1 /*
2 * Copyright 2012 The Android Open Source Project
3 *
4 * Use of this source code is governed by a BSD-style license that can be
5 * found in the LICENSE file.
6 */
7
8 #include "SkBitmapProcState_opts_SSSE3.h"
9 #include "SkColorPriv.h"
10 #include "SkPaint.h"
11 #include "SkUtils.h"
12
13 #include <tmmintrin.h> // SSSE3
14
15 // adding anonymous namespace seemed to force gcc to inline directly the
16 // instantiation, instead of creating the functions
17 // S32_generic_D32_filter_DX_SSSE3<true> and
18 // S32_generic_D32_filter_DX_SSSE3<false> which were then called by the
19 // external functions.
20 namespace {
21 // In this file, variations for alpha and non alpha versions are implemented
22 // with a template, as it makes the code more compact and a bit easier to
23 // maintain, while making the compiler generate the same exact code as with
24 // two functions that only differ by a few lines.
25
26
27 // Prepare all necessary constants for a round of processing for two pixel
28 // pairs.
29 // @param xy is the location where the xy parameters for four pixels should be
30 // read from. It is identical in concept with argument two of
31 // S32_{opaque}_D32_filter_DX methods.
32 // @param mask_3FFF vector of 32 bit constants containing 3FFF,
33 // suitable to mask the bottom 14 bits of a XY value.
34 // @param mask_000F vector of 32 bit constants containing 000F,
35 // suitable to mask the bottom 4 bits of a XY value.
36 // @param sixteen_8bit vector of 8 bit components containing the value 16.
37 // @param mask_dist_select vector of 8 bit components containing the shuffling
38 // parameters to reorder x[0-3] parameters.
39 // @param all_x_result vector of 8 bit components that will contain the
40 // (4x(x3), 4x(x2), 4x(x1), 4x(x0)) upon return.
41 // @param sixteen_minus_x vector of 8 bit components, containing
42 // (4x(16 - x3), 4x(16 - x2), 4x(16 - x1), 4x(16 - x0))
PrepareConstantsTwoPixelPairs(const uint32_t * xy,const __m128i & mask_3FFF,const __m128i & mask_000F,const __m128i & sixteen_8bit,const __m128i & mask_dist_select,__m128i * all_x_result,__m128i * sixteen_minus_x,int * x0,int * x1)43 inline void PrepareConstantsTwoPixelPairs(const uint32_t* xy,
44 const __m128i& mask_3FFF,
45 const __m128i& mask_000F,
46 const __m128i& sixteen_8bit,
47 const __m128i& mask_dist_select,
48 __m128i* all_x_result,
49 __m128i* sixteen_minus_x,
50 int* x0,
51 int* x1) {
52 const __m128i xx = _mm_loadu_si128(reinterpret_cast<const __m128i *>(xy));
53
54 // 4 delta X
55 // (x03, x02, x01, x00)
56 const __m128i x0_wide = _mm_srli_epi32(xx, 18);
57 // (x13, x12, x11, x10)
58 const __m128i x1_wide = _mm_and_si128(xx, mask_3FFF);
59
60 _mm_storeu_si128(reinterpret_cast<__m128i *>(x0), x0_wide);
61 _mm_storeu_si128(reinterpret_cast<__m128i *>(x1), x1_wide);
62
63 __m128i all_x = _mm_and_si128(_mm_srli_epi32(xx, 14), mask_000F);
64
65 // (4x(x3), 4x(x2), 4x(x1), 4x(x0))
66 all_x = _mm_shuffle_epi8(all_x, mask_dist_select);
67
68 *all_x_result = all_x;
69 // (4x(16-x3), 4x(16-x2), 4x(16-x1), 4x(16-x0))
70 *sixteen_minus_x = _mm_sub_epi8(sixteen_8bit, all_x);
71 }
72
73 // Prepare all necessary constants for a round of processing for two pixel
74 // pairs.
75 // @param xy is the location where the xy parameters for four pixels should be
76 // read from. It is identical in concept with argument two of
77 // S32_{opaque}_D32_filter_DXDY methods.
78 // @param mask_3FFF vector of 32 bit constants containing 3FFF,
79 // suitable to mask the bottom 14 bits of a XY value.
80 // @param mask_000F vector of 32 bit constants containing 000F,
81 // suitable to mask the bottom 4 bits of a XY value.
82 // @param sixteen_8bit vector of 8 bit components containing the value 16.
83 // @param mask_dist_select vector of 8 bit components containing the shuffling
84 // parameters to reorder x[0-3] parameters.
85 // @param all_xy_result vector of 8 bit components that will contain the
86 // (4x(y1), 4x(y0), 4x(x1), 4x(x0)) upon return.
