• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright 2017 Google Inc.
3  *
4  * Use of this source code is governed by a BSD-style license that can be
5  * found in the LICENSE file.
6  */
7 
8 #include "SkShadowTessellator.h"
9 #include "SkColorPriv.h"
10 #include "SkGeometry.h"
11 #include "SkInsetConvexPolygon.h"
12 #include "SkPath.h"
13 #include "SkVertices.h"
14 
15 #if SK_SUPPORT_GPU
16 #include "GrPathUtils.h"
17 #endif
18 
19 
20 /**
21  * Base class
22  */
23 class SkBaseShadowTessellator {
24 public:
25     SkBaseShadowTessellator(const SkPoint3& zPlaneParams, bool transparent);
~SkBaseShadowTessellator()26     virtual ~SkBaseShadowTessellator() {}
27 
releaseVertices()28     sk_sp<SkVertices> releaseVertices() {
29         if (!fSucceeded) {
30             return nullptr;
31         }
32         return SkVertices::MakeCopy(SkVertices::kTriangles_VertexMode, this->vertexCount(),
33                                     fPositions.begin(), nullptr, fColors.begin(),
34                                     this->indexCount(), fIndices.begin());
35     }
36 
37 protected:
38     static constexpr auto kMinHeight = 0.1f;
39 
vertexCount() const40     int vertexCount() const { return fPositions.count(); }
indexCount() const41     int indexCount() const { return fIndices.count(); }
42 
43     bool setZOffset(const SkRect& bounds, bool perspective);
44 
45     virtual void handleLine(const SkPoint& p) = 0;
46     void handleLine(const SkMatrix& m, SkPoint* p);
47 
48     void handleQuad(const SkPoint pts[3]);
49     void handleQuad(const SkMatrix& m, SkPoint pts[3]);
50 
51     void handleCubic(const SkMatrix& m, SkPoint pts[4]);
52 
53     void handleConic(const SkMatrix& m, SkPoint pts[3], SkScalar w);
54 
55     bool setTransformedHeightFunc(const SkMatrix& ctm);
56 
57     bool addArc(const SkVector& nextNormal, bool finishArc);
58 
heightFunc(SkScalar x,SkScalar y)59     SkScalar heightFunc(SkScalar x, SkScalar y) {
60         return fZPlaneParams.fX*x + fZPlaneParams.fY*y + fZPlaneParams.fZ;
61     }
62 
63     SkPoint3                                fZPlaneParams;
64     std::function<SkScalar(const SkPoint&)> fTransformedHeightFunc;
65     SkScalar                                fZOffset;
66     // members for perspective height function
67     SkPoint3                                fTransformedZParams;
68     SkScalar                                fPartialDeterminants[3];
69 
70     // first two points
71     SkTDArray<SkPoint>  fInitPoints;
72     // temporary buffer
73     SkTDArray<SkPoint>  fPointBuffer;
74 
75     SkTDArray<SkPoint>  fPositions;
76     SkTDArray<SkColor>  fColors;
77     SkTDArray<uint16_t> fIndices;
78 
79     int                 fFirstVertexIndex;
80     SkVector            fFirstOutset;
81     SkPoint             fFirstPoint;
82 
83     bool                fSucceeded;
84     bool                fTransparent;
85 
86     SkColor             fUmbraColor;
87     SkColor             fPenumbraColor;
88 
89     SkScalar            fRadius;
90     SkScalar            fDirection;
91     int                 fPrevUmbraIndex;
92     SkVector            fPrevOutset;
93     SkPoint             fPrevPoint;
94 };
95 
compute_normal(const SkPoint & p0,const SkPoint & p1,SkScalar dir,SkVector * newNormal)96 static bool compute_normal(const SkPoint& p0, const SkPoint& p1, SkScalar dir,
97                            SkVector* newNormal) {
98     SkVector normal;
99     // compute perpendicular
100     normal.fX = p0.fY - p1.fY;
101     normal.fY = p1.fX - p0.fX;
102     normal *= dir;
103     if (!normal.normalize()) {
104         return false;
105     }
106     *newNormal = normal;
107     return true;
108 }
109 
compute_radial_steps(const SkVector & v1,const SkVector & v2,SkScalar r,SkScalar * rotSin,SkScalar * rotCos,int * n)110 static void compute_radial_steps(const SkVector& v1, const SkVector& v2, SkScalar r,
111                                  SkScalar* rotSin, SkScalar* rotCos, int* n) {
112     const SkScalar kRecipPixelsPerArcSegment = 0.125f;
113 
114     SkScalar rCos = v1.dot(v2);
115     SkScalar rSin = v1.cross(v2);
116     SkScalar theta = SkScalarATan2(rSin, rCos);
117 
118     int steps = SkScalarFloorToInt(r*theta*kRecipPixelsPerArcSegment);
119 
120     SkScalar dTheta = theta / steps;
121     *rotSin = SkScalarSinCos(dTheta, rotCos);
122     *n = steps;
123 }
124 
SkBaseShadowTessellator(const SkPoint3 & zPlaneParams,bool transparent)125 SkBaseShadowTessellator::SkBaseShadowTessellator(const SkPoint3& zPlaneParams, bool transparent)
126         : fZPlaneParams(zPlaneParams)
127         , fZOffset(0)
128         , fFirstVertexIndex(-1)
129         , fSucceeded(false)
130         , fTransparent(transparent)
131         , fDirection(1)
132         , fPrevUmbraIndex(-1) {
133     fInitPoints.setReserve(3);
134 
135     // child classes will set reserve for positions, colors and indices
136 }
137 
setZOffset(const SkRect & bounds,bool perspective)138 bool SkBaseShadowTessellator::setZOffset(const SkRect& bounds, bool perspective) {
139     SkScalar minZ = this->heightFunc(bounds.fLeft, bounds.fTop);
140     if (perspective) {
141         SkScalar z = this->heightFunc(bounds.fLeft, bounds.fBottom);
142         if (z < minZ) {
143             minZ = z;
144         }
145         z = this->heightFunc(bounds.fRight, bounds.fTop);
146         if (z < minZ) {
147             minZ = z;
148         }
149         z = this->heightFunc(bounds.fRight, bounds.fBottom);
150         if (z < minZ) {
151             minZ = z;
152         }
153     }
154 
155     if (minZ < kMinHeight) {
156         fZOffset = -minZ + kMinHeight;
157         return true;
158     }
159 
160     return false;
161 }
162 
163 // tesselation tolerance values, in device space pixels
164 #if SK_SUPPORT_GPU
165 static const SkScalar kQuadTolerance = 0.2f;
166 static const SkScalar kCubicTolerance = 0.2f;
167 #endif
168 static const SkScalar kConicTolerance = 0.5f;
169 
handleLine(const SkMatrix & m,SkPoint * p)170 void SkBaseShadowTessellator::handleLine(const SkMatrix& m, SkPoint* p) {
171     m.mapPoints(p, 1);
172     this->handleLine(*p);
173 }
174 
handleQuad(const SkPoint pts[3])175 void SkBaseShadowTessellator::handleQuad(const SkPoint pts[3]) {
176 #if SK_SUPPORT_GPU
177     // TODO: Pull PathUtils out of Ganesh?
178     int maxCount = GrPathUtils::quadraticPointCount(pts, kQuadTolerance);
179     fPointBuffer.setReserve(maxCount);
180     SkPoint* target = fPointBuffer.begin();
181     int count = GrPathUtils::generateQuadraticPoints(pts[0], pts[1], pts[2],
182                                                      kQuadTolerance, &target, maxCount);
183     fPointBuffer.setCount(count);
184     for (int i = 0; i < count; i++) {
185         this->handleLine(fPointBuffer[i]);
186     }
187 #else
188     // for now, just to draw something
189     this->handleLine(pts[1]);
190     this->handleLine(pts[2]);
191 #endif
192 }
193 
handleQuad(const SkMatrix & m,SkPoint pts[3])194 void SkBaseShadowTessellator::handleQuad(const SkMatrix& m, SkPoint pts[3]) {
195     m.mapPoints(pts, 3);
196     this->handleQuad(pts);
197 }
198 
handleCubic(const SkMatrix & m,SkPoint pts[4])199 void SkBaseShadowTessellator::handleCubic(const SkMatrix& m, SkPoint pts[4]) {
200     m.mapPoints(pts, 4);
201 #if SK_SUPPORT_GPU
202     // TODO: Pull PathUtils out of Ganesh?
