1 //===-- ELFDumper.cpp - ELF-specific dumper ---------------------*- C++ -*-===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 ///
10 /// \file
11 /// \brief This file implements the ELF-specific dumper for llvm-readobj.
12 ///
13 //===----------------------------------------------------------------------===//
14
15 #include "ARMAttributeParser.h"
16 #include "ARMEHABIPrinter.h"
17 #include "Error.h"
18 #include "ObjDumper.h"
19 #include "StackMapPrinter.h"
20 #include "llvm-readobj.h"
21 #include "llvm/ADT/Optional.h"
22 #include "llvm/ADT/SmallString.h"
23 #include "llvm/ADT/StringExtras.h"
24 #include "llvm/Object/ELFObjectFile.h"
25 #include "llvm/Support/ARMBuildAttributes.h"
26 #include "llvm/Support/Compiler.h"
27 #include "llvm/Support/Format.h"
28 #include "llvm/Support/FormattedStream.h"
29 #include "llvm/Support/MathExtras.h"
30 #include "llvm/Support/MipsABIFlags.h"
31 #include "llvm/Support/ScopedPrinter.h"
32 #include "llvm/Support/raw_ostream.h"
33
34 using namespace llvm;
35 using namespace llvm::object;
36 using namespace ELF;
37
38 #define LLVM_READOBJ_ENUM_CASE(ns, enum) \
39 case ns::enum: return #enum;
40
41 #define ENUM_ENT(enum, altName) \
42 { #enum, altName, ELF::enum }
43
44 #define ENUM_ENT_1(enum) \
45 { #enum, #enum, ELF::enum }
46
47 #define LLVM_READOBJ_PHDR_ENUM(ns, enum) \
48 case ns::enum: \
49 return std::string(#enum).substr(3);
50
51 #define TYPEDEF_ELF_TYPES(ELFT) \
52 typedef ELFFile<ELFT> ELFO; \
53 typedef typename ELFO::Elf_Shdr Elf_Shdr; \
54 typedef typename ELFO::Elf_Sym Elf_Sym; \
55 typedef typename ELFO::Elf_Dyn Elf_Dyn; \
56 typedef typename ELFO::Elf_Dyn_Range Elf_Dyn_Range; \
57 typedef typename ELFO::Elf_Rel Elf_Rel; \
58 typedef typename ELFO::Elf_Rela Elf_Rela; \
59 typedef typename ELFO::Elf_Rela_Range Elf_Rela_Range; \
60 typedef typename ELFO::Elf_Phdr Elf_Phdr; \
61 typedef typename ELFO::Elf_Half Elf_Half; \
62 typedef typename ELFO::Elf_Ehdr Elf_Ehdr; \
63 typedef typename ELFO::Elf_Word Elf_Word; \
64 typedef typename ELFO::Elf_Hash Elf_Hash; \
65 typedef typename ELFO::Elf_GnuHash Elf_GnuHash; \
66 typedef typename ELFO::uintX_t uintX_t;
67
68 namespace {
69
70 template <class ELFT> class DumpStyle;
71
72 /// Represents a contiguous uniform range in the file. We cannot just create a
73 /// range directly because when creating one of these from the .dynamic table
74 /// the size, entity size and virtual address are different entries in arbitrary
75 /// order (DT_REL, DT_RELSZ, DT_RELENT for example).
76 struct DynRegionInfo {
DynRegionInfo__anona2de969d0111::DynRegionInfo77 DynRegionInfo() : Addr(nullptr), Size(0), EntSize(0) {}
DynRegionInfo__anona2de969d0111::DynRegionInfo78 DynRegionInfo(const void *A, uint64_t S, uint64_t ES)
79 : Addr(A), Size(S), EntSize(ES) {}
80 /// \brief Address in current address space.
81 const void *Addr;
82 /// \brief Size in bytes of the region.
83 uint64_t Size;
84 /// \brief Size of each entity in the region.
85 uint64_t EntSize;
86
getAsArrayRef__anona2de969d0111::DynRegionInfo87 template <typename Type> ArrayRef<Type> getAsArrayRef() const {
88 const Type *Start = reinterpret_cast<const Type *>(Addr);
89 if (!Start)
90 return {Start, Start};
91 if (EntSize != sizeof(Type) || Size % EntSize)
92 reportError("Invalid entity size");
93 return {Start, Start + (Size / EntSize)};
94 }
95 };
96
97 template<typename ELFT>
98 class ELFDumper : public ObjDumper {
99 public:
100 ELFDumper(const ELFFile<ELFT> *Obj, ScopedPrinter &Writer);
101
102 void printFileHeaders() override;
103 void printSections() override;
104 void printRelocations() override;
105 void printDynamicRelocations() override;
106 void printSymbols() override;
107 void printDynamicSymbols() override;
108 void printUnwindInfo() override;
109
110 void printDynamicTable() override;
111 void printNeededLibraries() override;
112 void printProgramHeaders() override;
113 void printHashTable() override;
114 void printGnuHashTable() override;
115 void printLoadName() override;
116 void printVersionInfo() override;
117 void printGroupSections() override;
118
119 void printAttributes() override;
120 void printMipsPLTGOT() override;
121 void printMipsABIFlags() override;
122 void printMipsReginfo() override;
123 void printMipsOptions() override;
124
125 void printStackMap() const override;
126
127 void printHashHistogram() override;
128
129 private:
130 std::unique_ptr<DumpStyle<ELFT>> ELFDumperStyle;
131 typedef ELFFile<ELFT> ELFO;
132 typedef typename ELFO::Elf_Shdr Elf_Shdr;
133 typedef typename ELFO::Elf_Sym Elf_Sym;
134 typedef typename ELFO::Elf_Sym_Range Elf_Sym_Range;
135 typedef typename ELFO::Elf_Dyn Elf_Dyn;
136 typedef typename ELFO::Elf_Dyn_Range Elf_Dyn_Range;
137 typedef typename ELFO::Elf_Rel Elf_Rel;
138 typedef typename ELFO::Elf_Rela Elf_Rela;
139 typedef typename ELFO::Elf_Rel_Range Elf_Rel_Range;
140 typedef typename ELFO::Elf_Rela_Range Elf_Rela_Range;
141 typedef typename ELFO::Elf_Phdr Elf_Phdr;
142 typedef typename ELFO::Elf_Half Elf_Half;
143 typedef typename ELFO::Elf_Hash Elf_Hash;
144 typedef typename ELFO::Elf_GnuHash Elf_GnuHash;
145 typedef typename ELFO::Elf_Ehdr Elf_Ehdr;
146 typedef typename ELFO::Elf_Word Elf_Word;
147 typedef typename ELFO::uintX_t uintX_t;
148 typedef typename ELFO::Elf_Versym Elf_Versym;
149 typedef typename ELFO::Elf_Verneed Elf_Verneed;
150 typedef typename ELFO::Elf_Vernaux Elf_Vernaux;
151 typedef typename ELFO::Elf_Verdef Elf_Verdef;
152 typedef typename ELFO::Elf_Verdaux Elf_Verdaux;
153
checkDRI(DynRegionInfo DRI)154 DynRegionInfo checkDRI(DynRegionInfo DRI) {
155 if (DRI.Addr < Obj->base() ||
156 (const uint8_t *)DRI.Addr + DRI.Size > Obj->base() + Obj->getBufSize())
157 error(llvm::object::object_error::parse_failed);
158 return DRI;
159 }
160
createDRIFrom(const Elf_Phdr * P,uintX_t EntSize)161 DynRegionInfo createDRIFrom(const Elf_Phdr *P, uintX_t EntSize) {
162 return checkDRI({Obj->base() + P->p_offset, P->p_filesz, EntSize});
163 }
164
createDRIFrom(const Elf_Shdr * S)165 DynRegionInfo createDRIFrom(const Elf_Shdr *S) {
166 return checkDRI({Obj->base() + S->sh_offset, S->sh_size, S->sh_entsize});
167 }
168
169 void parseDynamicTable(ArrayRef<const Elf_Phdr *> LoadSegments);
170
171 void printValue(uint64_t Type, uint64_t Value);
172
173 StringRef getDynamicString(uint64_t Offset) const;
174 StringRef getSymbolVersion(StringRef StrTab, const Elf_Sym *symb,
175 bool &IsDefault) const;
176 void LoadVersionMap() const;
177 void LoadVersionNeeds(const Elf_Shdr *ec) const;
178 void LoadVersionDefs(const Elf_Shdr *sec) const;
179
180 const ELFO *Obj;
181 DynRegionInfo DynRelRegion;
182 DynRegionInfo DynRelaRegion;
183 DynRegionInfo DynPLTRelRegion;
184 DynRegionInfo DynSymRegion;
185 DynRegionInfo DynamicTable;
186 StringRef DynamicStringTable;
187 StringRef SOName;
188 const Elf_Hash *HashTable = nullptr;
189 const Elf_GnuHash *GnuHashTable = nullptr;
190 const Elf_Shdr *DotSymtabSec = nullptr;
191 StringRef DynSymtabName;
192 ArrayRef<Elf_Word> ShndxTable;
193
194 const Elf_Shdr *dot_gnu_version_sec = nullptr; // .gnu.version
195 const Elf_Shdr *dot_gnu_version_r_sec = nullptr; // .gnu.version_r
196 const Elf_Shdr *dot_gnu_version_d_sec = nullptr; // .gnu.version_d
197
198 // Records for each version index the corresponding Verdef or Vernaux entry.
199 // This is filled the first time LoadVersionMap() is called.
200 class VersionMapEntry : public PointerIntPair<const void *, 1> {
201 public:
202 // If the integer is 0, this is an Elf_Verdef*.
203 // If the integer is 1, this is an Elf_Vernaux*.
VersionMapEntry()204 VersionMapEntry() : PointerIntPair<const void *, 1>(nullptr, 0) {}
VersionMapEntry(const Elf_Verdef * verdef)205 VersionMapEntry(const Elf_Verdef *verdef)
206 : PointerIntPair<const void *, 1>(verdef, 0) {}
VersionMapEntry(const Elf_Vernaux * vernaux)207 VersionMapEntry(const Elf_Vernaux *vernaux)
208 : PointerIntPair<const void *, 1>(vernaux, 1) {}
isNull() const209 bool isNull() const { return getPointer() == nullptr; }
isVerdef() const210 bool isVerdef() const { return !isNull() && getInt() == 0; }
isVernaux() const211 bool isVernaux() const { return !isNull() && getInt() == 1; }
getVerdef() const212 const Elf_Verdef *getVerdef() const {
213 return isVerdef() ? (const Elf_Verdef *)getPointer() : nullptr;
214 }
getVernaux() const215 const Elf_Vernaux *getVernaux() const {
216 return isVernaux() ? (const Elf_Vernaux *)getPointer() : nullptr;
217 }
218 };
219 mutable SmallVector<VersionMapEntry, 16> VersionMap;
220
221 public:
dynamic_table() const222 Elf_Dyn_Range dynamic_table() const {
223 return DynamicTable.getAsArrayRef<Elf_Dyn>();
224 }
225
dynamic_symbols() const226 Elf_Sym_Range dynamic_symbols() const {
227 return DynSymRegion.getAsArrayRef<Elf_Sym>();
228 }
229
230 Elf_Rel_Range dyn_rels() const;
231 Elf_Rela_Range dyn_relas() const;
232 std::string getFullSymbolName(const Elf_Sym *Symbol, StringRef StrTable,
233 bool IsDynamic) const;
234
235 void printSymbolsHelper(bool IsDynamic) const;
getDotSymtabSec() const236 const Elf_Shdr *getDotSymtabSec() const { return DotSymtabSec; }
getShndxTable() const237 ArrayRef<Elf_Word> getShndxTable() const { return ShndxTable; }
getDynamicStringTable() const238 StringRef getDynamicStringTable() const { return DynamicStringTable; }
getDynRelRegion() const239 const DynRegionInfo &getDynRelRegion() const { return DynRelRegion; }
getDynRelaRegion() const240 const DynRegionInfo &getDynRelaRegion() const { return DynRelaRegion; }
getDynPLTRelRegion() const241 const DynRegionInfo &getDynPLTRelRegion() const { return DynPLTRelRegion; }
getHashTable() const242 const Elf_Hash *getHashTable() const { return HashTable; }
getGnuHashTable() const243 const Elf_GnuHash *getGnuHashTable() const { return GnuHashTable; }
244 };
245
246 template <class ELFT>
printSymbolsHelper(bool IsDynamic) const247 void ELFDumper<ELFT>::printSymbolsHelper(bool IsDynamic) const {
248 StringRef StrTable, SymtabName;
249 size_t Entries = 0;
250 Elf_Sym_Range Syms(nullptr, nullptr);
251 if (IsDynamic) {
252 StrTable = DynamicStringTable;
253 Syms = dynamic_symbols();
254 SymtabName = DynSymtabName;
255 if (DynSymRegion.Addr)
256 Entries = DynSymRegion.Size / DynSymRegion.EntSize;
257 } else {
258 if (!DotSymtabSec)
259 return;
260 StrTable = unwrapOrError(Obj->getStringTableForSymtab(*DotSymtabSec));
261 Syms = Obj->symbols(DotSymtabSec);
262 SymtabName = unwrapOrError(Obj->getSectionName(DotSymtabSec));
263 Entries = DotSymtabSec->getEntityCount();
264 }
265 if (Syms.begin() == Syms.end())
266 return;
267 ELFDumperStyle->printSymtabMessage(Obj, SymtabName, Entries);
268 for (const auto &Sym : Syms)
269 ELFDumperStyle->printSymbol(Obj, &Sym, Syms.begin(), StrTable, IsDynamic);
270 }
271
272 template <typename ELFT> class DumpStyle {
273 public:
274 using Elf_Shdr = typename ELFFile<ELFT>::Elf_Shdr;
275 using Elf_Sym = typename ELFFile<ELFT>::Elf_Sym;
276
DumpStyle(ELFDumper<ELFT> * Dumper)277 DumpStyle(ELFDumper<ELFT> *Dumper) : Dumper(Dumper) {}
~DumpStyle()278 virtual ~DumpStyle() {}
279 virtual void printFileHeaders(const ELFFile<ELFT> *Obj) = 0;
280 virtual void printGroupSections(const ELFFile<ELFT> *Obj) = 0;
281 virtual void printRelocations(const ELFFile<ELFT> *Obj) = 0;
282 virtual void printSections(const ELFFile<ELFT> *Obj) = 0;
283 virtual void printSymbols(const ELFFile<ELFT> *Obj) = 0;
284 virtual void printDynamicSymbols(const ELFFile<ELFT> *Obj) = 0;
285 virtual void printDynamicRelocations(const ELFFile<ELFT> *Obj) = 0;
printSymtabMessage(const ELFFile<ELFT> * obj,StringRef Name,size_t Offset)286 virtual void printSymtabMessage(const ELFFile<ELFT> *obj, StringRef Name,
287 size_t Offset) {
288 return;
289 }
290 virtual void printSymbol(const ELFFile<ELFT> *Obj, const Elf_Sym *Symbol,
291 const Elf_Sym *FirstSym, StringRef StrTable,
292 bool IsDynamic) = 0;
293 virtual void printProgramHeaders(const ELFFile<ELFT> *Obj) = 0;
294 virtual void printHashHistogram(const ELFFile<ELFT> *Obj) = 0;
dumper() const295 const ELFDumper<ELFT> *dumper() const { return Dumper; }
296 private:
297 const ELFDumper<ELFT> *Dumper;
298 };
299
300 template <typename ELFT> class GNUStyle : public DumpStyle<ELFT> {
301 formatted_raw_ostream OS;
302 public:
303 TYPEDEF_ELF_TYPES(ELFT)
GNUStyle(ScopedPrinter & W,ELFDumper<ELFT> * Dumper)304 GNUStyle(ScopedPrinter &W, ELFDumper<ELFT> *Dumper)
305 : DumpStyle<ELFT>(Dumper), OS(W.getOStream()) {}
306 void printFileHeaders(const ELFO *Obj) override;
307 void printGroupSections(const ELFFile<ELFT> *Obj) override;
308 void printRelocations(const ELFO *Obj) override;
309 void printSections(const ELFO *Obj) override;
310 void printSymbols(const ELFO *Obj) override;
311 void printDynamicSymbols(const ELFO *Obj) override;
312 void printDynamicRelocations(const ELFO *Obj) override;
313 virtual void printSymtabMessage(const ELFO *Obj, StringRef Name,
314 size_t Offset) override;
315 void printProgramHeaders(const ELFO *Obj) override;
316 void printHashHistogram(const ELFFile<ELFT> *Obj) override;
317
318 private:
319 struct Field {
320 StringRef Str;
321 unsigned Column;
Field__anona2de969d0111::GNUStyle::Field322 Field(StringRef S, unsigned Col) : Str(S), Column(Col) {}
Field__anona2de969d0111::GNUStyle::Field323 Field(unsigned Col) : Str(""), Column(Col) {}
324 };
325
326 template <typename T, typename TEnum>
printEnum(T Value,ArrayRef<EnumEntry<TEnum>> EnumValues)327 std::string printEnum(T Value, ArrayRef<EnumEntry<TEnum>> EnumValues) {
328 for (const auto &EnumItem : EnumValues)
329 if (EnumItem.Value == Value)
330 return EnumItem.AltName;
331 return to_hexString(Value, false);
332 }
333
printField(struct Field F)334 formatted_raw_ostream &printField(struct Field F) {
335 if (F.Column != 0)
336 OS.PadToColumn(F.Column);
337 OS << F.Str;
338 OS.flush();
339 return OS;
340 }
341 void printRelocation(const ELFO *Obj, const Elf_Shdr *SymTab,
342 const Elf_Rela &R, bool IsRela);
343 void printSymbol(const ELFO *Obj, const Elf_Sym *Symbol, const Elf_Sym *First,
344 StringRef StrTable, bool IsDynamic) override;
345 std::string getSymbolSectionNdx(const ELFO *Obj, const Elf_Sym *Symbol,
346 const Elf_Sym *FirstSym);
347 void printDynamicRelocation(const ELFO *Obj, Elf_Rela R, bool IsRela);
348 bool checkTLSSections(const Elf_Phdr &Phdr, const Elf_Shdr &Sec);
349 bool checkoffsets(const Elf_Phdr &Phdr, const Elf_Shdr &Sec);
350 bool checkVMA(const Elf_Phdr &Phdr, const Elf_Shdr &Sec);
351 bool checkPTDynamic(const Elf_Phdr &Phdr, const Elf_Shdr &Sec);
352 };
353
354 template <typename ELFT> class LLVMStyle : public DumpStyle<ELFT> {
355 public:
356 TYPEDEF_ELF_TYPES(ELFT)
LLVMStyle(ScopedPrinter & W,ELFDumper<ELFT> * Dumper)357 LLVMStyle(ScopedPrinter &W, ELFDumper<ELFT> *Dumper)
358 : DumpStyle<ELFT>(Dumper), W(W) {}
359
360 void printFileHeaders(const ELFO *Obj) override;
361 void printGroupSections(const ELFFile<ELFT> *Obj) override;
362 void printRelocations(const ELFO *Obj) override;
363 void printRelocations(const Elf_Shdr *Sec, const ELFO *Obj);
364 void printSections(const ELFO *Obj) override;
365 void printSymbols(const ELFO *Obj) override;
366 void printDynamicSymbols(const ELFO *Obj) override;
367 void printDynamicRelocations(const ELFO *Obj) override;
368 void printProgramHeaders(const ELFO *Obj) override;
369 void printHashHistogram(const ELFFile<ELFT> *Obj) override;
370
371 private:
372 void printRelocation(const ELFO *Obj, Elf_Rela Rel, const Elf_Shdr *SymTab);
373 void printDynamicRelocation(const ELFO *Obj, Elf_Rela Rel);
374 void printSymbol(const ELFO *Obj, const Elf_Sym *Symbol, const Elf_Sym *First,
375 StringRef StrTable, bool IsDynamic) override;
376 ScopedPrinter &W;
377 };
378
379 } // namespace
380
381 namespace llvm {
382
383 template <class ELFT>
createELFDumper(const ELFFile<ELFT> * Obj,ScopedPrinter & Writer,std::unique_ptr<ObjDumper> & Result)384 static std::error_code createELFDumper(const ELFFile<ELFT> *Obj,
385 ScopedPrinter &Writer,
386 std::unique_ptr<ObjDumper> &Result) {
387 Result.reset(new ELFDumper<ELFT>(Obj, Writer));
388 return readobj_error::success;
389 }
390
createELFDumper(const object::ObjectFile * Obj,ScopedPrinter & Writer,std::unique_ptr<ObjDumper> & Result)391 std::error_code createELFDumper(const object::ObjectFile *Obj,
392 ScopedPrinter &Writer,
393 std::unique_ptr<ObjDumper> &Result) {
394 // Little-endian 32-bit
395 if (const ELF32LEObjectFile *ELFObj = dyn_cast<ELF32LEObjectFile>(Obj))
396 return createELFDumper(ELFObj->getELFFile(), Writer, Result);
397
398 // Big-endian 32-bit
399 if (const ELF32BEObjectFile *ELFObj = dyn_cast<ELF32BEObjectFile>(Obj))
400 return createELFDumper(ELFObj->getELFFile(), Writer, Result);
401
402 // Little-endian 64-bit
403 if (const ELF64LEObjectFile *ELFObj = dyn_cast<ELF64LEObjectFile>(Obj))
404 return createELFDumper(ELFObj->getELFFile(), Writer, Result);
405
406 // Big-endian 64-bit
407 if (const ELF64BEObjectFile *ELFObj = dyn_cast<ELF64BEObjectFile>(Obj))
408 return createELFDumper(ELFObj->getELFFile(), Writer, Result);
409
410 return readobj_error::unsupported_obj_file_format;
411 }
412
413 } // namespace llvm
414
415 // Iterate through the versions needed section, and place each Elf_Vernaux
416 // in the VersionMap according to its index.
