty, Name, InsertAtEnd);
2324 }
2325
CreateTruncOrBitCast(Value * S,Type * Ty,const Twine & Name,Instruction * InsertBefore)2326 CastInst *CastInst::CreateTruncOrBitCast(Value *S, Type *Ty,
2327 const Twine &Name,
2328 Instruction *InsertBefore) {
2329 if (S->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
2330 return Create(Instruction::BitCast, S, Ty, Name, InsertBefore);
2331 return Create(Instruction::Trunc, S, Ty, Name, InsertBefore);
2332 }
2333
CreateTruncOrBitCast(Value * S,Type * Ty,const Twine & Name,BasicBlock * InsertAtEnd)2334 CastInst *CastInst::CreateTruncOrBitCast(Value *S, Type *Ty,
2335 const Twine &Name,
2336 BasicBlock *InsertAtEnd) {
2337 if (S->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
2338 return Create(Instruction::BitCast, S, Ty, Name, InsertAtEnd);
2339 return Create(Instruction::Trunc, S, Ty, Name, InsertAtEnd);
2340 }
2341
CreatePointerCast(Value * S,Type * Ty,const Twine & Name,BasicBlock * InsertAtEnd)2342 CastInst *CastInst::CreatePointerCast(Value *S, Type *Ty,
2343 const Twine &Name,
2344 BasicBlock *InsertAtEnd) {
2345 assert(S->getType()->isPointerTy() && "Invalid cast");
2346 assert((Ty->isIntegerTy() || Ty->isPointerTy()) &&
2347 "Invalid cast");
2348
2349 if (Ty->isIntegerTy())
2350 return Create(Instruction::PtrToInt, S, Ty, Name, InsertAtEnd);
2351 return Create(Instruction::BitCast, S, Ty, Name, InsertAtEnd);
2352 }
2353
2354 /// @brief Create a BitCast or a PtrToInt cast instruction
CreatePointerCast(Value * S,Type * Ty,const Twine & Name,Instruction * InsertBefore)2355 CastInst *CastInst::CreatePointerCast(Value *S, Type *Ty,
2356 const Twine &Name,
2357 Instruction *InsertBefore) {
2358 assert(S->getType()->isPointerTy() && "Invalid cast");
2359 assert((Ty->isIntegerTy() || Ty->isPointerTy()) &&
2360 "Invalid cast");
2361
2362 if (Ty->isIntegerTy())
2363 return Create(Instruction::PtrToInt, S, Ty, Name, InsertBefore);
2364 return Create(Instruction::BitCast, S, Ty, Name, InsertBefore);
2365 }
2366
CreateIntegerCast(Value * C,Type * Ty,bool isSigned,const Twine & Name,Instruction * InsertBefore)2367 CastInst *CastInst::CreateIntegerCast(Value *C, Type *Ty,
2368 bool isSigned, const Twine &Name,
2369 Instruction *InsertBefore) {
2370 assert(C->getType()->isIntOrIntVectorTy() && Ty->isIntOrIntVectorTy() &&
2371 "Invalid integer cast");
2372 unsigned SrcBits = C->getType()->getScalarSizeInBits();
2373 unsigned DstBits = Ty->getScalarSizeInBits();
2374 Instruction::CastOps opcode =
2375 (SrcBits == DstBits ? Instruction::BitCast :
2376 (SrcBits > DstBits ? Instruction::Trunc :
2377 (isSigned ? Instruction::SExt : Instruction::ZExt)));
2378 return Create(opcode, C, Ty, Name, InsertBefore);
2379 }
2380
CreateIntegerCast(Value * C,Type * Ty,bool isSigned,const Twine & Name,BasicBlock * InsertAtEnd)2381 CastInst *CastInst::CreateIntegerCast(Value *C, Type *Ty,
2382 bool isSigned, const Twine &Name,
2383 BasicBlock *InsertAtEnd) {
2384 assert(C->getType()->isIntOrIntVectorTy() && Ty->isIntOrIntVectorTy() &&
2385 "Invalid cast");
2386 unsigned SrcBits = C->getType()->getScalarSizeInBits();
2387 unsigned DstBits = Ty->getScalarSizeInBits();
2388 Instruction::CastOps opcode =
2389 (SrcBits == DstBits ? Instruction::BitCast :
2390 (SrcBits > DstBits ? Instruction::Trunc :
2391 (isSigned ? Instruction::SExt : Instruction::ZExt)));
2392 return Create(opcode, C, Ty, Name, InsertAtEnd);
2393 }
2394
CreateFPCast(Value * C,Type * Ty,const Twine & Name,Instruction * InsertBefore)2395 CastInst *CastInst::CreateFPCast(Value *C, Type *Ty,
2396 const Twine &Name,
2397 Instruction *InsertBefore) {
2398 assert(C->getType()->isFPOrFPVectorTy() && Ty->isFPOrFPVectorTy() &&
2399 "Invalid cast");
2400 unsigned SrcBits = C->getType()->getScalarSizeInBits();
2401 unsigned DstBits = Ty->getScalarSizeInBits();
2402 Instruction::CastOps opcode =
2403 (SrcBits == DstBits ? Instruction::BitCast :
2404 (SrcBits > DstBits ? Instruction::FPTrunc : Instruction::FPExt));
2405 return Create(opcode, C, Ty, Name, InsertBefore);
2406 }
2407
CreateFPCast(Value * C,Type * Ty,const Twine & Name,BasicBlock * InsertAtEnd)2408 CastInst *CastInst::CreateFPCast(Value *C, Type *Ty,
2409 const Twine &Name,
2410 BasicBlock *InsertAtEnd) {
2411 assert(C->getType()->isFPOrFPVectorTy() && Ty->isFPOrFPVectorTy() &&
2412 "Invalid cast");
2413 unsigned SrcBits = C->getType()->getScalarSizeInBits();
2414 unsigned DstBits = Ty->getScalarSizeInBits();
2415 Instruction::CastOps opcode =
2416 (SrcBits == DstBits ? Instruction::BitCast :
2417 (SrcBits > DstBits ? Instruction::FPTrunc : Instruction::FPExt));
2418 return Create(opcode, C, Ty, Name, InsertAtEnd);
2419 }
2420
2421 // Check whether it is valid to call getCastOpcode for these types.
2422 // This routine must be kept in sync with getCastOpcode.
isCastable(Type * SrcTy,Type * DestTy)2423 bool CastInst::isCastable(Type *SrcTy, Type *DestTy) {
2424 if (!SrcTy->isFirstClassType() || !DestTy->isFirstClassType())
2425 return false;
2426
2427 if (SrcTy == DestTy)
2428 return true;
2429
2430 if (VectorType *SrcVecTy = dyn_cast<VectorType>(SrcTy))
2431 if (VectorType *DestVecTy = dyn_cast<VectorType>(DestTy))
2432 if (SrcVecTy->getNumElements() == DestVecTy->getNumElements()) {
2433 // An element by element cast. Valid if casting the elements is valid.
2434 SrcTy = SrcVecTy->getElementType();
2435 DestTy = DestVecTy->getElementType();
2436 }
2437
2438 // Get the bit sizes, we'll need these
2439 unsigned SrcBits = SrcTy->getPrimitiveSizeInBits(); // 0 for ptr
2440 unsigned DestBits = DestTy->getPrimitiveSizeInBits(); // 0 for ptr
2441
2442 // Run through the possibilities ...