203     int maxCount = GrPathUtils::cubicPointCount(pts, kCubicTolerance);
204     fPointBuffer.setReserve(maxCount);
205     SkPoint* target = fPointBuffer.begin();
206     int count = GrPathUtils::generateCubicPoints(pts[0], pts[1], pts[2], pts[3],
207                                                  kCubicTolerance, &target, maxCount);
208     fPointBuffer.setCount(count);
209     for (int i = 0; i < count; i++) {
210         this->handleLine(fPointBuffer[i]);
211     }
212 #else
213     // for now, just to draw something
214     this->handleLine(pts[1]);
215     this->handleLine(pts[2]);
216     this->handleLine(pts[3]);
217 #endif
218 }
219 
handleConic(const SkMatrix & m,SkPoint pts[3],SkScalar w)220 void SkBaseShadowTessellator::handleConic(const SkMatrix& m, SkPoint pts[3], SkScalar w) {
221     if (m.hasPerspective()) {
222         w = SkConic::TransformW(pts, w, m);
223     }
224     m.mapPoints(pts, 3);
225     SkAutoConicToQuads quadder;
226     const SkPoint* quads = quadder.computeQuads(pts, w, kConicTolerance);
227     SkPoint lastPoint = *(quads++);
228     int count = quadder.countQuads();
229     for (int i = 0; i < count; ++i) {
230         SkPoint quadPts[3];
231         quadPts[0] = lastPoint;
232         quadPts[1] = quads[0];
233         quadPts[2] = i == count - 1 ? pts[2] : quads[1];
234         this->handleQuad(quadPts);
235         lastPoint = quadPts[2];
236         quads += 2;
237     }
238 }
239 
addArc(const SkVector & nextNormal,bool finishArc)240 bool SkBaseShadowTessellator::addArc(const SkVector& nextNormal, bool finishArc) {
241     // fill in fan from previous quad
242     SkScalar rotSin, rotCos;
243     int numSteps;
244     compute_radial_steps(fPrevOutset, nextNormal, fRadius, &rotSin, &rotCos, &numSteps);
245     SkVector prevNormal = fPrevOutset;
246     for (int i = 0; i < numSteps-1; ++i) {
247         SkVector currNormal;
248         currNormal.fX = prevNormal.fX*rotCos - prevNormal.fY*rotSin;
249         currNormal.fY = prevNormal.fY*rotCos + prevNormal.fX*rotSin;
250         *fPositions.push() = fPrevPoint + currNormal;
251         *fColors.push() = fPenumbraColor;
252         *fIndices.push() = fPrevUmbraIndex;
253         *fIndices.push() = fPositions.count() - 1;
254         *fIndices.push() = fPositions.count() - 2;
255 
256         prevNormal = currNormal;
257     }
258     if (finishArc && numSteps) {
259         *fPositions.push() = fPrevPoint + nextNormal;
260         *fColors.push() = fPenumbraColor;
261         *fIndices.push() = fPrevUmbraIndex;
262         *fIndices.push() = fPositions.count() - 1;
263         *fIndices.push() = fPositions.count() - 2;
264     }
265     fPrevOutset = nextNormal;
266 
267     return (numSteps > 0);
268 }
269 
setTransformedHeightFunc(const SkMatrix & ctm)270 bool SkBaseShadowTessellator::setTransformedHeightFunc(const SkMatrix& ctm) {
271     if (SkScalarNearlyZero(fZPlaneParams.fX) && SkScalarNearlyZero(fZPlaneParams.fY)) {
272         fTransformedHeightFunc = [this](const SkPoint& p) {
273             return fZPlaneParams.fZ;
274         };
275     } else {
276         SkMatrix ctmInverse;
277         if (!ctm.invert(&ctmInverse)) {
278             return false;
279         }
280         // multiply by transpose
281         fTransformedZParams = SkPoint3::Make(
282             ctmInverse[SkMatrix::kMScaleX] * fZPlaneParams.fX +
283             ctmInverse[SkMatrix::kMSkewY] * fZPlaneParams.fY +
284             ctmInverse[SkMatrix::kMPersp0] * fZPlaneParams.fZ,
285 
286             ctmInverse[SkMatrix::kMSkewX] * fZPlaneParams.fX +
287             ctmInverse[SkMatrix::kMScaleY] * fZPlaneParams.fY +
288             ctmInverse[SkMatrix::kMPersp1] * fZPlaneParams.fZ,
289 
290             ctmInverse[SkMatrix::kMTransX] * fZPlaneParams.fX +
291             ctmInverse[SkMatrix::kMTransY] * fZPlaneParams.fY +
292             ctmInverse[SkMatrix::kMPersp2] * fZPlaneParams.fZ
293         );
294 
295         if (ctm.hasPerspective()) {
296             // We use Cramer's rule to solve for the W value for a given post-divide X and Y,
297             // so pre-compute those values that are independent of X and Y.
298             // W is det(ctmInverse)/(PD[0]*X + PD[1]*Y + PD[2])
299             fPartialDeterminants[0] = ctm[SkMatrix::kMSkewY] * ctm[SkMatrix::kMPersp1] -
300                                       ctm[SkMatrix::kMScaleY] * ctm[SkMatrix::kMPersp0];
301             fPartialDeterminants[1] = ctm[SkMatrix::kMPersp0] * ctm[SkMatrix::kMSkewX] -
302                                       ctm[SkMatrix::kMPersp1] * ctm[SkMatrix::kMScaleX];
303             fPartialDeterminants[2] = ctm[SkMatrix::kMScaleX] * ctm[SkMatrix::kMScaleY] -
304                                       ctm[SkMatrix::kMSkewX] * ctm[SkMatrix::kMSkewY];
305             SkScalar ctmDeterminant = ctm[SkMatrix::kMTransX] * fPartialDeterminants[0] +
306                                       ctm[SkMatrix::kMTransY] * fPartialDeterminants[1] +
307                                       ctm[SkMatrix::kMPersp2] * fPartialDeterminants[2];
308 
309             // Pre-bake the numerator of Cramer's rule into the zParams to avoid another multiply.
310             // TODO: this may introduce numerical instability, but I haven't seen any issues yet.
311             fTransformedZParams.fX *= ctmDeterminant;
312             fTransformedZParams.fY *= ctmDeterminant;
313             fTransformedZParams.fZ *= ctmDeterminant;
314 
315             fTransformedHeightFunc = [this](const SkPoint& p) {
316                 SkScalar denom = p.fX * fPartialDeterminants[0] +
317                                  p.fY * fPartialDeterminants[1] +
318                                  fPartialDeterminants[2];
319                 SkScalar w = SkScalarFastInvert(denom);
320                 return fZOffset + w*(fTransformedZParams.fX * p.fX +
321                                      fTransformedZParams.fY * p.fY +
322                                      fTransformedZParams.fZ);
323             };
324         } else {
325             fTransformedHeightFunc = [this](const SkPoint& p) {
326                 return fZOffset + fTransformedZParams.fX * p.fX +
327                        fTransformedZParams.fY * p.fY + fTransformedZParams.fZ;
328             };
329         }
330     }
331 
332     return true;
333 }
334 
335 
336 //////////////////////////////////////////////////////////////////////////////////////////////////
337 
338 class SkAmbientShadowTessellator : public SkBaseShadowTessellator {
339 public:
340     SkAmbientShadowTessellator(const SkPath& path, const SkMatrix& ctm,
341                                const SkPoint3& zPlaneParams, bool transparent);
342 
343 private:
344     void handleLine(const SkPoint& p) override;
345     void addEdge(const SkVector& nextPoint, const SkVector& nextNormal);
346 
347     static constexpr auto kHeightFactor = 1.0f / 128.0f;
348     static constexpr auto kGeomFactor = 64.0f;
349     static constexpr auto kMaxEdgeLenSqr = 20 * 20;
350     static constexpr auto kInsetFactor = -0.5f;
351 
offset(SkScalar z)352     SkScalar offset(SkScalar z) {
353         return z * kHeightFactor * kGeomFactor;
354     }
umbraColor(SkScalar z)355     SkColor umbraColor(SkScalar z) {
356         SkScalar umbraAlpha = SkScalarInvert((1.0f + SkTMax(z*kHeightFactor, 0.0f)));
357         return SkColorSetARGB(umbraAlpha * 255.9999f, 0, 0, 0);
358     }
359 
360     int                 fCentroidCount;
361     bool                fSplitFirstEdge;
362     bool                fSplitPreviousEdge;
363 
364     typedef SkBaseShadowTessellator INHERITED;
365 };
366 
SkAmbientShadowTessellator(const SkPath & path,const SkMatrix & ctm,const SkPoint3 & zPlaneParams,bool transparent)367 SkAmbientShadowTessellator::SkAmbientShadowTessellator(const SkPath& path,
368                                                        const SkMatrix& ctm,
369                                                        const SkPoint3& zPlaneParams,
370                                                        bool transparent)
371         : INHERITED(zPlaneParams, transparent)
372         , fSplitFirstEdge(false)
373         , fSplitPreviousEdge(false) {
374     // Set base colors
375     SkScalar occluderHeight = heightFunc(0, 0);
376     SkScalar umbraAlpha = SkScalarInvert((1.0f + SkTMax(occluderHeight*kHeightFactor, 0.0f)));
377     // umbraColor is the interior value, penumbraColor the exterior value.
