• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (C) 2005-2007  Brian Paul   All Rights Reserved.
3  * Copyright (C) 2008  VMware, Inc.   All Rights Reserved.
4  * Copyright © 2010 Intel Corporation
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a
7  * copy of this software and associated documentation files (the "Software"),
8  * to deal in the Software without restriction, including without limitation
9  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
10  * and/or sell copies of the Software, and to permit persons to whom the
11  * Software is furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice (including the next
14  * paragraph) shall be included in all copies or substantial portions of the
15  * Software.
16  *
17  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
18  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
19  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
20  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
21  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
22  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
23  * DEALINGS IN THE SOFTWARE.
24  */
25 
26 /**
27  * \file ir_to_mesa.cpp
28  *
29  * Translate GLSL IR to Mesa's gl_program representation.
30  */
31 
32 #include <stdio.h>
33 #include "main/compiler.h"
34 #include "main/macros.h"
35 #include "main/mtypes.h"
36 #include "main/shaderapi.h"
37 #include "main/shaderobj.h"
38 #include "main/uniforms.h"
39 #include "compiler/glsl/ast.h"
40 #include "compiler/glsl/ir.h"
41 #include "compiler/glsl/ir_expression_flattening.h"
42 #include "compiler/glsl/ir_visitor.h"
43 #include "compiler/glsl/ir_optimization.h"
44 #include "compiler/glsl/ir_uniform.h"
45 #include "compiler/glsl/glsl_parser_extras.h"
46 #include "compiler/glsl_types.h"
47 #include "compiler/glsl/linker.h"
48 #include "compiler/glsl/program.h"
49 #include "program/prog_instruction.h"
50 #include "program/prog_optimize.h"
51 #include "program/prog_print.h"
52 #include "program/program.h"
53 #include "program/prog_parameter.h"
54 #include "util/string_to_uint_map.h"
55 
56 
57 static int swizzle_for_size(int size);
58 
59 namespace {
60 
61 class src_reg;
62 class dst_reg;
63 
64 /**
65  * This struct is a corresponding struct to Mesa prog_src_register, with
66  * wider fields.
67  */
68 class src_reg {
69 public:
src_reg(gl_register_file file,int index,const glsl_type * type)70    src_reg(gl_register_file file, int index, const glsl_type *type)
71    {
72       this->file = file;
73       this->index = index;
74       if (type && (type->is_scalar() || type->is_vector() || type->is_matrix()))
75 	 this->swizzle = swizzle_for_size(type->vector_elements);
76       else
77 	 this->swizzle = SWIZZLE_XYZW;
78       this->negate = 0;
79       this->reladdr = NULL;
80    }
81 
src_reg()82    src_reg()
83    {
84       this->file = PROGRAM_UNDEFINED;
85       this->index = 0;
86       this->swizzle = 0;
87       this->negate = 0;
88       this->reladdr = NULL;
89    }
90 
91    explicit src_reg(dst_reg reg);
92 
93    gl_register_file file; /**< PROGRAM_* from Mesa */
94    int index; /**< temporary index, VERT_ATTRIB_*, VARYING_SLOT_*, etc. */
95    GLuint swizzle; /**< SWIZZLE_XYZWONEZERO swizzles from Mesa. */
96    int negate; /**< NEGATE_XYZW mask from mesa */
97    /** Register index should be offset by the integer in this reg. */
98    src_reg *reladdr;
99 };
100 
101 class dst_reg {
102 public:
dst_reg(gl_register_file file,int writemask)103    dst_reg(gl_register_file file, int writemask)
104    {
105       this->file = file;
106       this->index = 0;
107       this->writemask = writemask;
108       this->reladdr = NULL;
109    }
110 
dst_reg()111    dst_reg()
112    {
113       this->file = PROGRAM_UNDEFINED;
114       this->index = 0;
115       this->writemask = 0;
116       this->reladdr = NULL;
117    }
118 
119    explicit dst_reg(src_reg reg);
120 
121    gl_register_file file; /**< PROGRAM_* from Mesa */
122    int index; /**< temporary index, VERT_ATTRIB_*, VARYING_SLOT_*, etc. */
123    int writemask; /**< Bitfield of WRITEMASK_[XYZW] */
124    /** Register index should be offset by the integer in this reg. */
125    src_reg *reladdr;
126 };
127 
128 } /* anonymous namespace */
129 
src_reg(dst_reg reg)130 src_reg::src_reg(dst_reg reg)
131 {
132    this->file = reg.file;
133    this->index = reg.index;
134    this->swizzle = SWIZZLE_XYZW;
135    this->negate = 0;
136    this->reladdr = reg.reladdr;
137 }
138 
dst_reg(src_reg reg)139 dst_reg::dst_reg(src_reg reg)
140 {
141    this->file = reg.file;
142    this->index = reg.index;
143    this->writemask = WRITEMASK_XYZW;
144    this->reladdr = reg.reladdr;
145 }
146 
147 namespace {
148 
149 class ir_to_mesa_instruction : public exec_node {
150 public:
151    DECLARE_RALLOC_CXX_OPERATORS(ir_to_mesa_instruction)
152 
153    enum prog_opcode op;
154    dst_reg dst;
155    src_reg src[3];
156    /** Pointer to the ir source this tree came from for debugging */
157    ir_instruction *ir;
158    bool saturate;
159    int sampler; /**< sampler index */
160    int tex_target; /**< One of TEXTURE_*_INDEX */
161    GLboolean tex_shadow;
162 };
163 
164 class variable_storage : public exec_node {
165 public:
variable_storage(ir_variable * var,gl_register_file file,int index)166    variable_storage(ir_variable *var, gl_register_file file, int index)
167       : file(file), index(index), var(var)
168    {
169       /* empty */
170    }
171 
172    gl_register_file file;
173    int index;
174    ir_variable *var; /* variable that maps to this, if any */
175 };
176 
177 class function_entry : public exec_node {
178 public:
179    ir_function_signature *sig;
180 
181    /**
182     * identifier of this function signature used by the program.
183     *
184     * At the point that Mesa instructions for function calls are
185     * generated, we don't know the address of the first instruction of
186     * the function body.  So we make the BranchTarget that is called a
187     * small integer and rewrite them during set_branchtargets().
188     */
189    int sig_id;
190 
191    /**
192     * Pointer to first instruction of the function body.
193     *
194     * Set during function body emits after main() is processed.
195     */
196    ir_to_mesa_instruction *bgn_inst;
197 
198    /**
199     * Index of the first instruction of the function body in actual
200     * Mesa IR.
201     *
202     * Set after convertion from ir_to_mesa_instruction to prog_instruction.
203     */
204    int inst;
205 
206    /** Storage for the return value. */
207    src_reg return_reg;
208 };
209 
210 class ir_to_mesa_visitor : public ir_visitor {
211 public:
212    ir_to_mesa_visitor();
213    ~ir_to_mesa_visitor();
214 
215    function_entry *current_function;
216 
217    struct gl_context *ctx;
218    struct gl_program *prog;
219    struct gl_shader_program *shader_program;
220    struct gl_shader_compiler_options *options;
221 
222    int next_temp;
223 
224    variable_storage *find_variable_storage(const ir_variable *var);
225 
226    src_reg get_temp(const glsl_type *type);
227    void reladdr_to_temp(ir_instruction *ir, src_reg *reg, int *num_reladdr);
228 
229    src_reg src_reg_for_float(float val);
230 
231    /**
232     * \name Visit methods
233     *
234     * As typical for the visitor pattern, there must be one \c visit method for
235     * each concrete subclass of \c ir_instruction.  Virtual base classes within
236     * the hierarchy should not have \c visit methods.
237     */
238    /*@{*/
239    virtual void visit(ir_variable *);
240    virtual void visit(ir_loop *);
241    virtual void visit(ir_loop_jump *);
242    virtual void visit(ir_function_signature *);
243    virtual void visit(ir_function *);
244    virtual void visit(ir_expression *);
245    virtual void visit(ir_swizzle *);
246    virtual void visit(ir_dereference_variable  *);
247    virtual void visit(ir_dereference_array *);
248    virtual void visit(ir_dereference_record *);
249    virtual void visit(ir_assignment *);
250    virtual void visit(ir_constant *);
251    virtual void visit(ir_call *);
252    virtual void visit(ir_return *);
253    virtual void visit(ir_discard *);
254    virtual void visit(ir_texture *);
255    virtual void visit(ir_if *);
256    virtual void visit(ir_emit_vertex *);
257    virtual void visit(ir_end_primitive *);
258    virtual void visit(ir_barrier *);
259    /*@}*/
260 
261    src_reg result;
262 
263    /** List of variable_storage */
264    exec_list variables;
265 
266    /** List of function_entry */
267    exec_list function_signatures;
268    int next_signature_id;
269 
270    /** List of ir_to_mesa_instruction */
271    exec_list instructions;
272 
273    ir_to_mesa_instruction *emit(ir_instruction *ir, enum prog_opcode op);
274 
275    ir_to_mesa_instruction *emit(ir_instruction *ir, enum prog_opcode op,
276 			        dst_reg dst, src_reg src0);
277 
278    ir_to_mesa_instruction *emit(ir_instruction *ir, enum prog_opcode op,
279 			        dst_reg dst, src_reg src0, src_reg src1);
280 
281    ir_to_mesa_instruction *emit(ir_instruction *ir, enum prog_opcode op,
282 			        dst_reg dst,
283 			        src_reg src0, src_reg src1, src_reg src2);
284 
285    /**
286     * Emit the correct dot-product instruction for the type of arguments
287     */
288    ir_to_mesa_instruction * emit_dp(ir_instruction *ir,
289 				    dst_reg dst,
290 				    src_reg src0,
291 				    src_reg src1,
292 				    unsigned elements);
293 
294    void emit_scalar(ir_instruction *ir, enum prog_opcode op,
295 		    dst_reg dst, src_reg src0);
296 
297    void emit_scalar(ir_instruction *ir, enum prog_opcode op,
298 		    dst_reg dst, src_reg src0, src_reg src1);
299 
300    bool try_emit_mad(ir_expression *ir,
301 			  int mul_operand);
302    bool try_emit_mad_for_and_not(ir_expression *ir,
303 				 int mul_operand);
304 
305    void emit_swz(ir_expression *ir);
306 
307    void emit_equality_comparison(ir_expression *ir, enum prog_opcode op,
308                                  dst_reg dst,
309                                  const src_reg &src0, const src_reg &src1);
310 
emit_sne(ir_expression * ir,dst_reg dst,const src_reg & src0,const src_reg & src1)311    inline void emit_sne(ir_expression *ir, dst_reg dst,
312                         const src_reg &src0, const src_reg &src1)
313    {
314       emit_equality_comparison(ir, OPCODE_SLT, dst, src0, src1);
315    }
316 
emit_seq(ir_expression * ir,dst_reg dst,const src_reg & src0,const src_reg & src1)317    inline void emit_seq(ir_expression *ir, dst_reg dst,
318                         const src_reg &src0, const src_reg &src1)
319    {
320       emit_equality_comparison(ir, OPCODE_SGE, dst, src0, src1);
321    }
322 
323    bool process_move_condition(ir_rvalue *ir);
324 
325    void copy_propagate(void);
326 
327    void *mem_ctx;
328 };
329 
330 } /* anonymous namespace */
331 
332 static src_reg undef_src = src_reg(PROGRAM_UNDEFINED, 0, NULL);
333 
334 static dst_reg undef_dst = dst_reg(PROGRAM_UNDEFINED, SWIZZLE_NOOP);
335 
336 static dst_reg address_reg = dst_reg(PROGRAM_ADDRESS, WRITEMASK_X);
337 
338 static int
swizzle_for_size(int size)339 swizzle_for_size(int size)
340 {
341    static const int size_swizzles[4] = {
342       MAKE_SWIZZLE4(SWIZZLE_X, SWIZZLE_X, SWIZZLE_X, SWIZZLE_X),
343       MAKE_SWIZZLE4(SWIZZLE_X, SWIZZLE_Y, SWIZZLE_Y, SWIZZLE_Y),
344       MAKE_SWIZZLE4(SWIZZLE_X, SWIZZLE_Y, SWIZZLE_Z, SWIZZLE_Z),
345       MAKE_SWIZZLE4(SWIZZLE_X, SWIZZLE_Y, SWIZZLE_Z, SWIZZLE_W),
346    };
347 
348    assert((size >= 1) && (size <= 4));
349    return size_swizzles[size - 1];
350 }
351 
352 ir_to_mesa_instruction *
emit(ir_instruction * ir,enum prog_opcode op,dst_reg dst,src_reg src0,src_reg src1,src_reg src2)353 ir_to_mesa_visitor::emit(ir_instruction *ir, enum prog_opcode op,
354 			 dst_reg dst,
355 			 src_reg src0, src_reg src1, src_reg src2)
356 {
357    ir_to_mesa_instruction *inst = new(mem_ctx) ir_to_mesa_instruction();
358    int num_reladdr = 0;
359 
360    /* If we have to do relative addressing, we want to load the ARL
361     * reg directly for one of the regs, and preload the other reladdr
362     * sources into temps.
363     */
364    num_reladdr += dst.reladdr != NULL;
365    num_reladdr += src0.reladdr != NULL;
366    num_reladdr += src1.reladdr != NULL;
367    num_reladdr += src2.reladdr != NULL;
368 
369    reladdr_to_temp(ir, &src2, &num_reladdr);
370    reladdr_to_temp(ir, &src1, &num_reladdr);
371    reladdr_to_temp(ir, &src0, &num_reladdr);
372 
373    if (dst.reladdr) {
374       emit(ir, OPCODE_ARL, address_reg, *dst.reladdr);
375       num_reladdr--;
376    }
377    assert(num_reladdr == 0);
378 
379    inst->op = op;
380    inst->dst = dst;
381    inst->src[0] = src0;
382    inst->src[1] = src1;
383    inst->src[2] = src2;
384    inst->ir = ir;
385 
386    this->instructions.push_tail(inst);
387 
388    return inst;
389 }
390 
391 
392 ir_to_mesa_instruction *
emit(ir_instruction * ir,enum prog_opcode op,dst_reg dst,src_reg src0,src_reg src1)393 ir_to_mesa_visitor::emit(ir_instruction *ir, enum prog_opcode op,
394 			 dst_reg dst, src_reg src0, src_reg src1)
395 {
396    return emit(ir, op, dst, src0, src1, undef_src);
397 }
398 
399 ir_to_mesa_instruction *
emit(ir_instruction * ir,enum prog_opcode op,dst_reg dst,src_reg src0)400 ir_to_mesa_visitor::emit(ir_instruction *ir, enum prog_opcode op,
401 			 dst_reg dst, src_reg src0)
402 {
403    assert(dst.writemask != 0);
404    return emit(ir, op, dst, src0, undef_src, undef_src);
405 }
406 
407 ir_to_mesa_instruction *
emit(ir_instruction * ir,enum prog_opcode op)408 ir_to_mesa_visitor::emit(ir_instruction *ir, enum prog_opcode op)
409 {
410    return emit(ir, op, undef_dst, undef_src, undef_src, undef_src);
411 }
412 
413 ir_to_mesa_instruction *
emit_dp(ir_instruction * ir,dst_reg dst,src_reg src0,src_reg src1,unsigned elements)414 ir_to_mesa_visitor::emit_dp(ir_instruction *ir,
415 			    dst_reg dst, src_reg src0, src_reg src1,
416 			    unsigned elements)
417 {
418    static const enum prog_opcode dot_opcodes[] = {
419       OPCODE_DP2, OPCODE_DP3, OPCODE_DP4
420    };
421 
422    return emit(ir, dot_opcodes[elements - 2], dst, src0, src1);
423 }
424 
425 /**
426  * Emits Mesa scalar opcodes to produce unique answers across channels.