2443 if (DestTy->isIntegerTy()) { // Casting to integral
2444 if (SrcTy->isIntegerTy()) { // Casting from integral
2445 return true;
2446 } else if (SrcTy->isFloatingPointTy()) { // Casting from floating pt
2447 return true;
2448 } else if (SrcTy->isVectorTy()) { // Casting from vector
2449 return DestBits == SrcBits;
2450 } else { // Casting from something else
2451 return SrcTy->isPointerTy();
2452 }
2453 } else if (DestTy->isFloatingPointTy()) { // Casting to floating pt
2454 if (SrcTy->isIntegerTy()) { // Casting from integral
2455 return true;
2456 } else if (SrcTy->isFloatingPointTy()) { // Casting from floating pt
2457 return true;
2458 } else if (SrcTy->isVectorTy()) { // Casting from vector
2459 return DestBits == SrcBits;
2460 } else { // Casting from something else
2461 return false;
2462 }
2463 } else if (DestTy->isVectorTy()) { // Casting to vector
2464 return DestBits == SrcBits;
2465 } else if (DestTy->isPointerTy()) { // Casting to pointer
2466 if (SrcTy->isPointerTy()) { // Casting from pointer
2467 return true;
2468 } else if (SrcTy->isIntegerTy()) { // Casting from integral
2469 return true;
2470 } else { // Casting from something else
2471 return false;
2472 }
2473 } else if (DestTy->isX86_MMXTy()) {
2474 if (SrcTy->isVectorTy()) {
2475 return DestBits == SrcBits; // 64-bit vector to MMX
2476 } else {
2477 return false;
2478 }
2479 } else { // Casting to something else
2480 return false;
2481 }
2482 }
2483
2484 // Provide a way to get a "cast" where the cast opcode is inferred from the
2485 // types and size of the operand. This, basically, is a parallel of the
2486 // logic in the castIsValid function below. This axiom should hold:
2487 // castIsValid( getCastOpcode(Val, Ty), Val, Ty)
2488 // should not assert in castIsValid. In other words, this produces a "correct"
2489 // casting opcode for the arguments passed to it.
2490 // This routine must be kept in sync with isCastable.
2491 Instruction::CastOps
getCastOpcode(const Value * Src,bool SrcIsSigned,Type * DestTy,bool DestIsSigned)2492 CastInst::getCastOpcode(
2493 const Value *Src, bool SrcIsSigned, Type *DestTy, bool DestIsSigned) {
2494 Type *SrcTy = Src->getType();
2495
2496 assert(SrcTy->isFirstClassType() && DestTy->isFirstClassType() &&
2497 "Only first class types are castable!");
2498
2499 if (SrcTy == DestTy)
2500 return BitCast;
2501
2502 if (VectorType *SrcVecTy = dyn_cast<VectorType>(SrcTy))
2503 if (VectorType *DestVecTy = dyn_cast<VectorType>(DestTy))
2504 if (SrcVecTy->getNumElements() == DestVecTy->getNumElements()) {
2505 // An element by element cast. Find the appropriate opcode based on the
2506 // element types.
2507 SrcTy = SrcVecTy->getElementType();
2508 DestTy = DestVecTy->getElementType();
2509 }
2510
2511 // Get the bit sizes, we'll need these
2512 unsigned SrcBits = SrcTy->getPrimitiveSizeInBits(); // 0 for ptr
2513 unsigned DestBits = DestTy->getPrimitiveSizeInBits(); // 0 for ptr
2514
2515 // Run through the possibilities ...
2516 if (DestTy->isIntegerTy()) { // Casting to integral
2517 if (SrcTy->isIntegerTy()) { // Casting from integral
2518 if (DestBits < SrcBits)
2519 return Trunc; // int -> smaller int
2520 else if (DestBits > SrcBits) { // its an extension
2521 if (SrcIsSigned)
2522 return SExt; // signed -> SEXT
2523 else
2524 return ZExt; // unsigned -> ZEXT
2525 } else {
2526 return BitCast; // Same size, No-op cast
2527 }
2528 } else if (SrcTy->isFloatingPointTy()) { // Casting from floating pt
2529 if (DestIsSigned)
2530 return FPToSI; // FP -> sint
2531 else
2532 return FPToUI; // FP -> uint
2533 } else if (SrcTy->isVectorTy()) {
2534 assert(DestBits == SrcBits &&
2535 "Casting vector to integer of different width");
2536 return BitCast; // Same size, no-op cast
2537 } else {
2538 assert(SrcTy->isPointerTy() &&
2539 "Casting from a value that is not first-class type");
2540 return PtrToInt; // ptr -> int
2541 }
2542 } else if (DestTy->isFloatingPointTy()) { // Casting to floating pt
2543 if (SrcTy->isIntegerTy()) { // Casting from integral
2544 if (SrcIsSigned)
2545 return SIToFP; // sint -> FP
2546 else
2547 return UIToFP; // uint -> FP
2548 } else if (SrcTy->isFloatingPointTy()) { // Casting from floating pt
2549 if (DestBits < SrcBits) {
2550 return FPTrunc; // FP -> smaller FP
2551 } else if (DestBits > SrcBits) {
2552 return FPExt; // FP -> larger FP
2553 } else {
2554 return BitCast; // same size, no-op cast
2555 }
2556 } else if (SrcTy->isVectorTy()) {
2557 assert(DestBits == SrcBits &&
2558 "Casting vector to floating point of different width");
2559 return BitCast; // same size, no-op cast
2560 } else {
2561 llvm_unreachable("Casting pointer or non-first class to float");
2562 }
2563 } else if (DestTy->isVectorTy()) {
2564 assert(DestBits == SrcBits &&
2565 "Illegal cast to vector (wrong type or size)");
2566 return BitCast;
2567 } else if (DestTy->isPointerTy()) {
2568 if (SrcTy->isPointerTy()) {
2569 return BitCast; // ptr -> ptr
2570 } else if (SrcTy->isIntegerTy()) {
2571 return IntToPtr; // int -> ptr
2572 } else {
2573 assert(0 && "Casting pointer to other than pointer or int");
2574 }
2575 } else if (DestTy->isX86_MMXTy()) {
2576 if (SrcTy->isVectorTy()) {
2577 assert(DestBits == SrcBits && "Casting vector of wrong width to X86_MMX");
2578 return BitCast; // 64-bit vector to MMX
2579 } else {
2580 assert(0 && "Illegal cast to X86_MMX");
2581 }
2582 } else {
2583 assert(0 && "Casting to type that is not first-class");
2584 }
2585
2586 // If we fall through to here we probably hit an assertion cast above
2587 // and assertions are not turned on. Anything we return is an error, so
2588 // BitCast is as good a choice as any.
2589 return BitCast;
2590 }
2591
2592 //===----------------------------------------------------------------------===//
2593 // CastInst SubClass Constructors
2594 //===----------------------------------------------------------------------===//
2595
2596 /// Check that the construction parameters for a CastInst are correct. This
2597 /// could be broken out into the separate constructors but it is useful to have
2598 /// it in one place and to eliminate the redundant code for getting the sizes
2599 /// of the types involved.