87 // @param sixteen_minus_x vector of 8 bit components, containing
88 // (4x(16-y1), 4x(16-y0), 4x(16-x1), 4x(16-x0)).
PrepareConstantsTwoPixelPairsDXDY(const uint32_t * xy,const __m128i & mask_3FFF,const __m128i & mask_000F,const __m128i & sixteen_8bit,const __m128i & mask_dist_select,__m128i * all_xy_result,__m128i * sixteen_minus_xy,int * xy0,int * xy1)89 inline void PrepareConstantsTwoPixelPairsDXDY(const uint32_t* xy,
90 const __m128i& mask_3FFF,
91 const __m128i& mask_000F,
92 const __m128i& sixteen_8bit,
93 const __m128i& mask_dist_select,
94 __m128i* all_xy_result,
95 __m128i* sixteen_minus_xy,
96 int* xy0, int* xy1) {
97 const __m128i xy_wide =
98 _mm_loadu_si128(reinterpret_cast<const __m128i *>(xy));
99
100 // (x10, y10, x00, y00)
101 __m128i xy0_wide = _mm_srli_epi32(xy_wide, 18);
102 // (y10, y00, x10, x00)
103 xy0_wide = _mm_shuffle_epi32(xy0_wide, _MM_SHUFFLE(2, 0, 3, 1));
104 // (x11, y11, x01, y01)
105 __m128i xy1_wide = _mm_and_si128(xy_wide, mask_3FFF);
106 // (y11, y01, x11, x01)
107 xy1_wide = _mm_shuffle_epi32(xy1_wide, _MM_SHUFFLE(2, 0, 3, 1));
108
109 _mm_storeu_si128(reinterpret_cast<__m128i *>(xy0), xy0_wide);
110 _mm_storeu_si128(reinterpret_cast<__m128i *>(xy1), xy1_wide);
111
112 // (x1, y1, x0, y0)
113 __m128i all_xy = _mm_and_si128(_mm_srli_epi32(xy_wide, 14), mask_000F);
114 // (y1, y0, x1, x0)
115 all_xy = _mm_shuffle_epi32(all_xy, _MM_SHUFFLE(2, 0, 3, 1));
116 // (4x(y1), 4x(y0), 4x(x1), 4x(x0))
117 all_xy = _mm_shuffle_epi8(all_xy, mask_dist_select);
118
119 *all_xy_result = all_xy;
120 // (4x(16-y1), 4x(16-y0), 4x(16-x1), 4x(16-x0))
121 *sixteen_minus_xy = _mm_sub_epi8(sixteen_8bit, all_xy);
122 }
123
124 // Helper function used when processing one pixel pair.
125 // @param pixel0..3 are the four input pixels
126 // @param scale_x vector of 8 bit components to multiply the pixel[0:3]. This
127 // will contain (4x(x1, 16-x1), 4x(x0, 16-x0))
128 // or (4x(x3, 16-x3), 4x(x2, 16-x2))
129 // @return a vector of 16 bit components containing:
130 // (Aa2 * (16 - x1) + Aa3 * x1, ... , Ra0 * (16 - x0) + Ra1 * x0)
ProcessPixelPairHelper(uint32_t pixel0,uint32_t pixel1,uint32_t pixel2,uint32_t pixel3,const __m128i & scale_x)131 inline __m128i ProcessPixelPairHelper(uint32_t pixel0,
132 uint32_t pixel1,
133 uint32_t pixel2,
134 uint32_t pixel3,
135 const __m128i& scale_x) {
136 __m128i a0, a1, a2, a3;
137 // Load 2 pairs of pixels
138 a0 = _mm_cvtsi32_si128(pixel0);
139 a1 = _mm_cvtsi32_si128(pixel1);
140
141 // Interleave pixels.
142 // (0, 0, 0, 0, 0, 0, 0, 0, Aa1, Aa0, Ba1, Ba0, Ga1, Ga0, Ra1, Ra0)
143 a0 = _mm_unpacklo_epi8(a0, a1);
144
145 a2 = _mm_cvtsi32_si128(pixel2);
146 a3 = _mm_cvtsi32_si128(pixel3);
147 // (0, 0, 0, 0, 0, 0, 0, 0, Aa3, Aa2, Ba3, Ba2, Ga3, Ga2, Ra3, Ra2)
148 a2 = _mm_unpacklo_epi8(a2, a3);
149
150 // two pairs of pixel pairs, interleaved.
151 // (Aa3, Aa2, Ba3, Ba2, Ga3, Ga2, Ra3, Ra2,
152 // Aa1, Aa0, Ba1, Ba0, Ga1, Ga0, Ra1, Ra0)
153 a0 = _mm_unpacklo_epi64(a0, a2);
154
155 // multiply and sum to 16 bit components.