427  *
428  * Some Mesa opcodes are scalar-only, like ARB_fp/vp.  The src X
429  * channel determines the result across all channels.  So to do a vec4
430  * of this operation, we want to emit a scalar per source channel used
431  * to produce dest channels.
432  */
433 void
emit_scalar(ir_instruction * ir,enum prog_opcode op,dst_reg dst,src_reg orig_src0,src_reg orig_src1)434 ir_to_mesa_visitor::emit_scalar(ir_instruction *ir, enum prog_opcode op,
435 			        dst_reg dst,
436 				src_reg orig_src0, src_reg orig_src1)
437 {
438    int i, j;
439    int done_mask = ~dst.writemask;
440 
441    /* Mesa RCP is a scalar operation splatting results to all channels,
442     * like ARB_fp/vp.  So emit as many RCPs as necessary to cover our
443     * dst channels.
444     */
445    for (i = 0; i < 4; i++) {
446       GLuint this_mask = (1 << i);
447       ir_to_mesa_instruction *inst;
448       src_reg src0 = orig_src0;
449       src_reg src1 = orig_src1;
450 
451       if (done_mask & this_mask)
452 	 continue;
453 
454       GLuint src0_swiz = GET_SWZ(src0.swizzle, i);
455       GLuint src1_swiz = GET_SWZ(src1.swizzle, i);
456       for (j = i + 1; j < 4; j++) {
457 	 /* If there is another enabled component in the destination that is
458 	  * derived from the same inputs, generate its value on this pass as
459 	  * well.
460 	  */
461 	 if (!(done_mask & (1 << j)) &&
462 	     GET_SWZ(src0.swizzle, j) == src0_swiz &&
463 	     GET_SWZ(src1.swizzle, j) == src1_swiz) {
464 	    this_mask |= (1 << j);
465 	 }
466       }
467       src0.swizzle = MAKE_SWIZZLE4(src0_swiz, src0_swiz,
468 				   src0_swiz, src0_swiz);
469       src1.swizzle = MAKE_SWIZZLE4(src1_swiz, src1_swiz,
470 				  src1_swiz, src1_swiz);
471 
472       inst = emit(ir, op, dst, src0, src1);
473       inst->dst.writemask = this_mask;
474       done_mask |= this_mask;
475    }
476 }
477 
478 void
emit_scalar(ir_instruction * ir,enum prog_opcode op,dst_reg dst,src_reg src0)479 ir_to_mesa_visitor::emit_scalar(ir_instruction *ir, enum prog_opcode op,
480 			        dst_reg dst, src_reg src0)
481 {
482    src_reg undef = undef_src;
483 
484    undef.swizzle = SWIZZLE_XXXX;
485 
486    emit_scalar(ir, op, dst, src0, undef);
487 }
488 
489 src_reg
src_reg_for_float(float val)490 ir_to_mesa_visitor::src_reg_for_float(float val)
491 {
492    src_reg src(PROGRAM_CONSTANT, -1, NULL);
493 
494    src.index = _mesa_add_unnamed_constant(this->prog->Parameters,
495 					  (const gl_constant_value *)&val, 1, &src.swizzle);
496 
497    return src;
498 }
499 
500 static int
type_size(const struct glsl_type * type)501 type_size(const struct glsl_type *type)
502 {
503    unsigned int i;
504    int size;
505 
506    switch (type->base_type) {
507    case GLSL_TYPE_UINT:
508    case GLSL_TYPE_INT:
509    case GLSL_TYPE_FLOAT:
510    case GLSL_TYPE_BOOL:
511       if (type->is_matrix()) {
512 	 return type->matrix_columns;
513       } else {
514 	 /* Regardless of size of vector, it gets a vec4. This is bad
515 	  * packing for things like floats, but otherwise arrays become a
516 	  * mess.  Hopefully a later pass over the code can pack scalars
517 	  * down if appropriate.
518 	  */
519 	 return 1;
520       }
521       break;
522    case GLSL_TYPE_DOUBLE:
523       if (type->is_matrix()) {
524          if (type->vector_elements > 2)
525             return type->matrix_columns * 2;
526          else
527             return type->matrix_columns;
528       } else {
529          if (type->vector_elements > 2)
530             return 2;
531          else
532             return 1;
533       }
534       break;
535    case GLSL_TYPE_ARRAY:
536       assert(type->length > 0);
537       return type_size(type->fields.array) * type->length;
538    case GLSL_TYPE_STRUCT:
539       size = 0;
540       for (i = 0; i < type->length; i++) {
541 	 size += type_size(type->fields.structure[i].type);
542       }
543       return size;
544    case GLSL_TYPE_SAMPLER:
545    case GLSL_TYPE_IMAGE:
546    case GLSL_TYPE_SUBROUTINE:
547       /* Samplers take up one slot in UNIFORMS[], but they're baked in
548        * at link time.
549        */
550       return 1;
551    case GLSL_TYPE_ATOMIC_UINT:
552    case GLSL_TYPE_VOID:
553    case GLSL_TYPE_ERROR:
554    case GLSL_TYPE_INTERFACE:
555    case GLSL_TYPE_FUNCTION:
556       assert(!"Invalid type in type_size");
557       break;
558    }
559 
560    return 0;
561 }
562 
563 /**
564  * In the initial pass of codegen, we assign temporary numbers to
565  * intermediate results.  (not SSA -- variable assignments will reuse
566  * storage).  Actual register allocation for the Mesa VM occurs in a
567  * pass over the Mesa IR later.
568  */
569 src_reg
get_temp(const glsl_type * type)570 ir_to_mesa_visitor::get_temp(const glsl_type *type)
571 {
572    src_reg src;
573 
574    src.file = PROGRAM_TEMPORARY;
575    src.index = next_temp;
576    src.reladdr = NULL;
577    next_temp += type_size(type);
578 
579    if (type->is_array() || type->is_record()) {
580       src.swizzle = SWIZZLE_NOOP;
581    } else {
582       src.swizzle = swizzle_for_size(type->vector_elements);
583    }
584    src.negate = 0;
585 
586    return src;
587 }
588 
589 variable_storage *
find_variable_storage(const ir_variable * var)590 ir_to_mesa_visitor::find_variable_storage(const ir_variable *var)
591 {
592    foreach_in_list(variable_storage, entry, &this->variables) {
593       if (entry->var == var)
594 	 return entry;
595    }
596 
597    return NULL;
598 }
599 
600 void
visit(ir_variable * ir)601 ir_to_mesa_visitor::visit(ir_variable *ir)
602 {
603    if (strcmp(ir->name, "gl_FragCoord") == 0) {
604       this->prog->OriginUpperLeft = ir->data.origin_upper_left;
605       this->prog->PixelCenterInteger = ir->data.pixel_center_integer;
606    }
607 
608    if (ir->data.mode == ir_var_uniform && strncmp(ir->name, "gl_", 3) == 0) {
609       unsigned int i;
610       const ir_state_slot *const slots = ir->get_state_slots();
611       assert(slots != NULL);
612 
613       /* Check if this statevar's setup in the STATE file exactly
614        * matches how we'll want to reference it as a
615        * struct/array/whatever.  If not, then we need to move it into
616        * temporary storage and hope that it'll get copy-propagated
617        * out.
618        */
619       for (i = 0; i < ir->get_num_state_slots(); i++) {
620 	 if (slots[i].swizzle != SWIZZLE_XYZW) {
621 	    break;
622 	 }
623       }
624 
625       variable_storage *storage;
626       dst_reg dst;
627       if (i == ir->get_num_state_slots()) {
628 	 /* We'll set the index later. */
629 	 storage = new(mem_ctx) variable_storage(ir, PROGRAM_STATE_VAR, -1);
630 	 this->variables.push_tail(storage);
631 
632 	 dst = undef_dst;
633       } else {
634 	 /* The variable_storage constructor allocates slots based on the size
635 	  * of the type.  However, this had better match the number of state
636 	  * elements that we're going to copy into the new temporary.
637 	  */
638 	 assert((int) ir->get_num_state_slots() == type_size(ir->type));
639 
640 	 storage = new(mem_ctx) variable_storage(ir, PROGRAM_TEMPORARY,
641 						 this->next_temp);
642 	 this->variables.push_tail(storage);
643 	 this->next_temp += type_size(ir->type);
644 
645 	 dst = dst_reg(src_reg(PROGRAM_TEMPORARY, storage->index, NULL));
646       }
647 
648 
649       for (unsigned int i = 0; i < ir->get_num_state_slots(); i++) {
650 	 int index = _mesa_add_state_reference(this->prog->Parameters,
651 					       (gl_state_index *)slots[i].tokens);
652 
653 	 if (storage->file == PROGRAM_STATE_VAR) {
654 	    if (storage->index == -1) {
655 	       storage->index = index;
656 	    } else {
657 	       assert(index == storage->index + (int)i);
658 	    }
659 	 } else {
660 	    src_reg src(PROGRAM_STATE_VAR, index, NULL);
661 	    src.swizzle = slots[i].swizzle;
662 	    emit(ir, OPCODE_MOV, dst, src);
663 	    /* even a float takes up a whole vec4 reg in a struct/array. */
664 	    dst.index++;
665 	 }
666       }
667 
668       if (storage->file == PROGRAM_TEMPORARY &&
669 	  dst.index != storage->index + (int) ir->get_num_state_slots()) {
670 	 linker_error(this->shader_program,
671 		      "failed to load builtin uniform `%s' "
672 		      "(%d/%d regs loaded)\n",
673 		      ir->name, dst.index - storage->index,
674 		      type_size(ir->type));
675       }
676    }
677 }
678 
679 void
visit(ir_loop * ir)680 ir_to_mesa_visitor::visit(ir_loop *ir)
681 {
682    emit(NULL, OPCODE_BGNLOOP);
683 
684    visit_exec_list(&ir->body_instructions, this);
685 
686    emit(NULL, OPCODE_ENDLOOP);
687 }
688 
689 void
visit(ir_loop_jump * ir)690 ir_to_mesa_visitor::visit(ir_loop_jump *ir)
691 {
692    switch (ir->mode) {
693    case ir_loop_jump::jump_break:
694       emit(NULL, OPCODE_BRK);
695       break;
696    case ir_loop_jump::jump_continue:
697       emit(NULL, OPCODE_CONT);
698       break;
699    }
700 }
701 
702 
703 void
visit(ir_function_signature * ir)704 ir_to_mesa_visitor::visit(ir_function_signature *ir)
705 {
706    assert(0);
707    (void)ir;
708 }
709 
710 void
visit(ir_function * ir)711 ir_to_mesa_visitor::visit(ir_function *ir)
712 {
713    /* Ignore function bodies other than main() -- we shouldn't see calls to
714     * them since they should all be inlined before we get to ir_to_mesa.
715     */
716    if (strcmp(ir->name, "main") == 0) {
717       const ir_function_signature *sig;
718       exec_list empty;
719 
720       sig = ir->matching_signature(NULL, &empty, false);
721 
722       assert(sig);
723 
724       foreach_in_list(ir_instruction, ir, &sig->body) {
725 	 ir->accept(this);
726       }
727    }
728 }
729 
730 bool
try_emit_mad(ir_expression * ir,int mul_operand)731 ir_to_mesa_visitor::try_emit_mad(ir_expression *ir, int mul_operand)
732 {
733    int nonmul_operand = 1 - mul_operand;
734    src_reg a, b, c;
735 
736    ir_expression *expr = ir->operands[mul_operand]->as_expression();
737    if (!expr || expr->operation != ir_binop_mul)
738       return false;
739 
740    expr->operands[0]->accept(this);
741    a = this->result;
742    expr->operands[1]->accept(this);
743    b = this->result;
744    ir->operands[nonmul_operand]->accept(this);
745    c = this->result;
746 
747    this->result = get_temp(ir->type);
748    emit(ir, OPCODE_MAD, dst_reg(this->result), a, b, c);
749 
750    return true;
751 }
752 
753 /**
754  * Emit OPCODE_MAD(a, -b, a) instead of AND(a, NOT(b))
755  *
756  * The logic values are 1.0 for true and 0.0 for false.  Logical-and is
757  * implemented using multiplication, and logical-or is implemented using
758  * addition.  Logical-not can be implemented as (true - x), or (1.0 - x).
759  * As result, the logical expression (a & !b) can be rewritten as:
760  *
761  *     - a * !b
762  *     - a * (1 - b)
763  *     - (a * 1) - (a * b)
764  *     - a + -(a * b)
765  *     - a + (a * -b)
766  *
767  * This final expression can be implemented as a single MAD(a, -b, a)
768  * instruction.
769  */
770 bool
try_emit_mad_for_and_not(ir_expression * ir,int try_operand)771 ir_to_mesa_visitor::try_emit_mad_for_and_not(ir_expression *ir, int try_operand)
772 {
773    const int other_operand = 1 - try_operand;
774    src_reg a, b;
775 
776    ir_expression *expr = ir->operands[try_operand]->as_expression();
777    if (!expr || expr->operation != ir_unop_logic_not)
778       return false;
779 
780    ir->operands[other_operand]->accept(this);
781    a = this->result;
782    expr->operands[0]->accept(this);
783    b = this->result;
784 
785    b.negate = ~b.negate;
786 
787    this->result = get_temp(ir->type);
788    emit(ir, OPCODE_MAD, dst_reg(this->result), a, b, a);
789 
790    return true;
791 }
792 
793 void
reladdr_to_temp(ir_instruction * ir,src_reg * reg,int * num_reladdr)794 ir_to_mesa_visitor::reladdr_to_temp(ir_instruction *ir,
795 				    src_reg *reg, int *num_reladdr)
796 {
797    if (!reg->reladdr)
798       return;
799 
800    emit(ir, OPCODE_ARL, address_reg, *reg->reladdr);
801 
802    if (*num_reladdr != 1) {
803       src_reg temp = get_temp(glsl_type::vec4_type);
804 
805       emit(ir, OPCODE_MOV, dst_reg(temp), *reg);
806       *reg = temp;
807    }
808 
809    (*num_reladdr)--;
810 }
811 
812 void
emit_swz(ir_expression * ir)813 ir_to_mesa_visitor::emit_swz(ir_expression *ir)
814 {
815    /* Assume that the vector operator is in a form compatible with OPCODE_SWZ.