378     // umbraAlpha is the factor that is linearly interpolated from outside to inside, and
379     // then "blurred" by the GrBlurredEdgeFP. It is then multiplied by fAmbientAlpha to get
380     // the final alpha.
381     fUmbraColor = SkColorSetARGB(umbraAlpha * 255.9999f, 0, 0, 0);
382     fPenumbraColor = SkColorSetARGB(0, 0, 0, 0);
383 
384     // make sure we're not below the canvas plane
385     this->setZOffset(path.getBounds(), ctm.hasPerspective());
386 
387     this->setTransformedHeightFunc(ctm);
388 
389     // Outer ring: 3*numPts
390     // Middle ring: numPts
391     fPositions.setReserve(4 * path.countPoints());
392     fColors.setReserve(4 * path.countPoints());
393     // Outer ring: 12*numPts
394     // Middle ring: 0
395     fIndices.setReserve(12 * path.countPoints());
396 
397     // walk around the path, tessellate and generate outer ring
398     // if original path is transparent, will accumulate sum of points for centroid
399     SkPath::Iter iter(path, true);
400     SkPoint pts[4];
401     SkPath::Verb verb;
402     if (fTransparent) {
403         *fPositions.push() = SkPoint::Make(0, 0);
404         *fColors.push() = fUmbraColor;
405         fCentroidCount = 0;
406     }
407     while ((verb = iter.next(pts)) != SkPath::kDone_Verb) {
408         switch (verb) {
409             case SkPath::kLine_Verb:
410                 this->INHERITED::handleLine(ctm, &pts[1]);
411                 break;
412             case SkPath::kQuad_Verb:
413                 this->handleQuad(ctm, pts);
414                 break;
415             case SkPath::kCubic_Verb:
416                 this->handleCubic(ctm, pts);
417                 break;
418             case SkPath::kConic_Verb:
419                 this->handleConic(ctm, pts, iter.conicWeight());
420                 break;
421             case SkPath::kMove_Verb:
422             case SkPath::kClose_Verb:
423             case SkPath::kDone_Verb:
424                 break;
425         }
426     }
427 
428     if (!this->indexCount()) {
429         return;
430     }
431 
432     // Finish up
433     SkVector normal;
434     if (compute_normal(fPrevPoint, fFirstPoint, fDirection, &normal)) {
435         SkScalar z = fTransformedHeightFunc(fPrevPoint);
436         fRadius = this->offset(z);
437         SkVector scaledNormal(normal);
438         scaledNormal *= fRadius;
439         this->addArc(scaledNormal, true);
440 
441         // fix-up the last and first umbra points
442         SkVector inset = normal;
443         // adding to an average, so multiply by an additional half
444         inset *= 0.5f*kInsetFactor;
445         fPositions[fPrevUmbraIndex] += inset;
446         fPositions[fFirstVertexIndex] += inset;
447         // we multiply by another half because now we're adding to an average of an average
448         inset *= 0.5f;
449         if (fSplitPreviousEdge) {
450             fPositions[fPrevUmbraIndex - 2] += inset;
451         }
452         if (fSplitFirstEdge) {
453             fPositions[fFirstVertexIndex + 2] += inset;
454         }
455 
456         // set up for final edge
457         z = fTransformedHeightFunc(fFirstPoint);
458         normal *= this->offset(z);
459 
460         // make sure we don't end up with a sharp alpha edge along the quad diagonal
461         if (fColors[fPrevUmbraIndex] != fColors[fFirstVertexIndex] &&
462             fFirstPoint.distanceToSqd(fPositions[fPrevUmbraIndex]) > kMaxEdgeLenSqr) {
463             SkPoint centerPoint = fPositions[fPrevUmbraIndex] + fPositions[fFirstVertexIndex];
464             centerPoint *= 0.5f;
465             *fPositions.push() = centerPoint;
466             *fColors.push() = SkPMLerp(fColors[fFirstVertexIndex], fColors[fPrevUmbraIndex], 128);
467             centerPoint = fPositions[fPositions.count()-2] + fPositions[fFirstVertexIndex+1];
468             centerPoint *= 0.5f;
469             *fPositions.push() = centerPoint;
470             *fColors.push() = fPenumbraColor;
471 
472             if (fColors[fPrevUmbraIndex] > fColors[fPositions.count() - 2]) {
473                 *fIndices.push() = fPrevUmbraIndex;
474                 *fIndices.push() = fPositions.count() - 3;
475                 *fIndices.push() = fPositions.count() - 2;
476 
477                 *fIndices.push() = fPositions.count() - 3;
478                 *fIndices.push() = fPositions.count() - 1;
479                 *fIndices.push() = fPositions.count() - 2;
480             } else {
481                 *fIndices.push() = fPrevUmbraIndex;
482                 *fIndices.push() = fPositions.count() - 2;
483                 *fIndices.push() = fPositions.count() - 1;
484 
485                 *fIndices.push() = fPrevUmbraIndex;
486                 *fIndices.push() = fPositions.count() - 1;
487                 *fIndices.push() = fPositions.count() - 3;
488             }
489 
490             // if transparent, add point to first one in array and add to center fan
491             if (fTransparent) {
492                 fPositions[0] += centerPoint;
493                 ++fCentroidCount;
494 
495                 *fIndices.push() = 0;
496                 *fIndices.push() = fPrevUmbraIndex;
497                 *fIndices.push() = fPositions.count() - 2;
498             }
499 
500             fPrevUmbraIndex = fPositions.count() - 2;
501         }
502 
503         // final edge
504         *fPositions.push() = fFirstPoint + normal;
505         *fColors.push() = fPenumbraColor;
506 
507         if (fColors[fPrevUmbraIndex] > fColors[fFirstVertexIndex]) {
508             *fIndices.push() = fPrevUmbraIndex;
509             *fIndices.push() = fPositions.count() - 2;
510             *fIndices.push() = fFirstVertexIndex;
511 
512             *fIndices.push() = fPositions.count() - 2;
513             *fIndices.push() = fPositions.count() - 1;
514             *fIndices.push() = fFirstVertexIndex;
515         } else {
516             *fIndices.push() = fPrevUmbraIndex;
517             *fIndices.push() = fPositions.count() - 2;
518             *fIndices.push() = fPositions.count() - 1;
519 
520             *fIndices.push() = fPrevUmbraIndex;
521             *fIndices.push() = fPositions.count() - 1;
522             *fIndices.push() = fFirstVertexIndex;
523         }
524         fPrevOutset = normal;
525     }
526 
527     // finalize centroid
528     if (fTransparent) {
529         fPositions[0] *= SkScalarFastInvert(fCentroidCount);
530         fColors[0] = this->umbraColor(fTransformedHeightFunc(fPositions[0]));
531 
532         *fIndices.push() = 0;
533         *fIndices.push() = fPrevUmbraIndex;
534         *fIndices.push() = fFirstVertexIndex;
535     }
536 
537     // final fan
538     if (fPositions.count() >= 3) {
539         fPrevUmbraIndex = fFirstVertexIndex;
540         fPrevPoint = fFirstPoint;
541         fRadius = this->offset(fTransformedHeightFunc(fPrevPoint));
542         if (this->addArc(fFirstOutset, false)) {
543             *fIndices.push() = fFirstVertexIndex;
544             *fIndices.push() = fPositions.count() - 1;
545             *fIndices.push() = fFirstVertexIndex + 1;
546         } else {
547             // arc is too small, set the first penumbra point to be the same position
548             // as the last one
549             fPositions[fFirstVertexIndex + 1] = fPositions[fPositions.count() - 1];
