1 //===-- HeuristcBase.h --- Heuristic base class for PBQP --------*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 10 #ifndef LLVM_CODEGEN_PBQP_HEURISTICBASE_H 11 #define LLVM_CODEGEN_PBQP_HEURISTICBASE_H 12 13 #include "HeuristicSolver.h" 14 15 namespace PBQP { 16 17 /// \brief Abstract base class for heuristic implementations. 18 /// 19 /// This class provides a handy base for heuristic implementations with common 20 /// solver behaviour implemented for a number of methods. 21 /// 22 /// To implement your own heuristic using this class as a base you'll have to 23 /// implement, as a minimum, the following methods: 24 /// <ul> 25 /// <li> void addToHeuristicList(Graph::NodeItr) : Add a node to the 26 /// heuristic reduction list. 27 /// <li> void heuristicReduce() : Perform a single heuristic reduction. 28 /// <li> void preUpdateEdgeCosts(Graph::EdgeItr) : Handle the (imminent) 29 /// change to the cost matrix on the given edge (by R2). 30 /// <li> void postUpdateEdgeCostts(Graph::EdgeItr) : Handle the new 31 /// costs on the given edge. 32 /// <li> void handleAddEdge(Graph::EdgeItr) : Handle the addition of a new 33 /// edge into the PBQP graph (by R2). 34 /// <li> void handleRemoveEdge(Graph::EdgeItr, Graph::NodeItr) : Handle the 35 /// disconnection of the given edge from the given node. 36 /// <li> A constructor for your derived class : to pass back a reference to 37 /// the solver which is using this heuristic. 38 /// </ul> 39 /// 40 /// These methods are implemented in this class for documentation purposes, 41 /// but will assert if called. 42 /// 43 /// Note that this class uses the curiously recursive template idiom to 44 /// forward calls to the derived class. These methods need not be made 45 /// virtual, and indeed probably shouldn't for performance reasons. 46 /// 47 /// You'll also need to provide NodeData and EdgeData structs in your class. 48 /// These can be used to attach data relevant to your heuristic to each 49 /// node/edge in the PBQP graph. 50 51 template <typename HImpl> 52 class HeuristicBase { 53 private: 54 55 typedef std::list<Graph::NodeItr> OptimalList; 56 57 HeuristicSolverImpl<HImpl> &s; 58 Graph &g; 59 OptimalList optimalList; 60 61 // Return a reference to the derived heuristic. impl()62 HImpl& impl() { return static_cast<HImpl&>(*this); } 63 64 // Add the given node to the optimal reductions list. Keep an iterator to 65 // its location for fast removal. addToOptimalReductionList(Graph::NodeItr nItr)66 void addToOptimalReductionList(Graph::NodeItr nItr) { 67 optimalList.insert(optimalList.end(), nItr); 68 } 69 70 public: 71 72 /// \brief Construct an instance with a reference to the given solver. 73 /// @param solver The solver which is using this heuristic instance. HeuristicBase(HeuristicSolverImpl<HImpl> & solver)74 HeuristicBase(HeuristicSolverImpl<HImpl> &solver) 75 : s(solver), g(s.getGraph()) { } 76 77 /// \brief Get the solver which is using this heuristic instance. 78 /// @return The solver which is using this heuristic instance. 79 /// 80 /// You can use this method to get access to the solver in your derived 81 /// heuristic implementation. getSolver()82 HeuristicSolverImpl<HImpl>& getSolver() { return s; } 83 84 /// \brief Get the graph representing the problem to be solved. 85 /// @return The graph representing the problem to be solved. getGraph()86 Graph& getGraph() { return g; } 87 88 /// \brief Tell the solver to simplify the graph before the reduction phase. 89 /// @return Whether or not the solver should run a simplification phase 90 /// prior to the main setup and reduction. 91 /// 92 /// HeuristicBase returns true from this method as it's a sensible default, 93 /// however you can over-ride it in your derived class if you want different 94 /// behaviour. solverRunSimplify()95 bool solverRunSimplify() const { return true; } 96 97 /// \brief Decide whether a node should be optimally or heuristically 98 /// reduced. 99 /// @return Whether or not the given node should be listed for optimal 100 /// reduction (via R0, R1 or R2). 101 /// 102 /// HeuristicBase returns true for any node with degree less than 3. This is 103 /// sane and sensible for many situations, but not all. You can over-ride 104 /// this method in your derived class if you want a different selection 105 /// criteria. Note however that your criteria for selecting optimal nodes 106 /// should be <i>at least</i> as strong as this. I.e. Nodes of degree 3 or 107 /// higher should not be selected under any circumstances. shouldOptimallyReduce(Graph::NodeItr nItr)108 bool shouldOptimallyReduce(Graph::NodeItr nItr) { 109 if (g.getNodeDegree(nItr) < 3) 110 return true; 111 // else 112 return false; 113 } 114 115 /// \brief Add the given node to the list of nodes to be optimally reduced. 