816     * This means that each of the operands is either an immediate value of -1,
817     * 0, or 1, or is a component from one source register (possibly with
818     * negation).
819     */
820    uint8_t components[4] = { 0 };
821    bool negate[4] = { false };
822    ir_variable *var = NULL;
823 
824    for (unsigned i = 0; i < ir->type->vector_elements; i++) {
825       ir_rvalue *op = ir->operands[i];
826 
827       assert(op->type->is_scalar());
828 
829       while (op != NULL) {
830 	 switch (op->ir_type) {
831 	 case ir_type_constant: {
832 
833 	    assert(op->type->is_scalar());
834 
835 	    const ir_constant *const c = op->as_constant();
836 	    if (c->is_one()) {
837 	       components[i] = SWIZZLE_ONE;
838 	    } else if (c->is_zero()) {
839 	       components[i] = SWIZZLE_ZERO;
840 	    } else if (c->is_negative_one()) {
841 	       components[i] = SWIZZLE_ONE;
842 	       negate[i] = true;
843 	    } else {
844 	       assert(!"SWZ constant must be 0.0 or 1.0.");
845 	    }
846 
847 	    op = NULL;
848 	    break;
849 	 }
850 
851 	 case ir_type_dereference_variable: {
852 	    ir_dereference_variable *const deref =
853 	       (ir_dereference_variable *) op;
854 
855 	    assert((var == NULL) || (deref->var == var));
856 	    components[i] = SWIZZLE_X;
857 	    var = deref->var;
858 	    op = NULL;
859 	    break;
860 	 }
861 
862 	 case ir_type_expression: {
863 	    ir_expression *const expr = (ir_expression *) op;
864 
865 	    assert(expr->operation == ir_unop_neg);
866 	    negate[i] = true;
867 
868 	    op = expr->operands[0];
869 	    break;
870 	 }
871 
872 	 case ir_type_swizzle: {
873 	    ir_swizzle *const swiz = (ir_swizzle *) op;
874 
875 	    components[i] = swiz->mask.x;
876 	    op = swiz->val;
877 	    break;
878 	 }
879 
880 	 default:
881 	    assert(!"Should not get here.");
882 	    return;
883 	 }
884       }
885    }
886 
887    assert(var != NULL);
888 
889    ir_dereference_variable *const deref =
890       new(mem_ctx) ir_dereference_variable(var);
891 
892    this->result.file = PROGRAM_UNDEFINED;
893    deref->accept(this);
894    if (this->result.file == PROGRAM_UNDEFINED) {
895       printf("Failed to get tree for expression operand:\n");
896       deref->print();
897       printf("\n");
898       exit(1);
899    }
900 
901    src_reg src;
902 
903    src = this->result;
904    src.swizzle = MAKE_SWIZZLE4(components[0],
905 			       components[1],
906 			       components[2],
907 			       components[3]);
908    src.negate = ((unsigned(negate[0]) << 0)
909 		 | (unsigned(negate[1]) << 1)
910 		 | (unsigned(negate[2]) << 2)
911 		 | (unsigned(negate[3]) << 3));
912 
913    /* Storage for our result.  Ideally for an assignment we'd be using the
914     * actual storage for the result here, instead.
915     */
916    const src_reg result_src = get_temp(ir->type);
917    dst_reg result_dst = dst_reg(result_src);
918 
919    /* Limit writes to the channels that will be used by result_src later.
920     * This does limit this temp's use as a temporary for multi-instruction
921     * sequences.
922     */
923    result_dst.writemask = (1 << ir->type->vector_elements) - 1;
924 
925    emit(ir, OPCODE_SWZ, result_dst, src);
926    this->result = result_src;
927 }
928 
929 void
emit_equality_comparison(ir_expression * ir,enum prog_opcode op,dst_reg dst,const src_reg & src0,const src_reg & src1)930 ir_to_mesa_visitor::emit_equality_comparison(ir_expression *ir,
931                                              enum prog_opcode op,
932                                              dst_reg dst,
933                                              const src_reg &src0,
934                                              const src_reg &src1)
935 {
936    src_reg difference;
937    src_reg abs_difference = get_temp(glsl_type::vec4_type);
938    const src_reg zero = src_reg_for_float(0.0);
939 
940    /* x == y is equivalent to -abs(x-y) >= 0.  Since all of the code that
941     * consumes the generated IR is pretty dumb, take special care when one
942     * of the operands is zero.
943     *
944     * Similarly, x != y is equivalent to -abs(x-y) < 0.
945     */
946    if (src0.file == zero.file &&
947        src0.index == zero.index &&
948        src0.swizzle == zero.swizzle) {
949       difference = src1;
950    } else if (src1.file == zero.file &&
951               src1.index == zero.index &&
952               src1.swizzle == zero.swizzle) {
953       difference = src0;
954    } else {
955       difference = get_temp(glsl_type::vec4_type);
956 
957       src_reg tmp_src = src0;
958       tmp_src.negate = ~tmp_src.negate;
959 
960       emit(ir, OPCODE_ADD, dst_reg(difference), tmp_src, src1);
961    }
962 
963    emit(ir, OPCODE_ABS, dst_reg(abs_difference), difference);
964 
965    abs_difference.negate = ~abs_difference.negate;
966    emit(ir, op, dst, abs_difference, zero);
967 }
968 
969 void
visit(ir_expression * ir)970 ir_to_mesa_visitor::visit(ir_expression *ir)
971 {
972    unsigned int operand;
973    src_reg op[ARRAY_SIZE(ir->operands)];
974    src_reg result_src;
975    dst_reg result_dst;
976 
977    /* Quick peephole: Emit OPCODE_MAD(a, b, c) instead of ADD(MUL(a, b), c)
978     */
979    if (ir->operation == ir_binop_add) {
980       if (try_emit_mad(ir, 1))
981 	 return;
982       if (try_emit_mad(ir, 0))
983 	 return;
984    }
985 
986    /* Quick peephole: Emit OPCODE_MAD(-a, -b, a) instead of AND(a, NOT(b))
987     */
988    if (ir->operation == ir_binop_logic_and) {
989       if (try_emit_mad_for_and_not(ir, 1))
990 	 return;
991       if (try_emit_mad_for_and_not(ir, 0))
992 	 return;
993    }
994 
995    if (ir->operation == ir_quadop_vector) {
996       this->emit_swz(ir);
997       return;
998    }
999 
1000    for (operand = 0; operand < ir->get_num_operands(); operand++) {
1001       this->result.file = PROGRAM_UNDEFINED;
1002       ir->operands[operand]->accept(this);
1003       if (this->result.file == PROGRAM_UNDEFINED) {
1004 	 printf("Failed to get tree for expression operand:\n");
1005          ir->operands[operand]->print();
1006          printf("\n");
1007 	 exit(1);
1008       }
1009       op[operand] = this->result;
1010 
1011       /* Matrix expression operands should have been broken down to vector
1012        * operations already.
1013        */
1014       assert(!ir->operands[operand]->type->is_matrix());
1015    }
1016 
1017    int vector_elements = ir->operands[0]->type->vector_elements;
1018    if (ir->operands[1]) {
1019       vector_elements = MAX2(vector_elements,
1020 			     ir->operands[1]->type->vector_elements);
1021    }
1022 
1023    this->result.file = PROGRAM_UNDEFINED;
1024 
1025    /* Storage for our result.  Ideally for an assignment we'd be using
1026     * the actual storage for the result here, instead.
1027     */
1028    result_src = get_temp(ir->type);
1029    /* convenience for the emit functions below. */
1030    result_dst = dst_reg(result_src);
1031    /* Limit writes to the channels that will be used by result_src later.
1032     * This does limit this temp's use as a temporary for multi-instruction
1033     * sequences.
1034     */
1035    result_dst.writemask = (1 << ir->type->vector_elements) - 1;
1036 
1037    switch (ir->operation) {
1038    case ir_unop_logic_not:
1039       /* Previously 'SEQ dst, src, 0.0' was used for this.  However, many
1040        * older GPUs implement SEQ using multiple instructions (i915 uses two
1041        * SGE instructions and a MUL instruction).  Since our logic values are
1042        * 0.0 and 1.0, 1-x also implements !x.
1043        */
1044       op[0].negate = ~op[0].negate;
1045       emit(ir, OPCODE_ADD, result_dst, op[0], src_reg_for_float(1.0));
1046       break;
1047    case ir_unop_neg:
1048       op[0].negate = ~op[0].negate;
1049       result_src = op[0];
1050       break;
1051    case ir_unop_abs:
1052       emit(ir, OPCODE_ABS, result_dst, op[0]);
1053       break;
1054    case ir_unop_sign:
1055       emit(ir, OPCODE_SSG, result_dst, op[0]);
1056       break;
1057    case ir_unop_rcp:
1058       emit_scalar(ir, OPCODE_RCP, result_dst, op[0]);
1059       break;
1060 
1061    case ir_unop_exp2:
1062       emit_scalar(ir, OPCODE_EX2, result_dst, op[0]);
1063       break;
1064    case ir_unop_exp:
1065    case ir_unop_log:
1066       assert(!"not reached: should be handled by ir_explog_to_explog2");
1067       break;
1068    case ir_unop_log2:
1069       emit_scalar(ir, OPCODE_LG2, result_dst, op[0]);
1070       break;
1071    case ir_unop_sin:
1072       emit_scalar(ir, OPCODE_SIN, result_dst, op[0]);
1073       break;
1074    case ir_unop_cos:
1075       emit_scalar(ir, OPCODE_COS, result_dst, op[0]);
1076       break;
1077 
1078    case ir_unop_dFdx:
1079       emit(ir, OPCODE_DDX, result_dst, op[0]);
1080       break;
1081    case ir_unop_dFdy:
1082       emit(ir, OPCODE_DDY, result_dst, op[0]);
1083       break;
1084 
1085    case ir_unop_saturate: {
1086       ir_to_mesa_instruction *inst = emit(ir, OPCODE_MOV,
1087                                           result_dst, op[0]);
1088       inst->saturate = true;
1089       break;
1090    }
1091    case ir_unop_noise: {
1092       const enum prog_opcode opcode =
1093 	 prog_opcode(OPCODE_NOISE1
1094 		     + (ir->operands[0]->type->vector_elements) - 1);
1095       assert((opcode >= OPCODE_NOISE1) && (opcode <= OPCODE_NOISE4));
1096 
1097       emit(ir, opcode, result_dst, op[0]);
1098       break;
1099    }
1100 
1101    case ir_binop_add:
1102       emit(ir, OPCODE_ADD, result_dst, op[0], op[1]);
1103       break;
1104    case ir_binop_sub:
1105       emit(ir, OPCODE_SUB, result_dst, op[0], op[1]);
1106       break;
1107 
1108    case ir_binop_mul:
1109       emit(ir, OPCODE_MUL, result_dst, op[0], op[1]);
1110       break;
1111    case ir_binop_div:
1112       assert(!"not reached: should be handled by ir_div_to_mul_rcp");
1113       break;
1114    case ir_binop_mod:
1115       /* Floating point should be lowered by MOD_TO_FLOOR in the compiler. */
1116       assert(ir->type->is_integer());
1117       emit(ir, OPCODE_MUL, result_dst, op[0], op[1]);
1118       break;
1119 
1120    case ir_binop_less:
1121       emit(ir, OPCODE_SLT, result_dst, op[0], op[1]);
1122       break;
1123    case ir_binop_greater:
1124       /* Negating the operands (as opposed to switching the order of the
1125        * operands) produces the correct result when both are +/-Inf.
1126        */
1127       op[0].negate = ~op[0].negate;
1128       op[1].negate = ~op[1].negate;
1129       emit(ir, OPCODE_SLT, result_dst, op[0], op[1]);
1130       break;
1131    case ir_binop_lequal:
1132       /* Negating the operands (as opposed to switching the order of the
1133        * operands) produces the correct result when both are +/-Inf.
1134        */
1135       op[0].negate = ~op[0].negate;
1136       op[1].negate = ~op[1].negate;
1137       emit(ir, OPCODE_SGE, result_dst, op[0], op[1]);
1138       break;
1139    case ir_binop_gequal:
1140       emit(ir, OPCODE_SGE, result_dst, op[0], op[1]);
1141       break;
1142    case ir_binop_equal:
1143       emit_seq(ir, result_dst, op[0], op[1]);
1144       break;
1145    case ir_binop_nequal:
1146       emit_sne(ir, result_dst, op[0], op[1]);
1147       break;
1148    case ir_binop_all_equal:
1149       /* "==" operator producing a scalar boolean. */
1150       if (ir->operands[0]->type->is_vector() ||
1151 	  ir->operands[1]->type->is_vector()) {
1152 	 src_reg temp = get_temp(glsl_type::vec4_type);
1153          emit_sne(ir, dst_reg(temp), op[0], op[1]);
1154 
1155 	 /* After the dot-product, the value will be an integer on the
1156 	  * range [0,4].  Zero becomes 1.0, and positive values become zero.
1157 	  */
1158 	 emit_dp(ir, result_dst, temp, temp, vector_elements);
1159 
1160 	 /* Negating the result of the dot-product gives values on the range
1161 	  * [-4, 0].  Zero becomes 1.0, and negative values become zero.  This
1162 	  * achieved using SGE.
1163 	  */
1164 	 src_reg sge_src = result_src;
1165 	 sge_src.negate = ~sge_src.negate;
1166 	 emit(ir, OPCODE_SGE, result_dst, sge_src, src_reg_for_float(0.0));
1167       } else {
1168          emit_seq(ir, result_dst, op[0], op[1]);
1169       }
1170       break;
1171    case ir_binop_any_nequal:
1172       /* "!=" operator producing a scalar boolean. */
1173       if (ir->operands[0]->type->is_vector() ||
1174 	  ir->operands[1]->type->is_vector()) {
1175 	 src_reg temp = get_temp(glsl_type::vec4_type);
1176          if (ir->operands[0]->type->is_boolean() &&
1177              ir->operands[1]->as_constant() &&
1178              ir->operands[1]->as_constant()->is_zero()) {
1179             temp = op[0];
1180          } else {
1181             emit_sne(ir, dst_reg(temp), op[0], op[1]);
1182          }
1183 
1184 	 /* After the dot-product, the value will be an integer on the
1185 	  * range [0,4].  Zero stays zero, and positive values become 1.0.
1186 	  */
1187 	 ir_to_mesa_instruction *const dp =
1188 	    emit_dp(ir, result_dst, temp, temp, vector_elements);
1189 	 if (this->prog->Target == GL_FRAGMENT_PROGRAM_ARB) {
1190 	    /* The clamping to [0,1] can be done for free in the fragment
1191 	     * shader with a saturate.
1192 	     */
1193 	    dp->saturate = true;
1194 	 } else {
1195 	    /* Negating the result of the dot-product gives values on the range
1196 	     * [-4, 0].  Zero stays zero, and negative values become 1.0.  This
1197 	     * achieved using SLT.