2600 bool
castIsValid(Instruction::CastOps op,Value * S,Type * DstTy)2601 CastInst::castIsValid(Instruction::CastOps op, Value *S, Type *DstTy) {
2602
2603 // Check for type sanity on the arguments
2604 Type *SrcTy = S->getType();
2605 if (!SrcTy->isFirstClassType() || !DstTy->isFirstClassType() ||
2606 SrcTy->isAggregateType() || DstTy->isAggregateType())
2607 return false;
2608
2609 // Get the size of the types in bits, we'll need this later
2610 unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
2611 unsigned DstBitSize = DstTy->getScalarSizeInBits();
2612
2613 // If these are vector types, get the lengths of the vectors (using zero for
2614 // scalar types means that checking that vector lengths match also checks that
2615 // scalars are not being converted to vectors or vectors to scalars).
2616 unsigned SrcLength = SrcTy->isVectorTy() ?
2617 cast<VectorType>(SrcTy)->getNumElements() : 0;
2618 unsigned DstLength = DstTy->isVectorTy() ?
2619 cast<VectorType>(DstTy)->getNumElements() : 0;
2620
2621 // Switch on the opcode provided
2622 switch (op) {
2623 default: return false; // This is an input error
2624 case Instruction::Trunc:
2625 return SrcTy->isIntOrIntVectorTy() && DstTy->isIntOrIntVectorTy() &&
2626 SrcLength == DstLength && SrcBitSize > DstBitSize;
2627 case Instruction::ZExt:
2628 return SrcTy->isIntOrIntVectorTy() && DstTy->isIntOrIntVectorTy() &&
2629 SrcLength == DstLength && SrcBitSize < DstBitSize;
2630 case Instruction::SExt:
2631 return SrcTy->isIntOrIntVectorTy() && DstTy->isIntOrIntVectorTy() &&
2632 SrcLength == DstLength && SrcBitSize < DstBitSize;
2633 case Instruction::FPTrunc:
2634 return SrcTy->isFPOrFPVectorTy() && DstTy->isFPOrFPVectorTy() &&
2635 SrcLength == DstLength && SrcBitSize > DstBitSize;
2636 case Instruction::FPExt:
2637 return SrcTy->isFPOrFPVectorTy() && DstTy->isFPOrFPVectorTy() &&
2638 SrcLength == DstLength && SrcBitSize < DstBitSize;
2639 case Instruction::UIToFP:
2640 case Instruction::SIToFP:
2641 return SrcTy->isIntOrIntVectorTy() && DstTy->isFPOrFPVectorTy() &&
2642 SrcLength == DstLength;
2643 case Instruction::FPToUI:
2644 case Instruction::FPToSI:
2645 return SrcTy->isFPOrFPVectorTy() && DstTy->isIntOrIntVectorTy() &&
2646 SrcLength == DstLength;
2647 case Instruction::PtrToInt:
2648 return SrcTy->isPointerTy() && DstTy->isIntegerTy();
2649 case Instruction::IntToPtr:
2650 return SrcTy->isIntegerTy() && DstTy->isPointerTy();
2651 case Instruction::BitCast:
2652 // BitCast implies a no-op cast of type only. No bits change.
2653 // However, you can't cast pointers to anything but pointers.
2654 if (SrcTy->isPointerTy() != DstTy->isPointerTy())
2655 return false;
2656
2657 // Now we know we're not dealing with a pointer/non-pointer mismatch. In all
2658 // these cases, the cast is okay if the source and destination bit widths
2659 // are identical.
2660 return SrcTy->getPrimitiveSizeInBits() == DstTy->getPrimitiveSizeInBits();
2661 }
2662 }
2663
TruncInst(Value * S,Type * Ty,const Twine & Name,Instruction * InsertBefore)2664 TruncInst::TruncInst(
2665 Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
2666 ) : CastInst(Ty, Trunc, S, Name, InsertBefore) {
2667 assert(castIsValid(getOpcode(), S, Ty) && "Illegal Trunc");
2668 }
2669
TruncInst(Value * S,Type * Ty,const Twine & Name,BasicBlock * InsertAtEnd)2670 TruncInst::TruncInst(
2671 Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
2672 ) : CastInst(Ty, Trunc, S, Name, InsertAtEnd) {
2673 assert(castIsValid(getOpcode(), S, Ty) && "Illegal Trunc");
2674 }
2675
ZExtInst(Value * S,Type * Ty,const Twine & Name,Instruction * InsertBefore)2676 ZExtInst::ZExtInst(
2677 Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
2678 ) : CastInst(Ty, ZExt, S, Name, InsertBefore) {
2679 assert(castIsValid(getOpcode(), S, Ty) && "Illegal ZExt");
2680 }
2681
ZExtInst(Value * S,Type * Ty,const Twine & Name,BasicBlock * InsertAtEnd)2682 ZExtInst::ZExtInst(
2683 Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
2684 ) : CastInst(Ty, ZExt, S, Name, InsertAtEnd) {
2685 assert(castIsValid(getOpcode(), S, Ty) && "Illegal ZExt");
2686 }
SExtInst(Value * S,Type * Ty,const Twine & Name,Instruction * InsertBefore)2687 SExtInst::SExtInst(
2688 Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
2689 ) : CastInst(Ty, SExt, S, Name, InsertBefore) {
2690 assert(castIsValid(getOpcode(), S, Ty) && "Illegal SExt");
2691 }
2692
SExtInst(Value * S,Type * Ty,const Twine & Name,BasicBlock * InsertAtEnd)2693 SExtInst::SExtInst(
2694 Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
2695 ) : CastInst(Ty, SExt, S, Name, InsertAtEnd) {
2696 assert(castIsValid(getOpcode(), S, Ty) && "Illegal SExt");
2697 }
2698
FPTruncInst(Value * S,Type * Ty,const Twine & Name,Instruction * InsertBefore)2699 FPTruncInst::FPTruncInst(
2700 Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
2701 ) : CastInst(Ty, FPTrunc, S, Name, InsertBefore) {
2702 assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPTrunc");
2703 }
2704
FPTruncInst(Value * S,Type * Ty,const Twine & Name,BasicBlock * InsertAtEnd)2705 FPTruncInst::FPTruncInst(
2706 Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
2707 ) : CastInst(Ty, FPTrunc, S, Name, InsertAtEnd) {
2708 assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPTrunc");
2709 }
2710
FPExtInst(Value * S,Type * Ty,const Twine & Name,Instruction * InsertBefore)2711 FPExtInst::FPExtInst(
2712 Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
2713 ) : CastInst(Ty, FPExt, S, Name, InsertBefore) {
2714 assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPExt");
2715 }
2716
FPExtInst(Value * S,Type * Ty,const Twine & Name,BasicBlock * InsertAtEnd)2717 FPExtInst::FPExtInst(
2718 Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
2719 ) : CastInst(Ty, FPExt, S, Name, InsertAtEnd) {
2720 assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPExt");