417 template <class ELFT>
LoadVersionNeeds(const Elf_Shdr * sec) const418 void ELFDumper<ELFT>::LoadVersionNeeds(const Elf_Shdr *sec) const {
419 unsigned vn_size = sec->sh_size; // Size of section in bytes
420 unsigned vn_count = sec->sh_info; // Number of Verneed entries
421 const char *sec_start = (const char *)Obj->base() + sec->sh_offset;
422 const char *sec_end = sec_start + vn_size;
423 // The first Verneed entry is at the start of the section.
424 const char *p = sec_start;
425 for (unsigned i = 0; i < vn_count; i++) {
426 if (p + sizeof(Elf_Verneed) > sec_end)
427 report_fatal_error("Section ended unexpectedly while scanning "
428 "version needed records.");
429 const Elf_Verneed *vn = reinterpret_cast<const Elf_Verneed *>(p);
430 if (vn->vn_version != ELF::VER_NEED_CURRENT)
431 report_fatal_error("Unexpected verneed version");
432 // Iterate through the Vernaux entries
433 const char *paux = p + vn->vn_aux;
434 for (unsigned j = 0; j < vn->vn_cnt; j++) {
435 if (paux + sizeof(Elf_Vernaux) > sec_end)
436 report_fatal_error("Section ended unexpected while scanning auxiliary "
437 "version needed records.");
438 const Elf_Vernaux *vna = reinterpret_cast<const Elf_Vernaux *>(paux);
439 size_t index = vna->vna_other & ELF::VERSYM_VERSION;
440 if (index >= VersionMap.size())
441 VersionMap.resize(index + 1);
442 VersionMap[index] = VersionMapEntry(vna);
443 paux += vna->vna_next;
444 }
445 p += vn->vn_next;
446 }
447 }
448
449 // Iterate through the version definitions, and place each Elf_Verdef
450 // in the VersionMap according to its index.
451 template <class ELFT>
LoadVersionDefs(const Elf_Shdr * sec) const452 void ELFDumper<ELFT>::LoadVersionDefs(const Elf_Shdr *sec) const {
453 unsigned vd_size = sec->sh_size; // Size of section in bytes
454 unsigned vd_count = sec->sh_info; // Number of Verdef entries
455 const char *sec_start = (const char *)Obj->base() + sec->sh_offset;
456 const char *sec_end = sec_start + vd_size;
457 // The first Verdef entry is at the start of the section.
458 const char *p = sec_start;
459 for (unsigned i = 0; i < vd_count; i++) {
460 if (p + sizeof(Elf_Verdef) > sec_end)
461 report_fatal_error("Section ended unexpectedly while scanning "
462 "version definitions.");
463 const Elf_Verdef *vd = reinterpret_cast<const Elf_Verdef *>(p);
464 if (vd->vd_version != ELF::VER_DEF_CURRENT)
465 report_fatal_error("Unexpected verdef version");
466 size_t index = vd->vd_ndx & ELF::VERSYM_VERSION;
467 if (index >= VersionMap.size())
468 VersionMap.resize(index + 1);
469 VersionMap[index] = VersionMapEntry(vd);
470 p += vd->vd_next;
471 }
472 }
473
LoadVersionMap() const474 template <class ELFT> void ELFDumper<ELFT>::LoadVersionMap() const {
475 // If there is no dynamic symtab or version table, there is nothing to do.
476 if (!DynSymRegion.Addr || !dot_gnu_version_sec)
477 return;
478
479 // Has the VersionMap already been loaded?
480 if (VersionMap.size() > 0)
481 return;
482
483 // The first two version indexes are reserved.
484 // Index 0 is LOCAL, index 1 is GLOBAL.
485 VersionMap.push_back(VersionMapEntry());
486 VersionMap.push_back(VersionMapEntry());
487
488 if (dot_gnu_version_d_sec)
489 LoadVersionDefs(dot_gnu_version_d_sec);
490
491 if (dot_gnu_version_r_sec)
492 LoadVersionNeeds(dot_gnu_version_r_sec);
493 }
494
495 template <typename ELFO, class ELFT>
printVersionSymbolSection(ELFDumper<ELFT> * Dumper,const ELFO * Obj,const typename ELFO::Elf_Shdr * Sec,ScopedPrinter & W)496 static void printVersionSymbolSection(ELFDumper<ELFT> *Dumper, const ELFO *Obj,
497 const typename ELFO::Elf_Shdr *Sec,
498 ScopedPrinter &W) {
499 DictScope SS(W, "Version symbols");
500 if (!Sec)
501 return;
502 StringRef Name = unwrapOrError(Obj->getSectionName(Sec));
503 W.printNumber("Section Name", Name, Sec->sh_name);
504 W.printHex("Address", Sec->sh_addr);
505 W.printHex("Offset", Sec->sh_offset);
506 W.printNumber("Link", Sec->sh_link);
507
508 const uint8_t *P = (const uint8_t *)Obj->base() + Sec->sh_offset;
509 StringRef StrTable = Dumper->getDynamicStringTable();
510
511 // Same number of entries in the dynamic symbol table (DT_SYMTAB).
512 ListScope Syms(W, "Symbols");
513 for (const typename ELFO::Elf_Sym &Sym : Dumper->dynamic_symbols()) {
514 DictScope S(W, "Symbol");
515 std::string FullSymbolName =
516 Dumper->getFullSymbolName(&Sym, StrTable, true /* IsDynamic */);
517 W.printNumber("Version", *P);
518 W.printString("Name", FullSymbolName);
519 P += sizeof(typename ELFO::Elf_Half);
520 }
521 }
522
523 static const EnumEntry<unsigned> SymVersionFlags[] = {
524 {"Base", "BASE", VER_FLG_BASE},
525 {"Weak", "WEAK", VER_FLG_WEAK},
526 {"Info", "INFO", VER_FLG_INFO}};
527
528 template <typename ELFO, class ELFT>
printVersionDefinitionSection(ELFDumper<ELFT> * Dumper,const ELFO * Obj,const typename ELFO::Elf_Shdr * Sec,ScopedPrinter & W)529 static void printVersionDefinitionSection(ELFDumper<ELFT> *Dumper,
530 const ELFO *Obj,
531 const typename ELFO::Elf_Shdr *Sec,
532 ScopedPrinter &W) {
533 typedef typename ELFO::Elf_Verdef VerDef;
534 typedef typename ELFO::Elf_Verdaux VerdAux;
535
536 DictScope SD(W, "SHT_GNU_verdef");
537 if (!Sec)
538 return;
539
540 // The number of entries in the section SHT_GNU_verdef
541 // is determined by DT_VERDEFNUM tag.
542 unsigned VerDefsNum = 0;
543 for (const typename ELFO::Elf_Dyn &Dyn : Dumper->dynamic_table()) {
544 if (Dyn.d_tag == DT_VERDEFNUM)
545 VerDefsNum = Dyn.d_un.d_val;
546 }
547 const uint8_t *SecStartAddress =
548 (const uint8_t *)Obj->base() + Sec->sh_offset;
549 const uint8_t *SecEndAddress = SecStartAddress + Sec->sh_size;
550 const uint8_t *P = SecStartAddress;
551 const typename ELFO::Elf_Shdr *StrTab =
552 unwrapOrError(Obj->getSection(Sec->sh_link));
553
554 while (VerDefsNum--) {
555 if (P + sizeof(VerDef) > SecEndAddress)
556 report_fatal_error("invalid offset in the section");
557
558 auto *VD = reinterpret_cast<const VerDef *>(P);
559 DictScope Def(W, "Definition");
560 W.printNumber("Version", VD->vd_version);
561 W.printEnum("Flags", VD->vd_flags, makeArrayRef(SymVersionFlags));
562 W.printNumber("Index", VD->vd_ndx);
563 W.printNumber("Hash", VD->vd_hash);
564 W.printString("Name",
565 StringRef((const char *)(Obj->base() + StrTab->sh_offset +
566 VD->getAux()->vda_name)));
567 if (!VD->vd_cnt)
568 report_fatal_error("at least one definition string must exist");
569 if (VD->vd_cnt > 2)
570 report_fatal_error("more than one predecessor is not expected");
571
572 if (VD->vd_cnt == 2) {
573 const uint8_t *PAux = P + VD->vd_aux + VD->getAux()->vda_next;
574 const VerdAux *Aux = reinterpret_cast<const VerdAux *>(PAux);
575 W.printString("Predecessor",
576 StringRef((const char *)(Obj->base() + StrTab->sh_offset +
577 Aux->vda_name)));
578 }
579
580 P += VD->vd_next;
581 }
582 }
583
584 template <typename ELFO, class ELFT>
printVersionDependencySection(ELFDumper<ELFT> * Dumper,const ELFO * Obj,const typename ELFO::Elf_Shdr * Sec,ScopedPrinter & W)585 static void printVersionDependencySection(ELFDumper<ELFT> *Dumper,
586 const ELFO *Obj,
587 const typename ELFO::Elf_Shdr *Sec,
588 ScopedPrinter &W) {
589 typedef typename ELFO::Elf_Verneed VerNeed;
590 typedef typename ELFO::Elf_Vernaux VernAux;
591
592 DictScope SD(W, "SHT_GNU_verneed");
593 if (!Sec)
594 return;
595
596 unsigned VerNeedNum = 0;
597 for (const typename ELFO::Elf_Dyn &Dyn : Dumper->dynamic_table())
598 if (Dyn.d_tag == DT_VERNEEDNUM)
599 VerNeedNum = Dyn.d_un.d_val;
600
601 const uint8_t *SecData = (const uint8_t *)Obj->base() + Sec->sh_offset;
602 const typename ELFO::Elf_Shdr *StrTab =
603 unwrapOrError(Obj->getSection(Sec->sh_link));
604
605 const uint8_t *P = SecData;
606 for (unsigned I = 0; I < VerNeedNum; ++I) {
607 const VerNeed *Need = reinterpret_cast<const VerNeed *>(P);
608 DictScope Entry(W, "Dependency");
609 W.printNumber("Version", Need->vn_version);
610 W.printNumber("Count", Need->vn_cnt);
611 W.printString("FileName",
612 StringRef((const char *)(Obj->base() + StrTab->sh_offset +
613 Need->vn_file)));
614
615 const uint8_t *PAux = P + Need->vn_aux;
616 for (unsigned J = 0; J < Need->vn_cnt; ++J) {
617 const VernAux *Aux = reinterpret_cast<const VernAux *>(PAux);
618 DictScope Entry(W, "Entry");
619 W.printNumber("Hash", Aux->vna_hash);
620 W.printEnum("Flags", Aux->vna_flags, makeArrayRef(SymVersionFlags));
621 W.printNumber("Index", Aux->vna_other);
622 W.printString("Name",
623 StringRef((const char *)(Obj->base() + StrTab->sh_offset +
624 Aux->vna_name)));
625 PAux += Aux->vna_next;
626 }
627 P += Need->vn_next;
628 }
629 }
630
printVersionInfo()631 template <typename ELFT> void ELFDumper<ELFT>::printVersionInfo() {
632 // Dump version symbol section.
633 printVersionSymbolSection(this, Obj, dot_gnu_version_sec, W);
634
635 // Dump version definition section.
636 printVersionDefinitionSection(this, Obj, dot_gnu_version_d_sec, W);
637
638 // Dump version dependency section.
639 printVersionDependencySection(this, Obj, dot_gnu_version_r_sec, W);
640 }
641
642 template <typename ELFT>
getSymbolVersion(StringRef StrTab,const Elf_Sym * symb,bool & IsDefault) const643 StringRef ELFDumper<ELFT>::getSymbolVersion(StringRef StrTab,
644 const Elf_Sym *symb,
645 bool &IsDefault) const {
646 // This is a dynamic symbol. Look in the GNU symbol version table.
647 if (!dot_gnu_version_sec) {
648 // No version table.
649 IsDefault = false;
650 return StringRef("");
651 }
652
653 // Determine the position in the symbol table of this entry.
654 size_t entry_index = (reinterpret_cast<uintptr_t>(symb) -
655 reinterpret_cast<uintptr_t>(DynSymRegion.Addr)) /
656 sizeof(Elf_Sym);
657
658 // Get the corresponding version index entry
659 const Elf_Versym *vs =
660 Obj->template getEntry<Elf_Versym>(dot_gnu_version_sec, entry_index);
661 size_t version_index = vs->vs_index & ELF::VERSYM_VERSION;
662
663 // Special markers for unversioned symbols.
664 if (version_index == ELF::VER_NDX_LOCAL ||
665 version_index == ELF::VER_NDX_GLOBAL) {
666 IsDefault = false;
667 return StringRef("");
668 }
669
670 // Lookup this symbol in the version table
671 LoadVersionMap();
672 if (version_index >= VersionMap.size() || VersionMap[version_index].isNull())
673 reportError("Invalid version entry");
674 const VersionMapEntry &entry = VersionMap[version_index];
675
676 // Get the version name string
677 size_t name_offset;
678 if (entry.isVerdef()) {
679 // The first Verdaux entry holds the name.
680 name_offset = entry.getVerdef()->getAux()->vda_name;
681 IsDefault = !(vs->vs_index & ELF::VERSYM_HIDDEN);
682 } else {
683 name_offset = entry.getVernaux()->vna_name;
684 IsDefault = false;
685 }
686 if (name_offset >= StrTab.size())
687 reportError("Invalid string offset");
688 return StringRef(StrTab.data() + name_offset);
689 }
690
691 template <typename ELFT>
getFullSymbolName(const Elf_Sym * Symbol,StringRef StrTable,bool IsDynamic) const692 std::string ELFDumper<ELFT>::getFullSymbolName(const Elf_Sym *Symbol,
693 StringRef StrTable,
694 bool IsDynamic) const {
695 StringRef SymbolName = unwrapOrError(Symbol->getName(StrTable));
696 if (!IsDynamic)
697 return SymbolName;
698
699 std::string FullSymbolName(SymbolName);
700
701 bool IsDefault;
702 StringRef Version = getSymbolVersion(StrTable, &*Symbol, IsDefault);
703 FullSymbolName += (IsDefault ? "@@" : "@");
704 FullSymbolName += Version;
705 return FullSymbolName;
706 }
707
708 template <typename ELFO>
709 static void
getSectionNameIndex(const ELFO & Obj,const typename ELFO::Elf_Sym * Symbol,const typename ELFO::Elf_Sym * FirstSym,ArrayRef<typename ELFO::Elf_Word> ShndxTable,StringRef & SectionName,unsigned & SectionIndex)710 getSectionNameIndex(const ELFO &Obj, const typename ELFO::Elf_Sym *Symbol,
711 const typename ELFO::Elf_Sym *FirstSym,
712 ArrayRef<typename ELFO::Elf_Word> ShndxTable,
713 StringRef &SectionName, unsigned &SectionIndex) {
714 SectionIndex = Symbol->st_shndx;
715 if (Symbol->isUndefined())
716 SectionName = "Undefined";
717 else if (Symbol->isProcessorSpecific())
718 SectionName = "Processor Specific";
719 else if (Symbol->isOSSpecific())
720 SectionName = "Operating System Specific";
721 else if (Symbol->isAbsolute())
722 SectionName = "Absolute";
723 else if (Symbol->isCommon())
724 SectionName = "Common";
725 else if (Symbol->isReserved() && SectionIndex != SHN_XINDEX)
726 SectionName = "Reserved";
727 else {
728 if (SectionIndex == SHN_XINDEX)
729 SectionIndex =
730 Obj.getExtendedSymbolTableIndex(Symbol, FirstSym, ShndxTable);
731 const typename ELFO::Elf_Shdr *Sec =
732 unwrapOrError(Obj.getSection(SectionIndex));
733 SectionName = unwrapOrError(Obj.getSectionName(Sec));
734 }
735 }
736
737 template <class ELFO>
738 static const typename ELFO::Elf_Shdr *
findNotEmptySectionByAddress(const ELFO * Obj,uint64_t Addr)739 findNotEmptySectionByAddress(const ELFO *Obj, uint64_t Addr) {
740 for (const auto &Shdr : Obj->sections())
741 if (Shdr.sh_addr == Addr && Shdr.sh_size > 0)
742 return &Shdr;
743 return nullptr;
744 }
745
746 template <class ELFO>
findSectionByName(const ELFO & Obj,StringRef Name)747 static const typename ELFO::Elf_Shdr *findSectionByName(const ELFO &Obj,
748 StringRef Name) {
749 for (const auto &Shdr : Obj.sections()) {
750 if (Name == unwrapOrError(Obj.getSectionName(&Shdr)))
751 return &Shdr;
752 }
753 return nullptr;
754 }
755
756 static const EnumEntry<unsigned> ElfClass[] = {
757 {"None", "none", ELF::ELFCLASSNONE},
758 {"32-bit", "ELF32", ELF::ELFCLASS32},
759 {"64-bit", "ELF64", ELF::ELFCLASS64},
760 };
761
762 static const EnumEntry<unsigned> ElfDataEncoding[] = {
763 {"None", "none", ELF::ELFDATANONE},
764 {"LittleEndian", "2's complement, little endian", ELF::ELFDATA2LSB},
765 {"BigEndian", "2's complement, big endian", ELF::ELFDATA2MSB},
766 };
767
768 static const EnumEntry<unsigned> ElfObjectFileType[] = {
769 {"None", "NONE (none)", ELF::ET_NONE},
770 {"Relocatable", "REL (Relocatable file)", ELF::ET_REL},
771 {"Executable", "EXEC (Executable file)", ELF::ET_EXEC},
772 {"SharedObject", "DYN (Shared object file)", ELF::ET_DYN},
773 {"Core", "CORE (Core file)", ELF::ET_CORE},
774 };
775
776 static const EnumEntry<unsigned> ElfOSABI[] = {
777 {"SystemV", "UNIX - System V", ELF::ELFOSABI_NONE},
778 {"HPUX", "UNIX - HP-UX", ELF::ELFOSABI_HPUX},
779 {"NetBSD", "UNIX - NetBSD", ELF::ELFOSABI_NETBSD},
780 {"GNU/Linux", "UNIX - GNU", ELF::ELFOSABI_LINUX},
781 {"GNU/Hurd", "GNU/Hurd", ELF::ELFOSABI_HURD},
782 {"Solaris", "UNIX - Solaris", ELF::ELFOSABI_SOLARIS},
783 {"AIX", "UNIX - AIX", ELF::ELFOSABI_AIX},
784 {"IRIX", "UNIX - IRIX", ELF::ELFOSABI_IRIX},
785 {"FreeBSD", "UNIX - FreeBSD", ELF::ELFOSABI_FREEBSD},
786 {"TRU64", "UNIX - TRU64", ELF::ELFOSABI_TRU64},
787 {"Modesto", "Novell - Modesto", ELF::ELFOSABI_MODESTO},
788 {"OpenBSD", "UNIX - OpenBSD", ELF::ELFOSABI_OPENBSD},
789 {"OpenVMS", "VMS - OpenVMS", ELF::ELFOSABI_OPENVMS},
790 {"NSK", "HP - Non-Stop Kernel", ELF::ELFOSABI_NSK},