156 // (Aa2 * (16 - x1) + Aa3 * x1, ... , Ra0 * (16 - x0) + Ra1 * x0)
157 // At that point, we use up a bit less than 12 bits for each 16 bit
158 // component:
159 // All components are less than 255. So,
160 // C0 * (16 - x) + C1 * x <= 255 * (16 - x) + 255 * x = 255 * 16.
161 return _mm_maddubs_epi16(a0, scale_x);
162 }
163
164 // Scale back the results after multiplications to the [0:255] range, and scale
165 // by alpha when has_alpha is true.
166 // Depending on whether one set or two sets of multiplications had been applied,
167 // the results have to be shifted by four places (dividing by 16), or shifted
168 // by eight places (dividing by 256), since each multiplication is by a quantity
169 // in the range [0:16].
170 template<bool has_alpha, int scale>
ScaleFourPixels(__m128i * pixels,const __m128i & alpha)171 inline __m128i ScaleFourPixels(__m128i* pixels,
172 const __m128i& alpha) {
173 // Divide each 16 bit component by 16 (or 256 depending on scale).
174 *pixels = _mm_srli_epi16(*pixels, scale);
175
176 if (has_alpha) {
177 // Multiply by alpha.
178 *pixels = _mm_mullo_epi16(*pixels, alpha);
179
180 // Divide each 16 bit component by 256.
181 *pixels = _mm_srli_epi16(*pixels, 8);
182 }
183 return *pixels;
184 }
185
186 // Wrapper to calculate two output pixels from four input pixels. The
187 // arguments are the same as ProcessPixelPairHelper. Technically, there are
188 // eight input pixels, but since sub_y == 0, the factors applied to half of the
189 // pixels is zero (sub_y), and are therefore omitted here to save on some
190 // processing.
191 // @param alpha when has_alpha is true, scale all resulting components by this
192 // value.
193 // @return a vector of 16 bit components containing:
194 // ((Aa2 * (16 - x1) + Aa3 * x1) * alpha, ...,
195 // (Ra0 * (16 - x0) + Ra1 * x0) * alpha) (when has_alpha is true)
196 // otherwise
197 // (Aa2 * (16 - x1) + Aa3 * x1, ... , Ra0 * (16 - x0) + Ra1 * x0)
198 // In both cases, the results are renormalized (divided by 16) to match the
199 // expected formats when storing back the results into memory.
200 template<bool has_alpha>
ProcessPixelPairZeroSubY(uint32_t pixel0,uint32_t pixel1,uint32_t pixel2,uint32_t pixel3,const __m128i & scale_x,const __m128i & alpha)201 inline __m128i ProcessPixelPairZeroSubY(uint32_t pixel0,
202 uint32_t pixel1,
203 uint32_t pixel2,
204 uint32_t pixel3,
205 const __m128i& scale_x,
206 const __m128i& alpha) {
207 __m128i sum = ProcessPixelPairHelper(pixel0, pixel1, pixel2, pixel3,
208 scale_x);
209 return ScaleFourPixels<has_alpha, 4>(&sum, alpha);
210 }
211
212 // Same as ProcessPixelPairZeroSubY, expect processing one output pixel at a
213 // time instead of two. As in the above function, only two pixels are needed
214 // to generate a single pixel since sub_y == 0.
215 // @return same as ProcessPixelPairZeroSubY, except that only the bottom 4
216 // 16 bit components are set.
217 template<bool has_alpha>
ProcessOnePixelZeroSubY(uint32_t pixel0,uint32_t pixel1,__m128i scale_x,__m128i alpha)218 inline __m128i ProcessOnePixelZeroSubY(uint32_t pixel0,
219 uint32_t pixel1,
220 __m128i scale_x,
221 __m128i alpha) {
222 __m128i a0 = _mm_cvtsi32_si128(pixel0);
223 __m128i a1 = _mm_cvtsi32_si128(pixel1);
224
225 // Interleave
226 a0 = _mm_unpacklo_epi8(a0, a1);
227
228 // (a0 * (16-x) + a1 * x)
229 __m128i sum = _mm_maddubs_epi16(a0, scale_x);
230
231 return ScaleFourPixels<has_alpha, 4>(&sum, alpha);
232 }
233
234 // Methods when sub_y != 0
235
236
237 // Same as ProcessPixelPairHelper, except that the values are scaled by y.
238 // @param y vector of 16 bit components containing 'y' values. There are two
239 // cases in practice, where y will contain the sub_y constant, or will
240 // contain the 16 - sub_y constant.