550         }
551     }
552     fSucceeded = true;
553 }
554 
handleLine(const SkPoint & p)555 void SkAmbientShadowTessellator::handleLine(const SkPoint& p)  {
556     if (fInitPoints.count() < 2) {
557         *fInitPoints.push() = p;
558         return;
559     }
560 
561     if (fInitPoints.count() == 2) {
562         // determine if cw or ccw
563         SkVector v0 = fInitPoints[1] - fInitPoints[0];
564         SkVector v1 = p - fInitPoints[0];
565         SkScalar perpDot = v0.fX*v1.fY - v0.fY*v1.fX;
566         if (SkScalarNearlyZero(perpDot)) {
567             // nearly parallel, just treat as straight line and continue
568             fInitPoints[1] = p;
569             return;
570         }
571 
572         // if perpDot > 0, winding is ccw
573         fDirection = (perpDot > 0) ? -1 : 1;
574 
575         // add first quad
576         SkVector normal;
577         if (!compute_normal(fInitPoints[0], fInitPoints[1], fDirection, &normal)) {
578             // first two points are incident, make the third point the second and continue
579             fInitPoints[1] = p;
580             return;
581         }
582 
583         fFirstPoint = fInitPoints[0];
584         fFirstVertexIndex = fPositions.count();
585         SkScalar z = fTransformedHeightFunc(fFirstPoint);
586         fFirstOutset = normal;
587         fFirstOutset *= this->offset(z);
588 
589         fPrevOutset = fFirstOutset;
590         fPrevPoint = fFirstPoint;
591         fPrevUmbraIndex = fFirstVertexIndex;
592 
593         *fPositions.push() = fFirstPoint;
594         *fColors.push() = this->umbraColor(z);
595         *fPositions.push() = fFirstPoint + fFirstOutset;
596         *fColors.push() = fPenumbraColor;
597         if (fTransparent) {
598             fPositions[0] += fFirstPoint;
599             fCentroidCount = 1;
600         }
601 
602         // add the first quad
603         z = fTransformedHeightFunc(fInitPoints[1]);
604         fRadius = this->offset(z);
605         fUmbraColor = this->umbraColor(z);
606         this->addEdge(fInitPoints[1], normal);
607 
608         // to ensure we skip this block next time
609         *fInitPoints.push() = p;
610     }
611 
612     SkVector normal;
613     if (compute_normal(fPrevPoint, p, fDirection, &normal)) {
614         SkVector scaledNormal = normal;
615         scaledNormal *= fRadius;
616         this->addArc(scaledNormal, true);
617         SkScalar z = fTransformedHeightFunc(p);
618         fRadius = this->offset(z);
619         fUmbraColor = this->umbraColor(z);
620         this->addEdge(p, normal);
621     }
622 }
623 
addEdge(const SkPoint & nextPoint,const SkVector & nextNormal)624 void SkAmbientShadowTessellator::addEdge(const SkPoint& nextPoint, const SkVector& nextNormal) {
625     // We compute the inset in two stages: first we inset by half the current normal,
626     // then on the next addEdge() we add half of the next normal to get an average of the two
627     SkVector insetNormal = nextNormal;
628     insetNormal *= 0.5f*kInsetFactor;
629 
630     // Adding the other half of the average for the previous edge
631     fPositions[fPrevUmbraIndex] += insetNormal;
632 
633     SkPoint umbraPoint = nextPoint + insetNormal;
634     SkVector outsetNormal = nextNormal;
635     outsetNormal *= fRadius;
636     SkPoint penumbraPoint = nextPoint + outsetNormal;
637 
638     // For split edges, we're adding an average of two averages, so we multiply by another half
639     if (fSplitPreviousEdge) {
640         insetNormal *= 0.5f;
641         fPositions[fPrevUmbraIndex - 2] += insetNormal;
642     }
643 
644     // Split the edge to make sure we don't end up with a sharp alpha edge along the quad diagonal
645     if (fColors[fPrevUmbraIndex] != fUmbraColor &&
646         nextPoint.distanceToSqd(fPositions[fPrevUmbraIndex]) > kMaxEdgeLenSqr) {
647 
648         // This is lacking 1/4 of the next inset -- we'll add it the next time we call addEdge()
649         SkPoint centerPoint = fPositions[fPrevUmbraIndex] + umbraPoint;
650         centerPoint *= 0.5f;
651         *fPositions.push() = centerPoint;
652         *fColors.push() = SkPMLerp(fUmbraColor, fColors[fPrevUmbraIndex], 128);
653         centerPoint = fPositions[fPositions.count()-2] + penumbraPoint;
654         centerPoint *= 0.5f;
655         *fPositions.push() = centerPoint;
656         *fColors.push() = fPenumbraColor;
657 
658         // set triangularization to get best interpolation of color
659         if (fColors[fPrevUmbraIndex] > fColors[fPositions.count() - 2]) {
660             *fIndices.push() = fPrevUmbraIndex;
661             *fIndices.push() = fPositions.count() - 3;
662             *fIndices.push() = fPositions.count() - 2;
663 
664             *fIndices.push() = fPositions.count() - 3;
665             *fIndices.push() = fPositions.count() - 1;
666             *fIndices.push() = fPositions.count() - 2;
667         } else {
668             *fIndices.push() = fPrevUmbraIndex;
669             *fIndices.push() = fPositions.count() - 2;
670             *fIndices.push() = fPositions.count() - 1;
671 
672             *fIndices.push() = fPrevUmbraIndex;
673             *fIndices.push() = fPositions.count() - 1;
674             *fIndices.push() = fPositions.count() - 3;
675         }
676 
677         // if transparent, add point to first one in array and add to center fan
678         if (fTransparent) {
679             fPositions[0] += centerPoint;
680             ++fCentroidCount;
681 
682             *fIndices.push() = 0;
683             *fIndices.push() = fPrevUmbraIndex;
684             *fIndices.push() = fPositions.count() - 2;
685         }
686 
687         fSplitPreviousEdge = true;
688         if (fPrevUmbraIndex == fFirstVertexIndex) {
689             fSplitFirstEdge = true;
690         }
691         fPrevUmbraIndex = fPositions.count() - 2;
692     } else {
693         fSplitPreviousEdge = false;
694     }
695 
696     // add next quad
697     *fPositions.push() = umbraPoint;
698     *fColors.push() = fUmbraColor;
699     *fPositions.push() = penumbraPoint;
700     *fColors.push() = fPenumbraColor;
701 
702     // set triangularization to get best interpolation of color
703     if (fColors[fPrevUmbraIndex] > fColors[fPositions.count() - 2]) {
704         *fIndices.push() = fPrevUmbraIndex;
705         *fIndices.push() = fPositions.count() - 3;
706         *fIndices.push() = fPositions.count() - 2;
707 
708         *fIndices.push() = fPositions.count() - 3;
709         *fIndices.push() = fPositions.count() - 1;
710         *fIndices.push() = fPositions.count() - 2;
711     } else {
712         *fIndices.push() = fPrevUmbraIndex;
713         *fIndices.push() = fPositions.count() - 2;
714         *fIndices.push() = fPositions.count() - 1;
715 
716         *fIndices.push() = fPrevUmbraIndex;
717         *fIndices.push() = fPositions.count() - 1;
718         *fIndices.push() = fPositions.count() - 3;
719     }
720 
721     // if transparent, add point to first one in array and add to center fan
722     if (fTransparent) {
723         fPositions[0] += nextPoint;
724         ++fCentroidCount;
725 
726         *fIndices.push() = 0;
727         *fIndices.push() = fPrevUmbraIndex;
728         *fIndices.push() = fPositions.count() - 2;
729     }
730 
731     fPrevUmbraIndex = fPositions.count() - 2;