1198 	     */
1199 	    src_reg slt_src = result_src;
1200 	    slt_src.negate = ~slt_src.negate;
1201 	    emit(ir, OPCODE_SLT, result_dst, slt_src, src_reg_for_float(0.0));
1202 	 }
1203       } else {
1204          emit_sne(ir, result_dst, op[0], op[1]);
1205       }
1206       break;
1207 
1208    case ir_binop_logic_xor:
1209       emit_sne(ir, result_dst, op[0], op[1]);
1210       break;
1211 
1212    case ir_binop_logic_or: {
1213       if (this->prog->Target == GL_FRAGMENT_PROGRAM_ARB) {
1214          /* After the addition, the value will be an integer on the
1215           * range [0,2].  Zero stays zero, and positive values become 1.0.
1216           */
1217          ir_to_mesa_instruction *add =
1218             emit(ir, OPCODE_ADD, result_dst, op[0], op[1]);
1219 	 add->saturate = true;
1220       } else {
1221          /* The Boolean arguments are stored as float 0.0 and 1.0.  If either
1222           * value is 1.0, the result of the logcal-or should be 1.0.  If both
1223           * values are 0.0, the result should be 0.0.  This is exactly what
1224           * MAX does.
1225           */
1226          emit(ir, OPCODE_MAX, result_dst, op[0], op[1]);
1227       }
1228       break;
1229    }
1230 
1231    case ir_binop_logic_and:
1232       /* the bool args are stored as float 0.0 or 1.0, so "mul" gives us "and". */
1233       emit(ir, OPCODE_MUL, result_dst, op[0], op[1]);
1234       break;
1235 
1236    case ir_binop_dot:
1237       assert(ir->operands[0]->type->is_vector());
1238       assert(ir->operands[0]->type == ir->operands[1]->type);
1239       emit_dp(ir, result_dst, op[0], op[1],
1240 	      ir->operands[0]->type->vector_elements);
1241       break;
1242 
1243    case ir_unop_sqrt:
1244       /* sqrt(x) = x * rsq(x). */
1245       emit_scalar(ir, OPCODE_RSQ, result_dst, op[0]);
1246       emit(ir, OPCODE_MUL, result_dst, result_src, op[0]);
1247       /* For incoming channels <= 0, set the result to 0. */
1248       op[0].negate = ~op[0].negate;
1249       emit(ir, OPCODE_CMP, result_dst,
1250 			  op[0], result_src, src_reg_for_float(0.0));
1251       break;
1252    case ir_unop_rsq:
1253       emit_scalar(ir, OPCODE_RSQ, result_dst, op[0]);
1254       break;
1255    case ir_unop_i2f:
1256    case ir_unop_u2f:
1257    case ir_unop_b2f:
1258    case ir_unop_b2i:
1259    case ir_unop_i2u:
1260    case ir_unop_u2i:
1261       /* Mesa IR lacks types, ints are stored as truncated floats. */
1262       result_src = op[0];
1263       break;
1264    case ir_unop_f2i:
1265    case ir_unop_f2u:
1266       emit(ir, OPCODE_TRUNC, result_dst, op[0]);
1267       break;
1268    case ir_unop_f2b:
1269    case ir_unop_i2b:
1270       emit_sne(ir, result_dst, op[0], src_reg_for_float(0.0));
1271       break;
1272    case ir_unop_bitcast_f2i: // Ignore these 4, they can't happen here anyway
1273    case ir_unop_bitcast_f2u:
1274    case ir_unop_bitcast_i2f:
1275    case ir_unop_bitcast_u2f:
1276       break;
1277    case ir_unop_trunc:
1278       emit(ir, OPCODE_TRUNC, result_dst, op[0]);
1279       break;
1280    case ir_unop_ceil:
1281       op[0].negate = ~op[0].negate;
1282       emit(ir, OPCODE_FLR, result_dst, op[0]);
1283       result_src.negate = ~result_src.negate;
1284       break;
1285    case ir_unop_floor:
1286       emit(ir, OPCODE_FLR, result_dst, op[0]);
1287       break;
1288    case ir_unop_fract:
1289       emit(ir, OPCODE_FRC, result_dst, op[0]);
1290       break;
1291    case ir_unop_pack_snorm_2x16:
1292    case ir_unop_pack_snorm_4x8:
1293    case ir_unop_pack_unorm_2x16:
1294    case ir_unop_pack_unorm_4x8:
1295    case ir_unop_pack_half_2x16:
1296    case ir_unop_pack_double_2x32:
1297    case ir_unop_unpack_snorm_2x16:
1298    case ir_unop_unpack_snorm_4x8:
1299    case ir_unop_unpack_unorm_2x16:
1300    case ir_unop_unpack_unorm_4x8:
1301    case ir_unop_unpack_half_2x16:
1302    case ir_unop_unpack_double_2x32:
1303    case ir_unop_bitfield_reverse:
1304    case ir_unop_bit_count:
1305    case ir_unop_find_msb:
1306    case ir_unop_find_lsb:
1307    case ir_unop_d2f:
1308    case ir_unop_f2d:
1309    case ir_unop_d2i:
1310    case ir_unop_i2d:
1311    case ir_unop_d2u:
1312    case ir_unop_u2d:
1313    case ir_unop_d2b:
1314    case ir_unop_frexp_sig:
1315    case ir_unop_frexp_exp:
1316       assert(!"not supported");
1317       break;
1318    case ir_binop_min:
1319       emit(ir, OPCODE_MIN, result_dst, op[0], op[1]);
1320       break;
1321    case ir_binop_max:
1322       emit(ir, OPCODE_MAX, result_dst, op[0], op[1]);
1323       break;
1324    case ir_binop_pow:
1325       emit_scalar(ir, OPCODE_POW, result_dst, op[0], op[1]);
1326       break;
1327 
1328       /* GLSL 1.30 integer ops are unsupported in Mesa IR, but since
1329        * hardware backends have no way to avoid Mesa IR generation
1330        * even if they don't use it, we need to emit "something" and
1331        * continue.
1332        */
1333    case ir_binop_lshift:
1334    case ir_binop_rshift:
1335    case ir_binop_bit_and:
1336    case ir_binop_bit_xor:
1337    case ir_binop_bit_or:
1338       emit(ir, OPCODE_ADD, result_dst, op[0], op[1]);
1339       break;
1340 
1341    case ir_unop_bit_not:
1342    case ir_unop_round_even:
1343       emit(ir, OPCODE_MOV, result_dst, op[0]);
1344       break;
1345 
1346    case ir_binop_ubo_load:
1347       assert(!"not supported");
1348       break;
1349 
1350    case ir_triop_lrp:
1351       /* ir_triop_lrp operands are (x, y, a) while
1352        * OPCODE_LRP operands are (a, y, x) to match ARB_fragment_program.
1353        */
1354       emit(ir, OPCODE_LRP, result_dst, op[2], op[1], op[0]);
1355       break;
1356 
1357    case ir_binop_vector_extract:
1358    case ir_triop_fma:
1359    case ir_triop_bitfield_extract:
1360    case ir_triop_vector_insert:
1361    case ir_quadop_bitfield_insert:
1362    case ir_binop_ldexp:
1363    case ir_triop_csel:
1364    case ir_binop_carry:
1365    case ir_binop_borrow:
1366    case ir_binop_imul_high:
1367    case ir_unop_interpolate_at_centroid:
1368    case ir_binop_interpolate_at_offset:
1369    case ir_binop_interpolate_at_sample:
1370    case ir_unop_dFdx_coarse:
1371    case ir_unop_dFdx_fine:
1372    case ir_unop_dFdy_coarse:
1373    case ir_unop_dFdy_fine:
1374    case ir_unop_subroutine_to_int:
1375    case ir_unop_get_buffer_size:
1376    case ir_unop_vote_any:
1377    case ir_unop_vote_all:
1378    case ir_unop_vote_eq:
1379       assert(!"not supported");
1380       break;
1381 
1382    case ir_unop_ssbo_unsized_array_length:
1383    case ir_quadop_vector:
1384       /* This operation should have already been handled.
1385        */
1386       assert(!"Should not get here.");
1387       break;
1388    }
1389 
1390    this->result = result_src;
1391 }
1392 
1393 
1394 void
visit(ir_swizzle * ir)1395 ir_to_mesa_visitor::visit(ir_swizzle *ir)
1396 {
1397    src_reg src;
1398    int i;
1399    int swizzle[4];
1400 
1401    /* Note that this is only swizzles in expressions, not those on the left
1402     * hand side of an assignment, which do write masking.  See ir_assignment
1403     * for that.
1404     */
1405 
1406    ir->val->accept(this);
1407    src = this->result;
1408    assert(src.file != PROGRAM_UNDEFINED);
1409    assert(ir->type->vector_elements > 0);
1410 
1411    for (i = 0; i < 4; i++) {
1412       if (i < ir->type->vector_elements) {
1413 	 switch (i) {
1414 	 case 0:
1415 	    swizzle[i] = GET_SWZ(src.swizzle, ir->mask.x);
1416 	    break;
1417 	 case 1:
1418 	    swizzle[i] = GET_SWZ(src.swizzle, ir->mask.y);
1419 	    break;
1420 	 case 2:
1421 	    swizzle[i] = GET_SWZ(src.swizzle, ir->mask.z);
1422 	    break;
1423 	 case 3:
1424 	    swizzle[i] = GET_SWZ(src.swizzle, ir->mask.w);
1425 	    break;
1426 	 }
1427       } else {
1428 	 /* If the type is smaller than a vec4, replicate the last
1429 	  * channel out.
1430 	  */
1431 	 swizzle[i] = swizzle[ir->type->vector_elements - 1];
1432       }
1433    }
1434 
1435    src.swizzle = MAKE_SWIZZLE4(swizzle[0], swizzle[1], swizzle[2], swizzle[3]);
1436 
1437    this->result = src;
1438 }
1439 
1440 void
visit(ir_dereference_variable * ir)1441 ir_to_mesa_visitor::visit(ir_dereference_variable *ir)
1442 {
1443    variable_storage *entry = find_variable_storage(ir->var);
1444    ir_variable *var = ir->var;
1445 
1446    if (!entry) {
1447       switch (var->data.mode) {
1448       case ir_var_uniform:
1449 	 entry = new(mem_ctx) variable_storage(var, PROGRAM_UNIFORM,
1450 					       var->data.param_index);
1451 	 this->variables.push_tail(entry);
1452 	 break;
1453       case ir_var_shader_in:
1454 	 /* The linker assigns locations for varyings and attributes,
1455 	  * including deprecated builtins (like gl_Color),
1456 	  * user-assigned generic attributes (glBindVertexLocation),
1457 	  * and user-defined varyings.
1458 	  */
1459 	 assert(var->data.location != -1);
1460          entry = new(mem_ctx) variable_storage(var,
1461                                                PROGRAM_INPUT,
1462                                                var->data.location);
1463          break;
1464       case ir_var_shader_out:
1465 	 assert(var->data.location != -1);
1466          entry = new(mem_ctx) variable_storage(var,
1467                                                PROGRAM_OUTPUT,
1468                                                var->data.location);
1469 	 break;
1470       case ir_var_system_value:
1471          entry = new(mem_ctx) variable_storage(var,
1472                                                PROGRAM_SYSTEM_VALUE,
1473                                                var->data.location);
1474          break;
1475       case ir_var_auto:
1476       case ir_var_temporary:
1477 	 entry = new(mem_ctx) variable_storage(var, PROGRAM_TEMPORARY,
1478 					       this->next_temp);
1479 	 this->variables.push_tail(entry);
1480 
1481 	 next_temp += type_size(var->type);
1482 	 break;
1483       }
1484 
1485       if (!entry) {
1486 	 printf("Failed to make storage for %s\n", var->name);
1487 	 exit(1);
1488       }
1489    }
1490 
1491    this->result = src_reg(entry->file, entry->index, var->type);
1492 }
1493 
1494 void
visit(ir_dereference_array * ir)1495 ir_to_mesa_visitor::visit(ir_dereference_array *ir)
1496 {
1497    ir_constant *index;
1498    src_reg src;
1499    int element_size = type_size(ir->type);
1500 
1501    index = ir->array_index->constant_expression_value();
1502 
1503    ir->array->accept(this);
1504    src = this->result;
1505 
1506    if (index) {
1507       src.index += index->value.i[0] * element_size;
1508    } else {
1509       /* Variable index array dereference.  It eats the "vec4" of the
1510        * base of the array and an index that offsets the Mesa register
1511        * index.
1512        */
1513       ir->array_index->accept(this);
1514 
1515       src_reg index_reg;
1516 
1517       if (element_size == 1) {
1518 	 index_reg = this->result;
1519       } else {
1520 	 index_reg = get_temp(glsl_type::float_type);
1521 
1522 	 emit(ir, OPCODE_MUL, dst_reg(index_reg),
1523 	      this->result, src_reg_for_float(element_size));
1524       }
1525 
1526       /* If there was already a relative address register involved, add the
1527        * new and the old together to get the new offset.
1528        */
1529       if (src.reladdr != NULL)  {
1530 	 src_reg accum_reg = get_temp(glsl_type::float_type);
1531 
1532 	 emit(ir, OPCODE_ADD, dst_reg(accum_reg),
1533 	      index_reg, *src.reladdr);
1534 
1535 	 index_reg = accum_reg;
1536       }
1537 
1538       src.reladdr = ralloc(mem_ctx, src_reg);
1539       memcpy(src.reladdr, &index_reg, sizeof(index_reg));
1540    }
1541 
1542    /* If the type is smaller than a vec4, replicate the last channel out. */
1543    if (ir->type->is_scalar() || ir->type->is_vector())
1544       src.swizzle = swizzle_for_size(ir->type->vector_elements);
1545    else
1546       src.swizzle = SWIZZLE_NOOP;
1547 
1548    this->result = src;
1549 }
1550 
1551 void
visit(ir_dereference_record * ir)1552 ir_to_mesa_visitor::visit(ir_dereference_record *ir)
1553 {
1554    unsigned int i;
1555    const glsl_type *struct_type = ir->record->type;
1556    int offset = 0;
1557 
1558    ir->record->accept(this);
1559 
1560    for (i = 0; i < struct_type->length; i++) {
1561       if (strcmp(struct_type->fields.structure[i].name, ir->field) == 0)
1562 	 break;
1563       offset += type_size(struct_type->fields.structure[i].type);
1564    }
1565 
1566    /* If the type is smaller than a vec4, replicate the last channel out. */
1567    if (ir->type->is_scalar() || ir->type->is_vector())
1568       this->result.swizzle = swizzle_for_size(ir->type->vector_elements);
1569    else
1570       this->result.swizzle = SWIZZLE_NOOP;
1571 
1572    this->result.index += offset;
1573 }
1574 
1575 /**
1576  * We want to be careful in assignment setup to hit the actual storage
1577  * instead of potentially using a temporary like we might with the
1578  * ir_dereference handler.
1579  */
1580 static dst_reg
get_assignment_lhs(ir_dereference * ir,ir_to_mesa_visitor * v)1581 get_assignment_lhs(ir_dereference *ir, ir_to_mesa_visitor *v)
1582 {
1583    /* The LHS must be a dereference.  If the LHS is a variable indexed array
1584     * access of a vector, it must be separated into a series conditional moves
1585     * before reaching this point (see ir_vec_index_to_cond_assign).