241 // @return vector of 16 bit components containing:
242 // (y * (Aa2 * (16 - x1) + Aa3 * x1), ... , y * (Ra0 * (16 - x0) + Ra1 * x0))
ProcessPixelPair(uint32_t pixel0,uint32_t pixel1,uint32_t pixel2,uint32_t pixel3,const __m128i & scale_x,const __m128i & y)243 inline __m128i ProcessPixelPair(uint32_t pixel0,
244 uint32_t pixel1,
245 uint32_t pixel2,
246 uint32_t pixel3,
247 const __m128i& scale_x,
248 const __m128i& y) {
249 __m128i sum = ProcessPixelPairHelper(pixel0, pixel1, pixel2, pixel3,
250 scale_x);
251
252 // first row times 16-y or y depending on whether 'y' represents one or
253 // the other.
254 // Values will be up to 255 * 16 * 16 = 65280.
255 // (y * (Aa2 * (16 - x1) + Aa3 * x1), ... ,
256 // y * (Ra0 * (16 - x0) + Ra1 * x0))
257 sum = _mm_mullo_epi16(sum, y);
258
259 return sum;
260 }
261
262 // Process two pixel pairs out of eight input pixels.
263 // In other methods, the distinct pixels are passed one by one, but in this
264 // case, the rows, and index offsets to the pixels into the row are passed
265 // to generate the 8 pixels.
266 // @param row0..1 top and bottom row where to find input pixels.
267 // @param x0..1 offsets into the row for all eight input pixels.
268 // @param all_y vector of 16 bit components containing the constant sub_y
269 // @param neg_y vector of 16 bit components containing the constant 16 - sub_y
270 // @param alpha vector of 16 bit components containing the alpha value to scale
271 // the results by, when has_alpha is true.
272 // @return
273 // (alpha * ((16-y) * (Aa2 * (16-x1) + Aa3 * x1) +
274 // y * (Aa2' * (16-x1) + Aa3' * x1)),
275 // ...
276 // alpha * ((16-y) * (Ra0 * (16-x0) + Ra1 * x0) +
277 // y * (Ra0' * (16-x0) + Ra1' * x0))
278 // With the factor alpha removed when has_alpha is false.
279 // The values are scaled back to 16 bit components, but with only the bottom
280 // 8 bits being set.
281 template<bool has_alpha>
ProcessTwoPixelPairs(const uint32_t * row0,const uint32_t * row1,const int * x0,const int * x1,const __m128i & scale_x,const __m128i & all_y,const __m128i & neg_y,const __m128i & alpha)282 inline __m128i ProcessTwoPixelPairs(const uint32_t* row0,
283 const uint32_t* row1,
284 const int* x0,
285 const int* x1,
286 const __m128i& scale_x,
287 const __m128i& all_y,
288 const __m128i& neg_y,
289 const __m128i& alpha) {
290 __m128i sum0 = ProcessPixelPair(
291 row0[x0[0]], row0[x1[0]], row0[x0[1]], row0[x1[1]],
292 scale_x, neg_y);
293 __m128i sum1 = ProcessPixelPair(
294 row1[x0[0]], row1[x1[0]], row1[x0[1]], row1[x1[1]],
295 scale_x, all_y);
296
297 // 2 samples fully summed.
298 // ((16-y) * (Aa2 * (16-x1) + Aa3 * x1) +
299 // y * (Aa2' * (16-x1) + Aa3' * x1),
300 // ...
301 // (16-y) * (Ra0 * (16 - x0) + Ra1 * x0)) +
302 // y * (Ra0' * (16-x0) + Ra1' * x0))
303 // Each component, again can be at most 256 * 255 = 65280, so no overflow.
304 sum0 = _mm_add_epi16(sum0, sum1);
305
306 return ScaleFourPixels<has_alpha, 8>(&sum0, alpha);
307 }
308
309 // Similar to ProcessTwoPixelPairs except the pixel indexes.
310 template<bool has_alpha>
ProcessTwoPixelPairsDXDY(const uint32_t * row00,const uint32_t * row01,const uint32_t * row10,const uint32_t * row11,const int * xy0,const int * xy1,const __m128i & scale_x,const __m128i & all_y,const __m128i & neg_y,const __m128i & alpha)311 inline __m128i ProcessTwoPixelPairsDXDY(const uint32_t* row00,
312 const uint32_t* row01,
313 const uint32_t* row10,
314 const uint32_t* row11,
315 const int* xy0,
316 const int* xy1,
317 const __m128i& scale_x,
318 const __m128i& all_y,
319 const __m128i& neg_y,
320 const __m128i& alpha) {
321 // first row
322 __m128i sum0 = ProcessPixelPair(
323 row00[xy0[0]], row00[xy1[0]], row10[xy0[1]], row10[xy1[1]],
324 scale_x, neg_y);
325 // second row
326 __m128i sum1 = ProcessPixelPair(
327 row01[xy0[0]], row01[xy1[0]], row11[xy0[1]], row11[xy1[1]],
328 scale_x, all_y);
329
330 // 2 samples fully summed.