732     fPrevPoint = nextPoint;
733     fPrevOutset = outsetNormal;
734 }
735 
736 ///////////////////////////////////////////////////////////////////////////////////////////////////
737 
738 class SkSpotShadowTessellator : public SkBaseShadowTessellator {
739 public:
740     SkSpotShadowTessellator(const SkPath& path, const SkMatrix& ctm,
741                             const SkPoint3& zPlaneParams, const SkPoint3& lightPos,
742                             SkScalar lightRadius, bool transparent);
743 
744 private:
745     void computeClipAndPathPolygons(const SkPath& path, const SkMatrix& ctm,
746                                     const SkMatrix& shadowTransform);
747     void computeClipVectorsAndTestCentroid();
748     bool clipUmbraPoint(const SkPoint& umbraPoint, const SkPoint& centroid, SkPoint* clipPoint);
749     int getClosestUmbraPoint(const SkPoint& point);
750 
751     void handleLine(const SkPoint& p) override;
752     bool handlePolyPoint(const SkPoint& p);
753 
754     void mapPoints(SkScalar scale, const SkVector& xlate, SkPoint* pts, int count);
755     bool addInnerPoint(const SkPoint& pathPoint);
756     void addEdge(const SkVector& nextPoint, const SkVector& nextNormal);
757 
offset(SkScalar z)758     SkScalar offset(SkScalar z) {
759         float zRatio = SkTPin(z / (fLightZ - z), 0.0f, 0.95f);
760         return fLightRadius*zRatio;
761     }
762 
763     SkScalar            fLightZ;
764     SkScalar            fLightRadius;
765     SkScalar            fOffsetAdjust;
766 
767     SkTDArray<SkPoint>  fClipPolygon;
768     SkTDArray<SkVector> fClipVectors;
769     SkPoint             fCentroid;
770     SkScalar            fArea;
771 
772     SkTDArray<SkPoint>  fPathPolygon;
773     SkTDArray<SkPoint>  fUmbraPolygon;
774     int                 fCurrClipPoint;
775     int                 fCurrUmbraPoint;
776     bool                fPrevUmbraOutside;
777     bool                fFirstUmbraOutside;
778     bool                fValidUmbra;
779 
780     typedef SkBaseShadowTessellator INHERITED;
781 };
782 
SkSpotShadowTessellator(const SkPath & path,const SkMatrix & ctm,const SkPoint3 & zPlaneParams,const SkPoint3 & lightPos,SkScalar lightRadius,bool transparent)783 SkSpotShadowTessellator::SkSpotShadowTessellator(const SkPath& path, const SkMatrix& ctm,
784                                                  const SkPoint3& zPlaneParams,
785                                                  const SkPoint3& lightPos, SkScalar lightRadius,
786                                                  bool transparent)
787     : INHERITED(zPlaneParams, transparent)
788     , fLightZ(lightPos.fZ)
789     , fLightRadius(lightRadius)
790     , fOffsetAdjust(0)
791     , fCurrClipPoint(0)
792     , fPrevUmbraOutside(false)
793     , fFirstUmbraOutside(false)
794     , fValidUmbra(true) {
795 
796     // make sure we're not below the canvas plane
797     if (this->setZOffset(path.getBounds(), ctm.hasPerspective())) {
798         // Adjust light height and radius
799         fLightRadius *= (fLightZ + fZOffset) / fLightZ;
800         fLightZ += fZOffset;
801     }
802 
803     // Set radius and colors
804     SkPoint center = SkPoint::Make(path.getBounds().centerX(), path.getBounds().centerY());
805     SkScalar occluderHeight = this->heightFunc(center.fX, center.fY) + fZOffset;
806     float zRatio = SkTPin(occluderHeight / (fLightZ - occluderHeight), 0.0f, 0.95f);
807     SkScalar radius = lightRadius * zRatio;
808     fRadius = radius;
809     fUmbraColor = SkColorSetARGB(255, 0, 0, 0);
810     fPenumbraColor = SkColorSetARGB(0, 0, 0, 0);
811 
812     // Compute the scale and translation for the spot shadow.
813     SkMatrix shadowTransform;
814     if (!ctm.hasPerspective()) {
815         SkScalar scale = fLightZ / (fLightZ - occluderHeight);
816         SkVector translate = SkVector::Make(-zRatio * lightPos.fX, -zRatio * lightPos.fY);
817         shadowTransform.setScaleTranslate(scale, scale, translate.fX, translate.fY);
818     } else {
819         // For perspective, we have a scale, a z-shear, and another projective divide --
820         // this varies at each point so we can't use an affine transform.
821         // We'll just apply this to each generated point in turn.
822         shadowTransform.reset();
823         // Also can't cull the center (for now).
824         fTransparent = true;
825     }
826     SkMatrix fullTransform = SkMatrix::Concat(shadowTransform, ctm);
827 
828     // Set up our reverse mapping
829     this->setTransformedHeightFunc(fullTransform);
830 
831     // TODO: calculate these reserves better
832     // Penumbra ring: 3*numPts
833     // Umbra ring: numPts
834     // Inner ring: numPts
835     fPositions.setReserve(5 * path.countPoints());
836     fColors.setReserve(5 * path.countPoints());
837     // Penumbra ring: 12*numPts
838     // Umbra ring: 3*numPts
839     fIndices.setReserve(15 * path.countPoints());
840     fClipPolygon.setReserve(path.countPoints());
841 
842     // compute rough clip bounds for umbra, plus offset polygon, plus centroid
843     this->computeClipAndPathPolygons(path, ctm, shadowTransform);
844     if (fClipPolygon.count() < 3 || fPathPolygon.count() < 3) {
845         return;
846     }
847 
848     // check to see if umbra collapses
849     SkScalar minDistSq = fCentroid.distanceToLineSegmentBetweenSqd(fPathPolygon[0],
850                                                                    fPathPolygon[1]);
851     SkRect bounds;
852     bounds.setBounds(&fPathPolygon[0], fPathPolygon.count());
853     for (int i = 1; i < fPathPolygon.count(); ++i) {
854         int j = i + 1;
855         if (i == fPathPolygon.count() - 1) {
856             j = 0;
857         }
858         SkPoint currPoint = fPathPolygon[i];
859         SkPoint nextPoint = fPathPolygon[j];
860         SkScalar distSq = fCentroid.distanceToLineSegmentBetweenSqd(currPoint, nextPoint);
861         if (distSq < minDistSq) {
862             minDistSq = distSq;
863         }
864     }
865     static constexpr auto kTolerance = 1.0e-2f;
866     if (minDistSq < (radius + kTolerance)*(radius + kTolerance)) {
867         // if the umbra would collapse, we back off a bit on inner blur and adjust the alpha
868         SkScalar newRadius = SkScalarSqrt(minDistSq) - kTolerance;
869         fOffsetAdjust = newRadius - radius;
870         SkScalar ratio = 128 * (newRadius + radius) / radius;
871         // they aren't PMColors, but the interpolation algorithm is the same
872         fUmbraColor = SkPMLerp(fUmbraColor, fPenumbraColor, (unsigned)ratio);
873         radius = newRadius;
874     }
875 
876     // compute vectors for clip tests
877     this->computeClipVectorsAndTestCentroid();
878 
879     // generate inner ring
880     if (!SkInsetConvexPolygon(&fPathPolygon[0], fPathPolygon.count(), radius,
881                               &fUmbraPolygon)) {
882         // this shouldn't happen, but just in case we'll inset using the centroid
883         fValidUmbra = false;
884     }
885 
886     // walk around the path polygon, generate outer ring and connect to inner ring
887     if (fTransparent) {
888         *fPositions.push() = fCentroid;
889         *fColors.push() = fUmbraColor;
890     }
891     fCurrUmbraPoint = 0;