2721 }
2722
UIToFPInst(Value * S,Type * Ty,const Twine & Name,Instruction * InsertBefore)2723 UIToFPInst::UIToFPInst(
2724 Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
2725 ) : CastInst(Ty, UIToFP, S, Name, InsertBefore) {
2726 assert(castIsValid(getOpcode(), S, Ty) && "Illegal UIToFP");
2727 }
2728
UIToFPInst(Value * S,Type * Ty,const Twine & Name,BasicBlock * InsertAtEnd)2729 UIToFPInst::UIToFPInst(
2730 Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
2731 ) : CastInst(Ty, UIToFP, S, Name, InsertAtEnd) {
2732 assert(castIsValid(getOpcode(), S, Ty) && "Illegal UIToFP");
2733 }
2734
SIToFPInst(Value * S,Type * Ty,const Twine & Name,Instruction * InsertBefore)2735 SIToFPInst::SIToFPInst(
2736 Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
2737 ) : CastInst(Ty, SIToFP, S, Name, InsertBefore) {
2738 assert(castIsValid(getOpcode(), S, Ty) && "Illegal SIToFP");
2739 }
2740
SIToFPInst(Value * S,Type * Ty,const Twine & Name,BasicBlock * InsertAtEnd)2741 SIToFPInst::SIToFPInst(
2742 Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
2743 ) : CastInst(Ty, SIToFP, S, Name, InsertAtEnd) {
2744 assert(castIsValid(getOpcode(), S, Ty) && "Illegal SIToFP");
2745 }
2746
FPToUIInst(Value * S,Type * Ty,const Twine & Name,Instruction * InsertBefore)2747 FPToUIInst::FPToUIInst(
2748 Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
2749 ) : CastInst(Ty, FPToUI, S, Name, InsertBefore) {
2750 assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPToUI");
2751 }
2752
FPToUIInst(Value * S,Type * Ty,const Twine & Name,BasicBlock * InsertAtEnd)2753 FPToUIInst::FPToUIInst(
2754 Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
2755 ) : CastInst(Ty, FPToUI, S, Name, InsertAtEnd) {
2756 assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPToUI");
2757 }
2758
FPToSIInst(Value * S,Type * Ty,const Twine & Name,Instruction * InsertBefore)2759 FPToSIInst::FPToSIInst(
2760 Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
2761 ) : CastInst(Ty, FPToSI, S, Name, InsertBefore) {
2762 assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPToSI");
2763 }
2764
FPToSIInst(Value * S,Type * Ty,const Twine & Name,BasicBlock * InsertAtEnd)2765 FPToSIInst::FPToSIInst(
2766 Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
2767 ) : CastInst(Ty, FPToSI, S, Name, InsertAtEnd) {
2768 assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPToSI");
2769 }
2770
PtrToIntInst(Value * S,Type * Ty,const Twine & Name,Instruction * InsertBefore)2771 PtrToIntInst::PtrToIntInst(
2772 Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
2773 ) : CastInst(Ty, PtrToInt, S, Name, InsertBefore) {
2774 assert(castIsValid(getOpcode(), S, Ty) && "Illegal PtrToInt");
2775 }
2776
PtrToIntInst(Value * S,Type * Ty,const Twine & Name,BasicBlock * InsertAtEnd)2777 PtrToIntInst::PtrToIntInst(
2778 Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
2779 ) : CastInst(Ty, PtrToInt, S, Name, InsertAtEnd) {
2780 assert(castIsValid(getOpcode(), S, Ty) && "Illegal PtrToInt");
2781 }
2782
IntToPtrInst(Value * S,Type * Ty,const Twine & Name,Instruction * InsertBefore)2783 IntToPtrInst::IntToPtrInst(
2784 Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
2785 ) : CastInst(Ty, IntToPtr, S, Name, InsertBefore) {
2786 assert(castIsValid(getOpcode(), S, Ty) && "Illegal IntToPtr");
2787 }
2788
IntToPtrInst(Value * S,Type * Ty,const Twine & Name,BasicBlock * InsertAtEnd)2789 IntToPtrInst::IntToPtrInst(
2790 Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
2791 ) : CastInst(Ty, IntToPtr, S, Name, InsertAtEnd) {
2792 assert(castIsValid(getOpcode(), S, Ty) && "Illegal IntToPtr");
2793 }
2794
BitCastInst(Value * S,Type * Ty,const Twine & Name,Instruction * InsertBefore)2795 BitCastInst::BitCastInst(
2796 Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
2797 ) : CastInst(Ty, BitCast, S, Name, InsertBefore) {
2798 assert(castIsValid(getOpcode(), S, Ty) && "Illegal BitCast");
2799 }
2800
BitCastInst(Value * S,Type * Ty,const Twine & Name,BasicBlock * InsertAtEnd)2801 BitCastInst::BitCastInst(
2802 Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
2803 ) : CastInst(Ty, BitCast, S, Name, InsertAtEnd) {
2804 assert(castIsValid(getOpcode(), S, Ty) && "Illegal BitCast");
2805 }
2806
2807 //===----------------------------------------------------------------------===//
2808 // CmpInst Classes
2809 //===----------------------------------------------------------------------===//
2810
Anchor() const2811 void CmpInst::Anchor() const {}
2812
CmpInst(Type * ty,OtherOps op,unsigned short predicate,Value * LHS,Value * RHS,const Twine & Name,Instruction * InsertBefore)2813 CmpInst::CmpInst(Type *ty, OtherOps op, unsigned short predicate,
2814 Value *LHS, Value *RHS, const Twine &Name,
2815 Instruction *InsertBefore)
2816 : Instruction(ty, op,
2817 OperandTraits<CmpInst>::op_begin(this),
2818 OperandTraits<CmpInst>::operands(this),
2819 InsertBefore) {
2820 Op<0>() = LHS;
2821 Op<1>() = RHS;
2822 setPredicate((Predicate)predicate);
2823 setName(Name);
2824 }
2825
CmpInst(Type * ty,OtherOps op,unsigned short predicate,Value * LHS,Value * RHS,const Twine & Name,BasicBlock * InsertAtEnd)2826 CmpInst::CmpInst(Type *ty, OtherOps op, unsigned short predicate,
2827 Value *LHS, Value *RHS, const Twine &Name,
2828 BasicBlock *InsertAtEnd)
2829 : Instruction(ty, op,
2830 OperandTraits<CmpInst>::op_begin(this),
2831 OperandTraits<CmpInst>::operands(this),
2832 InsertAtEnd) {
2833 Op<0>() = LHS;
2834 Op<1>() = RHS;
2835 setPredicate((Predicate)predicate);
2836 setName(Name);
2837 }
2838
2839 CmpInst *
Create(OtherOps Op,unsigned short predicate,Value * S1,Value * S2,const Twine & Name,Instruction * InsertBefore)2840 CmpInst::Create(OtherOps Op, unsigned short predicate,
2841 Value *S1, Value *S2,
2842 const Twine &Name, Instruction *InsertBefore) {
2843 if (Op == Instruction::ICmp) {