1586     */
1587    assert(ir->as_dereference());
1588    ir_dereference_array *deref_array = ir->as_dereference_array();
1589    if (deref_array) {
1590       assert(!deref_array->array->type->is_vector());
1591    }
1592 
1593    /* Use the rvalue deref handler for the most part.  We'll ignore
1594     * swizzles in it and write swizzles using writemask, though.
1595     */
1596    ir->accept(v);
1597    return dst_reg(v->result);
1598 }
1599 
1600 /* Calculate the sampler index and also calculate the base uniform location
1601  * for struct members.
1602  */
1603 static void
calc_sampler_offsets(struct gl_shader_program * prog,ir_dereference * deref,unsigned * offset,unsigned * array_elements,unsigned * location)1604 calc_sampler_offsets(struct gl_shader_program *prog, ir_dereference *deref,
1605                      unsigned *offset, unsigned *array_elements,
1606                      unsigned *location)
1607 {
1608    if (deref->ir_type == ir_type_dereference_variable)
1609       return;
1610 
1611    switch (deref->ir_type) {
1612    case ir_type_dereference_array: {
1613       ir_dereference_array *deref_arr = deref->as_dereference_array();
1614       ir_constant *array_index =
1615          deref_arr->array_index->constant_expression_value();
1616 
1617       if (!array_index) {
1618 	 /* GLSL 1.10 and 1.20 allowed variable sampler array indices,
1619 	  * while GLSL 1.30 requires that the array indices be
1620 	  * constant integer expressions.  We don't expect any driver
1621 	  * to actually work with a really variable array index, so
1622 	  * all that would work would be an unrolled loop counter that ends
1623 	  * up being constant above.
1624 	  */
1625          ralloc_strcat(&prog->data->InfoLog,
1626 		       "warning: Variable sampler array index unsupported.\n"
1627 		       "This feature of the language was removed in GLSL 1.20 "
1628 		       "and is unlikely to be supported for 1.10 in Mesa.\n");
1629       } else {
1630          *offset += array_index->value.u[0] * *array_elements;
1631       }
1632 
1633       *array_elements *= deref_arr->array->type->length;
1634 
1635       calc_sampler_offsets(prog, deref_arr->array->as_dereference(),
1636                            offset, array_elements, location);
1637       break;
1638    }
1639 
1640    case ir_type_dereference_record: {
1641       ir_dereference_record *deref_record = deref->as_dereference_record();
1642       unsigned field_index =
1643          deref_record->record->type->field_index(deref_record->field);
1644       *location +=
1645          deref_record->record->type->record_location_offset(field_index);
1646       calc_sampler_offsets(prog, deref_record->record->as_dereference(),
1647                            offset, array_elements, location);
1648       break;
1649    }
1650 
1651    default:
1652       unreachable("Invalid deref type");
1653       break;
1654    }
1655 }
1656 
1657 static int
get_sampler_uniform_value(class ir_dereference * sampler,struct gl_shader_program * shader_program,const struct gl_program * prog)1658 get_sampler_uniform_value(class ir_dereference *sampler,
1659                           struct gl_shader_program *shader_program,
1660                           const struct gl_program *prog)
1661 {
1662    GLuint shader = _mesa_program_enum_to_shader_stage(prog->Target);
1663    ir_variable *var = sampler->variable_referenced();
1664    unsigned location = var->data.location;
1665    unsigned array_elements = 1;
1666    unsigned offset = 0;
1667 
1668    calc_sampler_offsets(shader_program, sampler, &offset, &array_elements,
1669                         &location);
1670 
1671    assert(shader_program->data->UniformStorage[location].opaque[shader].active);
1672    return shader_program->data->UniformStorage[location].opaque[shader].index +
1673           offset;
1674 }
1675 
1676 /**
1677  * Process the condition of a conditional assignment
1678  *
1679  * Examines the condition of a conditional assignment to generate the optimal
1680  * first operand of a \c CMP instruction.  If the condition is a relational
1681  * operator with 0 (e.g., \c ir_binop_less), the value being compared will be
1682  * used as the source for the \c CMP instruction.  Otherwise the comparison
1683  * is processed to a boolean result, and the boolean result is used as the
1684  * operand to the CMP instruction.
1685  */
1686 bool
process_move_condition(ir_rvalue * ir)1687 ir_to_mesa_visitor::process_move_condition(ir_rvalue *ir)
1688 {
1689    ir_rvalue *src_ir = ir;
1690    bool negate = true;
1691    bool switch_order = false;
1692 
1693    ir_expression *const expr = ir->as_expression();
1694    if ((expr != NULL) && (expr->get_num_operands() == 2)) {
1695       bool zero_on_left = false;
1696 
1697       if (expr->operands[0]->is_zero()) {
1698 	 src_ir = expr->operands[1];
1699 	 zero_on_left = true;
1700       } else if (expr->operands[1]->is_zero()) {
1701 	 src_ir = expr->operands[0];
1702 	 zero_on_left = false;
1703       }
1704 
1705       /*      a is -  0  +            -  0  +
1706        * (a <  0)  T  F  F  ( a < 0)  T  F  F
1707        * (0 <  a)  F  F  T  (-a < 0)  F  F  T
1708        * (a <= 0)  T  T  F  (-a < 0)  F  F  T  (swap order of other operands)
1709        * (0 <= a)  F  T  T  ( a < 0)  T  F  F  (swap order of other operands)
1710        * (a >  0)  F  F  T  (-a < 0)  F  F  T
1711        * (0 >  a)  T  F  F  ( a < 0)  T  F  F
1712        * (a >= 0)  F  T  T  ( a < 0)  T  F  F  (swap order of other operands)
1713        * (0 >= a)  T  T  F  (-a < 0)  F  F  T  (swap order of other operands)
1714        *
1715        * Note that exchanging the order of 0 and 'a' in the comparison simply
1716        * means that the value of 'a' should be negated.
1717        */
1718       if (src_ir != ir) {
1719 	 switch (expr->operation) {
1720 	 case ir_binop_less:
1721 	    switch_order = false;
1722 	    negate = zero_on_left;
1723 	    break;
1724 
1725 	 case ir_binop_greater:
1726 	    switch_order = false;
1727 	    negate = !zero_on_left;
1728 	    break;
1729 
1730 	 case ir_binop_lequal:
1731 	    switch_order = true;
1732 	    negate = !zero_on_left;
1733 	    break;
1734 
1735 	 case ir_binop_gequal:
1736 	    switch_order = true;
1737 	    negate = zero_on_left;
1738 	    break;
1739 
1740 	 default:
1741 	    /* This isn't the right kind of comparison afterall, so make sure
1742 	     * the whole condition is visited.
1743 	     */
1744 	    src_ir = ir;
1745 	    break;
1746 	 }
1747       }
1748    }
1749 
1750    src_ir->accept(this);
1751 
1752    /* We use the OPCODE_CMP (a < 0 ? b : c) for conditional moves, and the
1753     * condition we produced is 0.0 or 1.0.  By flipping the sign, we can
1754     * choose which value OPCODE_CMP produces without an extra instruction
1755     * computing the condition.
1756     */
1757    if (negate)
1758       this->result.negate = ~this->result.negate;
1759 
1760    return switch_order;
1761 }
1762 
1763 void
visit(ir_assignment * ir)1764 ir_to_mesa_visitor::visit(ir_assignment *ir)
1765 {
1766    dst_reg l;
1767    src_reg r;
1768    int i;
1769 
1770    ir->rhs->accept(this);
1771    r = this->result;
1772 
1773    l = get_assignment_lhs(ir->lhs, this);
1774 
1775    /* FINISHME: This should really set to the correct maximal writemask for each
1776     * FINISHME: component written (in the loops below).  This case can only
1777     * FINISHME: occur for matrices, arrays, and structures.
1778     */
1779    if (ir->write_mask == 0) {
1780       assert(!ir->lhs->type->is_scalar() && !ir->lhs->type->is_vector());
1781       l.writemask = WRITEMASK_XYZW;
1782    } else if (ir->lhs->type->is_scalar()) {
1783       /* FINISHME: This hack makes writing to gl_FragDepth, which lives in the
1784        * FINISHME: W component of fragment shader output zero, work correctly.
1785        */
1786       l.writemask = WRITEMASK_XYZW;
1787    } else {
1788       int swizzles[4];
1789       int first_enabled_chan = 0;
1790       int rhs_chan = 0;
1791 
1792       assert(ir->lhs->type->is_vector());
1793       l.writemask = ir->write_mask;
1794 
1795       for (int i = 0; i < 4; i++) {
1796 	 if (l.writemask & (1 << i)) {
1797 	    first_enabled_chan = GET_SWZ(r.swizzle, i);
1798 	    break;
1799 	 }
1800       }
1801 
1802       /* Swizzle a small RHS vector into the channels being written.
1803        *
1804        * glsl ir treats write_mask as dictating how many channels are
1805        * present on the RHS while Mesa IR treats write_mask as just
1806        * showing which channels of the vec4 RHS get written.
1807        */
1808       for (int i = 0; i < 4; i++) {
1809 	 if (l.writemask & (1 << i))
1810 	    swizzles[i] = GET_SWZ(r.swizzle, rhs_chan++);
1811 	 else
1812 	    swizzles[i] = first_enabled_chan;
1813       }
1814       r.swizzle = MAKE_SWIZZLE4(swizzles[0], swizzles[1],
1815 				swizzles[2], swizzles[3]);
1816    }
1817 
1818    assert(l.file != PROGRAM_UNDEFINED);
1819    assert(r.file != PROGRAM_UNDEFINED);
1820 
1821    if (ir->condition) {
1822       const bool switch_order = this->process_move_condition(ir->condition);
1823       src_reg condition = this->result;
1824 
1825       for (i = 0; i < type_size(ir->lhs->type); i++) {
1826 	 if (switch_order) {
1827 	    emit(ir, OPCODE_CMP, l, condition, src_reg(l), r);
1828 	 } else {
1829 	    emit(ir, OPCODE_CMP, l, condition, r, src_reg(l));
1830 	 }
1831 
1832 	 l.index++;
1833 	 r.index++;
1834       }
1835    } else {
1836       for (i = 0; i < type_size(ir->lhs->type); i++) {
1837 	 emit(ir, OPCODE_MOV, l, r);
1838 	 l.index++;
1839 	 r.index++;
1840       }
1841    }
1842 }
1843 
1844 
1845 void
visit(ir_constant * ir)1846 ir_to_mesa_visitor::visit(ir_constant *ir)
1847 {
1848    src_reg src;
1849    GLfloat stack_vals[4] = { 0 };
1850    GLfloat *values = stack_vals;
1851    unsigned int i;
1852 
1853    /* Unfortunately, 4 floats is all we can get into
1854     * _mesa_add_unnamed_constant.  So, make a temp to store an
1855     * aggregate constant and move each constant value into it.  If we
1856     * get lucky, copy propagation will eliminate the extra moves.
1857     */
1858 
1859    if (ir->type->base_type == GLSL_TYPE_STRUCT) {
1860       src_reg temp_base = get_temp(ir->type);
1861       dst_reg temp = dst_reg(temp_base);
1862 
1863       foreach_in_list(ir_constant, field_value, &ir->components) {
1864 	 int size = type_size(field_value->type);
1865 
1866 	 assert(size > 0);
1867 
1868 	 field_value->accept(this);
1869 	 src = this->result;
1870 
1871 	 for (i = 0; i < (unsigned int)size; i++) {
1872 	    emit(ir, OPCODE_MOV, temp, src);
1873 
1874 	    src.index++;
1875 	    temp.index++;
1876 	 }
1877       }
1878       this->result = temp_base;
1879       return;
1880    }
1881 
1882    if (ir->type->is_array()) {
1883       src_reg temp_base = get_temp(ir->type);
1884       dst_reg temp = dst_reg(temp_base);
1885       int size = type_size(ir->type->fields.array);
1886 
1887       assert(size > 0);
1888 
1889       for (i = 0; i < ir->type->length; i++) {
1890 	 ir->array_elements[i]->accept(this);
1891 	 src = this->result;
1892 	 for (int j = 0; j < size; j++) {
1893 	    emit(ir, OPCODE_MOV, temp, src);
1894 
1895 	    src.index++;
1896 	    temp.index++;
1897 	 }
1898       }
1899       this->result = temp_base;
1900       return;
1901    }
1902 
1903    if (ir->type->is_matrix()) {
1904       src_reg mat = get_temp(ir->type);
1905       dst_reg mat_column = dst_reg(mat);
1906 
1907       for (i = 0; i < ir->type->matrix_columns; i++) {
1908 	 assert(ir->type->base_type == GLSL_TYPE_FLOAT);
1909 	 values = &ir->value.f[i * ir->type->vector_elements];
1910 
1911 	 src = src_reg(PROGRAM_CONSTANT, -1, NULL);
1912 	 src.index = _mesa_add_unnamed_constant(this->prog->Parameters,
1913 						(gl_constant_value *) values,
1914 						ir->type->vector_elements,
1915 						&src.swizzle);
1916 	 emit(ir, OPCODE_MOV, mat_column, src);
1917 
1918 	 mat_column.index++;
1919       }
1920 
1921       this->result = mat;
1922       return;
1923    }
1924 
1925    src.file = PROGRAM_CONSTANT;
1926    switch (ir->type->base_type) {
1927    case GLSL_TYPE_FLOAT:
1928       values = &ir->value.f[0];
1929       break;
1930    case GLSL_TYPE_UINT:
1931       for (i = 0; i < ir->type->vector_elements; i++) {
1932 	 values[i] = ir->value.u[i];
1933       }
1934       break;
1935    case GLSL_TYPE_INT:
1936       for (i = 0; i < ir->type->vector_elements; i++) {
1937 	 values[i] = ir->value.i[i];
1938       }
1939       break;
1940    case GLSL_TYPE_BOOL:
1941       for (i = 0; i < ir->type->vector_elements; i++) {
1942 	 values[i] = ir->value.b[i];
1943       }
1944       break;
1945    default:
1946       assert(!"Non-float/uint/int/bool constant");
1947    }
1948 
1949    this->result = src_reg(PROGRAM_CONSTANT, -1, ir->type);
1950    this->result.index = _mesa_add_unnamed_constant(this->prog->Parameters,
1951 						   (gl_constant_value *) values,
1952 						   ir->type->vector_elements,
1953 						   &this->result.swizzle);
1954 }
1955 
1956 void
visit(ir_call *)1957 ir_to_mesa_visitor::visit(ir_call *)
1958 {
1959    assert(!"ir_to_mesa: All function calls should have been inlined by now.");
1960 }
1961 
1962 void
visit(ir_texture * ir)1963 ir_to_mesa_visitor::visit(ir_texture *ir)
1964 {
1965    src_reg result_src, coord, lod_info, projector, dx, dy;
1966    dst_reg result_dst, coord_dst;
1967    ir_to_mesa_instruction *inst = NULL;
1968    prog_opcode opcode = OPCODE_NOP;
1969 
1970    if (ir->op == ir_txs)
1971       this->result = src_reg_for_float(0.0);
1972    else
1973       ir->coordinate->accept(this);
1974 
1975    /* Put our coords in a temp.  We'll need to modify them for shadow,
1976     * projection, or LOD, so the only case we'd use it as-is is if
1977     * we're doing plain old texturing.  Mesa IR optimization should
1978     * handle cleaning up our mess in that case.