892     for (int i = 0; i < fPathPolygon.count(); ++i) {
893         if (!this->handlePolyPoint(fPathPolygon[i])) {
894             return;
895         }
896     }
897 
898     if (!this->indexCount()) {
899         return;
900     }
901 
902     // finish up the final verts
903     SkVector normal;
904     if (compute_normal(fPrevPoint, fFirstPoint, fDirection, &normal)) {
905         normal *= fRadius;
906         this->addArc(normal, true);
907 
908         // add to center fan
909         if (fTransparent) {
910             *fIndices.push() = 0;
911             *fIndices.push() = fPrevUmbraIndex;
912             *fIndices.push() = fFirstVertexIndex;
913             // or to clip ring
914         } else {
915             if (fFirstUmbraOutside) {
916                 *fIndices.push() = fPrevUmbraIndex;
917                 *fIndices.push() = fFirstVertexIndex;
918                 *fIndices.push() = fFirstVertexIndex + 1;
919                 if (fPrevUmbraOutside) {
920                     // fill out quad
921                     *fIndices.push() = fPrevUmbraIndex;
922                     *fIndices.push() = fFirstVertexIndex + 1;
923                     *fIndices.push() = fPrevUmbraIndex + 1;
924                 }
925             } else if (fPrevUmbraOutside) {
926                 // add tri
927                 *fIndices.push() = fPrevUmbraIndex;
928                 *fIndices.push() = fFirstVertexIndex;
929                 *fIndices.push() = fPrevUmbraIndex + 1;
930             }
931         }
932 
933         // add final edge
934         *fPositions.push() = fFirstPoint + normal;
935         *fColors.push() = fPenumbraColor;
936 
937         *fIndices.push() = fPrevUmbraIndex;
938         *fIndices.push() = fPositions.count() - 2;
939         *fIndices.push() = fFirstVertexIndex;
940 
941         *fIndices.push() = fPositions.count() - 2;
942         *fIndices.push() = fPositions.count() - 1;
943         *fIndices.push() = fFirstVertexIndex;
944 
945         fPrevOutset = normal;
946     }
947 
948     // final fan
949     if (fPositions.count() >= 3) {
950         fPrevUmbraIndex = fFirstVertexIndex;
951         fPrevPoint = fFirstPoint;
952         if (this->addArc(fFirstOutset, false)) {
953             *fIndices.push() = fFirstVertexIndex;
954             *fIndices.push() = fPositions.count() - 1;
955             if (fFirstUmbraOutside) {
956                 *fIndices.push() = fFirstVertexIndex + 2;
957             } else {
958                 *fIndices.push() = fFirstVertexIndex + 1;
959             }
960         } else {
961             // no arc added, fix up by setting first penumbra point position to last one
962             if (fFirstUmbraOutside) {
963                 fPositions[fFirstVertexIndex + 2] = fPositions[fPositions.count() - 1];
964             } else {
965                 fPositions[fFirstVertexIndex + 1] = fPositions[fPositions.count() - 1];
966             }
967         }
968     }
969 
970     if (ctm.hasPerspective()) {
971         for (int i = 0; i < fPositions.count(); ++i) {
972             SkScalar pathZ = fTransformedHeightFunc(fPositions[i]);
973             SkScalar factor = SkScalarInvert(fLightZ - pathZ);
974             fPositions[i].fX = (fPositions[i].fX*fLightZ - lightPos.fX*pathZ)*factor;
975             fPositions[i].fY = (fPositions[i].fY*fLightZ - lightPos.fY*pathZ)*factor;
976         }
977 #ifdef DRAW_CENTROID
978         SkScalar pathZ = fTransformedHeightFunc(fCentroid);
979         SkScalar factor = SkScalarInvert(fLightZ - pathZ);
980         fCentroid.fX = (fCentroid.fX*fLightZ - lightPos.fX*pathZ)*factor;
981         fCentroid.fY = (fCentroid.fY*fLightZ - lightPos.fY*pathZ)*factor;
982 #endif
983     }
984 #ifdef DRAW_CENTROID
985     *fPositions.push() = fCentroid + SkVector::Make(-2, -2);
986     *fColors.push() = SkColorSetARGB(255, 0, 255, 255);
987     *fPositions.push() = fCentroid + SkVector::Make(2, -2);
988     *fColors.push() = SkColorSetARGB(255, 0, 255, 255);
989     *fPositions.push() = fCentroid + SkVector::Make(-2, 2);
990     *fColors.push() = SkColorSetARGB(255, 0, 255, 255);
991     *fPositions.push() = fCentroid + SkVector::Make(2, 2);
992     *fColors.push() = SkColorSetARGB(255, 0, 255, 255);
993 
994     *fIndices.push() = fPositions.count() - 4;
995     *fIndices.push() = fPositions.count() - 2;
996     *fIndices.push() = fPositions.count() - 1;
997 
998     *fIndices.push() = fPositions.count() - 4;
999     *fIndices.push() = fPositions.count() - 1;
1000     *fIndices.push() = fPositions.count() - 3;
1001 #endif
1002 
1003     fSucceeded = true;
1004 }
1005 
computeClipAndPathPolygons(const SkPath & path,const SkMatrix & ctm,const SkMatrix & shadowTransform)1006 void SkSpotShadowTessellator::computeClipAndPathPolygons(const SkPath& path, const SkMatrix& ctm,
1007                                                          const SkMatrix& shadowTransform) {
1008 
1009     fPathPolygon.setReserve(path.countPoints());
1010 
1011     // Walk around the path and compute clip polygon and path polygon.
1012     // Will also accumulate sum of areas for centroid.
1013     // For Bezier curves, we compute additional interior points on curve.
1014     SkPath::Iter iter(path, true);
1015     SkPoint pts[4];
1016     SkPath::Verb verb;
1017 
1018     fClipPolygon.reset();
1019 
1020     // init centroid
1021     fCentroid = SkPoint::Make(0, 0);
1022     fArea = 0;
1023 
1024     // coefficients to compute cubic Bezier at t = 5/16
1025     static constexpr SkScalar kA = 0.32495117187f;
1026     static constexpr SkScalar kB = 0.44311523437f;
1027     static constexpr SkScalar kC = 0.20141601562f;
1028     static constexpr SkScalar kD = 0.03051757812f;
1029 
1030     SkPoint curvePoint;
1031     SkScalar w;
1032     while ((verb = iter.next(pts)) != SkPath::kDone_Verb) {
1033         switch (verb) {
1034             case SkPath::kLine_Verb:
1035                 ctm.mapPoints(&pts[1], 1);
1036                 *fClipPolygon.push() = pts[1];
1037                 this->INHERITED::handleLine(shadowTransform, &pts[1]);
1038                 break;
1039             case SkPath::kQuad_Verb:
1040                 ctm.mapPoints(pts, 3);
1041                 // point at t = 1/2
1042                 curvePoint.fX = 0.25f*pts[0].fX + 0.5f*pts[1].fX + 0.25f*pts[2].fX;
1043                 curvePoint.fY = 0.25f*pts[0].fY + 0.5f*pts[1].fY + 0.25f*pts[2].fY;
1044                 *fClipPolygon.push() = curvePoint;
1045                 *fClipPolygon.push() = pts[2];
1046                 this->handleQuad(shadowTransform, pts);
1047                 break;
1048             case SkPath::kConic_Verb:
1049                 ctm.mapPoints(pts, 3);
1050                 w = iter.conicWeight();
1051                 // point at t = 1/2
1052                 curvePoint.fX = 0.25f*pts[0].fX + w*0.5f*pts[1].fX + 0.25f*pts[2].fX;
1053                 curvePoint.fY = 0.25f*pts[0].fY + w*0.5f*pts[1].fY + 0.25f*pts[2].fY;
1054                 curvePoint *= SkScalarInvert(0.5f + 0.5f*w);
1055                 *fClipPolygon.push() = curvePoint;
1056                 *fClipPolygon.push() = pts[2];
1057                 this->handleConic(shadowTransform, pts, w);
1058                 break;
1059             case SkPath::kCubic_Verb:
1060                 ctm.mapPoints(pts, 4);
1061                 // point at t = 5/16