331 // ((16-y1) * (Aa2 * (16-x1) + Aa3 * x1) +
332 // y0 * (Aa2' * (16-x1) + Aa3' * x1),
333 // ...
334 // (16-y0) * (Ra0 * (16 - x0) + Ra1 * x0)) +
335 // y0 * (Ra0' * (16-x0) + Ra1' * x0))
336 // Each component, again can be at most 256 * 255 = 65280, so no overflow.
337 sum0 = _mm_add_epi16(sum0, sum1);
338
339 return ScaleFourPixels<has_alpha, 8>(&sum0, alpha);
340 }
341
342
343 // Same as ProcessPixelPair, except that performing the math one output pixel
344 // at a time. This means that only the bottom four 16 bit components are set.
ProcessOnePixel(uint32_t pixel0,uint32_t pixel1,const __m128i & scale_x,const __m128i & y)345 inline __m128i ProcessOnePixel(uint32_t pixel0, uint32_t pixel1,
346 const __m128i& scale_x, const __m128i& y) {
347 __m128i a0 = _mm_cvtsi32_si128(pixel0);
348 __m128i a1 = _mm_cvtsi32_si128(pixel1);
349
350 // Interleave
351 // (0, 0, 0, 0, 0, 0, 0, 0, Aa1, Aa0, Ba1, Ba0, Ga1, Ga0, Ra1, Ra0)
352 a0 = _mm_unpacklo_epi8(a0, a1);
353
354 // (a0 * (16-x) + a1 * x)
355 a0 = _mm_maddubs_epi16(a0, scale_x);
356
357 // scale row by y
358 return _mm_mullo_epi16(a0, y);
359 }
360
361 // Notes about the various tricks that are used in this implementation:
362 // - specialization for sub_y == 0.
363 // Statistically, 1/16th of the samples will have sub_y == 0. When this
364 // happens, the math goes from:
365 // (16 - x)*(16 - y)*a00 + x*(16 - y)*a01 + (16 - x)*y*a10 + x*y*a11
366 // to:
367 // (16 - x)*a00 + 16*x*a01
368 // much simpler. The simplification makes for an easy boost in performance.
369 // - calculating 4 output pixels at a time.
370 // This allows loading the coefficients x0 and x1 and shuffling them to the
371 // optimum location only once per loop, instead of twice per loop.
372 // This also allows us to store the four pixels with a single store.
373 // - Use of 2 special SSSE3 instructions (comparatively to the SSE2 instruction
374 // version):
375 // _mm_shuffle_epi8 : this allows us to spread the coefficients x[0-3] loaded
376 // in 32 bit values to 8 bit values repeated four times.
377 // _mm_maddubs_epi16 : this allows us to perform multiplications and additions
378 // in one swoop of 8bit values storing the results in 16 bit values. This
379 // instruction is actually crucial for the speed of the implementation since
380 // as one can see in the SSE2 implementation, all inputs have to be used as
381 // 16 bits because the results are 16 bits. This basically allows us to process
382 // twice as many pixel components per iteration.
383 //
384 // As a result, this method behaves faster than the traditional SSE2. The actual
385 // boost varies greatly on the underlying architecture.
386 template<bool has_alpha>
S32_generic_D32_filter_DX_SSSE3(const SkBitmapProcState & s,const uint32_t * xy,int count,uint32_t * colors)387 void S32_generic_D32_filter_DX_SSSE3(const SkBitmapProcState& s,
388 const uint32_t* xy,
389 int count, uint32_t* colors) {
390 SkASSERT(count > 0 && colors != nullptr);
391 SkASSERT(s.fFilterQuality != kNone_SkFilterQuality);
392 SkASSERT(kN32_SkColorType == s.fPixmap.colorType());
393 if (has_alpha) {
394 SkASSERT(s.fAlphaScale < 256);
395 } else {
396 SkASSERT(s.fAlphaScale == 256);
397 }
398
399 const uint8_t* src_addr =
400 static_cast<const uint8_t*>(s.fPixmap.addr());
401 const size_t rb = s.fPixmap.rowBytes();
402 const uint32_t XY = *xy++;
403 const unsigned y0 = XY >> 14;
404 const uint32_t* row0 =
405 reinterpret_cast<const uint32_t*>(src_addr + (y0 >> 4) * rb);
406 const uint32_t* row1 =
407 reinterpret_cast<const uint32_t*>(src_addr + (XY & 0x3FFF) * rb);
408 const unsigned sub_y = y0 & 0xF;
409
410 // vector constants
411 const __m128i mask_dist_select = _mm_set_epi8(12, 12, 12, 12,
412 8, 8, 8, 8,
413 4, 4, 4, 4,
414 0, 0, 0, 0);
415 const __m128i mask_3FFF = _mm_set1_epi32(0x3FFF);
416 const __m128i mask_000F = _mm_set1_epi32(0x000F);
417 const __m128i sixteen_8bit = _mm_set1_epi8(16);
418 // (0, 0, 0, 0, 0, 0, 0, 0)
419 const __m128i zero = _mm_setzero_si128();
420
421 __m128i alpha = _mm_setzero_si128();
422 if (has_alpha) {
423 // 8x(alpha)
424 alpha = _mm_set1_epi16(s.fAlphaScale);
425 }
426
427 if (sub_y == 0) {
428 // Unroll 4x, interleave bytes, use pmaddubsw (all_x is small)
429 while (count > 3) {
430 count -= 4;
431
432 int x0[4];
433 int x1[4];
434 __m128i all_x, sixteen_minus_x;
435 PrepareConstantsTwoPixelPairs(xy, mask_3FFF, mask_000F,
436 sixteen_8bit, mask_dist_select,
437 &all_x, &sixteen_minus_x, x0, x1);
438 xy += 4;
439
440 // First pair of pixel pairs.