791 {"AROS", "AROS", ELF::ELFOSABI_AROS},
792 {"FenixOS", "FenixOS", ELF::ELFOSABI_FENIXOS},
793 {"CloudABI", "CloudABI", ELF::ELFOSABI_CLOUDABI},
794 {"C6000_ELFABI", "Bare-metal C6000", ELF::ELFOSABI_C6000_ELFABI},
795 {"C6000_LINUX", "Linux C6000", ELF::ELFOSABI_C6000_LINUX},
796 {"ARM", "ARM", ELF::ELFOSABI_ARM},
797 {"Standalone", "Standalone App", ELF::ELFOSABI_STANDALONE}
798 };
799
800 static const EnumEntry<unsigned> ElfMachineType[] = {
801 ENUM_ENT(EM_NONE, "None"),
802 ENUM_ENT(EM_M32, "WE32100"),
803 ENUM_ENT(EM_SPARC, "Sparc"),
804 ENUM_ENT(EM_386, "Intel 80386"),
805 ENUM_ENT(EM_68K, "MC68000"),
806 ENUM_ENT(EM_88K, "MC88000"),
807 ENUM_ENT(EM_IAMCU, "EM_IAMCU"),
808 ENUM_ENT(EM_860, "Intel 80860"),
809 ENUM_ENT(EM_MIPS, "MIPS R3000"),
810 ENUM_ENT(EM_S370, "IBM System/370"),
811 ENUM_ENT(EM_MIPS_RS3_LE, "MIPS R3000 little-endian"),
812 ENUM_ENT(EM_PARISC, "HPPA"),
813 ENUM_ENT(EM_VPP500, "Fujitsu VPP500"),
814 ENUM_ENT(EM_SPARC32PLUS, "Sparc v8+"),
815 ENUM_ENT(EM_960, "Intel 80960"),
816 ENUM_ENT(EM_PPC, "PowerPC"),
817 ENUM_ENT(EM_PPC64, "PowerPC64"),
818 ENUM_ENT(EM_S390, "IBM S/390"),
819 ENUM_ENT(EM_SPU, "SPU"),
820 ENUM_ENT(EM_V800, "NEC V800 series"),
821 ENUM_ENT(EM_FR20, "Fujistsu FR20"),
822 ENUM_ENT(EM_RH32, "TRW RH-32"),
823 ENUM_ENT(EM_RCE, "Motorola RCE"),
824 ENUM_ENT(EM_ARM, "ARM"),
825 ENUM_ENT(EM_ALPHA, "EM_ALPHA"),
826 ENUM_ENT(EM_SH, "Hitachi SH"),
827 ENUM_ENT(EM_SPARCV9, "Sparc v9"),
828 ENUM_ENT(EM_TRICORE, "Siemens Tricore"),
829 ENUM_ENT(EM_ARC, "ARC"),
830 ENUM_ENT(EM_H8_300, "Hitachi H8/300"),
831 ENUM_ENT(EM_H8_300H, "Hitachi H8/300H"),
832 ENUM_ENT(EM_H8S, "Hitachi H8S"),
833 ENUM_ENT(EM_H8_500, "Hitachi H8/500"),
834 ENUM_ENT(EM_IA_64, "Intel IA-64"),
835 ENUM_ENT(EM_MIPS_X, "Stanford MIPS-X"),
836 ENUM_ENT(EM_COLDFIRE, "Motorola Coldfire"),
837 ENUM_ENT(EM_68HC12, "Motorola MC68HC12 Microcontroller"),
838 ENUM_ENT(EM_MMA, "Fujitsu Multimedia Accelerator"),
839 ENUM_ENT(EM_PCP, "Siemens PCP"),
840 ENUM_ENT(EM_NCPU, "Sony nCPU embedded RISC processor"),
841 ENUM_ENT(EM_NDR1, "Denso NDR1 microprocesspr"),
842 ENUM_ENT(EM_STARCORE, "Motorola Star*Core processor"),
843 ENUM_ENT(EM_ME16, "Toyota ME16 processor"),
844 ENUM_ENT(EM_ST100, "STMicroelectronics ST100 processor"),
845 ENUM_ENT(EM_TINYJ, "Advanced Logic Corp. TinyJ embedded processor"),
846 ENUM_ENT(EM_X86_64, "Advanced Micro Devices X86-64"),
847 ENUM_ENT(EM_PDSP, "Sony DSP processor"),
848 ENUM_ENT(EM_PDP10, "Digital Equipment Corp. PDP-10"),
849 ENUM_ENT(EM_PDP11, "Digital Equipment Corp. PDP-11"),
850 ENUM_ENT(EM_FX66, "Siemens FX66 microcontroller"),
851 ENUM_ENT(EM_ST9PLUS, "STMicroelectronics ST9+ 8/16 bit microcontroller"),
852 ENUM_ENT(EM_ST7, "STMicroelectronics ST7 8-bit microcontroller"),
853 ENUM_ENT(EM_68HC16, "Motorola MC68HC16 Microcontroller"),
854 ENUM_ENT(EM_68HC11, "Motorola MC68HC11 Microcontroller"),
855 ENUM_ENT(EM_68HC08, "Motorola MC68HC08 Microcontroller"),
856 ENUM_ENT(EM_68HC05, "Motorola MC68HC05 Microcontroller"),
857 ENUM_ENT(EM_SVX, "Silicon Graphics SVx"),
858 ENUM_ENT(EM_ST19, "STMicroelectronics ST19 8-bit microcontroller"),
859 ENUM_ENT(EM_VAX, "Digital VAX"),
860 ENUM_ENT(EM_CRIS, "Axis Communications 32-bit embedded processor"),
861 ENUM_ENT(EM_JAVELIN, "Infineon Technologies 32-bit embedded cpu"),
862 ENUM_ENT(EM_FIREPATH, "Element 14 64-bit DSP processor"),
863 ENUM_ENT(EM_ZSP, "LSI Logic's 16-bit DSP processor"),
864 ENUM_ENT(EM_MMIX, "Donald Knuth's educational 64-bit processor"),
865 ENUM_ENT(EM_HUANY, "Harvard Universitys's machine-independent object format"),
866 ENUM_ENT(EM_PRISM, "Vitesse Prism"),
867 ENUM_ENT(EM_AVR, "Atmel AVR 8-bit microcontroller"),
868 ENUM_ENT(EM_FR30, "Fujitsu FR30"),
869 ENUM_ENT(EM_D10V, "Mitsubishi D10V"),
870 ENUM_ENT(EM_D30V, "Mitsubishi D30V"),
871 ENUM_ENT(EM_V850, "NEC v850"),
872 ENUM_ENT(EM_M32R, "Renesas M32R (formerly Mitsubishi M32r)"),
873 ENUM_ENT(EM_MN10300, "Matsushita MN10300"),
874 ENUM_ENT(EM_MN10200, "Matsushita MN10200"),
875 ENUM_ENT(EM_PJ, "picoJava"),
876 ENUM_ENT(EM_OPENRISC, "OpenRISC 32-bit embedded processor"),
877 ENUM_ENT(EM_ARC_COMPACT, "EM_ARC_COMPACT"),
878 ENUM_ENT(EM_XTENSA, "Tensilica Xtensa Processor"),
879 ENUM_ENT(EM_VIDEOCORE, "Alphamosaic VideoCore processor"),
880 ENUM_ENT(EM_TMM_GPP, "Thompson Multimedia General Purpose Processor"),
881 ENUM_ENT(EM_NS32K, "National Semiconductor 32000 series"),
882 ENUM_ENT(EM_TPC, "Tenor Network TPC processor"),
883 ENUM_ENT(EM_SNP1K, "EM_SNP1K"),
884 ENUM_ENT(EM_ST200, "STMicroelectronics ST200 microcontroller"),
885 ENUM_ENT(EM_IP2K, "Ubicom IP2xxx 8-bit microcontrollers"),
886 ENUM_ENT(EM_MAX, "MAX Processor"),
887 ENUM_ENT(EM_CR, "National Semiconductor CompactRISC"),
888 ENUM_ENT(EM_F2MC16, "Fujitsu F2MC16"),
889 ENUM_ENT(EM_MSP430, "Texas Instruments msp430 microcontroller"),
890 ENUM_ENT(EM_BLACKFIN, "Analog Devices Blackfin"),
891 ENUM_ENT(EM_SE_C33, "S1C33 Family of Seiko Epson processors"),
892 ENUM_ENT(EM_SEP, "Sharp embedded microprocessor"),
893 ENUM_ENT(EM_ARCA, "Arca RISC microprocessor"),
894 ENUM_ENT(EM_UNICORE, "Unicore"),
895 ENUM_ENT(EM_EXCESS, "eXcess 16/32/64-bit configurable embedded CPU"),
896 ENUM_ENT(EM_DXP, "Icera Semiconductor Inc. Deep Execution Processor"),
897 ENUM_ENT(EM_ALTERA_NIOS2, "Altera Nios"),
898 ENUM_ENT(EM_CRX, "National Semiconductor CRX microprocessor"),
899 ENUM_ENT(EM_XGATE, "Motorola XGATE embedded processor"),
900 ENUM_ENT(EM_C166, "Infineon Technologies xc16x"),
901 ENUM_ENT(EM_M16C, "Renesas M16C"),
902 ENUM_ENT(EM_DSPIC30F, "Microchip Technology dsPIC30F Digital Signal Controller"),
903 ENUM_ENT(EM_CE, "Freescale Communication Engine RISC core"),
904 ENUM_ENT(EM_M32C, "Renesas M32C"),
905 ENUM_ENT(EM_TSK3000, "Altium TSK3000 core"),
906 ENUM_ENT(EM_RS08, "Freescale RS08 embedded processor"),
907 ENUM_ENT(EM_SHARC, "EM_SHARC"),
908 ENUM_ENT(EM_ECOG2, "Cyan Technology eCOG2 microprocessor"),
909 ENUM_ENT(EM_SCORE7, "SUNPLUS S+Core"),
910 ENUM_ENT(EM_DSP24, "New Japan Radio (NJR) 24-bit DSP Processor"),
911 ENUM_ENT(EM_VIDEOCORE3, "Broadcom VideoCore III processor"),
912 ENUM_ENT(EM_LATTICEMICO32, "Lattice Mico32"),
913 ENUM_ENT(EM_SE_C17, "Seiko Epson C17 family"),
914 ENUM_ENT(EM_TI_C6000, "Texas Instruments TMS320C6000 DSP family"),
915 ENUM_ENT(EM_TI_C2000, "Texas Instruments TMS320C2000 DSP family"),
916 ENUM_ENT(EM_TI_C5500, "Texas Instruments TMS320C55x DSP family"),
917 ENUM_ENT(EM_MMDSP_PLUS, "STMicroelectronics 64bit VLIW Data Signal Processor"),
918 ENUM_ENT(EM_CYPRESS_M8C, "Cypress M8C microprocessor"),
919 ENUM_ENT(EM_R32C, "Renesas R32C series microprocessors"),
920 ENUM_ENT(EM_TRIMEDIA, "NXP Semiconductors TriMedia architecture family"),
921 ENUM_ENT(EM_HEXAGON, "Qualcomm Hexagon"),
922 ENUM_ENT(EM_8051, "Intel 8051 and variants"),
923 ENUM_ENT(EM_STXP7X, "STMicroelectronics STxP7x family"),
924 ENUM_ENT(EM_NDS32, "Andes Technology compact code size embedded RISC processor family"),
925 ENUM_ENT(EM_ECOG1, "Cyan Technology eCOG1 microprocessor"),
926 ENUM_ENT(EM_ECOG1X, "Cyan Technology eCOG1X family"),
927 ENUM_ENT(EM_MAXQ30, "Dallas Semiconductor MAXQ30 Core microcontrollers"),
928 ENUM_ENT(EM_XIMO16, "New Japan Radio (NJR) 16-bit DSP Processor"),
929 ENUM_ENT(EM_MANIK, "M2000 Reconfigurable RISC Microprocessor"),
930 ENUM_ENT(EM_CRAYNV2, "Cray Inc. NV2 vector architecture"),
931 ENUM_ENT(EM_RX, "Renesas RX"),
932 ENUM_ENT(EM_METAG, "Imagination Technologies Meta processor architecture"),
933 ENUM_ENT(EM_MCST_ELBRUS, "MCST Elbrus general purpose hardware architecture"),
934 ENUM_ENT(EM_ECOG16, "Cyan Technology eCOG16 family"),
935 ENUM_ENT(EM_CR16, "Xilinx MicroBlaze"),
936 ENUM_ENT(EM_ETPU, "Freescale Extended Time Processing Unit"),
937 ENUM_ENT(EM_SLE9X, "Infineon Technologies SLE9X core"),
938 ENUM_ENT(EM_L10M, "EM_L10M"),
939 ENUM_ENT(EM_K10M, "EM_K10M"),
940 ENUM_ENT(EM_AARCH64, "AArch64"),
941 ENUM_ENT(EM_AVR32, "Atmel AVR 8-bit microcontroller"),
942 ENUM_ENT(EM_STM8, "STMicroeletronics STM8 8-bit microcontroller"),
943 ENUM_ENT(EM_TILE64, "Tilera TILE64 multicore architecture family"),
944 ENUM_ENT(EM_TILEPRO, "Tilera TILEPro multicore architecture family"),
945 ENUM_ENT(EM_CUDA, "NVIDIA CUDA architecture"),
946 ENUM_ENT(EM_TILEGX, "Tilera TILE-Gx multicore architecture family"),
947 ENUM_ENT(EM_CLOUDSHIELD, "EM_CLOUDSHIELD"),
948 ENUM_ENT(EM_COREA_1ST, "EM_COREA_1ST"),
949 ENUM_ENT(EM_COREA_2ND, "EM_COREA_2ND"),
950 ENUM_ENT(EM_ARC_COMPACT2, "EM_ARC_COMPACT2"),
951 ENUM_ENT(EM_OPEN8, "EM_OPEN8"),
952 ENUM_ENT(EM_RL78, "Renesas RL78"),
953 ENUM_ENT(EM_VIDEOCORE5, "Broadcom VideoCore V processor"),
954 ENUM_ENT(EM_78KOR, "EM_78KOR"),
955 ENUM_ENT(EM_56800EX, "EM_56800EX"),
956 ENUM_ENT(EM_AMDGPU, "EM_AMDGPU"),
957 ENUM_ENT(EM_WEBASSEMBLY, "EM_WEBASSEMBLY"),
958 ENUM_ENT(EM_LANAI, "EM_LANAI"),
959 };
960
961 static const EnumEntry<unsigned> ElfSymbolBindings[] = {
962 {"Local", "LOCAL", ELF::STB_LOCAL},
963 {"Global", "GLOBAL", ELF::STB_GLOBAL},
964 {"Weak", "WEAK", ELF::STB_WEAK},
965 {"Unique", "UNIQUE", ELF::STB_GNU_UNIQUE}};
966
967 static const EnumEntry<unsigned> ElfSymbolVisibilities[] = {
968 {"DEFAULT", "DEFAULT", ELF::STV_DEFAULT},
969 {"INTERNAL", "INTERNAL", ELF::STV_INTERNAL},
970 {"HIDDEN", "HIDDEN", ELF::STV_HIDDEN},
971 {"PROTECTED", "PROTECTED", ELF::STV_PROTECTED}};
972
973 static const EnumEntry<unsigned> ElfSymbolTypes[] = {
974 {"None", "NOTYPE", ELF::STT_NOTYPE},
975 {"Object", "OBJECT", ELF::STT_OBJECT},
976 {"Function", "FUNC", ELF::STT_FUNC},
977 {"Section", "SECTION", ELF::STT_SECTION},
978 {"File", "FILE", ELF::STT_FILE},
979 {"Common", "COMMON", ELF::STT_COMMON},
980 {"TLS", "TLS", ELF::STT_TLS},
981 {"GNU_IFunc", "IFUNC", ELF::STT_GNU_IFUNC}};
982
983 static const EnumEntry<unsigned> AMDGPUSymbolTypes[] = {
984 { "AMDGPU_HSA_KERNEL", ELF::STT_AMDGPU_HSA_KERNEL },
985 { "AMDGPU_HSA_INDIRECT_FUNCTION", ELF::STT_AMDGPU_HSA_INDIRECT_FUNCTION },
986 { "AMDGPU_HSA_METADATA", ELF::STT_AMDGPU_HSA_METADATA }
987 };
988
getElfSectionType(unsigned Arch,unsigned Type)989 static const char *getElfSectionType(unsigned Arch, unsigned Type) {
990 switch (Arch) {
991 case ELF::EM_ARM:
992 switch (Type) {
993 LLVM_READOBJ_ENUM_CASE(ELF, SHT_ARM_EXIDX);
994 LLVM_READOBJ_ENUM_CASE(ELF, SHT_ARM_PREEMPTMAP);
995 LLVM_READOBJ_ENUM_CASE(ELF, SHT_ARM_ATTRIBUTES);
996 LLVM_READOBJ_ENUM_CASE(ELF, SHT_ARM_DEBUGOVERLAY);
997 LLVM_READOBJ_ENUM_CASE(ELF, SHT_ARM_OVERLAYSECTION);
998 }
999 case ELF::EM_HEXAGON:
1000 switch (Type) { LLVM_READOBJ_ENUM_CASE(ELF, SHT_HEX_ORDERED); }
1001 case ELF::EM_X86_64:
1002 switch (Type) { LLVM_READOBJ_ENUM_CASE(ELF, SHT_X86_64_UNWIND); }
1003 case ELF::EM_MIPS:
1004 case ELF::EM_MIPS_RS3_LE:
1005 switch (Type) {
1006 LLVM_READOBJ_ENUM_CASE(ELF, SHT_MIPS_REGINFO);
1007 LLVM_READOBJ_ENUM_CASE(ELF, SHT_MIPS_OPTIONS);
1008 LLVM_READOBJ_ENUM_CASE(ELF, SHT_MIPS_ABIFLAGS);
1009 }
1010 }
1011
1012 switch (Type) {
1013 LLVM_READOBJ_ENUM_CASE(ELF, SHT_NULL );
1014 LLVM_READOBJ_ENUM_CASE(ELF, SHT_PROGBITS );
1015 LLVM_READOBJ_ENUM_CASE(ELF, SHT_SYMTAB );
1016 LLVM_READOBJ_ENUM_CASE(ELF, SHT_STRTAB );
1017 LLVM_READOBJ_ENUM_CASE(ELF, SHT_RELA );
1018 LLVM_READOBJ_ENUM_CASE(ELF, SHT_HASH );
1019 LLVM_READOBJ_ENUM_CASE(ELF, SHT_DYNAMIC );
1020 LLVM_READOBJ_ENUM_CASE(ELF, SHT_NOTE );
1021 LLVM_READOBJ_ENUM_CASE(ELF, SHT_NOBITS );
1022 LLVM_READOBJ_ENUM_CASE(ELF, SHT_REL );
1023 LLVM_READOBJ_ENUM_CASE(ELF, SHT_SHLIB );
1024 LLVM_READOBJ_ENUM_CASE(ELF, SHT_DYNSYM );
1025 LLVM_READOBJ_ENUM_CASE(ELF, SHT_INIT_ARRAY );
1026 LLVM_READOBJ_ENUM_CASE(ELF, SHT_FINI_ARRAY );
1027 LLVM_READOBJ_ENUM_CASE(ELF, SHT_PREINIT_ARRAY );
1028 LLVM_READOBJ_ENUM_CASE(ELF, SHT_GROUP );
1029 LLVM_READOBJ_ENUM_CASE(ELF, SHT_SYMTAB_SHNDX );
1030 LLVM_READOBJ_ENUM_CASE(ELF, SHT_GNU_ATTRIBUTES );
1031 LLVM_READOBJ_ENUM_CASE(ELF, SHT_GNU_HASH );
1032 LLVM_READOBJ_ENUM_CASE(ELF, SHT_GNU_verdef );
1033 LLVM_READOBJ_ENUM_CASE(ELF, SHT_GNU_verneed );
1034 LLVM_READOBJ_ENUM_CASE(ELF, SHT_GNU_versym );
1035 default: return "";
1036 }
1037 }
1038
getGroupType(uint32_t Flag)1039 static const char *getGroupType(uint32_t Flag) {
1040 if (Flag & ELF::GRP_COMDAT)
1041 return "COMDAT";
1042 else
1043 return "(unknown)";
1044 }
1045
1046 static const EnumEntry<unsigned> ElfSectionFlags[] = {
1047 ENUM_ENT(SHF_WRITE, "W"),
1048 ENUM_ENT(SHF_ALLOC, "A"),
1049 ENUM_ENT(SHF_EXCLUDE, "E"),
1050 ENUM_ENT(SHF_EXECINSTR, "X"),
1051 ENUM_ENT(SHF_MERGE, "M"),
1052 ENUM_ENT(SHF_STRINGS, "S"),
1053 ENUM_ENT(SHF_INFO_LINK, "I"),
1054 ENUM_ENT(SHF_LINK_ORDER, "L"),
1055 ENUM_ENT(SHF_OS_NONCONFORMING, "o"),
1056 ENUM_ENT(SHF_GROUP, "G"),
1057 ENUM_ENT(SHF_TLS, "T"),
1058 ENUM_ENT(SHF_MASKOS, "o"),
1059 ENUM_ENT(SHF_MASKPROC, "p"),
1060 ENUM_ENT_1(SHF_COMPRESSED),
1061 };
1062
1063 static const EnumEntry<unsigned> ElfXCoreSectionFlags[] = {
1064 LLVM_READOBJ_ENUM_ENT(ELF, XCORE_SHF_CP_SECTION),
1065 LLVM_READOBJ_ENUM_ENT(ELF, XCORE_SHF_DP_SECTION)
1066 };
1067
1068 static const EnumEntry<unsigned> ElfAMDGPUSectionFlags[] = {
1069 LLVM_READOBJ_ENUM_ENT(ELF, SHF_AMDGPU_HSA_GLOBAL),
1070 LLVM_READOBJ_ENUM_ENT(ELF, SHF_AMDGPU_HSA_READONLY),
1071 LLVM_READOBJ_ENUM_ENT(ELF, SHF_AMDGPU_HSA_CODE),
1072 LLVM_READOBJ_ENUM_ENT(ELF, SHF_AMDGPU_HSA_AGENT)
1073 };
1074
1075 static const EnumEntry<unsigned> ElfHexagonSectionFlags[] = {
1076 LLVM_READOBJ_ENUM_ENT(ELF, SHF_HEX_GPREL)
1077 };
1078
1079 static const EnumEntry<unsigned> ElfMipsSectionFlags[] = {
1080 LLVM_READOBJ_ENUM_ENT(ELF, SHF_MIPS_NODUPES),
1081 LLVM_READOBJ_ENUM_ENT(ELF, SHF_MIPS_NAMES ),
1082 LLVM_READOBJ_ENUM_ENT(ELF, SHF_MIPS_LOCAL ),
1083 LLVM_READOBJ_ENUM_ENT(ELF, SHF_MIPS_NOSTRIP),
1084 LLVM_READOBJ_ENUM_ENT(ELF, SHF_MIPS_GPREL ),
1085 LLVM_READOBJ_ENUM_ENT(ELF, SHF_MIPS_MERGE ),
1086 LLVM_READOBJ_ENUM_ENT(ELF, SHF_MIPS_ADDR ),
1087 LLVM_READOBJ_ENUM_ENT(ELF, SHF_MIPS_STRING )
1088 };
1089
1090 static const EnumEntry<unsigned> ElfX86_64SectionFlags[] = {
1091 LLVM_READOBJ_ENUM_ENT(ELF, SHF_X86_64_LARGE)
1092 };
1093
getGNUFlags(uint64_t Flags)1094 static std::string getGNUFlags(uint64_t Flags) {
1095 std::string Str;
1096 for (auto Entry : ElfSectionFlags) {
1097 uint64_t Flag = Entry.Value & Flags;
1098 Flags &= ~Entry.Value;
1099 switch (Flag) {
1100 case ELF::SHF_WRITE:
1101 case ELF::SHF_ALLOC:
1102 case ELF::SHF_EXECINSTR:
1103 case ELF::SHF_MERGE:
1104 case ELF::SHF_STRINGS:
1105 case ELF::SHF_INFO_LINK:
1106 case ELF::SHF_LINK_ORDER:
1107 case ELF::SHF_OS_NONCONFORMING:
1108 case ELF::SHF_GROUP:
1109 case ELF::SHF_TLS:
1110 case ELF::SHF_EXCLUDE:
1111 Str += Entry.AltName;
1112 break;
1113 default:
1114 if (Flag & ELF::SHF_MASKOS)
1115 Str += "o";
1116 else if (Flag & ELF::SHF_MASKPROC)
1117 Str += "p";
1118 else if (Flag)
1119 Str += "x";
1120 }
1121 }
1122 return Str;
1123 }
1124
getElfSegmentType(unsigned Arch,unsigned Type)1125 static const char *getElfSegmentType(unsigned Arch, unsigned Type) {
1126 // Check potentially overlapped processor-specific
1127 // program header type.