1062                 curvePoint.fX = kA*pts[0].fX + kB*pts[1].fX + kC*pts[2].fX + kD*pts[3].fX;
1063                 curvePoint.fY = kA*pts[0].fY + kB*pts[1].fY + kC*pts[2].fY + kD*pts[3].fY;
1064                 *fClipPolygon.push() = curvePoint;
1065                 // point at t = 11/16
1066                 curvePoint.fX = kD*pts[0].fX + kC*pts[1].fX + kB*pts[2].fX + kA*pts[3].fX;
1067                 curvePoint.fY = kD*pts[0].fY + kC*pts[1].fY + kB*pts[2].fY + kA*pts[3].fY;
1068                 *fClipPolygon.push() = curvePoint;
1069                 *fClipPolygon.push() = pts[3];
1070                 this->handleCubic(shadowTransform, pts);
1071                 break;
1072             case SkPath::kMove_Verb:
1073             case SkPath::kClose_Verb:
1074             case SkPath::kDone_Verb:
1075                 break;
1076             default:
1077                 SkDEBUGFAIL("unknown verb");
1078         }
1079     }
1080 
1081     // finish centroid
1082     if (fPathPolygon.count() > 0) {
1083         SkPoint currPoint = fPathPolygon[fPathPolygon.count() - 1];
1084         SkPoint nextPoint = fPathPolygon[0];
1085         SkScalar quadArea = currPoint.cross(nextPoint);
1086         fCentroid.fX += (currPoint.fX + nextPoint.fX) * quadArea;
1087         fCentroid.fY += (currPoint.fY + nextPoint.fY) * quadArea;
1088         fArea += quadArea;
1089         fCentroid *= SK_Scalar1 / (3 * fArea);
1090     }
1091 
1092     fCurrClipPoint = fClipPolygon.count() - 1;
1093 }
1094 
computeClipVectorsAndTestCentroid()1095 void SkSpotShadowTessellator::computeClipVectorsAndTestCentroid() {
1096     SkASSERT(fClipPolygon.count() >= 3);
1097 
1098     // init clip vectors
1099     SkVector v0 = fClipPolygon[1] - fClipPolygon[0];
1100     *fClipVectors.push() = v0;
1101 
1102     // init centroid check
1103     bool hiddenCentroid = true;
1104     SkVector v1 = fCentroid - fClipPolygon[0];
1105     SkScalar initCross = v0.cross(v1);
1106 
1107     for (int p = 1; p < fClipPolygon.count(); ++p) {
1108         // add to clip vectors
1109         v0 = fClipPolygon[(p + 1) % fClipPolygon.count()] - fClipPolygon[p];
1110         *fClipVectors.push() = v0;
1111         // Determine if transformed centroid is inside clipPolygon.
1112         v1 = fCentroid - fClipPolygon[p];
1113         if (initCross*v0.cross(v1) <= 0) {
1114             hiddenCentroid = false;
1115         }
1116     }
1117     SkASSERT(fClipVectors.count() == fClipPolygon.count());
1118 
1119     fTransparent = fTransparent || !hiddenCentroid;
1120 }
1121 
clipUmbraPoint(const SkPoint & umbraPoint,const SkPoint & centroid,SkPoint * clipPoint)1122 bool SkSpotShadowTessellator::clipUmbraPoint(const SkPoint& umbraPoint, const SkPoint& centroid,
1123                                              SkPoint* clipPoint) {
1124     SkVector segmentVector = centroid - umbraPoint;
1125 
1126     int startClipPoint = fCurrClipPoint;
1127     do {
1128         SkVector dp = umbraPoint - fClipPolygon[fCurrClipPoint];
1129         SkScalar denom = fClipVectors[fCurrClipPoint].cross(segmentVector);
1130         SkScalar t_num = dp.cross(segmentVector);
1131         // if line segments are nearly parallel
1132         if (SkScalarNearlyZero(denom)) {
1133             // and collinear
1134             if (SkScalarNearlyZero(t_num)) {
1135                 return false;
1136             }
1137             // otherwise are separate, will try the next poly segment
1138         // else if crossing lies within poly segment
1139         } else if (t_num >= 0 && t_num <= denom) {
1140             SkScalar s_num = dp.cross(fClipVectors[fCurrClipPoint]);
1141             // if umbra point is inside the clip polygon
1142             if (s_num >= 0 && s_num <= denom) {
1143                 segmentVector *= s_num/denom;
1144                 *clipPoint = umbraPoint + segmentVector;
1145                 return true;
1146             }
1147         }
1148         fCurrClipPoint = (fCurrClipPoint + 1) % fClipPolygon.count();
1149     } while (fCurrClipPoint != startClipPoint);
1150 
1151     return false;
1152 }
1153 
getClosestUmbraPoint(const SkPoint & p)1154 int SkSpotShadowTessellator::getClosestUmbraPoint(const SkPoint& p) {
1155     SkScalar minDistance = p.distanceToSqd(fUmbraPolygon[fCurrUmbraPoint]);
1156     int index = fCurrUmbraPoint;
1157     int dir = 1;
1158     int next = (index + dir) % fUmbraPolygon.count();
1159 
1160     // init travel direction
1161     SkScalar distance = p.distanceToSqd(fUmbraPolygon[next]);
1162     if (distance < minDistance) {
1163         index = next;
1164         minDistance = distance;
1165     } else {
1166         dir = fUmbraPolygon.count()-1;
1167     }
1168 
1169     // iterate until we find a point that increases the distance
1170     next = (index + dir) % fUmbraPolygon.count();
1171     distance = p.distanceToSqd(fUmbraPolygon[next]);
1172     while (distance < minDistance) {
1173         index = next;
1174         minDistance = distance;
1175         next = (index + dir) % fUmbraPolygon.count();
1176         distance = p.distanceToSqd(fUmbraPolygon[next]);
1177     }
1178 
1179     fCurrUmbraPoint = index;
1180     return index;
1181 }
1182 
mapPoints(SkScalar scale,const SkVector & xlate,SkPoint * pts,int count)1183 void SkSpotShadowTessellator::mapPoints(SkScalar scale, const SkVector& xlate,
1184                                         SkPoint* pts, int count) {
1185     // TODO: vectorize
1186     for (int i = 0; i < count; ++i) {
1187         pts[i] *= scale;
1188         pts[i] += xlate;
1189     }
1190 }
1191 
duplicate_pt(const SkPoint & p0,const SkPoint & p1)1192 static bool duplicate_pt(const SkPoint& p0, const SkPoint& p1) {
1193     static constexpr SkScalar kClose = (SK_Scalar1 / 16);
1194     static constexpr SkScalar kCloseSqd = kClose*kClose;
1195 
1196     SkScalar distSq = p0.distanceToSqd(p1);
1197     return distSq < kCloseSqd;
1198 }
1199 
perp_dot(const SkPoint & p0,const SkPoint & p1,const SkPoint & p2)1200 static SkScalar perp_dot(const SkPoint& p0, const SkPoint& p1, const SkPoint& p2) {
1201     SkVector v0 = p1 - p0;
1202     SkVector v1 = p2 - p0;
1203     return v0.cross(v1);
1204 }
1205 
is_collinear(const SkPoint & p0,const SkPoint & p1,const SkPoint & p2)1206 static bool is_collinear(const SkPoint& p0, const SkPoint& p1, const SkPoint& p2) {
1207     return (SkScalarNearlyZero(perp_dot(p0, p1, p2)));
1208 }
1209 
handleLine(const SkPoint & p)1210 void SkSpotShadowTessellator::handleLine(const SkPoint& p) {
1211     // remove coincident points and add to centroid
1212     if (fPathPolygon.count() > 0) {
1213         const SkPoint& lastPoint = fPathPolygon[fPathPolygon.count() - 1];
1214         if (duplicate_pt(p, lastPoint)) {
1215             return;
1216         }
1217         SkScalar quadArea = lastPoint.cross(p);
1218         fCentroid.fX += (p.fX + lastPoint.fX) * quadArea;
1219         fCentroid.fY += (p.fY + lastPoint.fY) * quadArea;
1220         fArea += quadArea;
1221     }
1222 
1223     // try to remove collinear points
1224     if (fPathPolygon.count() > 1 && is_collinear(fPathPolygon[fPathPolygon.count()-2],
1225                                                  fPathPolygon[fPathPolygon.count()-1],
1226                                                  p)) {