441 // (4x(x1, 16-x1), 4x(x0, 16-x0))
442 __m128i scale_x;
443 scale_x = _mm_unpacklo_epi8(sixteen_minus_x, all_x);
444
445 __m128i sum0 = ProcessPixelPairZeroSubY<has_alpha>(
446 row0[x0[0]], row0[x1[0]], row0[x0[1]], row0[x1[1]],
447 scale_x, alpha);
448
449 // second pair of pixel pairs
450 // (4x (x3, 16-x3), 4x (16-x2, x2))
451 scale_x = _mm_unpackhi_epi8(sixteen_minus_x, all_x);
452
453 __m128i sum1 = ProcessPixelPairZeroSubY<has_alpha>(
454 row0[x0[2]], row0[x1[2]], row0[x0[3]], row0[x1[3]],
455 scale_x, alpha);
456
457 // Pack lower 4 16 bit values of sum into lower 4 bytes.
458 sum0 = _mm_packus_epi16(sum0, sum1);
459
460 // Extract low int and store.
461 _mm_storeu_si128(reinterpret_cast<__m128i *>(colors), sum0);
462
463 colors += 4;
464 }
465
466 // handle remainder
467 while (count-- > 0) {
468 uint32_t xx = *xy++; // x0:14 | 4 | x1:14
469 unsigned x0 = xx >> 18;
470 unsigned x1 = xx & 0x3FFF;
471
472 // 16x(x)
473 const __m128i all_x = _mm_set1_epi8((xx >> 14) & 0x0F);
474
475 // (16x(16-x))
476 __m128i scale_x = _mm_sub_epi8(sixteen_8bit, all_x);
477
478 scale_x = _mm_unpacklo_epi8(scale_x, all_x);
479
480 __m128i sum = ProcessOnePixelZeroSubY<has_alpha>(
481 row0[x0], row0[x1],
482 scale_x, alpha);
483
484 // Pack lower 4 16 bit values of sum into lower 4 bytes.
485 sum = _mm_packus_epi16(sum, zero);
486
487 // Extract low int and store.
488 *colors++ = _mm_cvtsi128_si32(sum);
489 }
490 } else { // more general case, y != 0
491 // 8x(16)
492 const __m128i sixteen_16bit = _mm_set1_epi16(16);
493
494 // 8x (y)
495 const __m128i all_y = _mm_set1_epi16(sub_y);
496
497 // 8x (16-y)
498 const __m128i neg_y = _mm_sub_epi16(sixteen_16bit, all_y);
499
500 // Unroll 4x, interleave bytes, use pmaddubsw (all_x is small)
501 while (count > 3) {
502 count -= 4;
503
504 int x0[4];
505 int x1[4];
506 __m128i all_x, sixteen_minus_x;
507 PrepareConstantsTwoPixelPairs(xy, mask_3FFF, mask_000F,
508 sixteen_8bit, mask_dist_select,
509 &all_x, &sixteen_minus_x, x0, x1);
510 xy += 4;
511
512 // First pair of pixel pairs
513 // (4x(x1, 16-x1), 4x(x0, 16-x0))
514 __m128i scale_x;
515 scale_x = _mm_unpacklo_epi8(sixteen_minus_x, all_x);
516
517 __m128i sum0 = ProcessTwoPixelPairs<has_alpha>(
518 row0, row1, x0, x1,
519 scale_x, all_y, neg_y, alpha);
520
521 // second pair of pixel pairs
522 // (4x (x3, 16-x3), 4x (16-x2, x2))
523 scale_x = _mm_unpackhi_epi8(sixteen_minus_x, all_x);
524
525 __m128i sum1 = ProcessTwoPixelPairs<has_alpha>(
526 row0, row1, x0 + 2, x1 + 2,
527 scale_x, all_y, neg_y, alpha);
528
529 // Do the final packing of the two results
530
531 // Pack lower 4 16 bit values of sum into lower 4 bytes.