1979     */
1980    coord = get_temp(glsl_type::vec4_type);
1981    coord_dst = dst_reg(coord);
1982    emit(ir, OPCODE_MOV, coord_dst, this->result);
1983 
1984    if (ir->projector) {
1985       ir->projector->accept(this);
1986       projector = this->result;
1987    }
1988 
1989    /* Storage for our result.  Ideally for an assignment we'd be using
1990     * the actual storage for the result here, instead.
1991     */
1992    result_src = get_temp(glsl_type::vec4_type);
1993    result_dst = dst_reg(result_src);
1994 
1995    switch (ir->op) {
1996    case ir_tex:
1997    case ir_txs:
1998       opcode = OPCODE_TEX;
1999       break;
2000    case ir_txb:
2001       opcode = OPCODE_TXB;
2002       ir->lod_info.bias->accept(this);
2003       lod_info = this->result;
2004       break;
2005    case ir_txf:
2006       /* Pretend to be TXL so the sampler, coordinate, lod are available */
2007    case ir_txl:
2008       opcode = OPCODE_TXL;
2009       ir->lod_info.lod->accept(this);
2010       lod_info = this->result;
2011       break;
2012    case ir_txd:
2013       opcode = OPCODE_TXD;
2014       ir->lod_info.grad.dPdx->accept(this);
2015       dx = this->result;
2016       ir->lod_info.grad.dPdy->accept(this);
2017       dy = this->result;
2018       break;
2019    case ir_txf_ms:
2020       assert(!"Unexpected ir_txf_ms opcode");
2021       break;
2022    case ir_lod:
2023       assert(!"Unexpected ir_lod opcode");
2024       break;
2025    case ir_tg4:
2026       assert(!"Unexpected ir_tg4 opcode");
2027       break;
2028    case ir_query_levels:
2029       assert(!"Unexpected ir_query_levels opcode");
2030       break;
2031    case ir_samples_identical:
2032       unreachable("Unexpected ir_samples_identical opcode");
2033    case ir_texture_samples:
2034       unreachable("Unexpected ir_texture_samples opcode");
2035    }
2036 
2037    const glsl_type *sampler_type = ir->sampler->type;
2038 
2039    if (ir->projector) {
2040       if (opcode == OPCODE_TEX) {
2041 	 /* Slot the projector in as the last component of the coord. */
2042 	 coord_dst.writemask = WRITEMASK_W;
2043 	 emit(ir, OPCODE_MOV, coord_dst, projector);
2044 	 coord_dst.writemask = WRITEMASK_XYZW;
2045 	 opcode = OPCODE_TXP;
2046       } else {
2047 	 src_reg coord_w = coord;
2048 	 coord_w.swizzle = SWIZZLE_WWWW;
2049 
2050 	 /* For the other TEX opcodes there's no projective version
2051 	  * since the last slot is taken up by lod info.  Do the
2052 	  * projective divide now.
2053 	  */
2054 	 coord_dst.writemask = WRITEMASK_W;
2055 	 emit(ir, OPCODE_RCP, coord_dst, projector);
2056 
2057 	 /* In the case where we have to project the coordinates "by hand,"
2058 	  * the shadow comparator value must also be projected.
2059 	  */
2060 	 src_reg tmp_src = coord;
2061 	 if (ir->shadow_comparator) {
2062 	    /* Slot the shadow value in as the second to last component of the
2063 	     * coord.
2064 	     */
2065 	    ir->shadow_comparator->accept(this);
2066 
2067 	    tmp_src = get_temp(glsl_type::vec4_type);
2068 	    dst_reg tmp_dst = dst_reg(tmp_src);
2069 
2070 	    /* Projective division not allowed for array samplers. */
2071 	    assert(!sampler_type->sampler_array);
2072 
2073 	    tmp_dst.writemask = WRITEMASK_Z;
2074 	    emit(ir, OPCODE_MOV, tmp_dst, this->result);
2075 
2076 	    tmp_dst.writemask = WRITEMASK_XY;
2077 	    emit(ir, OPCODE_MOV, tmp_dst, coord);
2078 	 }
2079 
2080 	 coord_dst.writemask = WRITEMASK_XYZ;
2081 	 emit(ir, OPCODE_MUL, coord_dst, tmp_src, coord_w);
2082 
2083 	 coord_dst.writemask = WRITEMASK_XYZW;
2084 	 coord.swizzle = SWIZZLE_XYZW;
2085       }
2086    }
2087 
2088    /* If projection is done and the opcode is not OPCODE_TXP, then the shadow
2089     * comparator was put in the correct place (and projected) by the code,
2090     * above, that handles by-hand projection.
2091     */
2092    if (ir->shadow_comparator && (!ir->projector || opcode == OPCODE_TXP)) {
2093       /* Slot the shadow value in as the second to last component of the
2094        * coord.
2095        */
2096       ir->shadow_comparator->accept(this);
2097 
2098       /* XXX This will need to be updated for cubemap array samplers. */
2099       if (sampler_type->sampler_dimensionality == GLSL_SAMPLER_DIM_2D &&
2100           sampler_type->sampler_array) {
2101          coord_dst.writemask = WRITEMASK_W;
2102       } else {
2103          coord_dst.writemask = WRITEMASK_Z;
2104       }
2105 
2106       emit(ir, OPCODE_MOV, coord_dst, this->result);
2107       coord_dst.writemask = WRITEMASK_XYZW;
2108    }
2109 
2110    if (opcode == OPCODE_TXL || opcode == OPCODE_TXB) {
2111       /* Mesa IR stores lod or lod bias in the last channel of the coords. */
2112       coord_dst.writemask = WRITEMASK_W;
2113       emit(ir, OPCODE_MOV, coord_dst, lod_info);
2114       coord_dst.writemask = WRITEMASK_XYZW;
2115    }
2116 
2117    if (opcode == OPCODE_TXD)
2118       inst = emit(ir, opcode, result_dst, coord, dx, dy);
2119    else
2120       inst = emit(ir, opcode, result_dst, coord);
2121 
2122    if (ir->shadow_comparator)
2123       inst->tex_shadow = GL_TRUE;
2124 
2125    inst->sampler = get_sampler_uniform_value(ir->sampler, shader_program,
2126                                              prog);
2127 
2128    switch (sampler_type->sampler_dimensionality) {
2129    case GLSL_SAMPLER_DIM_1D:
2130       inst->tex_target = (sampler_type->sampler_array)
2131 	 ? TEXTURE_1D_ARRAY_INDEX : TEXTURE_1D_INDEX;
2132       break;
2133    case GLSL_SAMPLER_DIM_2D:
2134       inst->tex_target = (sampler_type->sampler_array)
2135 	 ? TEXTURE_2D_ARRAY_INDEX : TEXTURE_2D_INDEX;
2136       break;
2137    case GLSL_SAMPLER_DIM_3D:
2138       inst->tex_target = TEXTURE_3D_INDEX;
2139       break;
2140    case GLSL_SAMPLER_DIM_CUBE:
2141       inst->tex_target = TEXTURE_CUBE_INDEX;
2142       break;
2143    case GLSL_SAMPLER_DIM_RECT:
2144       inst->tex_target = TEXTURE_RECT_INDEX;
2145       break;
2146    case GLSL_SAMPLER_DIM_BUF:
2147       assert(!"FINISHME: Implement ARB_texture_buffer_object");
2148       break;
2149    case GLSL_SAMPLER_DIM_EXTERNAL:
2150       inst->tex_target = TEXTURE_EXTERNAL_INDEX;
2151       break;
2152    default:
2153       assert(!"Should not get here.");
2154    }
2155 
2156    this->result = result_src;
2157 }
2158 
2159 void
visit(ir_return * ir)2160 ir_to_mesa_visitor::visit(ir_return *ir)
2161 {
2162    /* Non-void functions should have been inlined.  We may still emit RETs
2163     * from main() unless the EmitNoMainReturn option is set.
2164     */
2165    assert(!ir->get_value());
2166    emit(ir, OPCODE_RET);
2167 }
2168 
2169 void
visit(ir_discard * ir)2170 ir_to_mesa_visitor::visit(ir_discard *ir)
2171 {
2172    if (!ir->condition)
2173       ir->condition = new(mem_ctx) ir_constant(true);
2174 
2175    ir->condition->accept(this);
2176    this->result.negate = ~this->result.negate;
2177    emit(ir, OPCODE_KIL, undef_dst, this->result);
2178 }
2179 
2180 void
visit(ir_if * ir)2181 ir_to_mesa_visitor::visit(ir_if *ir)
2182 {
2183    ir_to_mesa_instruction *if_inst;
2184 
2185    ir->condition->accept(this);
2186    assert(this->result.file != PROGRAM_UNDEFINED);
2187 
2188    if_inst = emit(ir->condition, OPCODE_IF, undef_dst, this->result);
2189 
2190    this->instructions.push_tail(if_inst);
2191 
2192    visit_exec_list(&ir->then_instructions, this);
2193 
2194    if (!ir->else_instructions.is_empty()) {
2195       emit(ir->condition, OPCODE_ELSE);
2196       visit_exec_list(&ir->else_instructions, this);
2197    }
2198 
2199    emit(ir->condition, OPCODE_ENDIF);
2200 }
2201 
2202 void
visit(ir_emit_vertex *)2203 ir_to_mesa_visitor::visit(ir_emit_vertex *)
2204 {
2205    assert(!"Geometry shaders not supported.");
2206 }
2207 
2208 void
visit(ir_end_primitive *)2209 ir_to_mesa_visitor::visit(ir_end_primitive *)
2210 {
2211    assert(!"Geometry shaders not supported.");
2212 }
2213 
2214 void
visit(ir_barrier *)2215 ir_to_mesa_visitor::visit(ir_barrier *)
2216 {
2217    unreachable("GLSL barrier() not supported.");
2218 }
2219 
ir_to_mesa_visitor()2220 ir_to_mesa_visitor::ir_to_mesa_visitor()
2221 {
2222    result.file = PROGRAM_UNDEFINED;
2223    next_temp = 1;
2224    next_signature_id = 1;
2225    current_function = NULL;
2226    mem_ctx = ralloc_context(NULL);
2227 }
2228 
~ir_to_mesa_visitor()2229 ir_to_mesa_visitor::~ir_to_mesa_visitor()
2230 {
2231    ralloc_free(mem_ctx);
2232 }
2233 
2234 static struct prog_src_register
mesa_src_reg_from_ir_src_reg(src_reg reg)2235 mesa_src_reg_from_ir_src_reg(src_reg reg)
2236 {
2237    struct prog_src_register mesa_reg;
2238 
2239    mesa_reg.File = reg.file;
2240    assert(reg.index < (1 << INST_INDEX_BITS));
2241    mesa_reg.Index = reg.index;
2242    mesa_reg.Swizzle = reg.swizzle;
2243    mesa_reg.RelAddr = reg.reladdr != NULL;
2244    mesa_reg.Negate = reg.negate;
2245 
2246    return mesa_reg;
2247 }
2248 
2249 static void
set_branchtargets(ir_to_mesa_visitor * v,struct prog_instruction * mesa_instructions,int num_instructions)2250 set_branchtargets(ir_to_mesa_visitor *v,
2251 		  struct prog_instruction *mesa_instructions,
2252 		  int num_instructions)
2253 {
2254    int if_count = 0, loop_count = 0;
2255    int *if_stack, *loop_stack;
2256    int if_stack_pos = 0, loop_stack_pos = 0;
2257    int i, j;
2258 
2259    for (i = 0; i < num_instructions; i++) {
2260       switch (mesa_instructions[i].Opcode) {
2261       case OPCODE_IF:
2262 	 if_count++;
2263 	 break;
2264       case OPCODE_BGNLOOP:
2265 	 loop_count++;
2266 	 break;
2267       case OPCODE_BRK:
2268       case OPCODE_CONT:
2269 	 mesa_instructions[i].BranchTarget = -1;
2270 	 break;
2271       default:
2272 	 break;
2273       }
2274    }
2275 
2276    if_stack = rzalloc_array(v->mem_ctx, int, if_count);
2277    loop_stack = rzalloc_array(v->mem_ctx, int, loop_count);
2278 
2279    for (i = 0; i < num_instructions; i++) {
2280       switch (mesa_instructions[i].Opcode) {
2281       case OPCODE_IF:
2282 	 if_stack[if_stack_pos] = i;
2283 	 if_stack_pos++;
2284 	 break;
2285       case OPCODE_ELSE:
2286 	 mesa_instructions[if_stack[if_stack_pos - 1]].BranchTarget = i;
2287 	 if_stack[if_stack_pos - 1] = i;
2288 	 break;
2289       case OPCODE_ENDIF:
2290 	 mesa_instructions[if_stack[if_stack_pos - 1]].BranchTarget = i;
2291 	 if_stack_pos--;
2292 	 break;
2293       case OPCODE_BGNLOOP:
2294 	 loop_stack[loop_stack_pos] = i;
2295 	 loop_stack_pos++;
2296 	 break;
2297       case OPCODE_ENDLOOP:
2298 	 loop_stack_pos--;
2299 	 /* Rewrite any breaks/conts at this nesting level (haven't
2300 	  * already had a BranchTarget assigned) to point to the end
2301 	  * of the loop.