2844 if (InsertBefore)
2845 return new ICmpInst(InsertBefore, CmpInst::Predicate(predicate),
2846 S1, S2, Name);
2847 else
2848 return new ICmpInst(CmpInst::Predicate(predicate),
2849 S1, S2, Name);
2850 }
2851
2852 if (InsertBefore)
2853 return new FCmpInst(InsertBefore, CmpInst::Predicate(predicate),
2854 S1, S2, Name);
2855 else
2856 return new FCmpInst(CmpInst::Predicate(predicate),
2857 S1, S2, Name);
2858 }
2859
2860 CmpInst *
Create(OtherOps Op,unsigned short predicate,Value * S1,Value * S2,const Twine & Name,BasicBlock * InsertAtEnd)2861 CmpInst::Create(OtherOps Op, unsigned short predicate, Value *S1, Value *S2,
2862 const Twine &Name, BasicBlock *InsertAtEnd) {
2863 if (Op == Instruction::ICmp) {
2864 return new ICmpInst(*InsertAtEnd, CmpInst::Predicate(predicate),
2865 S1, S2, Name);
2866 }
2867 return new FCmpInst(*InsertAtEnd, CmpInst::Predicate(predicate),
2868 S1, S2, Name);
2869 }
2870
swapOperands()2871 void CmpInst::swapOperands() {
2872 if (ICmpInst *IC = dyn_cast<ICmpInst>(this))
2873 IC->swapOperands();
2874 else
2875 cast<FCmpInst>(this)->swapOperands();
2876 }
2877
isCommutative() const2878 bool CmpInst::isCommutative() const {
2879 if (const ICmpInst *IC = dyn_cast<ICmpInst>(this))
2880 return IC->isCommutative();
2881 return cast<FCmpInst>(this)->isCommutative();
2882 }
2883
isEquality() const2884 bool CmpInst::isEquality() const {
2885 if (const ICmpInst *IC = dyn_cast<ICmpInst>(this))
2886 return IC->isEquality();
2887 return cast<FCmpInst>(this)->isEquality();
2888 }
2889
2890
getInversePredicate(Predicate pred)2891 CmpInst::Predicate CmpInst::getInversePredicate(Predicate pred) {
2892 switch (pred) {
2893 default: assert(0 && "Unknown cmp predicate!");
2894 case ICMP_EQ: return ICMP_NE;
2895 case ICMP_NE: return ICMP_EQ;
2896 case ICMP_UGT: return ICMP_ULE;
2897 case ICMP_ULT: return ICMP_UGE;
2898 case ICMP_UGE: return ICMP_ULT;
2899 case ICMP_ULE: return ICMP_UGT;
2900 case ICMP_SGT: return ICMP_SLE;
2901 case ICMP_SLT: return ICMP_SGE;
2902 case ICMP_SGE: return ICMP_SLT;
2903 case ICMP_SLE: return ICMP_SGT;
2904
2905 case FCMP_OEQ: return FCMP_UNE;
2906 case FCMP_ONE: return FCMP_UEQ;
2907 case FCMP_OGT: return FCMP_ULE;
2908 case FCMP_OLT: return FCMP_UGE;
2909 case FCMP_OGE: return FCMP_ULT;
2910 case FCMP_OLE: return FCMP_UGT;
2911 case FCMP_UEQ: return FCMP_ONE;
2912 case FCMP_UNE: return FCMP_OEQ;
2913 case FCMP_UGT: return FCMP_OLE;
2914 case FCMP_ULT: return FCMP_OGE;
2915 case FCMP_UGE: return FCMP_OLT;
2916 case FCMP_ULE: return FCMP_OGT;
2917 case FCMP_ORD: return FCMP_UNO;
2918 case FCMP_UNO: return FCMP_ORD;
2919 case FCMP_TRUE: return FCMP_FALSE;
2920 case FCMP_FALSE: return FCMP_TRUE;
2921 }
2922 }
2923
getSignedPredicate(Predicate pred)2924 ICmpInst::Predicate ICmpInst::getSignedPredicate(Predicate pred) {
2925 switch (pred) {
2926 default: assert(0 && "Unknown icmp predicate!");
2927 case ICMP_EQ: case ICMP_NE:
2928 case ICMP_SGT: case ICMP_SLT: case ICMP_SGE: case ICMP_SLE:
2929 return pred;
2930 case ICMP_UGT: return ICMP_SGT;
2931 case ICMP_ULT: return ICMP_SLT;
2932 case ICMP_UGE: return ICMP_SGE;
2933 case ICMP_ULE: return ICMP_SLE;
2934 }
2935 }
2936
getUnsignedPredicate(Predicate pred)2937 ICmpInst::Predicate ICmpInst::getUnsignedPredicate(Predicate pred) {
2938 switch (pred) {
2939 default: assert(0 && "Unknown icmp predicate!");
2940 case ICMP_EQ: case ICMP_NE:
2941 case ICMP_UGT: case ICMP_ULT: case ICMP_UGE: case ICMP_ULE:
2942 return pred;
2943 case ICMP_SGT: return ICMP_UGT;
2944 case ICMP_SLT: return ICMP_ULT;
2945 case ICMP_SGE: return ICMP_UGE;
2946 case ICMP_SLE: return ICMP_ULE;
2947 }
2948 }
2949
2950 /// Initialize a set of values that all satisfy the condition with C.
2951 ///
2952 ConstantRange
makeConstantRange(Predicate pred,const APInt & C)2953 ICmpInst::makeConstantRange(Predicate pred, const APInt &C) {
2954 APInt Lower(C);
2955 APInt Upper(C);
2956 uint32_t BitWidth = C.getBitWidth();
2957 switch (pred) {
2958 default: llvm_unreachable("Invalid ICmp opcode to ConstantRange ctor!");
2959 case ICmpInst::ICMP_EQ: Upper++; break;
2960 case ICmpInst::ICMP_NE: Lower++; break;
2961 case ICmpInst::ICMP_ULT:
2962 Lower = APInt::getMinValue(BitWidth);
2963 // Check for an empty-set condition.
2964 if (Lower == Upper)
2965 return ConstantRange(BitWidth, /*isFullSet=*/false);
2966 break;
2967 case ICmpInst::ICMP_SLT:
2968 Lower = APInt::getSignedMinValue(BitWidth);
2969 // Check for an empty-set condition.
2970 if (Lower == Upper)
2971 return ConstantRange(BitWidth, /*isFullSet=*/false);
2972 break;
2973 case ICmpInst::ICMP_UGT:
2974 Lower++; Upper = APInt::getMinValue(BitWidth); // Min = Next(Max)
2975 // Check for an empty-set condition.
2976 if (Lower == Upper)
2977 return ConstantRange(BitWidth, /*isFullSet=*/false);
2978 break;
2979 case ICmpInst::ICMP_SGT:
2980 Lower++; Upper = APInt::getSignedMinValue(BitWidth); // Min = Next(Max)
2981 // Check for an empty-set condition.
2982 if (Lower == Upper)
2983 return ConstantRange(BitWidth, /*isFullSet=*/false);
2984 break;
2985 case ICmpInst::ICMP_ULE:
2986 Lower = APInt::getMinValue(BitWidth); Upper++;
2987 // Check for a full-set condition.
2988 if (Lower == Upper)
2989 return ConstantRange(BitWidth, /*isFullSet=*/true);
2990 break;
2991 case ICmpInst::ICMP_SLE:
2992 Lower = APInt::getSignedMinValue(BitWidth); Upper++;
2993 // Check for a full-set condition.
2994 if (Lower == Upper)
2995 return ConstantRange(BitWidth, /*isFullSet=*/true);
2996 break;
2997 case ICmpInst::ICMP_UGE:
2998 Upper = APInt::getMinValue(BitWidth); // Min = Next(Max)
2999 // Check for a full-set condition.
3000 if (Lower == Upper)
3001 return ConstantRange(BitWidth, /*isFullSet=*/true);
3002 break;
3003 case ICmpInst::ICMP_SGE:
3004 Upper = APInt::getSignedMinValue(BitWidth); // Min = Next(Max)
3005 // Check for a full-set condition.