1128 switch (Arch) {
1129 case ELF::EM_AMDGPU:
1130 switch (Type) {
1131 LLVM_READOBJ_ENUM_CASE(ELF, PT_AMDGPU_HSA_LOAD_GLOBAL_PROGRAM);
1132 LLVM_READOBJ_ENUM_CASE(ELF, PT_AMDGPU_HSA_LOAD_GLOBAL_AGENT);
1133 LLVM_READOBJ_ENUM_CASE(ELF, PT_AMDGPU_HSA_LOAD_READONLY_AGENT);
1134 LLVM_READOBJ_ENUM_CASE(ELF, PT_AMDGPU_HSA_LOAD_CODE_AGENT);
1135 }
1136 case ELF::EM_ARM:
1137 switch (Type) {
1138 LLVM_READOBJ_ENUM_CASE(ELF, PT_ARM_EXIDX);
1139 }
1140 case ELF::EM_MIPS:
1141 case ELF::EM_MIPS_RS3_LE:
1142 switch (Type) {
1143 LLVM_READOBJ_ENUM_CASE(ELF, PT_MIPS_REGINFO);
1144 LLVM_READOBJ_ENUM_CASE(ELF, PT_MIPS_RTPROC);
1145 LLVM_READOBJ_ENUM_CASE(ELF, PT_MIPS_OPTIONS);
1146 LLVM_READOBJ_ENUM_CASE(ELF, PT_MIPS_ABIFLAGS);
1147 }
1148 }
1149
1150 switch (Type) {
1151 LLVM_READOBJ_ENUM_CASE(ELF, PT_NULL );
1152 LLVM_READOBJ_ENUM_CASE(ELF, PT_LOAD );
1153 LLVM_READOBJ_ENUM_CASE(ELF, PT_DYNAMIC);
1154 LLVM_READOBJ_ENUM_CASE(ELF, PT_INTERP );
1155 LLVM_READOBJ_ENUM_CASE(ELF, PT_NOTE );
1156 LLVM_READOBJ_ENUM_CASE(ELF, PT_SHLIB );
1157 LLVM_READOBJ_ENUM_CASE(ELF, PT_PHDR );
1158 LLVM_READOBJ_ENUM_CASE(ELF, PT_TLS );
1159
1160 LLVM_READOBJ_ENUM_CASE(ELF, PT_GNU_EH_FRAME);
1161 LLVM_READOBJ_ENUM_CASE(ELF, PT_SUNW_UNWIND);
1162
1163 LLVM_READOBJ_ENUM_CASE(ELF, PT_GNU_STACK);
1164 LLVM_READOBJ_ENUM_CASE(ELF, PT_GNU_RELRO);
1165 default: return "";
1166 }
1167 }
1168
getElfPtType(unsigned Arch,unsigned Type)1169 static std::string getElfPtType(unsigned Arch, unsigned Type) {
1170 switch (Type) {
1171 LLVM_READOBJ_PHDR_ENUM(ELF, PT_NULL)
1172 LLVM_READOBJ_PHDR_ENUM(ELF, PT_LOAD)
1173 LLVM_READOBJ_PHDR_ENUM(ELF, PT_DYNAMIC)
1174 LLVM_READOBJ_PHDR_ENUM(ELF, PT_INTERP)
1175 LLVM_READOBJ_PHDR_ENUM(ELF, PT_NOTE)
1176 LLVM_READOBJ_PHDR_ENUM(ELF, PT_SHLIB)
1177 LLVM_READOBJ_PHDR_ENUM(ELF, PT_PHDR)
1178 LLVM_READOBJ_PHDR_ENUM(ELF, PT_TLS)
1179 LLVM_READOBJ_PHDR_ENUM(ELF, PT_GNU_EH_FRAME)
1180 LLVM_READOBJ_PHDR_ENUM(ELF, PT_SUNW_UNWIND)
1181 LLVM_READOBJ_PHDR_ENUM(ELF, PT_GNU_STACK)
1182 LLVM_READOBJ_PHDR_ENUM(ELF, PT_GNU_RELRO)
1183 default:
1184 // All machine specific PT_* types
1185 switch (Arch) {
1186 case ELF::EM_AMDGPU:
1187 switch (Type) {
1188 LLVM_READOBJ_ENUM_CASE(ELF, PT_AMDGPU_HSA_LOAD_GLOBAL_PROGRAM);
1189 LLVM_READOBJ_ENUM_CASE(ELF, PT_AMDGPU_HSA_LOAD_GLOBAL_AGENT);
1190 LLVM_READOBJ_ENUM_CASE(ELF, PT_AMDGPU_HSA_LOAD_READONLY_AGENT);
1191 LLVM_READOBJ_ENUM_CASE(ELF, PT_AMDGPU_HSA_LOAD_CODE_AGENT);
1192 }
1193 return "";
1194 case ELF::EM_ARM:
1195 if (Type == ELF::PT_ARM_EXIDX)
1196 return "EXIDX";
1197 return "";
1198 case ELF::EM_MIPS:
1199 case ELF::EM_MIPS_RS3_LE:
1200 switch (Type) {
1201 case PT_MIPS_REGINFO:
1202 return "REGINFO";
1203 case PT_MIPS_RTPROC:
1204 return "RTPROC";
1205 case PT_MIPS_OPTIONS:
1206 return "OPTIONS";
1207 case PT_MIPS_ABIFLAGS:
1208 return "ABIFLAGS";
1209 }
1210 return "";
1211 }
1212 }
1213 return std::string("<unknown>: ") + to_string(format_hex(Type, 1));
1214 }
1215
1216 static const EnumEntry<unsigned> ElfSegmentFlags[] = {
1217 LLVM_READOBJ_ENUM_ENT(ELF, PF_X),
1218 LLVM_READOBJ_ENUM_ENT(ELF, PF_W),
1219 LLVM_READOBJ_ENUM_ENT(ELF, PF_R)
1220 };
1221
1222 static const EnumEntry<unsigned> ElfHeaderMipsFlags[] = {
1223 LLVM_READOBJ_ENUM_ENT(ELF, EF_MIPS_NOREORDER),
1224 LLVM_READOBJ_ENUM_ENT(ELF, EF_MIPS_PIC),
1225 LLVM_READOBJ_ENUM_ENT(ELF, EF_MIPS_CPIC),
1226 LLVM_READOBJ_ENUM_ENT(ELF, EF_MIPS_ABI2),
1227 LLVM_READOBJ_ENUM_ENT(ELF, EF_MIPS_32BITMODE),
1228 LLVM_READOBJ_ENUM_ENT(ELF, EF_MIPS_FP64),
1229 LLVM_READOBJ_ENUM_ENT(ELF, EF_MIPS_NAN2008),
1230 LLVM_READOBJ_ENUM_ENT(ELF, EF_MIPS_ABI_O32),
1231 LLVM_READOBJ_ENUM_ENT(ELF, EF_MIPS_ABI_O64),
1232 LLVM_READOBJ_ENUM_ENT(ELF, EF_MIPS_ABI_EABI32),
1233 LLVM_READOBJ_ENUM_ENT(ELF, EF_MIPS_ABI_EABI64),
1234 LLVM_READOBJ_ENUM_ENT(ELF, EF_MIPS_MACH_3900),
1235 LLVM_READOBJ_ENUM_ENT(ELF, EF_MIPS_MACH_4010),
1236 LLVM_READOBJ_ENUM_ENT(ELF, EF_MIPS_MACH_4100),
1237 LLVM_READOBJ_ENUM_ENT(ELF, EF_MIPS_MACH_4650),
1238 LLVM_READOBJ_ENUM_ENT(ELF, EF_MIPS_MACH_4120),
1239 LLVM_READOBJ_ENUM_ENT(ELF, EF_MIPS_MACH_4111),
1240 LLVM_READOBJ_ENUM_ENT(ELF, EF_MIPS_MACH_SB1),
1241 LLVM_READOBJ_ENUM_ENT(ELF, EF_MIPS_MACH_OCTEON),
1242 LLVM_READOBJ_ENUM_ENT(ELF, EF_MIPS_MACH_XLR),
1243 LLVM_READOBJ_ENUM_ENT(ELF, EF_MIPS_MACH_OCTEON2),
1244 LLVM_READOBJ_ENUM_ENT(ELF, EF_MIPS_MACH_OCTEON3),
1245 LLVM_READOBJ_ENUM_ENT(ELF, EF_MIPS_MACH_5400),
1246 LLVM_READOBJ_ENUM_ENT(ELF, EF_MIPS_MACH_5900),
1247 LLVM_READOBJ_ENUM_ENT(ELF, EF_MIPS_MACH_5500),
1248 LLVM_READOBJ_ENUM_ENT(ELF, EF_MIPS_MACH_9000),
1249 LLVM_READOBJ_ENUM_ENT(ELF, EF_MIPS_MACH_LS2E),
1250 LLVM_READOBJ_ENUM_ENT(ELF, EF_MIPS_MACH_LS2F),
1251 LLVM_READOBJ_ENUM_ENT(ELF, EF_MIPS_MACH_LS3A),
1252 LLVM_READOBJ_ENUM_ENT(ELF, EF_MIPS_MICROMIPS),
1253 LLVM_READOBJ_ENUM_ENT(ELF, EF_MIPS_ARCH_ASE_M16),
1254 LLVM_READOBJ_ENUM_ENT(ELF, EF_MIPS_ARCH_ASE_MDMX),
1255 LLVM_READOBJ_ENUM_ENT(ELF, EF_MIPS_ARCH_1),
1256 LLVM_READOBJ_ENUM_ENT(ELF, EF_MIPS_ARCH_2),
1257 LLVM_READOBJ_ENUM_ENT(ELF, EF_MIPS_ARCH_3),
1258 LLVM_READOBJ_ENUM_ENT(ELF, EF_MIPS_ARCH_4),
1259 LLVM_READOBJ_ENUM_ENT(ELF, EF_MIPS_ARCH_5),
1260 LLVM_READOBJ_ENUM_ENT(ELF, EF_MIPS_ARCH_32),
1261 LLVM_READOBJ_ENUM_ENT(ELF, EF_MIPS_ARCH_64),
1262 LLVM_READOBJ_ENUM_ENT(ELF, EF_MIPS_ARCH_32R2),
1263 LLVM_READOBJ_ENUM_ENT(ELF, EF_MIPS_ARCH_64R2),
1264 LLVM_READOBJ_ENUM_ENT(ELF, EF_MIPS_ARCH_32R6),
1265 LLVM_READOBJ_ENUM_ENT(ELF, EF_MIPS_ARCH_64R6)
1266 };
1267
1268 static const EnumEntry<unsigned> ElfSymOtherFlags[] = {
1269 LLVM_READOBJ_ENUM_ENT(ELF, STV_INTERNAL),
1270 LLVM_READOBJ_ENUM_ENT(ELF, STV_HIDDEN),
1271 LLVM_READOBJ_ENUM_ENT(ELF, STV_PROTECTED)
1272 };
1273
1274 static const EnumEntry<unsigned> ElfMipsSymOtherFlags[] = {
1275 LLVM_READOBJ_ENUM_ENT(ELF, STO_MIPS_OPTIONAL),
1276 LLVM_READOBJ_ENUM_ENT(ELF, STO_MIPS_PLT),
1277 LLVM_READOBJ_ENUM_ENT(ELF, STO_MIPS_PIC),
1278 LLVM_READOBJ_ENUM_ENT(ELF, STO_MIPS_MICROMIPS)
1279 };
1280
1281 static const EnumEntry<unsigned> ElfMips16SymOtherFlags[] = {
1282 LLVM_READOBJ_ENUM_ENT(ELF, STO_MIPS_OPTIONAL),
1283 LLVM_READOBJ_ENUM_ENT(ELF, STO_MIPS_PLT),
1284 LLVM_READOBJ_ENUM_ENT(ELF, STO_MIPS_MIPS16)
1285 };
1286
getElfMipsOptionsOdkType(unsigned Odk)1287 static const char *getElfMipsOptionsOdkType(unsigned Odk) {
1288 switch (Odk) {
1289 LLVM_READOBJ_ENUM_CASE(ELF, ODK_NULL);
1290 LLVM_READOBJ_ENUM_CASE(ELF, ODK_REGINFO);
1291 LLVM_READOBJ_ENUM_CASE(ELF, ODK_EXCEPTIONS);
1292 LLVM_READOBJ_ENUM_CASE(ELF, ODK_PAD);
1293 LLVM_READOBJ_ENUM_CASE(ELF, ODK_HWPATCH);
1294 LLVM_READOBJ_ENUM_CASE(ELF, ODK_FILL);
1295 LLVM_READOBJ_ENUM_CASE(ELF, ODK_TAGS);
1296 LLVM_READOBJ_ENUM_CASE(ELF, ODK_HWAND);
1297 LLVM_READOBJ_ENUM_CASE(ELF, ODK_HWOR);
1298 LLVM_READOBJ_ENUM_CASE(ELF, ODK_GP_GROUP);
1299 LLVM_READOBJ_ENUM_CASE(ELF, ODK_IDENT);
1300 LLVM_READOBJ_ENUM_CASE(ELF, ODK_PAGESIZE);
1301 default:
1302 return "Unknown";
1303 }
1304 }
1305
1306 template <typename ELFT>
ELFDumper(const ELFFile<ELFT> * Obj,ScopedPrinter & Writer)1307 ELFDumper<ELFT>::ELFDumper(const ELFFile<ELFT> *Obj, ScopedPrinter &Writer)
1308 : ObjDumper(Writer), Obj(Obj) {
1309
1310 SmallVector<const Elf_Phdr *, 4> LoadSegments;
1311 for (const Elf_Phdr &Phdr : Obj->program_headers()) {
1312 if (Phdr.p_type == ELF::PT_DYNAMIC) {
1313 DynamicTable = createDRIFrom(&Phdr, sizeof(Elf_Dyn));
1314 continue;
1315 }
1316 if (Phdr.p_type != ELF::PT_LOAD || Phdr.p_filesz == 0)
1317 continue;
1318 LoadSegments.push_back(&Phdr);
1319 }
1320
1321 for (const Elf_Shdr &Sec : Obj->sections()) {
1322 switch (Sec.sh_type) {
1323 case ELF::SHT_SYMTAB:
1324 if (DotSymtabSec != nullptr)
1325 reportError("Multilpe SHT_SYMTAB");
1326 DotSymtabSec = &Sec;
1327 break;
1328 case ELF::SHT_DYNSYM:
1329 if (DynSymRegion.Size)
1330 reportError("Multilpe SHT_DYNSYM");
1331 DynSymRegion = createDRIFrom(&Sec);
1332 // This is only used (if Elf_Shdr present)for naming section in GNU style
1333 DynSymtabName = unwrapOrError(Obj->getSectionName(&Sec));
1334 break;
1335 case ELF::SHT_SYMTAB_SHNDX:
1336 ShndxTable = unwrapOrError(Obj->getSHNDXTable(Sec));
1337 break;
1338 case ELF::SHT_GNU_versym:
1339 if (dot_gnu_version_sec != nullptr)
1340 reportError("Multiple SHT_GNU_versym");
1341 dot_gnu_version_sec = &Sec;
1342 break;
1343 case ELF::SHT_GNU_verdef:
1344 if (dot_gnu_version_d_sec != nullptr)
1345 reportError("Multiple SHT_GNU_verdef");
1346 dot_gnu_version_d_sec = &Sec;
1347 break;
1348 case ELF::SHT_GNU_verneed:
1349 if (dot_gnu_version_r_sec != nullptr)
1350 reportError("Multilpe SHT_GNU_verneed");
1351 dot_gnu_version_r_sec = &Sec;
1352 break;
1353 }
1354 }
1355
1356 parseDynamicTable(LoadSegments);
1357
1358 if (opts::Output == opts::GNU)
1359 ELFDumperStyle.reset(new GNUStyle<ELFT>(Writer, this));
1360 else
1361 ELFDumperStyle.reset(new LLVMStyle<ELFT>(Writer, this));
1362 }
1363
1364 template <typename ELFT>
parseDynamicTable(ArrayRef<const Elf_Phdr * > LoadSegments)1365 void ELFDumper<ELFT>::parseDynamicTable(
1366 ArrayRef<const Elf_Phdr *> LoadSegments) {
1367 auto toMappedAddr = [&](uint64_t VAddr) -> const uint8_t * {
1368 const Elf_Phdr *const *I = std::upper_bound(
1369 LoadSegments.begin(), LoadSegments.end(), VAddr, compareAddr<ELFT>);
1370 if (I == LoadSegments.begin())
1371 report_fatal_error("Virtual address is not in any segment");
1372 --I;
1373 const Elf_Phdr &Phdr = **I;
1374 uint64_t Delta = VAddr - Phdr.p_vaddr;
1375 if (Delta >= Phdr.p_filesz)
1376 report_fatal_error("Virtual address is not in any segment");
1377 return Obj->base() + Phdr.p_offset + Delta;
1378 };
1379
1380 uint64_t SONameOffset = 0;
1381 const char *StringTableBegin = nullptr;
1382 uint64_t StringTableSize = 0;
1383 for (const Elf_Dyn &Dyn : dynamic_table()) {
1384 switch (Dyn.d_tag) {
1385 case ELF::DT_HASH:
1386 HashTable =
1387 reinterpret_cast<const Elf_Hash *>(toMappedAddr(Dyn.getPtr()));
1388 break;
1389 case ELF::DT_GNU_HASH:
1390 GnuHashTable =
1391 reinterpret_cast<const Elf_GnuHash *>(toMappedAddr(Dyn.getPtr()));
1392 break;
1393 case ELF::DT_STRTAB:
1394 StringTableBegin = (const char *)toMappedAddr(Dyn.getPtr());
1395 break;
1396 case ELF::DT_STRSZ:
1397 StringTableSize = Dyn.getVal();
1398 break;
1399 case ELF::DT_SYMTAB:
1400 DynSymRegion.Addr = toMappedAddr(Dyn.getPtr());
1401 DynSymRegion.EntSize = sizeof(Elf_Sym);
1402 break;
1403 case ELF::DT_RELA:
1404 DynRelaRegion.Addr = toMappedAddr(Dyn.getPtr());
1405 break;
1406 case ELF::DT_RELASZ:
1407 DynRelaRegion.Size = Dyn.getVal();
1408 break;
1409 case ELF::DT_RELAENT:
1410 DynRelaRegion.EntSize = Dyn.getVal();
1411 break;
1412 case ELF::DT_SONAME:
1413 SONameOffset = Dyn.getVal();
1414 break;
1415 case ELF::DT_REL:
1416 DynRelRegion.Addr = toMappedAddr(Dyn.getPtr());
1417 break;
1418 case ELF::DT_RELSZ:
1419 DynRelRegion.Size = Dyn.getVal();
1420 break;
1421 case ELF::DT_RELENT:
1422 DynRelRegion.EntSize = Dyn.getVal();
1423 break;
1424 case ELF::DT_PLTREL:
1425 if (Dyn.getVal() == DT_REL)
1426 DynPLTRelRegion.EntSize = sizeof(Elf_Rel);
1427 else if (Dyn.getVal() == DT_RELA)
1428 DynPLTRelRegion.EntSize = sizeof(Elf_Rela);
1429 else
1430 reportError(Twine("unknown DT_PLTREL value of ") +
1431 Twine((uint64_t)Dyn.getVal()));
1432 break;
1433 case ELF::DT_JMPREL:
1434 DynPLTRelRegion.Addr = toMappedAddr(Dyn.getPtr());
1435 break;
1436 case ELF::DT_PLTRELSZ:
1437 DynPLTRelRegion.Size = Dyn.getVal();
1438 break;
1439 }
1440 }
1441 if (StringTableBegin)
1442 DynamicStringTable = StringRef(StringTableBegin, StringTableSize);
1443 if (SONameOffset)
1444 SOName = getDynamicString(SONameOffset);
1445 }
1446
1447 template <typename ELFT>
dyn_rels() const1448 typename ELFDumper<ELFT>::Elf_Rel_Range ELFDumper<ELFT>::dyn_rels() const {
1449 return DynRelRegion.getAsArrayRef<Elf_Rel>();
1450 }
1451
1452 template <typename ELFT>
dyn_relas() const1453 typename ELFDumper<ELFT>::Elf_Rela_Range ELFDumper<ELFT>::dyn_relas() const {
1454 return DynRelaRegion.getAsArrayRef<Elf_Rela>();
1455 }
1456
1457 template<class ELFT>
printFileHeaders()1458 void ELFDumper<ELFT>::printFileHeaders() {
1459 ELFDumperStyle->printFileHeaders(Obj);
1460 }
1461
1462 template<class ELFT>
printSections()1463 void ELFDumper<ELFT>::printSections() {
1464 ELFDumperStyle->printSections(Obj);
1465 }
1466
1467 template<class ELFT>
printRelocations()1468 void ELFDumper<ELFT>::printRelocations() {
1469 ELFDumperStyle->printRelocations(Obj);
1470 }
1471
printProgramHeaders()1472 template <class ELFT> void ELFDumper<ELFT>::printProgramHeaders() {
1473 ELFDumperStyle->printProgramHeaders(Obj);
1474 }
1475
printDynamicRelocations()1476 template <class ELFT> void ELFDumper<ELFT>::printDynamicRelocations() {
1477 ELFDumperStyle->printDynamicRelocations(Obj);
1478 }
1479
1480 template<class ELFT>
printSymbols()1481 void ELFDumper<ELFT>::printSymbols() {
1482 ELFDumperStyle->printSymbols(Obj);
1483 }
1484
1485 template<class ELFT>
printDynamicSymbols()1486 void ELFDumper<ELFT>::printDynamicSymbols() {
1487 ELFDumperStyle->printDynamicSymbols(Obj);
1488 }
1489
printHashHistogram()1490 template <class ELFT> void ELFDumper<ELFT>::printHashHistogram() {
1491 ELFDumperStyle->printHashHistogram(Obj);
1492 }
1493 #define LLVM_READOBJ_TYPE_CASE(name) \
1494 case DT_##name: return #name
1495
getTypeString(uint64_t Type)1496 static const char *getTypeString(uint64_t Type) {
1497 switch (Type) {
1498 LLVM_READOBJ_TYPE_CASE(BIND_NOW);
1499 LLVM_READOBJ_TYPE_CASE(DEBUG);
1500 LLVM_READOBJ_TYPE_CASE(FINI);
1501 LLVM_READOBJ_TYPE_CASE(FINI_ARRAY);
1502 LLVM_READOBJ_TYPE_CASE(FINI_ARRAYSZ);
1503 LLVM_READOBJ_TYPE_CASE(FLAGS);
1504 LLVM_READOBJ_TYPE_CASE(FLAGS_1);
1505 LLVM_READOBJ_TYPE_CASE(HASH);
1506 LLVM_READOBJ_TYPE_CASE(INIT);
1507 LLVM_READOBJ_TYPE_CASE(INIT_ARRAY);
1508 LLVM_READOBJ_TYPE_CASE(INIT_ARRAYSZ);
1509 LLVM_READOBJ_TYPE_CASE(PREINIT_ARRAY);
1510 LLVM_READOBJ_TYPE_CASE(PREINIT_ARRAYSZ);
1511 LLVM_READOBJ_TYPE_CASE(JMPREL);
1512 LLVM_READOBJ_TYPE_CASE(NEEDED);
1513 LLVM_READOBJ_TYPE_CASE(NULL);
1514 LLVM_READOBJ_TYPE_CASE(PLTGOT);
1515 LLVM_READOBJ_TYPE_CASE(PLTREL);
1516 LLVM_READOBJ_TYPE_CASE(PLTRELSZ);
1517 LLVM_READOBJ_TYPE_CASE(REL);
1518 LLVM_READOBJ_TYPE_CASE(RELA);
1519 LLVM_READOBJ_TYPE_CASE(RELENT);
1520 LLVM_READOBJ_TYPE_CASE(RELSZ);
1521 LLVM_READOBJ_TYPE_CASE(RELAENT);
1522 LLVM_READOBJ_TYPE_CASE(RELASZ);
1523 LLVM_READOBJ_TYPE_CASE(RPATH);
1524 LLVM_READOBJ_TYPE_CASE(RUNPATH);
1525 LLVM_READOBJ_TYPE_CASE(SONAME);
1526 LLVM_READOBJ_TYPE_CASE(STRSZ);
1527 LLVM_READOBJ_TYPE_CASE(STRTAB);
1528 LLVM_READOBJ_TYPE_CASE(SYMBOLIC);
1529 LLVM_READOBJ_TYPE_CASE(SYMENT);
1530 LLVM_READOBJ_TYPE_CASE(SYMTAB);
1531 LLVM_READOBJ_TYPE_CASE(TEXTREL);
1532 LLVM_READOBJ_TYPE_CASE(VERDEF);
1533 LLVM_READOBJ_TYPE_CASE(VERDEFNUM);
1534 LLVM_READOBJ_TYPE_CASE(VERNEED);
1535 LLVM_READOBJ_TYPE_CASE(VERNEEDNUM);
1536 LLVM_READOBJ_TYPE_CASE(VERSYM);
1537 LLVM_READOBJ_TYPE_CASE(RELACOUNT);
1538 LLVM_READOBJ_TYPE_CASE(RELCOUNT);
1539 LLVM_READOBJ_TYPE_CASE(GNU_HASH);
1540 LLVM_READOBJ_TYPE_CASE(TLSDESC_PLT);
1541 LLVM_READOBJ_TYPE_CASE(TLSDESC_GOT);
1542 LLVM_READOBJ_TYPE_CASE(MIPS_RLD_VERSION);
1543 LLVM_READOBJ_TYPE_CASE(MIPS_RLD_MAP_REL);
1544 LLVM_READOBJ_TYPE_CASE(MIPS_FLAGS);
1545 LLVM_READOBJ_TYPE_CASE(MIPS_BASE_ADDRESS);
1546 LLVM_READOBJ_TYPE_CASE(MIPS_LOCAL_GOTNO);
1547 LLVM_READOBJ_TYPE_CASE(MIPS_SYMTABNO);
1548 LLVM_READOBJ_TYPE_CASE(MIPS_UNREFEXTNO);
1549 LLVM_READOBJ_TYPE_CASE(MIPS_GOTSYM);
1550 LLVM_READOBJ_TYPE_CASE(MIPS_RLD_MAP);
1551 LLVM_READOBJ_TYPE_CASE(MIPS_PLTGOT);
1552 LLVM_READOBJ_TYPE_CASE(MIPS_OPTIONS);
1553 default: return "unknown";
1554 }
1555 }
1556
1557 #undef LLVM_READOBJ_TYPE_CASE
1558
1559 #define LLVM_READOBJ_DT_FLAG_ENT(prefix, enum) \
1560 { #enum, prefix##_##enum }
1561
1562 static const EnumEntry<unsigned> ElfDynamicDTFlags[] = {
1563 LLVM_READOBJ_DT_FLAG_ENT(DF, ORIGIN),
1564 LLVM_READOBJ_DT_FLAG_ENT(DF, SYMBOLIC),
1565 LLVM_READOBJ_DT_FLAG_ENT(DF, TEXTREL),
1566 LLVM_READOBJ_DT_FLAG_ENT(DF, BIND_NOW),
1567 LLVM_READOBJ_DT_FLAG_ENT(DF, STATIC_TLS)
1568 };
1569
1570 static const EnumEntry<unsigned> ElfDynamicDTFlags1[] = {
1571 LLVM_READOBJ_DT_FLAG_ENT(DF_1, NOW),
1572 LLVM_READOBJ_DT_FLAG_ENT(DF_1, GLOBAL),
1573 LLVM_READOBJ_DT_FLAG_ENT(DF_1, GROUP),
1574 LLVM_READOBJ_DT_FLAG_ENT(DF_1, NODELETE),
1575 LLVM_READOBJ_DT_FLAG_ENT(DF_1, LOADFLTR),
1576 LLVM_READOBJ_DT_FLAG_ENT(DF_1, INITFIRST),
1577 LLVM_READOBJ_DT_FLAG_ENT(DF_1, NOOPEN),
1578 LLVM_READOBJ_DT_FLAG_ENT(DF_1, ORIGIN),
1579 LLVM_READOBJ_DT_FLAG_ENT(DF_1, DIRECT),
1580 LLVM_READOBJ_DT_FLAG_ENT(DF_1, TRANS),
1581 LLVM_READOBJ_DT_FLAG_ENT(DF_1, INTERPOSE),
1582 LLVM_READOBJ_DT_FLAG_ENT(DF_1, NODEFLIB),
1583 LLVM_READOBJ_DT_FLAG_ENT(DF_1, NODUMP),
1584 LLVM_READOBJ_DT_FLAG_ENT(DF_1, CONFALT),
1585 LLVM_READOBJ_DT_FLAG_ENT(DF_1, ENDFILTEE),
1586 LLVM_READOBJ_DT_FLAG_ENT(DF_1, DISPRELDNE),
1587 LLVM_READOBJ_DT_FLAG_ENT(DF_1, NODIRECT),
1588 LLVM_READOBJ_DT_FLAG_ENT(DF_1, IGNMULDEF),
1589 LLVM_READOBJ_DT_FLAG_ENT(DF_1, NOKSYMS),
1590 LLVM_READOBJ_DT_FLAG_ENT(DF_1, NOHDR),
1591 LLVM_READOBJ_DT_FLAG_ENT(DF_1, EDITED),
1592 LLVM_READOBJ_DT_FLAG_ENT(DF_1, NORELOC),
1593 LLVM_READOBJ_DT_FLAG_ENT(DF_1, SYMINTPOSE),
1594 LLVM_READOBJ_DT_FLAG_ENT(DF_1, GLOBAUDIT),
1595 LLVM_READOBJ_DT_FLAG_ENT(DF_1, SINGLETON)
1596 };
1597
1598 static const EnumEntry<unsigned> ElfDynamicDTMipsFlags[] = {
1599 LLVM_READOBJ_DT_FLAG_ENT(RHF, NONE),
1600 LLVM_READOBJ_DT_FLAG_ENT(RHF, QUICKSTART),
1601 LLVM_READOBJ_DT_FLAG_ENT(RHF, NOTPOT),
1602 LLVM_READOBJ_DT_FLAG_ENT(RHS, NO_LIBRARY_REPLACEMENT),
1603 LLVM_READOBJ_DT_FLAG_ENT(RHF, NO_MOVE),
1604 LLVM_READOBJ_DT_FLAG_ENT(RHF, SGI_ONLY),
1605 LLVM_READOBJ_DT_FLAG_ENT(RHF, GUARANTEE_INIT),
1606 LLVM_READOBJ_DT_FLAG_ENT(RHF, DELTA_C_PLUS_PLUS),
1607 LLVM_READOBJ_DT_FLAG_ENT(RHF, GUARANTEE_START_INIT),
1608 LLVM_READOBJ_DT_FLAG_ENT(RHF, PIXIE),
1609 LLVM_READOBJ_DT_FLAG_ENT(RHF, DEFAULT_DELAY_LOAD),
1610 LLVM_READOBJ_DT_FLAG_ENT(RHF, REQUICKSTART),
1611 LLVM_READOBJ_DT_FLAG_ENT(RHF, REQUICKSTARTED),
1612 LLVM_READOBJ_DT_FLAG_ENT(RHF, CORD),
1613 LLVM_READOBJ_DT_FLAG_ENT(RHF, NO_UNRES_UNDEF),
1614 LLVM_READOBJ_DT_FLAG_ENT(RHF, RLD_ORDER_SAFE)
1615 };
1616
1617 #undef LLVM_READOBJ_DT_FLAG_ENT
1618
1619 template <typename T, typename TFlag>
printFlags(T Value,ArrayRef<EnumEntry<TFlag>> Flags,raw_ostream & OS)1620 void printFlags(T Value, ArrayRef<EnumEntry<TFlag>> Flags, raw_ostream &OS) {
1621 typedef EnumEntry<TFlag> FlagEntry;
1622 typedef SmallVector<FlagEntry, 10> FlagVector;
1623 FlagVector SetFlags;
1624
1625 for (const auto &Flag : Flags) {
1626 if (Flag.Value == 0)
1627 continue;
1628
1629 if ((Value & Flag.Value) == Flag.Value)
1630 SetFlags.push_back(Flag);
1631 }
1632
1633 for (const auto &Flag : SetFlags) {
1634 OS << Flag.Name << " ";
1635 }
1636 }
1637
1638 template <class ELFT>
getDynamicString(uint64_t Value) const1639 StringRef ELFDumper<ELFT>::getDynamicString(uint64_t Value) const {
1640 if (Value >= DynamicStringTable.size())
1641 reportError("Invalid dynamic string table reference");
1642 return StringRef(DynamicStringTable.data() + Value);
1643 }
1644
1645 template <class ELFT>
printValue(uint64_t Type,uint64_t Value)1646 void ELFDumper<ELFT>::printValue(uint64_t Type, uint64_t Value) {
1647 raw_ostream &OS = W.getOStream();
1648 const char* ConvChar = (opts::Output == opts::GNU) ? "0x%" PRIx64 : "0x%" PRIX64;
1649 switch (Type) {
1650 case DT_PLTREL:
1651 if (Value == DT_REL) {
1652 OS << "REL";
1653 break;
1654 } else if (Value == DT_RELA) {
1655 OS << "RELA";
1656 break;
1657 }
1658 // Fallthrough.