2302 	  */
2303 	 for (j = loop_stack[loop_stack_pos]; j < i; j++) {
2304 	    if (mesa_instructions[j].Opcode == OPCODE_BRK ||
2305 		mesa_instructions[j].Opcode == OPCODE_CONT) {
2306 	       if (mesa_instructions[j].BranchTarget == -1) {
2307 		  mesa_instructions[j].BranchTarget = i;
2308 	       }
2309 	    }
2310 	 }
2311 	 /* The loop ends point at each other. */
2312 	 mesa_instructions[i].BranchTarget = loop_stack[loop_stack_pos];
2313 	 mesa_instructions[loop_stack[loop_stack_pos]].BranchTarget = i;
2314 	 break;
2315       case OPCODE_CAL:
2316 	 foreach_in_list(function_entry, entry, &v->function_signatures) {
2317 	    if (entry->sig_id == mesa_instructions[i].BranchTarget) {
2318 	       mesa_instructions[i].BranchTarget = entry->inst;
2319 	       break;
2320 	    }
2321 	 }
2322 	 break;
2323       default:
2324 	 break;
2325       }
2326    }
2327 }
2328 
2329 static void
print_program(struct prog_instruction * mesa_instructions,ir_instruction ** mesa_instruction_annotation,int num_instructions)2330 print_program(struct prog_instruction *mesa_instructions,
2331 	      ir_instruction **mesa_instruction_annotation,
2332 	      int num_instructions)
2333 {
2334    ir_instruction *last_ir = NULL;
2335    int i;
2336    int indent = 0;
2337 
2338    for (i = 0; i < num_instructions; i++) {
2339       struct prog_instruction *mesa_inst = mesa_instructions + i;
2340       ir_instruction *ir = mesa_instruction_annotation[i];
2341 
2342       fprintf(stdout, "%3d: ", i);
2343 
2344       if (last_ir != ir && ir) {
2345 	 int j;
2346 
2347 	 for (j = 0; j < indent; j++) {
2348 	    fprintf(stdout, " ");
2349 	 }
2350 	 ir->print();
2351 	 printf("\n");
2352 	 last_ir = ir;
2353 
2354 	 fprintf(stdout, "     "); /* line number spacing. */
2355       }
2356 
2357       indent = _mesa_fprint_instruction_opt(stdout, mesa_inst, indent,
2358 					    PROG_PRINT_DEBUG, NULL);
2359    }
2360 }
2361 
2362 namespace {
2363 
2364 class add_uniform_to_shader : public program_resource_visitor {
2365 public:
add_uniform_to_shader(struct gl_shader_program * shader_program,struct gl_program_parameter_list * params,gl_shader_stage shader_type)2366    add_uniform_to_shader(struct gl_shader_program *shader_program,
2367 			 struct gl_program_parameter_list *params,
2368                          gl_shader_stage shader_type)
2369       : shader_program(shader_program), params(params), idx(-1),
2370         shader_type(shader_type)
2371    {
2372       /* empty */
2373    }
2374 
process(ir_variable * var)2375    void process(ir_variable *var)
2376    {
2377       this->idx = -1;
2378       this->program_resource_visitor::process(var);
2379       var->data.param_index = this->idx;
2380    }
2381 
2382 private:
2383    virtual void visit_field(const glsl_type *type, const char *name,
2384                             bool row_major, const glsl_type *record_type,
2385                             const enum glsl_interface_packing packing,
2386                             bool last_field);
2387 
2388    struct gl_shader_program *shader_program;
2389    struct gl_program_parameter_list *params;
2390    int idx;
2391    gl_shader_stage shader_type;
2392 };
2393 
2394 } /* anonymous namespace */
2395 
2396 void
visit_field(const glsl_type * type,const char * name,bool,const glsl_type *,const enum glsl_interface_packing,bool)2397 add_uniform_to_shader::visit_field(const glsl_type *type, const char *name,
2398                                    bool /* row_major */,
2399                                    const glsl_type * /* record_type */,
2400                                    const enum glsl_interface_packing,
2401                                    bool /* last_field */)
2402 {
2403    unsigned int size;
2404 
2405    /* atomics don't get real storage */
2406    if (type->contains_atomic())
2407       return;
2408 
2409    if (type->is_vector() || type->is_scalar()) {
2410       size = type->vector_elements;
2411       if (type->is_64bit())
2412          size *= 2;
2413    } else {
2414       size = type_size(type) * 4;
2415    }
2416 
2417    gl_register_file file;
2418    if (type->without_array()->is_sampler()) {
2419       file = PROGRAM_SAMPLER;
2420    } else {
2421       file = PROGRAM_UNIFORM;
2422    }
2423 
2424    int index = _mesa_lookup_parameter_index(params, name);
2425    if (index < 0) {
2426       index = _mesa_add_parameter(params, file, name, size, type->gl_type,
2427 				  NULL, NULL);
2428 
2429       /* Sampler uniform values are stored in prog->SamplerUnits,
2430        * and the entry in that array is selected by this index we
2431        * store in ParameterValues[].
2432        */
2433       if (file == PROGRAM_SAMPLER) {
2434 	 unsigned location;
2435 	 const bool found =
2436 	    this->shader_program->UniformHash->get(location,
2437 						   params->Parameters[index].Name);
2438 	 assert(found);
2439 
2440 	 if (!found)
2441 	    return;
2442 
2443 	 struct gl_uniform_storage *storage =
2444             &this->shader_program->data->UniformStorage[location];
2445 
2446          assert(storage->type->is_sampler() &&
2447                 storage->opaque[shader_type].active);
2448 
2449 	 for (unsigned int j = 0; j < size / 4; j++)
2450             params->ParameterValues[index + j][0].f =
2451                storage->opaque[shader_type].index + j;
2452       }
2453    }
2454 
2455    /* The first part of the uniform that's processed determines the base
2456     * location of the whole uniform (for structures).
2457     */
2458    if (this->idx < 0)
2459       this->idx = index;
2460 }
2461 
2462 /**
2463  * Generate the program parameters list for the user uniforms in a shader
2464  *
2465  * \param shader_program Linked shader program.  This is only used to
2466  *                       emit possible link errors to the info log.
2467  * \param sh             Shader whose uniforms are to be processed.
2468  * \param params         Parameter list to be filled in.
2469  */
2470 void
_mesa_generate_parameters_list_for_uniforms(struct gl_shader_program * shader_program,struct gl_linked_shader * sh,struct gl_program_parameter_list * params)2471 _mesa_generate_parameters_list_for_uniforms(struct gl_shader_program
2472 					    *shader_program,
2473 					    struct gl_linked_shader *sh,
2474 					    struct gl_program_parameter_list
2475 					    *params)
2476 {
2477    add_uniform_to_shader add(shader_program, params, sh->Stage);
2478 
2479    foreach_in_list(ir_instruction, node, sh->ir) {
2480       ir_variable *var = node->as_variable();
2481 
2482       if ((var == NULL) || (var->data.mode != ir_var_uniform)
2483 	  || var->is_in_buffer_block() || (strncmp(var->name, "gl_", 3) == 0))
2484 	 continue;
2485 
2486       add.process(var);
2487    }
2488 }
2489 
2490 void
_mesa_associate_uniform_storage(struct gl_context * ctx,struct gl_shader_program * shader_program,struct gl_program_parameter_list * params)2491 _mesa_associate_uniform_storage(struct gl_context *ctx,
2492 				struct gl_shader_program *shader_program,
2493 				struct gl_program_parameter_list *params)
2494 {
2495    /* After adding each uniform to the parameter list, connect the storage for
2496     * the parameter with the tracking structure used by the API for the
2497     * uniform.
2498     */
2499    unsigned last_location = unsigned(~0);
2500    for (unsigned i = 0; i < params->NumParameters; i++) {
2501       if (params->Parameters[i].Type != PROGRAM_UNIFORM)
2502 	 continue;
2503 
2504       unsigned location;
2505       const bool found =
2506 	 shader_program->UniformHash->get(location, params->Parameters[i].Name);
2507       assert(found);
2508 
2509       if (!found)
2510 	 continue;
2511 
2512       struct gl_uniform_storage *storage =
2513          &shader_program->data->UniformStorage[location];
2514 
2515       /* Do not associate any uniform storage to built-in uniforms */
2516       if (storage->builtin)
2517          continue;
2518 
2519       if (location != last_location) {
2520 	 enum gl_uniform_driver_format format = uniform_native;
2521 
2522 	 unsigned columns = 0;
2523 	 int dmul = 4 * sizeof(float);
2524 	 switch (storage->type->base_type) {
2525 	 case GLSL_TYPE_UINT:
2526 	    assert(ctx->Const.NativeIntegers);
2527 	    format = uniform_native;
2528 	    columns = 1;
2529 	    break;
2530 	 case GLSL_TYPE_INT:
2531 	    format =
2532 	       (ctx->Const.NativeIntegers) ? uniform_native : uniform_int_float;
2533 	    columns = 1;
2534 	    break;
2535 
2536 	 case GLSL_TYPE_DOUBLE:
2537 	    if (storage->type->vector_elements > 2)
2538                dmul *= 2;
2539 	    /* fallthrough */
2540 	 case GLSL_TYPE_FLOAT:
2541 	    format = uniform_native;
2542 	    columns = storage->type->matrix_columns;
2543 	    break;
2544 	 case GLSL_TYPE_BOOL:
2545 	    format = uniform_native;
2546 	    columns = 1;
2547 	    break;
2548 	 case GLSL_TYPE_SAMPLER:
2549 	 case GLSL_TYPE_IMAGE:
2550          case GLSL_TYPE_SUBROUTINE:
2551 	    format = uniform_native;
2552 	    columns = 1;
2553 	    break;
2554          case GLSL_TYPE_ATOMIC_UINT:
2555          case GLSL_TYPE_ARRAY:
2556          case GLSL_TYPE_VOID:
2557          case GLSL_TYPE_STRUCT:
2558          case GLSL_TYPE_ERROR:
2559          case GLSL_TYPE_INTERFACE:
2560          case GLSL_TYPE_FUNCTION:
2561 	    assert(!"Should not get here.");
2562 	    break;
2563 	 }
2564 
2565 	 _mesa_uniform_attach_driver_storage(storage,
2566 					     dmul * columns,
2567 					     dmul,
2568 					     format,
2569 					     &params->ParameterValues[i]);
2570 
2571 	 /* After attaching the driver's storage to the uniform, propagate any
2572 	  * data from the linker's backing store.  This will cause values from
2573 	  * initializers in the source code to be copied over.
2574 	  */
2575 	 _mesa_propagate_uniforms_to_driver_storage(storage,
2576 						    0,
2577 						    MAX2(1, storage->array_elements));
2578 
2579 	 last_location = location;
2580       }
2581    }
2582 }
2583 
2584 /*
2585  * On a basic block basis, tracks available PROGRAM_TEMPORARY register
2586  * channels for copy propagation and updates following instructions to
2587  * use the original versions.
2588  *
2589  * The ir_to_mesa_visitor lazily produces code assuming that this pass
2590  * will occur.  As an example, a TXP production before this pass:
2591  *
2592  * 0: MOV TEMP[1], INPUT[4].xyyy;
2593  * 1: MOV TEMP[1].w, INPUT[4].wwww;
2594  * 2: TXP TEMP[2], TEMP[1], texture[0], 2D;
2595  *
2596  * and after:
2597  *
2598  * 0: MOV TEMP[1], INPUT[4].xyyy;
2599  * 1: MOV TEMP[1].w, INPUT[4].wwww;
2600  * 2: TXP TEMP[2], INPUT[4].xyyw, texture[0], 2D;
2601  *
2602  * which allows for dead code elimination on TEMP[1]'s writes.
2603  */
2604 void
copy_propagate(void)2605 ir_to_mesa_visitor::copy_propagate(void)
2606 {
2607    ir_to_mesa_instruction **acp = rzalloc_array(mem_ctx,
2608 						    ir_to_mesa_instruction *,
2609 						    this->next_temp * 4);
2610    int *acp_level = rzalloc_array(mem_ctx, int, this->next_temp * 4);
2611    int level = 0;
2612 
2613    foreach_in_list(ir_to_mesa_instruction, inst, &this->instructions) {
2614       assert(inst->dst.file != PROGRAM_TEMPORARY
2615 	     || inst->dst.index < this->next_temp);
2616 
2617       /* First, do any copy propagation possible into the src regs. */
2618       for (int r = 0; r < 3; r++) {
2619 	 ir_to_mesa_instruction *first = NULL;
2620 	 bool good = true;
2621 	 int acp_base = inst->src[r].index * 4;
2622 
2623 	 if (inst->src[r].file != PROGRAM_TEMPORARY ||
2624 	     inst->src[r].reladdr)
2625 	    continue;
2626 
2627 	 /* See if we can find entries in the ACP consisting of MOVs
2628 	  * from the same src register for all the swizzled channels
2629 	  * of this src register reference.
2630 	  */
2631 	 for (int i = 0; i < 4; i++) {
2632 	    int src_chan = GET_SWZ(inst->src[r].swizzle, i);
2633 	    ir_to_mesa_instruction *copy_chan = acp[acp_base + src_chan];
2634 
2635 	    if (!copy_chan) {
2636 	       good = false;
2637 	       break;
2638 	    }
2639 
2640 	    assert(acp_level[acp_base + src_chan] <= level);
2641 
2642 	    if (!first) {
2643 	       first = copy_chan;
2644 	    } else {
2645 	       if (first->src[0].file != copy_chan->src[0].file ||
2646 		   first->src[0].index != copy_chan->src[0].index) {
2647 		  good = false;
2648 		  break;
2649 	       }
2650 	    }
2651 	 }
2652 
2653 	 if (good) {
2654 	    /* We've now validated that we can copy-propagate to
2655 	     * replace this src register reference.  Do it.
2656 	     */
2657 	    inst->src[r].file = first->src[0].file;
2658 	    inst->src[r].index = first->src[0].index;
2659 
2660 	    int swizzle = 0;
2661 	    for (int i = 0; i < 4; i++) {
2662 	       int src_chan = GET_SWZ(inst->src[r].swizzle, i);
2663 	       ir_to_mesa_instruction *copy_inst = acp[acp_base + src_chan];
2664 	       swizzle |= (GET_SWZ(copy_inst->src[0].swizzle, src_chan) <<
2665 			   (3 * i));
2666 	    }
2667 	    inst->src[r].swizzle = swizzle;
2668 	 }
2669       }
2670 
2671       switch (inst->op) {
2672       case OPCODE_BGNLOOP:
2673       case OPCODE_ENDLOOP:
2674 	 /* End of a basic block, clear the ACP entirely. */
2675 	 memset(acp, 0, sizeof(*acp) * this->next_temp * 4);
2676 	 break;
2677 
2678       case OPCODE_IF:
2679 	 ++level;
2680 	 break;
2681 
2682       case OPCODE_ENDIF:
2683       case OPCODE_ELSE:
2684 	 /* Clear all channels written inside the block from the ACP, but
2685 	  * leaving those that were not touched.
2686 	  */
2687 	 for (int r = 0; r < this->next_temp; r++) {
2688 	    for (int c = 0; c < 4; c++) {
2689 	       if (!acp[4 * r + c])
2690 		  continue;
2691 
2692 	       if (acp_level[4 * r + c] >= level)
2693 		  acp[4 * r + c] = NULL;
2694 	    }
2695 	 }
2696 	 if (inst->op == OPCODE_ENDIF)
2697 	    --level;
2698 	 break;
2699 
2700       default:
2701 	 /* Continuing the block, clear any written channels from
2702 	  * the ACP.
2703 	  */
2704 	 if (inst->dst.file == PROGRAM_TEMPORARY && inst->dst.reladdr) {
2705 	    /* Any temporary might be written, so no copy propagation
2706 	     * across this instruction.
2707 	     */
2708 	    memset(acp, 0, sizeof(*acp) * this->next_temp * 4);
2709 	 } else if (inst->dst.file == PROGRAM_OUTPUT &&
2710 		    inst->dst.reladdr) {
2711 	    /* Any output might be written, so no copy propagation
2712 	     * from outputs across this instruction.