3006 if (Lower == Upper)
3007 return ConstantRange(BitWidth, /*isFullSet=*/true);
3008 break;
3009 }
3010 return ConstantRange(Lower, Upper);
3011 }
3012
getSwappedPredicate(Predicate pred)3013 CmpInst::Predicate CmpInst::getSwappedPredicate(Predicate pred) {
3014 switch (pred) {
3015 default: assert(0 && "Unknown cmp predicate!");
3016 case ICMP_EQ: case ICMP_NE:
3017 return pred;
3018 case ICMP_SGT: return ICMP_SLT;
3019 case ICMP_SLT: return ICMP_SGT;
3020 case ICMP_SGE: return ICMP_SLE;
3021 case ICMP_SLE: return ICMP_SGE;
3022 case ICMP_UGT: return ICMP_ULT;
3023 case ICMP_ULT: return ICMP_UGT;
3024 case ICMP_UGE: return ICMP_ULE;
3025 case ICMP_ULE: return ICMP_UGE;
3026
3027 case FCMP_FALSE: case FCMP_TRUE:
3028 case FCMP_OEQ: case FCMP_ONE:
3029 case FCMP_UEQ: case FCMP_UNE:
3030 case FCMP_ORD: case FCMP_UNO:
3031 return pred;
3032 case FCMP_OGT: return FCMP_OLT;
3033 case FCMP_OLT: return FCMP_OGT;
3034 case FCMP_OGE: return FCMP_OLE;
3035 case FCMP_OLE: return FCMP_OGE;
3036 case FCMP_UGT: return FCMP_ULT;
3037 case FCMP_ULT: return FCMP_UGT;
3038 case FCMP_UGE: return FCMP_ULE;
3039 case FCMP_ULE: return FCMP_UGE;
3040 }
3041 }
3042
isUnsigned(unsigned short predicate)3043 bool CmpInst::isUnsigned(unsigned short predicate) {
3044 switch (predicate) {
3045 default: return false;
3046 case ICmpInst::ICMP_ULT: case ICmpInst::ICMP_ULE: case ICmpInst::ICMP_UGT:
3047 case ICmpInst::ICMP_UGE: return true;
3048 }
3049 }
3050
isSigned(unsigned short predicate)3051 bool CmpInst::isSigned(unsigned short predicate) {
3052 switch (predicate) {
3053 default: return false;
3054 case ICmpInst::ICMP_SLT: case ICmpInst::ICMP_SLE: case ICmpInst::ICMP_SGT:
3055 case ICmpInst::ICMP_SGE: return true;
3056 }
3057 }
3058
isOrdered(unsigned short predicate)3059 bool CmpInst::isOrdered(unsigned short predicate) {
3060 switch (predicate) {
3061 default: return false;
3062 case FCmpInst::FCMP_OEQ: case FCmpInst::FCMP_ONE: case FCmpInst::FCMP_OGT:
3063 case FCmpInst::FCMP_OLT: case FCmpInst::FCMP_OGE: case FCmpInst::FCMP_OLE:
3064 case FCmpInst::FCMP_ORD: return true;
3065 }
3066 }
3067
isUnordered(unsigned short predicate)3068 bool CmpInst::isUnordered(unsigned short predicate) {
3069 switch (predicate) {
3070 default: return false;
3071 case FCmpInst::FCMP_UEQ: case FCmpInst::FCMP_UNE: case FCmpInst::FCMP_UGT:
3072 case FCmpInst::FCMP_ULT: case FCmpInst::FCMP_UGE: case FCmpInst::FCMP_ULE:
3073 case FCmpInst::FCMP_UNO: return true;
3074 }
3075 }
3076
isTrueWhenEqual(unsigned short predicate)3077 bool CmpInst::isTrueWhenEqual(unsigned short predicate) {
3078 switch(predicate) {
3079 default: return false;
3080 case ICMP_EQ: case ICMP_UGE: case ICMP_ULE: case ICMP_SGE: case ICMP_SLE:
3081 case FCMP_TRUE: case FCMP_UEQ: case FCMP_UGE: case FCMP_ULE: return true;
3082 }
3083 }
3084
isFalseWhenEqual(unsigned short predicate)3085 bool CmpInst::isFalseWhenEqual(unsigned short predicate) {
3086 switch(predicate) {
3087 case ICMP_NE: case ICMP_UGT: case ICMP_ULT: case ICMP_SGT: case ICMP_SLT:
3088 case FCMP_FALSE: case FCMP_ONE: case FCMP_OGT: case FCMP_OLT: return true;
3089 default: return false;
3090 }
3091 }
3092
3093
3094 //===----------------------------------------------------------------------===//
3095 // SwitchInst Implementation
3096 //===----------------------------------------------------------------------===//
3097
init(Value * Value,BasicBlock * Default,unsigned NumReserved)3098 void SwitchInst::init(Value *Value, BasicBlock *Default, unsigned NumReserved) {
3099 assert(Value && Default && NumReserved);
3100 ReservedSpace = NumReserved;
3101 NumOperands = 2;
3102 OperandList = allocHungoffUses(ReservedSpace);
3103
3104 OperandList[0] = Value;
3105 OperandList[1] = Default;
3106 }
3107
3108 /// SwitchInst ctor - Create a new switch instruction, specifying a value to
3109 /// switch on and a default destination. The number of additional cases can
3110 /// be specified here to make memory allocation more efficient. This
3111 /// constructor can also autoinsert before another instruction.
SwitchInst(Value * Value,BasicBlock * Default,unsigned NumCases,Instruction * InsertBefore)3112 SwitchInst::SwitchInst(Value *Value, BasicBlock *Default, unsigned NumCases,
3113 Instruction *InsertBefore)
3114 : TerminatorInst(Type::getVoidTy(Value->getContext()), Instruction::Switch,
3115 0, 0, InsertBefore) {
3116 init(Value, Default, 2+NumCases*2);
3117 }
3118
3119 /// SwitchInst ctor - Create a new switch instruction, specifying a value to
3120 /// switch on and a default destination. The number of additional cases can
3121 /// be specified here to make memory allocation more efficient. This
3122 /// constructor also autoinserts at the end of the specified BasicBlock.
SwitchInst(Value * Value,BasicBlock * Default,unsigned NumCases,BasicBlock * InsertAtEnd)3123 SwitchInst::SwitchInst(Value *Value, BasicBlock *Default, unsigned NumCases,
3124 BasicBlock *InsertAtEnd)
3125 : TerminatorInst(Type::getVoidTy(Value->getContext()), Instruction::Switch,
3126 0, 0, InsertAtEnd) {
3127 init(Value, Default, 2+NumCases*2);
3128 }
3129
SwitchInst(const SwitchInst & SI)3130 SwitchInst::SwitchInst(const SwitchInst &SI)
3131 : TerminatorInst(SI.getType(), Instruction::Switch, 0, 0) {
3132 init(SI.getCondition(), SI.getDefaultDest(), SI.getNumOperands());
3133 NumOperands = SI.getNumOperands();
3134 Use *OL = OperandList, *InOL = SI.OperandList;
3135 for (unsigned i = 2, E = SI.getNumOperands(); i != E; i += 2) {
3136 OL[i] = InOL[i];
3137 OL[i+1] = InOL[i+1];
3138 }
3139 SubclassOptionalData = SI.SubclassOptionalData;
3140 }
3141
~SwitchInst()3142 SwitchInst::~SwitchInst() {
3143 dropHungoffUses();
3144 }
3145
3146
3147 /// addCase - Add an entry to the switch instruction...
3148 ///
addCase(ConstantInt * OnVal,BasicBlock * Dest)3149 void SwitchInst::addCase(ConstantInt *OnVal, BasicBlock *Dest) {
3150 unsigned OpNo = NumOperands;
3151 if (OpNo+2 > ReservedSpace)
3152 growOperands(); // Get more space!