532 sum0 = _mm_packus_epi16(sum0, sum1);
533
534 // Extract low int and store.
535 _mm_storeu_si128(reinterpret_cast<__m128i *>(colors), sum0);
536
537 colors += 4;
538 }
539
540 // Left over.
541 while (count-- > 0) {
542 const uint32_t xx = *xy++; // x0:14 | 4 | x1:14
543 const unsigned x0 = xx >> 18;
544 const unsigned x1 = xx & 0x3FFF;
545
546 // 16x(x)
547 const __m128i all_x = _mm_set1_epi8((xx >> 14) & 0x0F);
548
549 // 16x (16-x)
550 __m128i scale_x = _mm_sub_epi8(sixteen_8bit, all_x);
551
552 // (8x (x, 16-x))
553 scale_x = _mm_unpacklo_epi8(scale_x, all_x);
554
555 // first row.
556 __m128i sum0 = ProcessOnePixel(row0[x0], row0[x1], scale_x, neg_y);
557 // second row.
558 __m128i sum1 = ProcessOnePixel(row1[x0], row1[x1], scale_x, all_y);
559
560 // Add both rows for full sample
561 sum0 = _mm_add_epi16(sum0, sum1);
562
563 sum0 = ScaleFourPixels<has_alpha, 8>(&sum0, alpha);
564
565 // Pack lower 4 16 bit values of sum into lower 4 bytes.
566 sum0 = _mm_packus_epi16(sum0, zero);
567
568 // Extract low int and store.
569 *colors++ = _mm_cvtsi128_si32(sum0);
570 }
571 }
572 }
573
574 /*
575 * Similar to S32_generic_D32_filter_DX_SSSE3, we do not need to handle the
576 * special case suby == 0 as suby is changing in every loop.
577 */
578 template<bool has_alpha>
S32_generic_D32_filter_DXDY_SSSE3(const SkBitmapProcState & s,const uint32_t * xy,int count,uint32_t * colors)579 void S32_generic_D32_filter_DXDY_SSSE3(const SkBitmapProcState& s,
580 const uint32_t* xy,
581 int count, uint32_t* colors) {
582 SkASSERT(count > 0 && colors != nullptr);
583 SkASSERT(s.fFilterQuality != kNone_SkFilterQuality);
584 SkASSERT(kN32_SkColorType == s.fPixmap.colorType());
585 if (has_alpha) {
586 SkASSERT(s.fAlphaScale < 256);
587 } else {
588 SkASSERT(s.fAlphaScale == 256);
589 }
590
591 const uint8_t* src_addr =
592 static_cast<const uint8_t*>(s.fPixmap.addr());
593 const size_t rb = s.fPixmap.rowBytes();
594
595 // vector constants
596 const __m128i mask_dist_select = _mm_set_epi8(12, 12, 12, 12,
597 8, 8, 8, 8,
598 4, 4, 4, 4,
599 0, 0, 0, 0);
600 const __m128i mask_3FFF = _mm_set1_epi32(0x3FFF);
601 const __m128i mask_000F = _mm_set1_epi32(0x000F);
602 const __m128i sixteen_8bit = _mm_set1_epi8(16);
603
604 __m128i alpha;
605 if (has_alpha) {
606 // 8x(alpha)
607 alpha = _mm_set1_epi16(s.fAlphaScale);
608 }
609
610 // Unroll 2x, interleave bytes, use pmaddubsw (all_x is small)
611 while (count >= 2) {
612 int xy0[4];
613 int xy1[4];
614 __m128i all_xy, sixteen_minus_xy;
615 PrepareConstantsTwoPixelPairsDXDY(xy, mask_3FFF, mask_000F,
616 sixteen_8bit, mask_dist_select,
617 &all_xy, &sixteen_minus_xy, xy0, xy1);
618
619 // (4x(x1, 16-x1), 4x(x0, 16-x0))
620 __m128i scale_x = _mm_unpacklo_epi8(sixteen_minus_xy, all_xy);
621 // (4x(0, y1), 4x(0, y0))
622 __m128i all_y = _mm_unpackhi_epi8(all_xy, _mm_setzero_si128());
623 __m128i neg_y = _mm_sub_epi16(_mm_set1_epi16(16), all_y);
624
625 const uint32_t* row00 =
626 reinterpret_cast<const uint32_t*>(src_addr + xy0[2] * rb);
627 const uint32_t* row01 =
628 reinterpret_cast<const uint32_t*>(src_addr + xy1[2] * rb);
629 const uint32_t* row10 =
630 reinterpret_cast<const uint32_t*>(src_addr + xy0[3] * rb);
631 const uint32_t* row11 =
632 reinterpret_cast<const uint32_t*>(src_addr + xy1[3] * rb);
633
634 __m128i sum0 = ProcessTwoPixelPairsDXDY<has_alpha>(
635 row00, row01, row10, row11, xy0, xy1,
636 scale_x, all_y, neg_y, alpha);
637
638 // Pack lower 4 16 bit values of sum into lower 4 bytes.