1659 case DT_PLTGOT:
1660 case DT_HASH:
1661 case DT_STRTAB:
1662 case DT_SYMTAB:
1663 case DT_RELA:
1664 case DT_INIT:
1665 case DT_FINI:
1666 case DT_REL:
1667 case DT_JMPREL:
1668 case DT_INIT_ARRAY:
1669 case DT_FINI_ARRAY:
1670 case DT_PREINIT_ARRAY:
1671 case DT_DEBUG:
1672 case DT_VERDEF:
1673 case DT_VERNEED:
1674 case DT_VERSYM:
1675 case DT_GNU_HASH:
1676 case DT_NULL:
1677 case DT_MIPS_BASE_ADDRESS:
1678 case DT_MIPS_GOTSYM:
1679 case DT_MIPS_RLD_MAP:
1680 case DT_MIPS_RLD_MAP_REL:
1681 case DT_MIPS_PLTGOT:
1682 case DT_MIPS_OPTIONS:
1683 OS << format(ConvChar, Value);
1684 break;
1685 case DT_RELACOUNT:
1686 case DT_RELCOUNT:
1687 case DT_VERDEFNUM:
1688 case DT_VERNEEDNUM:
1689 case DT_MIPS_RLD_VERSION:
1690 case DT_MIPS_LOCAL_GOTNO:
1691 case DT_MIPS_SYMTABNO:
1692 case DT_MIPS_UNREFEXTNO:
1693 OS << Value;
1694 break;
1695 case DT_PLTRELSZ:
1696 case DT_RELASZ:
1697 case DT_RELAENT:
1698 case DT_STRSZ:
1699 case DT_SYMENT:
1700 case DT_RELSZ:
1701 case DT_RELENT:
1702 case DT_INIT_ARRAYSZ:
1703 case DT_FINI_ARRAYSZ:
1704 case DT_PREINIT_ARRAYSZ:
1705 OS << Value << " (bytes)";
1706 break;
1707 case DT_NEEDED:
1708 OS << "SharedLibrary (" << getDynamicString(Value) << ")";
1709 break;
1710 case DT_SONAME:
1711 OS << "LibrarySoname (" << getDynamicString(Value) << ")";
1712 break;
1713 case DT_RPATH:
1714 case DT_RUNPATH:
1715 OS << getDynamicString(Value);
1716 break;
1717 case DT_MIPS_FLAGS:
1718 printFlags(Value, makeArrayRef(ElfDynamicDTMipsFlags), OS);
1719 break;
1720 case DT_FLAGS:
1721 printFlags(Value, makeArrayRef(ElfDynamicDTFlags), OS);
1722 break;
1723 case DT_FLAGS_1:
1724 printFlags(Value, makeArrayRef(ElfDynamicDTFlags1), OS);
1725 break;
1726 default:
1727 OS << format(ConvChar, Value);
1728 break;
1729 }
1730 }
1731
1732 template<class ELFT>
printUnwindInfo()1733 void ELFDumper<ELFT>::printUnwindInfo() {
1734 W.startLine() << "UnwindInfo not implemented.\n";
1735 }
1736
1737 namespace {
printUnwindInfo()1738 template <> void ELFDumper<ELFType<support::little, false>>::printUnwindInfo() {
1739 const unsigned Machine = Obj->getHeader()->e_machine;
1740 if (Machine == EM_ARM) {
1741 ARM::EHABI::PrinterContext<ELFType<support::little, false>> Ctx(
1742 W, Obj, DotSymtabSec);
1743 return Ctx.PrintUnwindInformation();
1744 }
1745 W.startLine() << "UnwindInfo not implemented.\n";
1746 }
1747 }
1748
1749 template<class ELFT>
printDynamicTable()1750 void ELFDumper<ELFT>::printDynamicTable() {
1751 auto I = dynamic_table().begin();
1752 auto E = dynamic_table().end();
1753
1754 if (I == E)
1755 return;
1756
1757 --E;
1758 while (I != E && E->getTag() == ELF::DT_NULL)
1759 --E;
1760 if (E->getTag() != ELF::DT_NULL)
1761 ++E;
1762 ++E;
1763
1764 ptrdiff_t Total = std::distance(I, E);
1765 if (Total == 0)
1766 return;
1767
1768 raw_ostream &OS = W.getOStream();
1769 W.startLine() << "DynamicSection [ (" << Total << " entries)\n";
1770
1771 bool Is64 = ELFT::Is64Bits;
1772
1773 W.startLine()
1774 << " Tag" << (Is64 ? " " : " ") << "Type"
1775 << " " << "Name/Value\n";
1776 while (I != E) {
1777 const Elf_Dyn &Entry = *I;
1778 uintX_t Tag = Entry.getTag();
1779 ++I;
1780 W.startLine() << " " << format_hex(Tag, Is64 ? 18 : 10, opts::Output != opts::GNU) << " "
1781 << format("%-21s", getTypeString(Tag));
1782 printValue(Tag, Entry.getVal());
1783 OS << "\n";
1784 }
1785
1786 W.startLine() << "]\n";
1787 }
1788
1789 template<class ELFT>
printNeededLibraries()1790 void ELFDumper<ELFT>::printNeededLibraries() {
1791 ListScope D(W, "NeededLibraries");
1792
1793 typedef std::vector<StringRef> LibsTy;
1794 LibsTy Libs;
1795
1796 for (const auto &Entry : dynamic_table())
1797 if (Entry.d_tag == ELF::DT_NEEDED)
1798 Libs.push_back(getDynamicString(Entry.d_un.d_val));
1799
1800 std::stable_sort(Libs.begin(), Libs.end());
1801
1802 for (const auto &L : Libs) {
1803 outs() << " " << L << "\n";
1804 }
1805 }
1806
1807
1808 template <typename ELFT>
printHashTable()1809 void ELFDumper<ELFT>::printHashTable() {
1810 DictScope D(W, "HashTable");
1811 if (!HashTable)
1812 return;
1813 W.printNumber("Num Buckets", HashTable->nbucket);
1814 W.printNumber("Num Chains", HashTable->nchain);
1815 W.printList("Buckets", HashTable->buckets());
1816 W.printList("Chains", HashTable->chains());
1817 }
1818
1819 template <typename ELFT>
printGnuHashTable()1820 void ELFDumper<ELFT>::printGnuHashTable() {
1821 DictScope D(W, "GnuHashTable");
1822 if (!GnuHashTable)
1823 return;
1824 W.printNumber("Num Buckets", GnuHashTable->nbuckets);
1825 W.printNumber("First Hashed Symbol Index", GnuHashTable->symndx);
1826 W.printNumber("Num Mask Words", GnuHashTable->maskwords);
1827 W.printNumber("Shift Count", GnuHashTable->shift2);
1828 W.printHexList("Bloom Filter", GnuHashTable->filter());
1829 W.printList("Buckets", GnuHashTable->buckets());
1830 Elf_Sym_Range Syms = dynamic_symbols();
1831 unsigned NumSyms = std::distance(Syms.begin(), Syms.end());
1832 if (!NumSyms)
1833 reportError("No dynamic symbol section");
1834 W.printHexList("Values", GnuHashTable->values(NumSyms));
1835 }
1836
printLoadName()1837 template <typename ELFT> void ELFDumper<ELFT>::printLoadName() {
1838 outs() << "LoadName: " << SOName << '\n';
1839 }
1840
1841 template <class ELFT>
printAttributes()1842 void ELFDumper<ELFT>::printAttributes() {
1843 W.startLine() << "Attributes not implemented.\n";
1844 }
1845
1846 namespace {
printAttributes()1847 template <> void ELFDumper<ELFType<support::little, false>>::printAttributes() {
1848 if (Obj->getHeader()->e_machine != EM_ARM) {
1849 W.startLine() << "Attributes not implemented.\n";
1850 return;
1851 }
1852
1853 DictScope BA(W, "BuildAttributes");
1854 for (const ELFO::Elf_Shdr &Sec : Obj->sections()) {
1855 if (Sec.sh_type != ELF::SHT_ARM_ATTRIBUTES)
1856 continue;
1857
1858 ArrayRef<uint8_t> Contents = unwrapOrError(Obj->getSectionContents(&Sec));
1859 if (Contents[0] != ARMBuildAttrs::Format_Version) {
1860 errs() << "unrecognised FormatVersion: 0x" << utohexstr(Contents[0])
1861 << '\n';
1862 continue;
1863 }
1864
1865 W.printHex("FormatVersion", Contents[0]);
1866 if (Contents.size() == 1)
1867 continue;
1868
1869 ARMAttributeParser(W).Parse(Contents);
1870 }
1871 }
1872 }
1873
1874 namespace {
1875 template <class ELFT> class MipsGOTParser {
1876 public:
1877 typedef object::ELFFile<ELFT> ELFO;
1878 typedef typename ELFO::Elf_Shdr Elf_Shdr;
1879 typedef typename ELFO::Elf_Sym Elf_Sym;
1880 typedef typename ELFO::Elf_Dyn_Range Elf_Dyn_Range;
1881 typedef typename ELFO::Elf_Addr GOTEntry;
1882 typedef typename ELFO::Elf_Rel Elf_Rel;
1883 typedef typename ELFO::Elf_Rela Elf_Rela;
1884
1885 MipsGOTParser(ELFDumper<ELFT> *Dumper, const ELFO *Obj,
1886 Elf_Dyn_Range DynTable, ScopedPrinter &W);
1887
1888 void parseGOT();
1889 void parsePLT();
1890
1891 private:
1892 ELFDumper<ELFT> *Dumper;
1893 const ELFO *Obj;
1894 ScopedPrinter &W;
1895 llvm::Optional<uint64_t> DtPltGot;
1896 llvm::Optional<uint64_t> DtLocalGotNum;
1897 llvm::Optional<uint64_t> DtGotSym;
1898 llvm::Optional<uint64_t> DtMipsPltGot;
1899 llvm::Optional<uint64_t> DtJmpRel;
1900
1901 std::size_t getGOTTotal(ArrayRef<uint8_t> GOT) const;
1902 const GOTEntry *makeGOTIter(ArrayRef<uint8_t> GOT, std::size_t EntryNum);
1903
1904 void printGotEntry(uint64_t GotAddr, const GOTEntry *BeginIt,
1905 const GOTEntry *It);
1906 void printGlobalGotEntry(uint64_t GotAddr, const GOTEntry *BeginIt,
1907 const GOTEntry *It, const Elf_Sym *Sym,
1908 StringRef StrTable, bool IsDynamic);
1909 void printPLTEntry(uint64_t PLTAddr, const GOTEntry *BeginIt,
1910 const GOTEntry *It, StringRef Purpose);
1911 void printPLTEntry(uint64_t PLTAddr, const GOTEntry *BeginIt,
1912 const GOTEntry *It, StringRef StrTable,
1913 const Elf_Sym *Sym);
1914 };
1915 }
1916
1917 template <class ELFT>
MipsGOTParser(ELFDumper<ELFT> * Dumper,const ELFO * Obj,Elf_Dyn_Range DynTable,ScopedPrinter & W)1918 MipsGOTParser<ELFT>::MipsGOTParser(ELFDumper<ELFT> *Dumper, const ELFO *Obj,
1919 Elf_Dyn_Range DynTable, ScopedPrinter &W)
1920 : Dumper(Dumper), Obj(Obj), W(W) {
1921 for (const auto &Entry : DynTable) {
1922 switch (Entry.getTag()) {
1923 case ELF::DT_PLTGOT:
1924 DtPltGot = Entry.getVal();
1925 break;
1926 case ELF::DT_MIPS_LOCAL_GOTNO:
1927 DtLocalGotNum = Entry.getVal();
1928 break;
1929 case ELF::DT_MIPS_GOTSYM:
1930 DtGotSym = Entry.getVal();
1931 break;
1932 case ELF::DT_MIPS_PLTGOT:
1933 DtMipsPltGot = Entry.getVal();
1934 break;
1935 case ELF::DT_JMPREL:
1936 DtJmpRel = Entry.getVal();
1937 break;
1938 }
1939 }
1940 }
1941
parseGOT()1942 template <class ELFT> void MipsGOTParser<ELFT>::parseGOT() {
1943 // See "Global Offset Table" in Chapter 5 in the following document
1944 // for detailed GOT description.
1945 // ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf
1946 if (!DtPltGot) {
1947 W.startLine() << "Cannot find PLTGOT dynamic table tag.\n";
1948 return;
1949 }
1950 if (!DtLocalGotNum) {
1951 W.startLine() << "Cannot find MIPS_LOCAL_GOTNO dynamic table tag.\n";
1952 return;
1953 }
1954 if (!DtGotSym) {
1955 W.startLine() << "Cannot find MIPS_GOTSYM dynamic table tag.\n";
1956 return;
1957 }
1958
1959 StringRef StrTable = Dumper->getDynamicStringTable();
1960 const Elf_Sym *DynSymBegin = Dumper->dynamic_symbols().begin();
1961 const Elf_Sym *DynSymEnd = Dumper->dynamic_symbols().end();
1962 std::size_t DynSymTotal = std::size_t(std::distance(DynSymBegin, DynSymEnd));
1963
1964 if (*DtGotSym > DynSymTotal)
1965 report_fatal_error("MIPS_GOTSYM exceeds a number of dynamic symbols");
1966
1967 std::size_t GlobalGotNum = DynSymTotal - *DtGotSym;
1968
1969 if (*DtLocalGotNum + GlobalGotNum == 0) {
1970 W.startLine() << "GOT is empty.\n";
1971 return;
1972 }
1973
1974 const Elf_Shdr *GOTShdr = findNotEmptySectionByAddress(Obj, *DtPltGot);
1975 if (!GOTShdr)
1976 report_fatal_error("There is no not empty GOT section at 0x" +
1977 Twine::utohexstr(*DtPltGot));
1978
1979 ArrayRef<uint8_t> GOT = unwrapOrError(Obj->getSectionContents(GOTShdr));
1980
1981 if (*DtLocalGotNum + GlobalGotNum > getGOTTotal(GOT))
1982 report_fatal_error("Number of GOT entries exceeds the size of GOT section");
1983
1984 const GOTEntry *GotBegin = makeGOTIter(GOT, 0);
1985 const GOTEntry *GotLocalEnd = makeGOTIter(GOT, *DtLocalGotNum);
1986 const GOTEntry *It = GotBegin;
1987
1988 DictScope GS(W, "Primary GOT");
1989
1990 W.printHex("Canonical gp value", GOTShdr->sh_addr + 0x7ff0);
1991 {
1992 ListScope RS(W, "Reserved entries");
1993
1994 {
1995 DictScope D(W, "Entry");
1996 printGotEntry(GOTShdr->sh_addr, GotBegin, It++);
1997 W.printString("Purpose", StringRef("Lazy resolver"));
1998 }
1999
2000 if (It != GotLocalEnd && (*It >> (sizeof(GOTEntry) * 8 - 1)) != 0) {
2001 DictScope D(W, "Entry");
2002 printGotEntry(GOTShdr->sh_addr, GotBegin, It++);
2003 W.printString("Purpose", StringRef("Module pointer (GNU extension)"));
2004 }
2005 }
2006 {
2007 ListScope LS(W, "Local entries");
2008 for (; It != GotLocalEnd; ++It) {
2009 DictScope D(W, "Entry");
2010 printGotEntry(GOTShdr->sh_addr, GotBegin, It);
2011 }
2012 }
2013 {
2014 ListScope GS(W, "Global entries");
2015
2016 const GOTEntry *GotGlobalEnd =
2017 makeGOTIter(GOT, *DtLocalGotNum + GlobalGotNum);
2018 const Elf_Sym *GotDynSym = DynSymBegin + *DtGotSym;
2019 for (; It != GotGlobalEnd; ++It) {
2020 DictScope D(W, "Entry");
2021 printGlobalGotEntry(GOTShdr->sh_addr, GotBegin, It, GotDynSym++, StrTable,
2022 true);
2023 }
2024 }
2025
2026 std::size_t SpecGotNum = getGOTTotal(GOT) - *DtLocalGotNum - GlobalGotNum;
2027 W.printNumber("Number of TLS and multi-GOT entries", uint64_t(SpecGotNum));
2028 }
2029
parsePLT()2030 template <class ELFT> void MipsGOTParser<ELFT>::parsePLT() {
2031 if (!DtMipsPltGot) {
2032 W.startLine() << "Cannot find MIPS_PLTGOT dynamic table tag.\n";
2033 return;
2034 }
2035 if (!DtJmpRel) {
2036 W.startLine() << "Cannot find JMPREL dynamic table tag.\n";
2037 return;
2038 }
2039
2040 const Elf_Shdr *PLTShdr = findNotEmptySectionByAddress(Obj, *DtMipsPltGot);
2041 if (!PLTShdr)
2042 report_fatal_error("There is no not empty PLTGOT section at 0x " +
2043 Twine::utohexstr(*DtMipsPltGot));
2044 ArrayRef<uint8_t> PLT = unwrapOrError(Obj->getSectionContents(PLTShdr));
2045
2046 const Elf_Shdr *PLTRelShdr = findNotEmptySectionByAddress(Obj, *DtJmpRel);
2047 if (!PLTRelShdr)
2048 report_fatal_error("There is no not empty RELPLT section at 0x" +
2049 Twine::utohexstr(*DtJmpRel));
2050 const Elf_Shdr *SymTable =
2051 unwrapOrError(Obj->getSection(PLTRelShdr->sh_link));
2052 StringRef StrTable = unwrapOrError(Obj->getStringTableForSymtab(*SymTable));
2053
2054 const GOTEntry *PLTBegin = makeGOTIter(PLT, 0);
2055 const GOTEntry *PLTEnd = makeGOTIter(PLT, getGOTTotal(PLT));
2056 const GOTEntry *It = PLTBegin;
2057
2058 DictScope GS(W, "PLT GOT");
2059 {
2060 ListScope RS(W, "Reserved entries");
2061 printPLTEntry(PLTShdr->sh_addr, PLTBegin, It++, "PLT lazy resolver");
2062 if (It != PLTEnd)
2063 printPLTEntry(PLTShdr->sh_addr, PLTBegin, It++, "Module pointer");
2064 }
2065 {
2066 ListScope GS(W, "Entries");
2067
2068 switch (PLTRelShdr->sh_type) {
2069 case ELF::SHT_REL:
2070 for (const Elf_Rel *RI = Obj->rel_begin(PLTRelShdr),
2071 *RE = Obj->rel_end(PLTRelShdr);
2072 RI != RE && It != PLTEnd; ++RI, ++It) {
2073 const Elf_Sym *Sym = Obj->getRelocationSymbol(&*RI, SymTable);
2074 printPLTEntry(PLTShdr->sh_addr, PLTBegin, It, StrTable, Sym);
2075 }
2076 break;
2077 case ELF::SHT_RELA:
2078 for (const Elf_Rela *RI = Obj->rela_begin(PLTRelShdr),
2079 *RE = Obj->rela_end(PLTRelShdr);
2080 RI != RE && It != PLTEnd; ++RI, ++It) {
2081 const Elf_Sym *Sym = Obj->getRelocationSymbol(&*RI, SymTable);
2082 printPLTEntry(PLTShdr->sh_addr, PLTBegin, It, StrTable, Sym);
2083 }
2084 break;
2085 }
2086 }
2087 }
2088
2089 template <class ELFT>
getGOTTotal(ArrayRef<uint8_t> GOT) const2090 std::size_t MipsGOTParser<ELFT>::getGOTTotal(ArrayRef<uint8_t> GOT) const {
2091 return GOT.size() / sizeof(GOTEntry);
2092 }
2093
2094 template <class ELFT>
2095 const typename MipsGOTParser<ELFT>::GOTEntry *
makeGOTIter(ArrayRef<uint8_t> GOT,std::size_t EntryNum)2096 MipsGOTParser<ELFT>::makeGOTIter(ArrayRef<uint8_t> GOT, std::size_t EntryNum) {
2097 const char *Data = reinterpret_cast<const char *>(GOT.data());
2098 return reinterpret_cast<const GOTEntry *>(Data + EntryNum * sizeof(GOTEntry));
2099 }
2100
2101 template <class ELFT>
printGotEntry(uint64_t GotAddr,const GOTEntry * BeginIt,const GOTEntry * It)2102 void MipsGOTParser<ELFT>::printGotEntry(uint64_t GotAddr,
2103 const GOTEntry *BeginIt,
2104 const GOTEntry *It) {
2105 int64_t Offset = std::distance(BeginIt, It) * sizeof(GOTEntry);
2106 W.printHex("Address", GotAddr + Offset);