3153 // Initialize some new operands.
3154 assert(OpNo+1 < ReservedSpace && "Growing didn't work!");
3155 NumOperands = OpNo+2;
3156 OperandList[OpNo] = OnVal;
3157 OperandList[OpNo+1] = Dest;
3158 }
3159
3160 /// removeCase - This method removes the specified successor from the switch
3161 /// instruction. Note that this cannot be used to remove the default
3162 /// destination (successor #0).
3163 ///
removeCase(unsigned idx)3164 void SwitchInst::removeCase(unsigned idx) {
3165 assert(idx != 0 && "Cannot remove the default case!");
3166 assert(idx*2 < getNumOperands() && "Successor index out of range!!!");
3167
3168 unsigned NumOps = getNumOperands();
3169 Use *OL = OperandList;
3170
3171 // Overwrite this case with the end of the list.
3172 if ((idx + 1) * 2 != NumOps) {
3173 OL[idx * 2] = OL[NumOps - 2];
3174 OL[idx * 2 + 1] = OL[NumOps - 1];
3175 }
3176
3177 // Nuke the last value.
3178 OL[NumOps-2].set(0);
3179 OL[NumOps-2+1].set(0);
3180 NumOperands = NumOps-2;
3181 }
3182
3183 /// growOperands - grow operands - This grows the operand list in response
3184 /// to a push_back style of operation. This grows the number of ops by 3 times.
3185 ///
growOperands()3186 void SwitchInst::growOperands() {
3187 unsigned e = getNumOperands();
3188 unsigned NumOps = e*3;
3189
3190 ReservedSpace = NumOps;
3191 Use *NewOps = allocHungoffUses(NumOps);
3192 Use *OldOps = OperandList;
3193 for (unsigned i = 0; i != e; ++i) {
3194 NewOps[i] = OldOps[i];
3195 }
3196 OperandList = NewOps;
3197 Use::zap(OldOps, OldOps + e, true);
3198 }
3199
3200
getSuccessorV(unsigned idx) const3201 BasicBlock *SwitchInst::getSuccessorV(unsigned idx) const {
3202 return getSuccessor(idx);
3203 }
getNumSuccessorsV() const3204 unsigned SwitchInst::getNumSuccessorsV() const {
3205 return getNumSuccessors();
3206 }
setSuccessorV(unsigned idx,BasicBlock * B)3207 void SwitchInst::setSuccessorV(unsigned idx, BasicBlock *B) {
3208 setSuccessor(idx, B);
3209 }
3210
3211 //===----------------------------------------------------------------------===//
3212 // IndirectBrInst Implementation
3213 //===----------------------------------------------------------------------===//
3214
init(Value * Address,unsigned NumDests)3215 void IndirectBrInst::init(Value *Address, unsigned NumDests) {
3216 assert(Address && Address->getType()->isPointerTy() &&
3217 "Address of indirectbr must be a pointer");
3218 ReservedSpace = 1+NumDests;
3219 NumOperands = 1;
3220 OperandList = allocHungoffUses(ReservedSpace);
3221
3222 OperandList[0] = Address;
3223 }
3224
3225
3226 /// growOperands - grow operands - This grows the operand list in response
3227 /// to a push_back style of operation. This grows the number of ops by 2 times.
3228 ///
growOperands()3229 void IndirectBrInst::growOperands() {
3230 unsigned e = getNumOperands();
3231 unsigned NumOps = e*2;
3232
3233 ReservedSpace = NumOps;
3234 Use *NewOps = allocHungoffUses(NumOps);
3235 Use *OldOps = OperandList;
3236 for (unsigned i = 0; i != e; ++i)
3237 NewOps[i] = OldOps[i];
3238 OperandList = NewOps;
3239 Use::zap(OldOps, OldOps + e, true);
3240 }
3241
IndirectBrInst(Value * Address,unsigned NumCases,Instruction * InsertBefore)3242 IndirectBrInst::IndirectBrInst(Value *Address, unsigned NumCases,
3243 Instruction *InsertBefore)
3244 : TerminatorInst(Type::getVoidTy(Address->getContext()),Instruction::IndirectBr,
3245 0, 0, InsertBefore) {
3246 init(Address, NumCases);
3247 }
3248
IndirectBrInst(Value * Address,unsigned NumCases,BasicBlock * InsertAtEnd)3249 IndirectBrInst::IndirectBrInst(Value *Address, unsigned NumCases,
3250 BasicBlock *InsertAtEnd)
3251 : TerminatorInst(Type::getVoidTy(Address->getContext()),Instruction::IndirectBr,
3252 0, 0, InsertAtEnd) {
3253 init(Address, NumCases);
3254 }
3255
IndirectBrInst(const IndirectBrInst & IBI)3256 IndirectBrInst::IndirectBrInst(const IndirectBrInst &IBI)
3257 : TerminatorInst(Type::getVoidTy(IBI.getContext()), Instruction::IndirectBr,
3258 allocHungoffUses(IBI.getNumOperands()),
3259 IBI.getNumOperands()) {
3260 Use *OL = OperandList, *InOL = IBI.OperandList;
3261 for (unsigned i = 0, E = IBI.getNumOperands(); i != E; ++i)
3262 OL[i] = InOL[i];
3263 SubclassOptionalData = IBI.SubclassOptionalData;
3264 }
3265
~IndirectBrInst()3266 IndirectBrInst::~IndirectBrInst() {
3267 dropHungoffUses();
3268 }
3269
3270 /// addDestination - Add a destination.
3271 ///
addDestination(BasicBlock * DestBB)3272 void IndirectBrInst::addDestination(BasicBlock *DestBB) {
3273 unsigned OpNo = NumOperands;
3274 if (OpNo+1 > ReservedSpace)
3275 growOperands(); // Get more space!
3276 // Initialize some new operands.
3277 assert(OpNo < ReservedSpace && "Growing didn't work!");
3278 NumOperands = OpNo+1;
3279 OperandList[OpNo] = DestBB;
3280 }
3281
3282 /// removeDestination - This method removes the specified successor from the
3283 /// indirectbr instruction.
removeDestination(unsigned idx)3284 void IndirectBrInst::removeDestination(unsigned idx) {
3285 assert(idx < getNumOperands()-1 && "Successor index out of range!");
3286
3287 unsigned NumOps = getNumOperands();
3288 Use *OL = OperandList;
3289
3290 // Replace this value with the last one.
3291 OL[idx+1] = OL[NumOps-1];
3292
3293 // Nuke the last value.
3294 OL[NumOps-1].set(0);
3295 NumOperands = NumOps-1;
3296 }
3297
getSuccessorV(unsigned idx) const3298 BasicBlock *IndirectBrInst::getSuccessorV(unsigned idx) const {
3299 return getSuccessor(idx);
3300 }
getNumSuccessorsV() const3301 unsigned IndirectBrInst::getNumSuccessorsV() const {
3302 return getNumSuccessors();
3303 }
setSuccessorV(unsigned idx,BasicBlock * B)3304 void IndirectBrInst::setSuccessorV(unsigned idx, BasicBlock *B) {
3305 setSuccessor(idx, B);
3306 }
3307
3308 //===----------------------------------------------------------------------===//
3309 // clone_impl() implementations
3310 //===----------------------------------------------------------------------===//
3311
3312 // Define these methods here so vtables don't get emitted into every translation
3313 // unit that uses these classes.