2713 	     */
2714 	    for (int r = 0; r < this->next_temp; r++) {
2715 	       for (int c = 0; c < 4; c++) {
2716 		  if (!acp[4 * r + c])
2717 		     continue;
2718 
2719 		  if (acp[4 * r + c]->src[0].file == PROGRAM_OUTPUT)
2720 		     acp[4 * r + c] = NULL;
2721 	       }
2722 	    }
2723 	 } else if (inst->dst.file == PROGRAM_TEMPORARY ||
2724 		    inst->dst.file == PROGRAM_OUTPUT) {
2725 	    /* Clear where it's used as dst. */
2726 	    if (inst->dst.file == PROGRAM_TEMPORARY) {
2727 	       for (int c = 0; c < 4; c++) {
2728 		  if (inst->dst.writemask & (1 << c)) {
2729 		     acp[4 * inst->dst.index + c] = NULL;
2730 		  }
2731 	       }
2732 	    }
2733 
2734 	    /* Clear where it's used as src. */
2735 	    for (int r = 0; r < this->next_temp; r++) {
2736 	       for (int c = 0; c < 4; c++) {
2737 		  if (!acp[4 * r + c])
2738 		     continue;
2739 
2740 		  int src_chan = GET_SWZ(acp[4 * r + c]->src[0].swizzle, c);
2741 
2742 		  if (acp[4 * r + c]->src[0].file == inst->dst.file &&
2743 		      acp[4 * r + c]->src[0].index == inst->dst.index &&
2744 		      inst->dst.writemask & (1 << src_chan))
2745 		  {
2746 		     acp[4 * r + c] = NULL;
2747 		  }
2748 	       }
2749 	    }
2750 	 }
2751 	 break;
2752       }
2753 
2754       /* If this is a copy, add it to the ACP. */
2755       if (inst->op == OPCODE_MOV &&
2756 	  inst->dst.file == PROGRAM_TEMPORARY &&
2757 	  !(inst->dst.file == inst->src[0].file &&
2758 	    inst->dst.index == inst->src[0].index) &&
2759 	  !inst->dst.reladdr &&
2760 	  !inst->saturate &&
2761 	  !inst->src[0].reladdr &&
2762 	  !inst->src[0].negate) {
2763 	 for (int i = 0; i < 4; i++) {
2764 	    if (inst->dst.writemask & (1 << i)) {
2765 	       acp[4 * inst->dst.index + i] = inst;
2766 	       acp_level[4 * inst->dst.index + i] = level;
2767 	    }
2768 	 }
2769       }
2770    }
2771 
2772    ralloc_free(acp_level);
2773    ralloc_free(acp);
2774 }
2775 
2776 
2777 /**
2778  * Convert a shader's GLSL IR into a Mesa gl_program.
2779  */
2780 static struct gl_program *
get_mesa_program(struct gl_context * ctx,struct gl_shader_program * shader_program,struct gl_linked_shader * shader)2781 get_mesa_program(struct gl_context *ctx,
2782                  struct gl_shader_program *shader_program,
2783 		 struct gl_linked_shader *shader)
2784 {
2785    ir_to_mesa_visitor v;
2786    struct prog_instruction *mesa_instructions, *mesa_inst;
2787    ir_instruction **mesa_instruction_annotation;
2788    int i;
2789    struct gl_program *prog;
2790    GLenum target = _mesa_shader_stage_to_program(shader->Stage);
2791    const char *target_string = _mesa_shader_stage_to_string(shader->Stage);
2792    struct gl_shader_compiler_options *options =
2793          &ctx->Const.ShaderCompilerOptions[shader->Stage];
2794 
2795    validate_ir_tree(shader->ir);
2796 
2797    prog = shader->Program;
2798    prog->Parameters = _mesa_new_parameter_list();
2799    v.ctx = ctx;
2800    v.prog = prog;
2801    v.shader_program = shader_program;
2802    v.options = options;
2803 
2804    _mesa_generate_parameters_list_for_uniforms(shader_program, shader,
2805 					       prog->Parameters);
2806 
2807    /* Emit Mesa IR for main(). */
2808    visit_exec_list(shader->ir, &v);
2809    v.emit(NULL, OPCODE_END);
2810 
2811    prog->arb.NumTemporaries = v.next_temp;
2812 
2813    unsigned num_instructions = v.instructions.length();
2814 
2815    mesa_instructions = rzalloc_array(prog, struct prog_instruction,
2816                                      num_instructions);
2817    mesa_instruction_annotation = ralloc_array(v.mem_ctx, ir_instruction *,
2818 					      num_instructions);
2819 
2820    v.copy_propagate();
2821 
2822    /* Convert ir_mesa_instructions into prog_instructions.
2823     */
2824    mesa_inst = mesa_instructions;
2825    i = 0;
2826    foreach_in_list(const ir_to_mesa_instruction, inst, &v.instructions) {
2827       mesa_inst->Opcode = inst->op;
2828       if (inst->saturate)
2829 	 mesa_inst->Saturate = GL_TRUE;
2830       mesa_inst->DstReg.File = inst->dst.file;
2831       mesa_inst->DstReg.Index = inst->dst.index;
2832       mesa_inst->DstReg.WriteMask = inst->dst.writemask;
2833       mesa_inst->DstReg.RelAddr = inst->dst.reladdr != NULL;
2834       mesa_inst->SrcReg[0] = mesa_src_reg_from_ir_src_reg(inst->src[0]);
2835       mesa_inst->SrcReg[1] = mesa_src_reg_from_ir_src_reg(inst->src[1]);
2836       mesa_inst->SrcReg[2] = mesa_src_reg_from_ir_src_reg(inst->src[2]);
2837       mesa_inst->TexSrcUnit = inst->sampler;
2838       mesa_inst->TexSrcTarget = inst->tex_target;
2839       mesa_inst->TexShadow = inst->tex_shadow;
2840       mesa_instruction_annotation[i] = inst->ir;
2841 
2842       /* Set IndirectRegisterFiles. */
2843       if (mesa_inst->DstReg.RelAddr)
2844          prog->arb.IndirectRegisterFiles |= 1 << mesa_inst->DstReg.File;
2845 
2846       /* Update program's bitmask of indirectly accessed register files */
2847       for (unsigned src = 0; src < 3; src++)
2848          if (mesa_inst->SrcReg[src].RelAddr)
2849             prog->arb.IndirectRegisterFiles |= 1 << mesa_inst->SrcReg[src].File;
2850 
2851       switch (mesa_inst->Opcode) {
2852       case OPCODE_IF:
2853 	 if (options->MaxIfDepth == 0) {
2854 	    linker_warning(shader_program,
2855 			   "Couldn't flatten if-statement.  "
2856 			   "This will likely result in software "
2857 			   "rasterization.\n");
2858 	 }
2859 	 break;
2860       case OPCODE_BGNLOOP:
2861 	 if (options->EmitNoLoops) {
2862 	    linker_warning(shader_program,
2863 			   "Couldn't unroll loop.  "
2864 			   "This will likely result in software "
2865 			   "rasterization.\n");
2866 	 }
2867 	 break;
2868       case OPCODE_CONT:
2869 	 if (options->EmitNoCont) {
2870 	    linker_warning(shader_program,
2871 			   "Couldn't lower continue-statement.  "
2872 			   "This will likely result in software "
2873 			   "rasterization.\n");
2874 	 }
2875 	 break;
2876       case OPCODE_ARL:
2877          prog->arb.NumAddressRegs = 1;
2878 	 break;
2879       default:
2880 	 break;
2881       }
2882 
2883       mesa_inst++;
2884       i++;
2885 
2886       if (!shader_program->data->LinkStatus)
2887          break;
2888    }
2889 
2890    if (!shader_program->data->LinkStatus) {
2891       goto fail_exit;
2892    }
2893 
2894    set_branchtargets(&v, mesa_instructions, num_instructions);
2895 
2896    if (ctx->_Shader->Flags & GLSL_DUMP) {
2897       fprintf(stderr, "\n");
2898       fprintf(stderr, "GLSL IR for linked %s program %d:\n", target_string,
2899 	      shader_program->Name);
2900       _mesa_print_ir(stderr, shader->ir, NULL);
2901       fprintf(stderr, "\n");
2902       fprintf(stderr, "\n");
2903       fprintf(stderr, "Mesa IR for linked %s program %d:\n", target_string,
2904 	      shader_program->Name);
2905       print_program(mesa_instructions, mesa_instruction_annotation,
2906 		    num_instructions);
2907       fflush(stderr);
2908    }
2909 
2910    prog->arb.Instructions = mesa_instructions;
2911    prog->arb.NumInstructions = num_instructions;
2912 
2913    /* Setting this to NULL prevents a possible double free in the fail_exit
2914     * path (far below).
2915     */
2916    mesa_instructions = NULL;
2917 
2918    do_set_program_inouts(shader->ir, prog, shader->Stage);
2919 
2920    prog->ShadowSamplers = shader->shadow_samplers;
2921    prog->ExternalSamplersUsed = gl_external_samplers(prog);
2922    _mesa_update_shader_textures_used(shader_program, prog);
2923 
2924    /* Set the gl_FragDepth layout. */
2925    if (target == GL_FRAGMENT_PROGRAM_ARB) {
2926       prog->info.fs.depth_layout = shader_program->FragDepthLayout;
2927    }
2928 
2929    if ((ctx->_Shader->Flags & GLSL_NO_OPT) == 0) {
2930       _mesa_optimize_program(ctx, prog, prog);
2931    }
2932 
2933    /* This has to be done last.  Any operation that can cause
2934     * prog->ParameterValues to get reallocated (e.g., anything that adds a
2935     * program constant) has to happen before creating this linkage.
2936     */
2937    _mesa_associate_uniform_storage(ctx, shader_program, prog->Parameters);
2938    if (!shader_program->data->LinkStatus) {
2939       goto fail_exit;
2940    }
2941 
2942    return prog;
2943 
2944 fail_exit:
2945    ralloc_free(mesa_instructions);
2946    _mesa_reference_program(ctx, &shader->Program, NULL);
2947    return NULL;
2948 }
2949 
2950 extern "C" {
2951 
2952 /**
2953  * Link a shader.
2954  * Called via ctx->Driver.LinkShader()
2955  * This actually involves converting GLSL IR into Mesa gl_programs with
2956  * code lowering and other optimizations.
2957  */
2958 GLboolean
_mesa_ir_link_shader(struct gl_context * ctx,struct gl_shader_program * prog)2959 _mesa_ir_link_shader(struct gl_context *ctx, struct gl_shader_program *prog)
2960 {
2961    assert(prog->data->LinkStatus);
2962 
2963    for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
2964       if (prog->_LinkedShaders[i] == NULL)
2965 	 continue;
2966 
2967       bool progress;
2968       exec_list *ir = prog->_LinkedShaders[i]->ir;
2969       const struct gl_shader_compiler_options *options =
2970             &ctx->Const.ShaderCompilerOptions[prog->_LinkedShaders[i]->Stage];
2971 
2972       do {
2973 	 progress = false;
2974 
2975 	 /* Lowering */
2976 	 do_mat_op_to_vec(ir);
2977 	 lower_instructions(ir, (MOD_TO_FLOOR | DIV_TO_MUL_RCP | EXP_TO_EXP2
2978 				 | LOG_TO_LOG2 | INT_DIV_TO_MUL_RCP
2979 				 | ((options->EmitNoPow) ? POW_TO_EXP2 : 0)));
2980 
2981 	 progress = do_common_optimization(ir, true, true,
2982                                            options, ctx->Const.NativeIntegers)
2983 	   || progress;
2984 
2985 	 progress = lower_quadop_vector(ir, true) || progress;
2986 
2987 	 if (options->MaxIfDepth == 0)
2988 	    progress = lower_discard(ir) || progress;
2989 
2990 	 progress = lower_if_to_cond_assign((gl_shader_stage)i, ir,
2991                                             options->MaxIfDepth) || progress;
2992 
2993          progress = lower_noise(ir) || progress;
2994 
2995 	 /* If there are forms of indirect addressing that the driver
2996 	  * cannot handle, perform the lowering pass.
2997 	  */
2998 	 if (options->EmitNoIndirectInput || options->EmitNoIndirectOutput
2999 	     || options->EmitNoIndirectTemp || options->EmitNoIndirectUniform)
3000 	   progress =
3001 	     lower_variable_index_to_cond_assign(prog->_LinkedShaders[i]->Stage, ir,
3002 						 options->EmitNoIndirectInput,
3003 						 options->EmitNoIndirectOutput,
3004 						 options->EmitNoIndirectTemp,
3005 						 options->EmitNoIndirectUniform)
3006 	     || progress;
3007 
3008 	 progress = do_vec_index_to_cond_assign(ir) || progress;
3009          progress = lower_vector_insert(ir, true) || progress;
3010       } while (progress);
3011 
3012       validate_ir_tree(ir);
3013    }
3014 
3015    for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
3016       struct gl_program *linked_prog;
3017 
3018       if (prog->_LinkedShaders[i] == NULL)
3019 	 continue;
3020 
3021       linked_prog = get_mesa_program(ctx, prog, prog->_LinkedShaders[i]);
3022 
3023       if (linked_prog) {
3024          _mesa_copy_linked_program_data(prog, prog->_LinkedShaders[i]);
3025 
3026          if (!ctx->Driver.ProgramStringNotify(ctx,
3027                                               _mesa_shader_stage_to_program(i),
3028                                               linked_prog)) {
3029             _mesa_reference_program(ctx, &prog->_LinkedShaders[i]->Program,
3030                                     NULL);
3031             return GL_FALSE;
3032          }
3033       }
3034    }
3035 
3036    build_program_resource_list(ctx, prog);
3037    return prog->data->LinkStatus;
3038 }
3039 
3040 /**
3041  * Link a GLSL shader program.  Called via glLinkProgram().
3042  */
3043 void
_mesa_glsl_link_shader(struct gl_context * ctx,struct gl_shader_program * prog)3044 _mesa_glsl_link_shader(struct gl_context *ctx, struct gl_shader_program *prog)
3045 {
3046    unsigned int i;
3047 
3048    _mesa_clear_shader_program_data(ctx, prog);
3049 
3050    prog->data->LinkStatus = GL_TRUE;
3051 
3052    for (i = 0; i < prog->NumShaders; i++) {
3053       if (!prog->Shaders[i]->CompileStatus) {
3054 	 linker_error(prog, "linking with uncompiled shader");
3055       }
3056    }
3057 
3058    if (prog->data->LinkStatus) {
3059       link_shaders(ctx, prog);
3060    }
3061 
3062    if (prog->data->LinkStatus) {
3063       if (!ctx->Driver.LinkShader(ctx, prog)) {
3064          prog->data->LinkStatus = GL_FALSE;
3065       }
3066    }
3067 
3068    if (ctx->_Shader->Flags & GLSL_DUMP) {
3069       if (!prog->data->LinkStatus) {
3070 	 fprintf(stderr, "GLSL shader program %d failed to link\n", prog->Name);
3071       }
3072 
3073       if (prog->data->InfoLog && prog->data->InfoLog[0] != 0) {
3074 	 fprintf(stderr, "GLSL shader program %d info log:\n", prog->Name);
3075          fprintf(stderr, "%s\n", prog->data->InfoLog);
3076       }
3077    }
3078 }
3079 
3080 } /* extern "C" */
3081