2107 W.printNumber("Access", Offset - 0x7ff0);
2108 W.printHex("Initial", *It);
2109 }
2110
2111 template <class ELFT>
printGlobalGotEntry(uint64_t GotAddr,const GOTEntry * BeginIt,const GOTEntry * It,const Elf_Sym * Sym,StringRef StrTable,bool IsDynamic)2112 void MipsGOTParser<ELFT>::printGlobalGotEntry(
2113 uint64_t GotAddr, const GOTEntry *BeginIt, const GOTEntry *It,
2114 const Elf_Sym *Sym, StringRef StrTable, bool IsDynamic) {
2115 printGotEntry(GotAddr, BeginIt, It);
2116
2117 W.printHex("Value", Sym->st_value);
2118 W.printEnum("Type", Sym->getType(), makeArrayRef(ElfSymbolTypes));
2119
2120 unsigned SectionIndex = 0;
2121 StringRef SectionName;
2122 getSectionNameIndex(*Obj, Sym, Dumper->dynamic_symbols().begin(),
2123 Dumper->getShndxTable(), SectionName, SectionIndex);
2124 W.printHex("Section", SectionName, SectionIndex);
2125
2126 std::string FullSymbolName =
2127 Dumper->getFullSymbolName(Sym, StrTable, IsDynamic);
2128 W.printNumber("Name", FullSymbolName, Sym->st_name);
2129 }
2130
2131 template <class ELFT>
printPLTEntry(uint64_t PLTAddr,const GOTEntry * BeginIt,const GOTEntry * It,StringRef Purpose)2132 void MipsGOTParser<ELFT>::printPLTEntry(uint64_t PLTAddr,
2133 const GOTEntry *BeginIt,
2134 const GOTEntry *It, StringRef Purpose) {
2135 DictScope D(W, "Entry");
2136 int64_t Offset = std::distance(BeginIt, It) * sizeof(GOTEntry);
2137 W.printHex("Address", PLTAddr + Offset);
2138 W.printHex("Initial", *It);
2139 W.printString("Purpose", Purpose);
2140 }
2141
2142 template <class ELFT>
printPLTEntry(uint64_t PLTAddr,const GOTEntry * BeginIt,const GOTEntry * It,StringRef StrTable,const Elf_Sym * Sym)2143 void MipsGOTParser<ELFT>::printPLTEntry(uint64_t PLTAddr,
2144 const GOTEntry *BeginIt,
2145 const GOTEntry *It, StringRef StrTable,
2146 const Elf_Sym *Sym) {
2147 DictScope D(W, "Entry");
2148 int64_t Offset = std::distance(BeginIt, It) * sizeof(GOTEntry);
2149 W.printHex("Address", PLTAddr + Offset);
2150 W.printHex("Initial", *It);
2151 W.printHex("Value", Sym->st_value);
2152 W.printEnum("Type", Sym->getType(), makeArrayRef(ElfSymbolTypes));
2153
2154 unsigned SectionIndex = 0;
2155 StringRef SectionName;
2156 getSectionNameIndex(*Obj, Sym, Dumper->dynamic_symbols().begin(),
2157 Dumper->getShndxTable(), SectionName, SectionIndex);
2158 W.printHex("Section", SectionName, SectionIndex);
2159
2160 std::string FullSymbolName = Dumper->getFullSymbolName(Sym, StrTable, true);
2161 W.printNumber("Name", FullSymbolName, Sym->st_name);
2162 }
2163
printMipsPLTGOT()2164 template <class ELFT> void ELFDumper<ELFT>::printMipsPLTGOT() {
2165 if (Obj->getHeader()->e_machine != EM_MIPS) {
2166 W.startLine() << "MIPS PLT GOT is available for MIPS targets only.\n";
2167 return;
2168 }
2169
2170 MipsGOTParser<ELFT> GOTParser(this, Obj, dynamic_table(), W);
2171 GOTParser.parseGOT();
2172 GOTParser.parsePLT();
2173 }
2174
2175 static const EnumEntry<unsigned> ElfMipsISAExtType[] = {
2176 {"None", Mips::AFL_EXT_NONE},
2177 {"Broadcom SB-1", Mips::AFL_EXT_SB1},
2178 {"Cavium Networks Octeon", Mips::AFL_EXT_OCTEON},
2179 {"Cavium Networks Octeon2", Mips::AFL_EXT_OCTEON2},
2180 {"Cavium Networks OcteonP", Mips::AFL_EXT_OCTEONP},
2181 {"Cavium Networks Octeon3", Mips::AFL_EXT_OCTEON3},
2182 {"LSI R4010", Mips::AFL_EXT_4010},
2183 {"Loongson 2E", Mips::AFL_EXT_LOONGSON_2E},
2184 {"Loongson 2F", Mips::AFL_EXT_LOONGSON_2F},
2185 {"Loongson 3A", Mips::AFL_EXT_LOONGSON_3A},
2186 {"MIPS R4650", Mips::AFL_EXT_4650},
2187 {"MIPS R5900", Mips::AFL_EXT_5900},
2188 {"MIPS R10000", Mips::AFL_EXT_10000},
2189 {"NEC VR4100", Mips::AFL_EXT_4100},
2190 {"NEC VR4111/VR4181", Mips::AFL_EXT_4111},
2191 {"NEC VR4120", Mips::AFL_EXT_4120},
2192 {"NEC VR5400", Mips::AFL_EXT_5400},
2193 {"NEC VR5500", Mips::AFL_EXT_5500},
2194 {"RMI Xlr", Mips::AFL_EXT_XLR},
2195 {"Toshiba R3900", Mips::AFL_EXT_3900}
2196 };
2197
2198 static const EnumEntry<unsigned> ElfMipsASEFlags[] = {
2199 {"DSP", Mips::AFL_ASE_DSP},
2200 {"DSPR2", Mips::AFL_ASE_DSPR2},
2201 {"Enhanced VA Scheme", Mips::AFL_ASE_EVA},
2202 {"MCU", Mips::AFL_ASE_MCU},
2203 {"MDMX", Mips::AFL_ASE_MDMX},
2204 {"MIPS-3D", Mips::AFL_ASE_MIPS3D},
2205 {"MT", Mips::AFL_ASE_MT},
2206 {"SmartMIPS", Mips::AFL_ASE_SMARTMIPS},
2207 {"VZ", Mips::AFL_ASE_VIRT},
2208 {"MSA", Mips::AFL_ASE_MSA},
2209 {"MIPS16", Mips::AFL_ASE_MIPS16},
2210 {"microMIPS", Mips::AFL_ASE_MICROMIPS},
2211 {"XPA", Mips::AFL_ASE_XPA}
2212 };
2213
2214 static const EnumEntry<unsigned> ElfMipsFpABIType[] = {
2215 {"Hard or soft float", Mips::Val_GNU_MIPS_ABI_FP_ANY},
2216 {"Hard float (double precision)", Mips::Val_GNU_MIPS_ABI_FP_DOUBLE},
2217 {"Hard float (single precision)", Mips::Val_GNU_MIPS_ABI_FP_SINGLE},
2218 {"Soft float", Mips::Val_GNU_MIPS_ABI_FP_SOFT},
2219 {"Hard float (MIPS32r2 64-bit FPU 12 callee-saved)",
2220 Mips::Val_GNU_MIPS_ABI_FP_OLD_64},
2221 {"Hard float (32-bit CPU, Any FPU)", Mips::Val_GNU_MIPS_ABI_FP_XX},
2222 {"Hard float (32-bit CPU, 64-bit FPU)", Mips::Val_GNU_MIPS_ABI_FP_64},
2223 {"Hard float compat (32-bit CPU, 64-bit FPU)",
2224 Mips::Val_GNU_MIPS_ABI_FP_64A}
2225 };
2226
2227 static const EnumEntry<unsigned> ElfMipsFlags1[] {
2228 {"ODDSPREG", Mips::AFL_FLAGS1_ODDSPREG},
2229 };
2230
getMipsRegisterSize(uint8_t Flag)2231 static int getMipsRegisterSize(uint8_t Flag) {
2232 switch (Flag) {
2233 case Mips::AFL_REG_NONE:
2234 return 0;
2235 case Mips::AFL_REG_32:
2236 return 32;
2237 case Mips::AFL_REG_64:
2238 return 64;
2239 case Mips::AFL_REG_128:
2240 return 128;
2241 default:
2242 return -1;
2243 }
2244 }
2245
printMipsABIFlags()2246 template <class ELFT> void ELFDumper<ELFT>::printMipsABIFlags() {
2247 const Elf_Shdr *Shdr = findSectionByName(*Obj, ".MIPS.abiflags");
2248 if (!Shdr) {
2249 W.startLine() << "There is no .MIPS.abiflags section in the file.\n";
2250 return;
2251 }
2252 ArrayRef<uint8_t> Sec = unwrapOrError(Obj->getSectionContents(Shdr));
2253 if (Sec.size() != sizeof(Elf_Mips_ABIFlags<ELFT>)) {
2254 W.startLine() << "The .MIPS.abiflags section has a wrong size.\n";
2255 return;
2256 }
2257
2258 auto *Flags = reinterpret_cast<const Elf_Mips_ABIFlags<ELFT> *>(Sec.data());
2259
2260 raw_ostream &OS = W.getOStream();
2261 DictScope GS(W, "MIPS ABI Flags");
2262
2263 W.printNumber("Version", Flags->version);
2264 W.startLine() << "ISA: ";
2265 if (Flags->isa_rev <= 1)
2266 OS << format("MIPS%u", Flags->isa_level);
2267 else
2268 OS << format("MIPS%ur%u", Flags->isa_level, Flags->isa_rev);
2269 OS << "\n";
2270 W.printEnum("ISA Extension", Flags->isa_ext, makeArrayRef(ElfMipsISAExtType));
2271 W.printFlags("ASEs", Flags->ases, makeArrayRef(ElfMipsASEFlags));
2272 W.printEnum("FP ABI", Flags->fp_abi, makeArrayRef(ElfMipsFpABIType));
2273 W.printNumber("GPR size", getMipsRegisterSize(Flags->gpr_size));
2274 W.printNumber("CPR1 size", getMipsRegisterSize(Flags->cpr1_size));
2275 W.printNumber("CPR2 size", getMipsRegisterSize(Flags->cpr2_size));
2276 W.printFlags("Flags 1", Flags->flags1, makeArrayRef(ElfMipsFlags1));
2277 W.printHex("Flags 2", Flags->flags2);
2278 }
2279
2280 template <class ELFT>
printMipsReginfoData(ScopedPrinter & W,const Elf_Mips_RegInfo<ELFT> & Reginfo)2281 static void printMipsReginfoData(ScopedPrinter &W,
2282 const Elf_Mips_RegInfo<ELFT> &Reginfo) {
2283 W.printHex("GP", Reginfo.ri_gp_value);
2284 W.printHex("General Mask", Reginfo.ri_gprmask);
2285 W.printHex("Co-Proc Mask0", Reginfo.ri_cprmask[0]);
2286 W.printHex("Co-Proc Mask1", Reginfo.ri_cprmask[1]);
2287 W.printHex("Co-Proc Mask2", Reginfo.ri_cprmask[2]);
2288 W.printHex("Co-Proc Mask3", Reginfo.ri_cprmask[3]);
2289 }
2290
printMipsReginfo()2291 template <class ELFT> void ELFDumper<ELFT>::printMipsReginfo() {
2292 const Elf_Shdr *Shdr = findSectionByName(*Obj, ".reginfo");
2293 if (!Shdr) {
2294 W.startLine() << "There is no .reginfo section in the file.\n";
2295 return;
2296 }
2297 ArrayRef<uint8_t> Sec = unwrapOrError(Obj->getSectionContents(Shdr));
2298 if (Sec.size() != sizeof(Elf_Mips_RegInfo<ELFT>)) {
2299 W.startLine() << "The .reginfo section has a wrong size.\n";
2300 return;
2301 }
2302
2303 DictScope GS(W, "MIPS RegInfo");
2304 auto *Reginfo = reinterpret_cast<const Elf_Mips_RegInfo<ELFT> *>(Sec.data());
2305 printMipsReginfoData(W, *Reginfo);
2306 }
2307
printMipsOptions()2308 template <class ELFT> void ELFDumper<ELFT>::printMipsOptions() {
2309 const Elf_Shdr *Shdr = findSectionByName(*Obj, ".MIPS.options");
2310 if (!Shdr) {
2311 W.startLine() << "There is no .MIPS.options section in the file.\n";
2312 return;
2313 }
2314
2315 DictScope GS(W, "MIPS Options");
2316
2317 ArrayRef<uint8_t> Sec = unwrapOrError(Obj->getSectionContents(Shdr));
2318 while (!Sec.empty()) {
2319 if (Sec.size() < sizeof(Elf_Mips_Options<ELFT>)) {
2320 W.startLine() << "The .MIPS.options section has a wrong size.\n";
2321 return;
2322 }
2323 auto *O = reinterpret_cast<const Elf_Mips_Options<ELFT> *>(Sec.data());
2324 DictScope GS(W, getElfMipsOptionsOdkType(O->kind));
2325 switch (O->kind) {
2326 case ODK_REGINFO:
2327 printMipsReginfoData(W, O->getRegInfo());
2328 break;
2329 default:
2330 W.startLine() << "Unsupported MIPS options tag.\n";
2331 break;
2332 }
2333 Sec = Sec.slice(O->size);
2334 }
2335 }
2336
printStackMap() const2337 template <class ELFT> void ELFDumper<ELFT>::printStackMap() const {
2338 const Elf_Shdr *StackMapSection = nullptr;
2339 for (const auto &Sec : Obj->sections()) {
2340 StringRef Name = unwrapOrError(Obj->getSectionName(&Sec));
2341 if (Name == ".llvm_stackmaps") {
2342 StackMapSection = &Sec;
2343 break;
2344 }
2345 }
2346
2347 if (!StackMapSection)
2348 return;
2349
2350 StringRef StackMapContents;
2351 ArrayRef<uint8_t> StackMapContentsArray =
2352 unwrapOrError(Obj->getSectionContents(StackMapSection));
2353
2354 prettyPrintStackMap(llvm::outs(), StackMapV1Parser<ELFT::TargetEndianness>(
2355 StackMapContentsArray));
2356 }
2357
printGroupSections()2358 template <class ELFT> void ELFDumper<ELFT>::printGroupSections() {
2359 ELFDumperStyle->printGroupSections(Obj);
2360 }
2361
printFields(formatted_raw_ostream & OS,StringRef Str1,StringRef Str2)2362 static inline void printFields(formatted_raw_ostream &OS, StringRef Str1,
2363 StringRef Str2) {
2364 OS.PadToColumn(2u);
2365 OS << Str1;
2366 OS.PadToColumn(37u);
2367 OS << Str2 << "\n";
2368 OS.flush();
2369 }
2370
printFileHeaders(const ELFO * Obj)2371 template <class ELFT> void GNUStyle<ELFT>::printFileHeaders(const ELFO *Obj) {
2372 const Elf_Ehdr *e = Obj->getHeader();
2373 OS << "ELF Header:\n";
2374 OS << " Magic: ";
2375 std::string Str;
2376 for (int i = 0; i < ELF::EI_NIDENT; i++)
2377 OS << format(" %02x", static_cast<int>(e->e_ident[i]));
2378 OS << "\n";
2379 Str = printEnum(e->e_ident[ELF::EI_CLASS], makeArrayRef(ElfClass));
2380 printFields(OS, "Class:", Str);
2381 Str = printEnum(e->e_ident[ELF::EI_DATA], makeArrayRef(ElfDataEncoding));
2382 printFields(OS, "Data:", Str);
2383 OS.PadToColumn(2u);
2384 OS << "Version:";
2385 OS.PadToColumn(37u);
2386 OS << to_hexString(e->e_ident[ELF::EI_VERSION]);
2387 if (e->e_version == ELF::EV_CURRENT)
2388 OS << " (current)";
2389 OS << "\n";
2390 Str = printEnum(e->e_ident[ELF::EI_OSABI], makeArrayRef(ElfOSABI));
2391 printFields(OS, "OS/ABI:", Str);
2392 Str = "0x" + to_hexString(e->e_version);
2393 Str = to_hexString(e->e_ident[ELF::EI_ABIVERSION]);
2394 printFields(OS, "ABI Version:", Str);
2395 Str = printEnum(e->e_type, makeArrayRef(ElfObjectFileType));
2396 printFields(OS, "Type:", Str);
2397 Str = printEnum(e->e_machine, makeArrayRef(ElfMachineType));
2398 printFields(OS, "Machine:", Str);
2399 Str = "0x" + to_hexString(e->e_version);
2400 printFields(OS, "Version:", Str);
2401 Str = "0x" + to_hexString(e->e_entry);
2402 printFields(OS, "Entry point address:", Str);
2403 Str = to_string(e->e_phoff) + " (bytes into file)";
2404 printFields(OS, "Start of program headers:", Str);
2405 Str = to_string(e->e_shoff) + " (bytes into file)";
2406 printFields(OS, "Start of section headers:", Str);
2407 Str = "0x" + to_hexString(e->e_flags);
2408 printFields(OS, "Flags:", Str);
2409 Str = to_string(e->e_ehsize) + " (bytes)";
2410 printFields(OS, "Size of this header:", Str);
2411 Str = to_string(e->e_phentsize) + " (bytes)";
2412 printFields(OS, "Size of program headers:", Str);
2413 Str = to_string(e->e_phnum);
2414 printFields(OS, "Number of program headers:", Str);
2415 Str = to_string(e->e_shentsize) + " (bytes)";
2416 printFields(OS, "Size of section headers:", Str);
2417 Str = to_string(e->e_shnum);
2418 printFields(OS, "Number of section headers:", Str);
2419 Str = to_string(e->e_shstrndx);
2420 printFields(OS, "Section header string table index:", Str);
2421 }
2422
printGroupSections(const ELFO * Obj)2423 template <class ELFT> void GNUStyle<ELFT>::printGroupSections(const ELFO *Obj) {
2424 uint32_t SectionIndex = 0;
2425 bool HasGroups = false;
2426 for (const Elf_Shdr &Sec : Obj->sections()) {
2427 if (Sec.sh_type == ELF::SHT_GROUP) {
2428 HasGroups = true;
2429 const Elf_Shdr *Symtab = unwrapOrError(Obj->getSection(Sec.sh_link));
2430 StringRef StrTable = unwrapOrError(Obj->getStringTableForSymtab(*Symtab));
2431 const Elf_Sym *Signature =
2432 Obj->template getEntry<Elf_Sym>(Symtab, Sec.sh_info);
2433 ArrayRef<Elf_Word> Data = unwrapOrError(
2434 Obj->template getSectionContentsAsArray<Elf_Word>(&Sec));
2435 StringRef Name = unwrapOrError(Obj->getSectionName(&Sec));
2436 OS << "\n" << getGroupType(Data[0]) << " group section ["
2437 << format_decimal(SectionIndex, 5) << "] `" << Name << "' ["
2438 << StrTable.data() + Signature->st_name << "] contains "
2439 << (Data.size() - 1) << " sections:\n"
2440 << " [Index] Name\n";
2441 for (auto &Ndx : Data.slice(1)) {
2442 auto Sec = unwrapOrError(Obj->getSection(Ndx));
2443 const StringRef Name = unwrapOrError(Obj->getSectionName(Sec));
2444 OS << " [" << format_decimal(Ndx, 5) << "] " << Name
2445 << "\n";
2446 }
2447 }
2448 ++SectionIndex;
2449 }
2450 if (!HasGroups)
2451 OS << "There are no section groups in this file.\n";
2452 }
2453
2454 template <class ELFT>
printRelocation(const ELFO * Obj,const Elf_Shdr * SymTab,const Elf_Rela & R,bool IsRela)2455 void GNUStyle<ELFT>::printRelocation(const ELFO *Obj, const Elf_Shdr *SymTab,
2456 const Elf_Rela &R, bool IsRela) {
2457 std::string Offset, Info, Addend = "", Value;
2458 SmallString<32> RelocName;
2459 StringRef StrTable = unwrapOrError(Obj->getStringTableForSymtab(*SymTab));
2460 StringRef TargetName;
2461 const Elf_Sym *Sym = nullptr;
2462 unsigned Width = ELFT::Is64Bits ? 16 : 8;
2463 unsigned Bias = ELFT::Is64Bits ? 8 : 0;
2464
2465 // First two fields are bit width dependent. The rest of them are after are
2466 // fixed width.