3314
clone_impl() const3315 GetElementPtrInst *GetElementPtrInst::clone_impl() const {
3316 return new (getNumOperands()) GetElementPtrInst(*this);
3317 }
3318
clone_impl() const3319 BinaryOperator *BinaryOperator::clone_impl() const {
3320 return Create(getOpcode(), Op<0>(), Op<1>());
3321 }
3322
clone_impl() const3323 FCmpInst* FCmpInst::clone_impl() const {
3324 return new FCmpInst(getPredicate(), Op<0>(), Op<1>());
3325 }
3326
clone_impl() const3327 ICmpInst* ICmpInst::clone_impl() const {
3328 return new ICmpInst(getPredicate(), Op<0>(), Op<1>());
3329 }
3330
clone_impl() const3331 ExtractValueInst *ExtractValueInst::clone_impl() const {
3332 return new ExtractValueInst(*this);
3333 }
3334
clone_impl() const3335 InsertValueInst *InsertValueInst::clone_impl() const {
3336 return new InsertValueInst(*this);
3337 }
3338
clone_impl() const3339 AllocaInst *AllocaInst::clone_impl() const {
3340 return new AllocaInst(getAllocatedType(),
3341 (Value*)getOperand(0),
3342 getAlignment());
3343 }
3344
clone_impl() const3345 LoadInst *LoadInst::clone_impl() const {
3346 return new LoadInst(getOperand(0), Twine(), isVolatile(),
3347 getAlignment(), getOrdering(), getSynchScope());
3348 }
3349
clone_impl() const3350 StoreInst *StoreInst::clone_impl() const {
3351 return new StoreInst(getOperand(0), getOperand(1), isVolatile(),
3352 getAlignment(), getOrdering(), getSynchScope());
3353
3354 }
3355
clone_impl() const3356 AtomicCmpXchgInst *AtomicCmpXchgInst::clone_impl() const {
3357 AtomicCmpXchgInst *Result =
3358 new AtomicCmpXchgInst(getOperand(0), getOperand(1), getOperand(2),
3359 getOrdering(), getSynchScope());
3360 Result->setVolatile(isVolatile());
3361 return Result;
3362 }
3363
clone_impl() const3364 AtomicRMWInst *AtomicRMWInst::clone_impl() const {
3365 AtomicRMWInst *Result =
3366 new AtomicRMWInst(getOperation(),getOperand(0), getOperand(1),
3367 getOrdering(), getSynchScope());
3368 Result->setVolatile(isVolatile());
3369 return Result;
3370 }
3371
clone_impl() const3372 FenceInst *FenceInst::clone_impl() const {
3373 return new FenceInst(getContext(), getOrdering(), getSynchScope());
3374 }
3375
clone_impl() const3376 TruncInst *TruncInst::clone_impl() const {
3377 return new TruncInst(getOperand(0), getType());
3378 }
3379
clone_impl() const3380 ZExtInst *ZExtInst::clone_impl() const {
3381 return new ZExtInst(getOperand(0), getType());
3382 }
3383
clone_impl() const3384 SExtInst *SExtInst::clone_impl() const {
3385 return new SExtInst(getOperand(0), getType());
3386 }
3387
clone_impl() const3388 FPTruncInst *FPTruncInst::clone_impl() const {
3389 return new FPTruncInst(getOperand(0), getType());
3390 }
3391
clone_impl() const3392 FPExtInst *FPExtInst::clone_impl() const {
3393 return new FPExtInst(getOperand(0), getType());
3394 }
3395
clone_impl() const3396 UIToFPInst *UIToFPInst::clone_impl() const {
3397 return new UIToFPInst(getOperand(0), getType());
3398 }
3399
clone_impl() const3400 SIToFPInst *SIToFPInst::clone_impl() const {
3401 return new SIToFPInst(getOperand(0), getType());
3402 }
3403
clone_impl() const3404 FPToUIInst *FPToUIInst::clone_impl() const {
3405 return new FPToUIInst(getOperand(0), getType());
3406 }
3407
clone_impl() const3408 FPToSIInst *FPToSIInst::clone_impl() const {
3409 return new FPToSIInst(getOperand(0), getType());
3410 }
3411
clone_impl() const3412 PtrToIntInst *PtrToIntInst::clone_impl() const {
3413 return new PtrToIntInst(getOperand(0), getType());
3414 }
3415
clone_impl() const3416 IntToPtrInst *IntToPtrInst::clone_impl() const {
3417 return new IntToPtrInst(getOperand(0), getType());
3418 }
3419
clone_impl() const3420 BitCastInst *BitCastInst::clone_impl() const {
3421 return new BitCastInst(getOperand(0), getType());
3422 }
3423
clone_impl() const3424 CallInst *CallInst::clone_impl() const {
3425 return new(getNumOperands()) CallInst(*this);
3426 }
3427
clone_impl() const3428 SelectInst *SelectInst::clone_impl() const {
3429 return SelectInst::Create(getOperand(0), getOperand(1), getOperand(2));
3430 }
3431
clone_impl() const3432 VAArgInst *VAArgInst::clone_impl() const {
3433 return new VAArgInst(getOperand(0), getType());
3434 }
3435
clone_impl() const3436 ExtractElementInst *ExtractElementInst::clone_impl() const {
3437 return ExtractElementInst::Create(getOperand(0), getOperand(1));
3438 }
3439
clone_impl() const3440 InsertElementInst *InsertElementInst::clone_impl() const {
3441 return InsertElementInst::Create(getOperand(0),
3442 getOperand(1),
3443 getOperand(2));
3444 }
3445
clone_impl() const3446 ShuffleVectorInst *ShuffleVectorInst::clone_impl() const {
3447 return new ShuffleVectorInst(getOperand(0),
3448 getOperand(1),
3449 getOperand(2));
3450 }
3451
clone_impl() const3452 PHINode *PHINode::clone_impl() const {
3453 return new PHINode(*this);
3454 }
3455
clone_impl() const3456 LandingPadInst *LandingPadInst::clone_impl() const {
3457 return new LandingPadInst(*this);
3458 }
3459
clone_impl() const3460 ReturnInst *ReturnInst::clone_impl() const {
3461 return new(getNumOperands()) ReturnInst(*this);
3462 }
3463
clone_impl() const3464 BranchInst *BranchInst::clone_impl() const {
3465 return new(getNumOperands()) BranchInst(*this);
3466 }
3467
clone_impl() const3468 SwitchInst *SwitchInst::clone_impl() const {
3469 return new SwitchInst(*this);
3470 }
3471
clone_impl() const3472 IndirectBrInst *IndirectBrInst::clone_impl() const {
3473 return new IndirectBrInst(*this);
3474 }
3475
3476
clone_impl() const3477 InvokeInst *InvokeInst::clone_impl() const {
3478 return new(getNumOperands()) InvokeInst(*this);
3479 }
3480
clone_impl() const3481 ResumeInst *ResumeInst::clone_impl() const {
3482 return new(1) ResumeInst(*this);
3483 }
3484
clone_impl() const3485 UnwindInst *UnwindInst::clone_impl() const {
3486 LLVMContext &Context = getContext();
3487 return new UnwindInst(Context);
3488 }
3489
clone_impl() const3490 UnreachableInst *UnreachableInst::clone_impl() const {
3491 LLVMContext &Context = getContext();
3492 return new UnreachableInst(Context);
3493 }
3494