639 sum0 = _mm_packus_epi16(sum0, _mm_setzero_si128());
640
641 // Extract low int and store.
642 _mm_storel_epi64(reinterpret_cast<__m128i *>(colors), sum0);
643
644 xy += 4;
645 colors += 2;
646 count -= 2;
647 }
648
649 // Handle the remainder
650 while (count-- > 0) {
651 uint32_t data = *xy++;
652 unsigned y0 = data >> 14;
653 unsigned y1 = data & 0x3FFF;
654 unsigned subY = y0 & 0xF;
655 y0 >>= 4;
656
657 data = *xy++;
658 unsigned x0 = data >> 14;
659 unsigned x1 = data & 0x3FFF;
660 unsigned subX = x0 & 0xF;
661 x0 >>= 4;
662
663 const uint32_t* row0 =
664 reinterpret_cast<const uint32_t*>(src_addr + y0 * rb);
665 const uint32_t* row1 =
666 reinterpret_cast<const uint32_t*>(src_addr + y1 * rb);
667
668 // 16x(x)
669 const __m128i all_x = _mm_set1_epi8(subX);
670
671 // 16x (16-x)
672 __m128i scale_x = _mm_sub_epi8(sixteen_8bit, all_x);
673
674 // (8x (x, 16-x))
675 scale_x = _mm_unpacklo_epi8(scale_x, all_x);
676
677 // 8x(16)
678 const __m128i sixteen_16bit = _mm_set1_epi16(16);
679
680 // 8x (y)
681 const __m128i all_y = _mm_set1_epi16(subY);
682
683 // 8x (16-y)
684 const __m128i neg_y = _mm_sub_epi16(sixteen_16bit, all_y);
685
686 // first row.
687 __m128i sum0 = ProcessOnePixel(row0[x0], row0[x1], scale_x, neg_y);
688 // second row.
689 __m128i sum1 = ProcessOnePixel(row1[x0], row1[x1], scale_x, all_y);
690
691 // Add both rows for full sample
692 sum0 = _mm_add_epi16(sum0, sum1);
693
694 sum0 = ScaleFourPixels<has_alpha, 8>(&sum0, alpha);
695
696 // Pack lower 4 16 bit values of sum into lower 4 bytes.
697 sum0 = _mm_packus_epi16(sum0, _mm_setzero_si128());
698
699 // Extract low int and store.
700 *colors++ = _mm_cvtsi128_si32(sum0);
701 }
702 }
703 } // namespace
704
S32_opaque_D32_filter_DX_SSSE3(const SkBitmapProcState & s,const uint32_t * xy,int count,uint32_t * colors)705 void S32_opaque_D32_filter_DX_SSSE3(const SkBitmapProcState& s,
706 const uint32_t* xy,
707 int count, uint32_t* colors) {
708 S32_generic_D32_filter_DX_SSSE3<false>(s, xy, count, colors);
709 }
710
S32_alpha_D32_filter_DX_SSSE3(const SkBitmapProcState & s,const uint32_t * xy,int count,uint32_t * colors)711 void S32_alpha_D32_filter_DX_SSSE3(const SkBitmapProcState& s,
712 const uint32_t* xy,
713 int count, uint32_t* colors) {
714 S32_generic_D32_filter_DX_SSSE3<true>(s, xy, count, colors);
715 }
716
S32_opaque_D32_filter_DXDY_SSSE3(const SkBitmapProcState & s,const uint32_t * xy,int count,uint32_t * colors)717 void S32_opaque_D32_filter_DXDY_SSSE3(const SkBitmapProcState& s,
718 const uint32_t* xy,
719 int count, uint32_t* colors) {
720 S32_generic_D32_filter_DXDY_SSSE3<false>(s, xy, count, colors);
721 }
722
S32_alpha_D32_filter_DXDY_SSSE3(const SkBitmapProcState & s,const uint32_t * xy,int count,uint32_t * colors)723 void S32_alpha_D32_filter_DXDY_SSSE3(const SkBitmapProcState& s,
724 const uint32_t* xy,
725 int count, uint32_t* colors) {
726 S32_generic_D32_filter_DXDY_SSSE3<true>(s, xy, count, colors);
727 }
728