116 /// @return nItr Node iterator to be added. 117 /// 118 /// You probably don't want to over-ride this, except perhaps to record 119 /// statistics before calling this implementation. HeuristicBase relies on 120 /// its behaviour. addToOptimalReduceList(Graph::NodeItr nItr)121 void addToOptimalReduceList(Graph::NodeItr nItr) { 122 optimalList.push_back(nItr); 123 } 124 125 /// \brief Initialise the heuristic. 126 /// 127 /// HeuristicBase iterates over all nodes in the problem and adds them to 128 /// the appropriate list using addToOptimalReduceList or 129 /// addToHeuristicReduceList based on the result of shouldOptimallyReduce. 130 /// 131 /// This behaviour should be fine for most situations. setup()132 void setup() { 133 for (Graph::NodeItr nItr = g.nodesBegin(), nEnd = g.nodesEnd(); 134 nItr != nEnd; ++nItr) { 135 if (impl().shouldOptimallyReduce(nItr)) { 136 addToOptimalReduceList(nItr); 137 } else { 138 impl().addToHeuristicReduceList(nItr); 139 } 140 } 141 } 142 143 /// \brief Optimally reduce one of the nodes in the optimal reduce list. 144 /// @return True if a reduction takes place, false if the optimal reduce 145 /// list is empty. 146 /// 147 /// Selects a node from the optimal reduce list and removes it, applying 148 /// R0, R1 or R2 as appropriate based on the selected node's degree. optimalReduce()149 bool optimalReduce() { 150 if (optimalList.empty()) 151 return false; 152 153 Graph::NodeItr nItr = optimalList.front(); 154 optimalList.pop_front(); 155 156 switch (s.getSolverDegree(nItr)) { 157 case 0: s.applyR0(nItr); break; 158 case 1: s.applyR1(nItr); break; 159 case 2: s.applyR2(nItr); break; 160 default: assert(false && 161 "Optimal reductions of degree > 2 nodes is invalid."); 162 } 163 164 return true; 165 } 166 167 /// \brief Perform the PBQP reduction process. 168 /// 169 /// Reduces the problem to the empty graph by repeated application of the 170 /// reduction rules R0, R1, R2 and RN. 171 /// R0, R1 or R2 are always applied if possible before RN is used. reduce()172 void reduce() { 173 bool finished = false; 174 175 while (!finished) { 176 if (!optimalReduce()) { 177 if (impl().heuristicReduce()) { 178 getSolver().recordRN(); 179 } else { 180 finished = true; 181 } 182 } 183 } 184 } 185 186 /// \brief Add a node to the heuristic reduce list. 187 /// @param nItr Node iterator to add to the heuristic reduce list. addToHeuristicList(Graph::NodeItr nItr)188 void addToHeuristicList(Graph::NodeItr nItr) { 189 assert(false && "Must be implemented in derived class."); 190 } 191 192 /// \brief Heuristically reduce one of the nodes in the heuristic 193 /// reduce list. 194 /// @return True if a reduction takes place, false if the heuristic reduce 195 /// list is empty. heuristicReduce()196 void heuristicReduce() { 197 assert(false && "Must be implemented in derived class."); 198 } 199 200 /// \brief Prepare a change in the costs on the given edge. 201 /// @param eItr Edge iterator. preUpdateEdgeCosts(Graph::EdgeItr eItr)202 void preUpdateEdgeCosts(Graph::EdgeItr eItr) { 203 assert(false && "Must be implemented in derived class."); 204 } 205 206 /// \brief Handle the change in the costs on the given edge. 207 /// @param eItr Edge iterator. postUpdateEdgeCostts(Graph::EdgeItr eItr)208 void postUpdateEdgeCostts(Graph::EdgeItr eItr) { 209 assert(false && "Must be implemented in derived class."); 210 } 211 212 /// \brief Handle the addition of a new edge into the PBQP graph. 213 /// @param eItr Edge iterator for the added edge. handleAddEdge(Graph::EdgeItr eItr)214 void handleAddEdge(Graph::EdgeItr eItr) { 215 assert(false && "Must be implemented in derived class."); 216 } 217 218 /// \brief Handle disconnection of an edge from a node. 219 /// @param eItr Edge iterator for edge being disconnected. 220 /// @param nItr Node iterator for the node being disconnected from. 221 /// 222 /// Edges are frequently removed due to the removal of a node. This 223 /// method allows for the effect to be computed only for the remaining 224 /// node in the graph. handleRemoveEdge(Graph::EdgeItr eItr,Graph::NodeItr nItr)225 void handleRemoveEdge(Graph::EdgeItr eItr, Graph::NodeItr nItr) { 226 assert(false && "Must be implemented in derived class."); 227 } 228 229 /// \brief Clean up any structures used by HeuristicBase. 230 /// 231 /// At present this just performs a sanity check: that the optimal reduce 232 /// list is empty now that reduction has completed. 233 /// 234 /// If your derived class has more complex structures which need tearing 235 /// down you should over-ride this method but include a call back to this 236 /// implementation. cleanup()237 void cleanup() { 238 assert(optimalList.empty() && "Nodes left over in optimal reduce list?"); 239 } 240 241 }; 242 243 } 244 245 246 #endif // LLVM_CODEGEN_PBQP_HEURISTICBASE_H 247