1227         fPathPolygon[fPathPolygon.count() - 1] = p;
1228     } else {
1229         *fPathPolygon.push() = p;
1230     }
1231 }
1232 
handlePolyPoint(const SkPoint & p)1233 bool SkSpotShadowTessellator::handlePolyPoint(const SkPoint& p) {
1234     if (fInitPoints.count() < 2) {
1235         *fInitPoints.push() = p;
1236         return true;
1237     }
1238 
1239     if (fInitPoints.count() == 2) {
1240         // determine if cw or ccw
1241         SkScalar perpDot = perp_dot(fInitPoints[0], fInitPoints[1], p);
1242         if (SkScalarNearlyZero(perpDot)) {
1243             // nearly parallel, just treat as straight line and continue
1244             fInitPoints[1] = p;
1245             return true;
1246         }
1247 
1248         // if perpDot > 0, winding is ccw
1249         fDirection = (perpDot > 0) ? -1 : 1;
1250 
1251         // add first quad
1252         if (!compute_normal(fInitPoints[0], fInitPoints[1], fDirection, &fFirstOutset)) {
1253             // first two points are incident, make the third point the second and continue
1254             fInitPoints[1] = p;
1255             return true;
1256         }
1257 
1258         fFirstOutset *= fRadius;
1259         fFirstPoint = fInitPoints[0];
1260         fFirstVertexIndex = fPositions.count();
1261         fPrevOutset = fFirstOutset;
1262         fPrevPoint = fFirstPoint;
1263         fPrevUmbraIndex = -1;
1264 
1265         this->addInnerPoint(fFirstPoint);
1266         fPrevUmbraIndex = fFirstVertexIndex;
1267 
1268         if (!fTransparent) {
1269             SkPoint clipPoint;
1270             bool isOutside = this->clipUmbraPoint(fPositions[fFirstVertexIndex],
1271                                                   fCentroid, &clipPoint);
1272             if (isOutside) {
1273                 *fPositions.push() = clipPoint;
1274                 *fColors.push() = fUmbraColor;
1275             }
1276             fPrevUmbraOutside = isOutside;
1277             fFirstUmbraOutside = isOutside;
1278         }
1279 
1280         SkPoint newPoint = fFirstPoint + fFirstOutset;
1281         *fPositions.push() = newPoint;
1282         *fColors.push() = fPenumbraColor;
1283         this->addEdge(fInitPoints[1], fFirstOutset);
1284 
1285         // to ensure we skip this block next time
1286         *fInitPoints.push() = p;
1287     }
1288 
1289     // if concave, abort
1290     SkScalar perpDot = perp_dot(fInitPoints[1], fInitPoints[2], p);
1291     if (fDirection*perpDot > 0) {
1292         return false;
1293     }
1294 
1295     SkVector normal;
1296     if (compute_normal(fPrevPoint, p, fDirection, &normal)) {
1297         normal *= fRadius;
1298         this->addArc(normal, true);
1299         this->addEdge(p, normal);
1300         fInitPoints[1] = fInitPoints[2];
1301         fInitPoints[2] = p;
1302     }
1303 
1304     return true;
1305 }
1306 
addInnerPoint(const SkPoint & pathPoint)1307 bool SkSpotShadowTessellator::addInnerPoint(const SkPoint& pathPoint) {
1308     SkPoint umbraPoint;
1309     if (!fValidUmbra) {
1310         SkVector v = fCentroid - pathPoint;
1311         v *= 0.95f;
1312         umbraPoint = pathPoint + v;
1313     } else {
1314         umbraPoint = fUmbraPolygon[this->getClosestUmbraPoint(pathPoint)];
1315     }
1316 
1317     fPrevPoint = pathPoint;
1318 
1319     // merge "close" points
1320     if (fPrevUmbraIndex == -1 ||
1321         !duplicate_pt(umbraPoint, fPositions[fPrevUmbraIndex])) {
1322         *fPositions.push() = umbraPoint;
1323         *fColors.push() = fUmbraColor;
1324 
1325         return false;
1326     } else {
1327         return true;
1328     }
1329 }
1330 
addEdge(const SkPoint & nextPoint,const SkVector & nextNormal)1331 void SkSpotShadowTessellator::addEdge(const SkPoint& nextPoint, const SkVector& nextNormal) {
1332     // add next umbra point
1333     bool duplicate = this->addInnerPoint(nextPoint);
1334     int prevPenumbraIndex = duplicate ? fPositions.count()-1 : fPositions.count()-2;
1335     int currUmbraIndex = duplicate ? fPrevUmbraIndex : fPositions.count()-1;
1336 
1337     if (!duplicate) {
1338         // add to center fan if transparent or centroid showing
1339         if (fTransparent) {
1340             *fIndices.push() = 0;
1341             *fIndices.push() = fPrevUmbraIndex;
1342             *fIndices.push() = currUmbraIndex;
1343         // otherwise add to clip ring
1344         } else {
1345             SkPoint clipPoint;
1346             bool isOutside = this->clipUmbraPoint(fPositions[currUmbraIndex], fCentroid,
1347                                                   &clipPoint);
1348             if (isOutside) {
1349                 *fPositions.push() = clipPoint;
1350                 *fColors.push() = fUmbraColor;
1351 
1352                 *fIndices.push() = fPrevUmbraIndex;
1353                 *fIndices.push() = currUmbraIndex;
1354                 *fIndices.push() = currUmbraIndex + 1;
1355                 if (fPrevUmbraOutside) {
1356                     // fill out quad
1357                     *fIndices.push() = fPrevUmbraIndex;
1358                     *fIndices.push() = currUmbraIndex + 1;
1359                     *fIndices.push() = fPrevUmbraIndex + 1;
1360                 }
1361             } else if (fPrevUmbraOutside) {
1362                 // add tri
1363                 *fIndices.push() = fPrevUmbraIndex;
1364                 *fIndices.push() = currUmbraIndex;
1365                 *fIndices.push() = fPrevUmbraIndex + 1;
1366             }
1367             fPrevUmbraOutside = isOutside;
1368         }
1369     }
1370 
1371     // add next penumbra point and quad
1372     SkPoint newPoint = nextPoint + nextNormal;
1373     *fPositions.push() = newPoint;
1374     *fColors.push() = fPenumbraColor;
1375 
1376     if (!duplicate) {
1377         *fIndices.push() = fPrevUmbraIndex;
1378         *fIndices.push() = prevPenumbraIndex;
1379         *fIndices.push() = currUmbraIndex;
1380     }
1381 
1382     *fIndices.push() = prevPenumbraIndex;
1383     *fIndices.push() = fPositions.count() - 1;
1384     *fIndices.push() = currUmbraIndex;
1385 
1386     fPrevUmbraIndex = currUmbraIndex;
1387     fPrevOutset = nextNormal;
1388 }
1389 
1390 ///////////////////////////////////////////////////////////////////////////////////////////////////
1391 
MakeAmbient(const SkPath & path,const SkMatrix & ctm,const SkPoint3 & zPlane,bool transparent)1392 sk_sp<SkVertices> SkShadowTessellator::MakeAmbient(const SkPath& path, const SkMatrix& ctm,
1393                                                    const SkPoint3& zPlane, bool transparent) {
1394     SkAmbientShadowTessellator ambientTess(path, ctm, zPlane, transparent);
1395     return ambientTess.releaseVertices();
1396 }
1397 
MakeSpot(const SkPath & path,const SkMatrix & ctm,const SkPoint3 & zPlane,const SkPoint3 & lightPos,SkScalar lightRadius,bool transparent)1398 sk_sp<SkVertices> SkShadowTessellator::MakeSpot(const SkPath& path, const SkMatrix& ctm,
1399                                                 const SkPoint3& zPlane, const SkPoint3& lightPos,
1400                                                 SkScalar lightRadius,  bool transparent) {
1401     SkSpotShadowTessellator spotTess(path, ctm, zPlane, lightPos, lightRadius, transparent);
1402     return spotTess.releaseVertices();
1403 }
1404