2467 Field Fields[5] = {0, 10 + Bias, 19 + 2 * Bias, 42 + 2 * Bias, 53 + 2 * Bias};
2468 Obj->getRelocationTypeName(R.getType(Obj->isMips64EL()), RelocName);
2469 Sym = Obj->getRelocationSymbol(&R, SymTab);
2470 if (Sym && Sym->getType() == ELF::STT_SECTION) {
2471 const Elf_Shdr *Sec = unwrapOrError(
2472 Obj->getSection(Sym, SymTab, this->dumper()->getShndxTable()));
2473 TargetName = unwrapOrError(Obj->getSectionName(Sec));
2474 } else if (Sym) {
2475 TargetName = unwrapOrError(Sym->getName(StrTable));
2476 }
2477
2478 if (Sym && IsRela) {
2479 if (R.r_addend < 0)
2480 Addend = " - ";
2481 else
2482 Addend = " + ";
2483 }
2484
2485 Offset = to_string(format_hex_no_prefix(R.r_offset, Width));
2486 Info = to_string(format_hex_no_prefix(R.r_info, Width));
2487
2488 int64_t RelAddend = R.r_addend;
2489 if (IsRela)
2490 Addend += to_hexString(std::abs(RelAddend), false);
2491
2492 if (Sym)
2493 Value = to_string(format_hex_no_prefix(Sym->getValue(), Width));
2494
2495 Fields[0].Str = Offset;
2496 Fields[1].Str = Info;
2497 Fields[2].Str = RelocName;
2498 Fields[3].Str = Value;
2499 Fields[4].Str = TargetName;
2500 for (auto &field : Fields)
2501 printField(field);
2502 OS << Addend;
2503 OS << "\n";
2504 }
2505
printRelocHeader(raw_ostream & OS,bool Is64,bool IsRela)2506 static inline void printRelocHeader(raw_ostream &OS, bool Is64, bool IsRela) {
2507 if (Is64)
2508 OS << " Offset Info Type"
2509 << " Symbol's Value Symbol's Name";
2510 else
2511 OS << " Offset Info Type Sym. Value "
2512 << "Symbol's Name";
2513 if (IsRela)
2514 OS << (IsRela ? " + Addend" : "");
2515 OS << "\n";
2516 }
2517
printRelocations(const ELFO * Obj)2518 template <class ELFT> void GNUStyle<ELFT>::printRelocations(const ELFO *Obj) {
2519 bool HasRelocSections = false;
2520 for (const Elf_Shdr &Sec : Obj->sections()) {
2521 if (Sec.sh_type != ELF::SHT_REL && Sec.sh_type != ELF::SHT_RELA)
2522 continue;
2523 HasRelocSections = true;
2524 StringRef Name = unwrapOrError(Obj->getSectionName(&Sec));
2525 unsigned Entries = Sec.getEntityCount();
2526 uintX_t Offset = Sec.sh_offset;
2527 OS << "\nRelocation section '" << Name << "' at offset 0x"
2528 << to_hexString(Offset, false) << " contains " << Entries
2529 << " entries:\n";
2530 printRelocHeader(OS, ELFT::Is64Bits, (Sec.sh_type == ELF::SHT_RELA));
2531 const Elf_Shdr *SymTab = unwrapOrError(Obj->getSection(Sec.sh_link));
2532 if (Sec.sh_type == ELF::SHT_REL) {
2533 for (const auto &R : Obj->rels(&Sec)) {
2534 Elf_Rela Rela;
2535 Rela.r_offset = R.r_offset;
2536 Rela.r_info = R.r_info;
2537 Rela.r_addend = 0;
2538 printRelocation(Obj, SymTab, Rela, false);
2539 }
2540 } else {
2541 for (const auto &R : Obj->relas(&Sec))
2542 printRelocation(Obj, SymTab, R, true);
2543 }
2544 }
2545 if (!HasRelocSections)
2546 OS << "\nThere are no relocations in this file.\n";
2547 }
2548
getSectionTypeString(unsigned Arch,unsigned Type)2549 std::string getSectionTypeString(unsigned Arch, unsigned Type) {
2550 using namespace ELF;
2551 switch (Arch) {
2552 case EM_ARM:
2553 switch (Type) {
2554 case SHT_ARM_EXIDX:
2555 return "ARM_EXIDX";
2556 case SHT_ARM_PREEMPTMAP:
2557 return "ARM_PREEMPTMAP";
2558 case SHT_ARM_ATTRIBUTES:
2559 return "ARM_ATTRIBUTES";
2560 case SHT_ARM_DEBUGOVERLAY:
2561 return "ARM_DEBUGOVERLAY";
2562 case SHT_ARM_OVERLAYSECTION:
2563 return "ARM_OVERLAYSECTION";
2564 }
2565 case EM_X86_64:
2566 switch (Type) {
2567 case SHT_X86_64_UNWIND:
2568 return "X86_64_UNWIND";
2569 }
2570 case EM_MIPS:
2571 case EM_MIPS_RS3_LE:
2572 switch (Type) {
2573 case SHT_MIPS_REGINFO:
2574 return "MIPS_REGINFO";
2575 case SHT_MIPS_OPTIONS:
2576 return "MIPS_OPTIONS";
2577 case SHT_MIPS_ABIFLAGS:
2578 return "MIPS_ABIFLAGS";
2579 }
2580 }
2581 switch (Type) {
2582 case SHT_NULL:
2583 return "NULL";
2584 case SHT_PROGBITS:
2585 return "PROGBITS";
2586 case SHT_SYMTAB:
2587 return "SYMTAB";
2588 case SHT_STRTAB:
2589 return "STRTAB";
2590 case SHT_RELA:
2591 return "RELA";
2592 case SHT_HASH:
2593 return "HASH";
2594 case SHT_DYNAMIC:
2595 return "DYNAMIC";
2596 case SHT_NOTE:
2597 return "NOTE";
2598 case SHT_NOBITS:
2599 return "NOBITS";
2600 case SHT_REL:
2601 return "REL";
2602 case SHT_SHLIB:
2603 return "SHLIB";
2604 case SHT_DYNSYM:
2605 return "DYNSYM";
2606 case SHT_INIT_ARRAY:
2607 return "INIT_ARRAY";
2608 case SHT_FINI_ARRAY:
2609 return "FINI_ARRAY";
2610 case SHT_PREINIT_ARRAY:
2611 return "PREINIT_ARRAY";
2612 case SHT_GROUP:
2613 return "GROUP";
2614 case SHT_SYMTAB_SHNDX:
2615 return "SYMTAB SECTION INDICES";
2616 // FIXME: Parse processor specific GNU attributes
2617 case SHT_GNU_ATTRIBUTES:
2618 return "ATTRIBUTES";
2619 case SHT_GNU_HASH:
2620 return "GNU_HASH";
2621 case SHT_GNU_verdef:
2622 return "VERDEF";
2623 case SHT_GNU_verneed:
2624 return "VERNEED";
2625 case SHT_GNU_versym:
2626 return "VERSYM";
2627 default:
2628 return "";
2629 }
2630 return "";
2631 }
2632
printSections(const ELFO * Obj)2633 template <class ELFT> void GNUStyle<ELFT>::printSections(const ELFO *Obj) {
2634 size_t SectionIndex = 0;
2635 std::string Number, Type, Size, Address, Offset, Flags, Link, Info, EntrySize,
2636 Alignment;
2637 unsigned Bias;
2638 unsigned Width;
2639
2640 if (ELFT::Is64Bits) {
2641 Bias = 0;
2642 Width = 16;
2643 } else {
2644 Bias = 8;
2645 Width = 8;
2646 }
2647 OS << "There are " << to_string(Obj->getHeader()->e_shnum)
2648 << " section headers, starting at offset "
2649 << "0x" << to_hexString(Obj->getHeader()->e_shoff, false) << ":\n\n";
2650 OS << "Section Headers:\n";
2651 Field Fields[11] = {{"[Nr]", 2},
2652 {"Name", 7},
2653 {"Type", 25},
2654 {"Address", 41},
2655 {"Off", 58 - Bias},
2656 {"Size", 65 - Bias},
2657 {"ES", 72 - Bias},
2658 {"Flg", 75 - Bias},
2659 {"Lk", 79 - Bias},
2660 {"Inf", 82 - Bias},
2661 {"Al", 86 - Bias}};
2662 for (auto &f : Fields)
2663 printField(f);
2664 OS << "\n";
2665
2666 for (const Elf_Shdr &Sec : Obj->sections()) {
2667 Number = to_string(SectionIndex);
2668 Fields[0].Str = Number;
2669 Fields[1].Str = unwrapOrError(Obj->getSectionName(&Sec));
2670 Type = getSectionTypeString(Obj->getHeader()->e_machine, Sec.sh_type);
2671 Fields[2].Str = Type;
2672 Address = to_string(format_hex_no_prefix(Sec.sh_addr, Width));
2673 Fields[3].Str = Address;
2674 Offset = to_string(format_hex_no_prefix(Sec.sh_offset, 6));
2675 Fields[4].Str = Offset;
2676 Size = to_string(format_hex_no_prefix(Sec.sh_size, 6));
2677 Fields[5].Str = Size;
2678 EntrySize = to_string(format_hex_no_prefix(Sec.sh_entsize, 2));
2679 Fields[6].Str = EntrySize;
2680 Flags = getGNUFlags(Sec.sh_flags);
2681 Fields[7].Str = Flags;
2682 Link = to_string(Sec.sh_link);
2683 Fields[8].Str = Link;
2684 Info = to_string(Sec.sh_info);
2685 Fields[9].Str = Info;
2686 Alignment = to_string(Sec.sh_addralign);
2687 Fields[10].Str = Alignment;
2688 OS.PadToColumn(Fields[0].Column);
2689 OS << "[" << right_justify(Fields[0].Str, 2) << "]";
2690 for (int i = 1; i < 7; i++)
2691 printField(Fields[i]);
2692 OS.PadToColumn(Fields[7].Column);
2693 OS << right_justify(Fields[7].Str, 3);
2694 OS.PadToColumn(Fields[8].Column);
2695 OS << right_justify(Fields[8].Str, 2);
2696 OS.PadToColumn(Fields[9].Column);
2697 OS << right_justify(Fields[9].Str, 3);
2698 OS.PadToColumn(Fields[10].Column);
2699 OS << right_justify(Fields[10].Str, 2);
2700 OS << "\n";
2701 ++SectionIndex;
2702 }
2703 OS << "Key to Flags:\n"
2704 << " W (write), A (alloc), X (execute), M (merge), S (strings), l "
2705 "(large)\n"
2706 << " I (info), L (link order), G (group), T (TLS), E (exclude),\
2707 x (unknown)\n"
2708 << " O (extra OS processing required) o (OS specific),\
2709 p (processor specific)\n";
2710 }
2711
2712 template <class ELFT>
printSymtabMessage(const ELFO * Obj,StringRef Name,size_t Entries)2713 void GNUStyle<ELFT>::printSymtabMessage(const ELFO *Obj, StringRef Name,
2714 size_t Entries) {
2715 if (Name.size())
2716 OS << "\nSymbol table '" << Name << "' contains " << Entries
2717 << " entries:\n";
2718 else
2719 OS << "\n Symbol table for image:\n";
2720
2721 if (ELFT::Is64Bits)
2722 OS << " Num: Value Size Type Bind Vis Ndx Name\n";
2723 else
2724 OS << " Num: Value Size Type Bind Vis Ndx Name\n";
2725 }
2726
2727 template <class ELFT>
getSymbolSectionNdx(const ELFO * Obj,const Elf_Sym * Symbol,const Elf_Sym * FirstSym)2728 std::string GNUStyle<ELFT>::getSymbolSectionNdx(const ELFO *Obj,
2729 const Elf_Sym *Symbol,
2730 const Elf_Sym *FirstSym) {
2731 unsigned SectionIndex = Symbol->st_shndx;
2732 switch (SectionIndex) {
2733 case ELF::SHN_UNDEF:
2734 return "UND";
2735 case ELF::SHN_ABS:
2736 return "ABS";
2737 case ELF::SHN_COMMON:
2738 return "COM";
2739 case ELF::SHN_XINDEX:
2740 SectionIndex = Obj->getExtendedSymbolTableIndex(
2741 Symbol, FirstSym, this->dumper()->getShndxTable());
2742 default:
2743 // Find if:
2744 // Processor specific
2745 if (SectionIndex >= ELF::SHN_LOPROC && SectionIndex <= ELF::SHN_HIPROC)
2746 return std::string("PRC[0x") +
2747 to_string(format_hex_no_prefix(SectionIndex, 4)) + "]";
2748 // OS specific
2749 if (SectionIndex >= ELF::SHN_LOOS && SectionIndex <= ELF::SHN_HIOS)
2750 return std::string("OS[0x") +
2751 to_string(format_hex_no_prefix(SectionIndex, 4)) + "]";
2752 // Architecture reserved:
2753 if (SectionIndex >= ELF::SHN_LORESERVE &&
2754 SectionIndex <= ELF::SHN_HIRESERVE)
2755 return std::string("RSV[0x") +
2756 to_string(format_hex_no_prefix(SectionIndex, 4)) + "]";
2757 // A normal section with an index
2758 return to_string(format_decimal(SectionIndex, 3));
2759 }
2760 }
2761
2762 template <class ELFT>
printSymbol(const ELFO * Obj,const Elf_Sym * Symbol,const Elf_Sym * FirstSym,StringRef StrTable,bool IsDynamic)2763 void GNUStyle<ELFT>::printSymbol(const ELFO *Obj, const Elf_Sym *Symbol,
2764 const Elf_Sym *FirstSym, StringRef StrTable,
2765 bool IsDynamic) {
2766 static int Idx = 0;
2767 static bool Dynamic = true;
2768 size_t Width;
2769
2770 // If this function was called with a different value from IsDynamic
2771 // from last call, happens when we move from dynamic to static symbol
2772 // table, "Num" field should be reset.
2773 if (!Dynamic != !IsDynamic) {
2774 Idx = 0;
2775 Dynamic = false;
2776 }
2777 std::string Num, Name, Value, Size, Binding, Type, Visibility, Section;
2778 unsigned Bias = 0;
2779 if (ELFT::Is64Bits) {
2780 Bias = 8;
2781 Width = 16;
2782 } else {
2783 Bias = 0;
2784 Width = 8;
2785 }
2786 Field Fields[8] = {0, 8, 17 + Bias, 23 + Bias,
2787 31 + Bias, 38 + Bias, 47 + Bias, 51 + Bias};
2788 Num = to_string(format_decimal(Idx++, 6)) + ":";
2789 Value = to_string(format_hex_no_prefix(Symbol->st_value, Width));
2790 Size = to_string(format_decimal(Symbol->st_size, 5));
2791 unsigned char SymbolType = Symbol->getType();
2792 if (Obj->getHeader()->e_machine == ELF::EM_AMDGPU &&
2793 SymbolType >= ELF::STT_LOOS && SymbolType < ELF::STT_HIOS)
2794 Type = printEnum(SymbolType, makeArrayRef(AMDGPUSymbolTypes));
2795 else
2796 Type = printEnum(SymbolType, makeArrayRef(ElfSymbolTypes));
2797 unsigned Vis = Symbol->getVisibility();
2798 Binding = printEnum(Symbol->getBinding(), makeArrayRef(ElfSymbolBindings));
2799 Visibility = printEnum(Vis, makeArrayRef(ElfSymbolVisibilities));
2800 Section = getSymbolSectionNdx(Obj, Symbol, FirstSym);
2801 Name = this->dumper()->getFullSymbolName(Symbol, StrTable, IsDynamic);
2802 Fields[0].Str = Num;
2803 Fields[1].Str = Value;
2804 Fields[2].Str = Size;
2805 Fields[3].Str = Type;
2806 Fields[4].Str = Binding;
2807 Fields[5].Str = Visibility;
2808 Fields[6].Str = Section;
2809 Fields[7].Str = Name;
2810 for (auto &Entry : Fields)
2811 printField(Entry);
2812 OS << "\n";
2813 }
2814
printSymbols(const ELFO * Obj)2815 template <class ELFT> void GNUStyle<ELFT>::printSymbols(const ELFO *Obj) {
2816 this->dumper()->printSymbolsHelper(true);
2817 this->dumper()->printSymbolsHelper(false);
2818 }
2819
2820 template <class ELFT>
printDynamicSymbols(const ELFO * Obj)2821 void GNUStyle<ELFT>::printDynamicSymbols(const ELFO *Obj) {
2822 this->dumper()->printSymbolsHelper(true);
2823 }
2824
printPhdrFlags(unsigned Flag)2825 static inline std::string printPhdrFlags(unsigned Flag) {
2826 std::string Str;
2827 Str = (Flag & PF_R) ? "R" : " ";
2828 Str += (Flag & PF_W) ? "W" : " ";
2829 Str += (Flag & PF_X) ? "E" : " ";
2830 return Str;
2831 }
2832
2833 // SHF_TLS sections are only in PT_TLS, PT_LOAD or PT_GNU_RELRO
2834 // PT_TLS must only have SHF_TLS sections
2835 template <class ELFT>
checkTLSSections(const Elf_Phdr & Phdr,const Elf_Shdr & Sec)2836 bool GNUStyle<ELFT>::checkTLSSections(const Elf_Phdr &Phdr,
2837 const Elf_Shdr &Sec) {
2838 return (((Sec.sh_flags & ELF::SHF_TLS) &&
2839 ((Phdr.p_type == ELF::PT_TLS) || (Phdr.p_type == ELF::PT_LOAD) ||
2840 (Phdr.p_type == ELF::PT_GNU_RELRO))) ||
2841 (!(Sec.sh_flags & ELF::SHF_TLS) && Phdr.p_type != ELF::PT_TLS));
2842 }
2843
2844 // Non-SHT_NOBITS must have its offset inside the segment
2845 // Only non-zero section can be at end of segment
2846 template <class ELFT>
checkoffsets(const Elf_Phdr & Phdr,const Elf_Shdr & Sec)2847 bool GNUStyle<ELFT>::checkoffsets(const Elf_Phdr &Phdr, const Elf_Shdr &Sec) {
2848 if (Sec.sh_type == ELF::SHT_NOBITS)
2849 return true;
2850 bool IsSpecial =
2851 (Sec.sh_type == ELF::SHT_NOBITS) && ((Sec.sh_flags & ELF::SHF_TLS) != 0);
2852 // .tbss is special, it only has memory in PT_TLS and has NOBITS properties
2853 auto SectionSize =
2854 (IsSpecial && Phdr.p_type != ELF::PT_TLS) ? 0 : Sec.sh_size;
2855 if (Sec.sh_offset >= Phdr.p_offset)
2856 return ((Sec.sh_offset + SectionSize <= Phdr.p_filesz + Phdr.p_offset)
2857 /*only non-zero sized sections at end*/ &&
2858 (Sec.sh_offset + 1 <= Phdr.p_offset + Phdr.p_filesz));
2859 return false;
2860 }
2861
2862 // SHF_ALLOC must have VMA inside segment
2863 // Only non-zero section can be at end of segment
2864 template <class ELFT>
checkVMA(const Elf_Phdr & Phdr,const Elf_Shdr & Sec)2865 bool GNUStyle<ELFT>::checkVMA(const Elf_Phdr &Phdr, const Elf_Shdr &Sec) {
2866 if (!(Sec.sh_flags & ELF::SHF_ALLOC))
2867 return true;
2868 bool IsSpecial =
2869 (Sec.sh_type == ELF::SHT_NOBITS) && ((Sec.sh_flags & ELF::SHF_TLS) != 0);
2870 // .tbss is special, it only has memory in PT_TLS and has NOBITS properties
2871 auto SectionSize =
2872 (IsSpecial && Phdr.p_type != ELF::PT_TLS) ? 0 : Sec.sh_size;
2873 if (Sec.sh_addr >= Phdr.p_vaddr)
2874 return ((Sec.sh_addr + SectionSize <= Phdr.p_vaddr + Phdr.p_memsz) &&
2875 (Sec.sh_addr + 1 <= Phdr.p_vaddr + Phdr.p_memsz));
2876 return false;
2877 }
2878
2879 // No section with zero size must be at start or end of PT_DYNAMIC
2880 template <class ELFT>
checkPTDynamic(const Elf_Phdr & Phdr,const Elf_Shdr & Sec)2881 bool GNUStyle<ELFT>::checkPTDynamic(const Elf_Phdr &Phdr, const Elf_Shdr &Sec) {
2882 if (Phdr.p_type != ELF::PT_DYNAMIC || Sec.sh_size != 0 || Phdr.p_memsz == 0)
2883 return true;
2884 // Is section within the phdr both based on offset and VMA ?
2885 return ((Sec.sh_type == ELF::SHT_NOBITS) ||
2886 (Sec.sh_offset > Phdr.p_offset &&
2887 Sec.sh_offset < Phdr.p_offset + Phdr.p_filesz)) &&
2888 (!(Sec.sh_flags & ELF::SHF_ALLOC) ||
2889 (Sec.sh_addr > Phdr.p_vaddr && Sec.sh_addr < Phdr.p_memsz));
2890 }
2891
2892 template <class ELFT>
printProgramHeaders(const ELFO * Obj)2893 void GNUStyle<ELFT>::printProgramHeaders(const ELFO *Obj) {
2894 unsigned Bias = ELFT::Is64Bits ? 8 : 0;
2895 unsigned Width = ELFT::Is64Bits ? 18 : 10;
2896 unsigned SizeWidth = ELFT::Is64Bits ? 8 : 7;
2897 std::string Type, Offset, VMA, LMA, FileSz, MemSz, Flag, Align;
2898
2899 const Elf_Ehdr *Header = Obj->getHeader();
2900 Field Fields[8] = {2, 17, 26, 37 + Bias,
2901 48 + Bias, 56 + Bias, 64 + Bias, 68 + Bias};
2902 OS << "\nElf file type is "
2903 << printEnum(Header->e_type, makeArrayRef(ElfObjectFileType)) << "\n"
2904 << "Entry point " << format_hex(Header->e_entry, 3) << "\n"
2905 << "There are " << Header->e_phnum << " program headers,"
2906 << " starting at offset " << Header->e_phoff << "\n\n"
2907 << "Program Headers:\n";
2908 if (ELFT::Is64Bits)
2909 OS << " Type Offset VirtAddr PhysAddr "
2910 << " FileSiz MemSiz Flg Align\n";
2911 else
2912 OS << " Type Offset VirtAddr PhysAddr FileSiz "
2913 << "MemSiz Flg Align\n";
2914 for (const auto &Phdr : Obj->program_headers()) {
2915 Type = getElfPtType(Header->e_machine, Phdr.p_type);
2916 Offset = to_string(format_hex(Phdr.p_offset, 8));
2917 VMA = to_string(format_hex(Phdr.p_vaddr, Width));
2918 LMA = to_string(format_hex(Phdr.p_paddr, Width));
2919 FileSz = to_string(format_hex(Phdr.p_filesz, SizeWidth));
2920 MemSz = to_string(format_hex(Phdr.p_memsz, SizeWidth));
2921 Flag = printPhdrFlags(Phdr.p_flags);
2922 Align = to_string(format_hex(Phdr.p_align, 1));
2923 Fields[0].Str = Type;
2924 Fields[1].Str = Offset;
2925 Fields[2].Str = VMA;
2926 Fields[3].Str = LMA;
2927 Fields[4].Str = FileSz;
2928 Fields[5].Str = MemSz;
2929 Fields[6].Str = Flag;
2930 Fields[7].Str = Align;
2931 for (auto Field : Fields)
2932 printField(Field);
2933 if (Phdr.p_type == ELF::PT_INTERP) {
2934 OS << "\n [Requesting program interpreter: ";
2935 OS << reinterpret_cast<const char *>(Obj->base()) + Phdr.p_offset << "]";
2936 }
2937 OS << "\n";
2938 }
2939 OS << "\n Section to Segment mapping:\n Segment Sections...\n";
2940 int Phnum = 0;
2941 for (const Elf_Phdr &Phdr : Obj->program_headers()) {
2942 std::string Sections;
2943 OS << format(" %2.2d ", Phnum++);
2944 for (const Elf_Shdr &Sec : Obj->sections()) {
2945 // Check if each section is in a segment and then print mapping.
2946 // readelf additionally makes sure it does not print zero sized sections
2947 // at end of segments and for PT_DYNAMIC both start and end of section
2948 // .tbss must only be shown in PT_TLS section.
2949 bool TbssInNonTLS = (Sec.sh_type == ELF::SHT_NOBITS) &&
2950 ((Sec.sh_flags & ELF::SHF_TLS) != 0) &&
2951 Phdr.p_type != ELF::PT_TLS;
2952 if (!TbssInNonTLS && checkTLSSections(Phdr, Sec) &&
2953 checkoffsets(Phdr, Sec) && checkVMA(Phdr, Sec) &&
2954 checkPTDynamic(Phdr, Sec) && (Sec.sh_type != ELF::SHT_NULL))
2955 Sections += unwrapOrError(Obj->getSectionName(&Sec)).str() + " ";
2956 }
2957 OS << Sections << "\n";
2958 OS.flush();
2959 }
2960 }
2961
2962 template <class ELFT>
printDynamicRelocation(const ELFO * Obj,Elf_Rela R,bool IsRela)2963 void GNUStyle<ELFT>::printDynamicRelocation(const ELFO *Obj, Elf_Rela R,
2964 bool IsRela) {
2965 SmallString<32> RelocName;
2966 StringRef SymbolName;
2967 unsigned Width = ELFT::Is64Bits ? 16 : 8;
2968 unsigned Bias = ELFT::Is64Bits ? 8 : 0;
2969 // First two fields are bit width dependent. The rest of them are after are
2970 // fixed width.
2971 Field Fields[5] = {0, 10 + Bias, 19 + 2 * Bias, 42 + 2 * Bias, 53 + 2 * Bias};
2972
2973 uint32_t SymIndex = R.getSymbol(Obj->isMips64EL());
2974 const Elf_Sym *Sym = this->dumper()->dynamic_symbols().begin() + SymIndex;
2975 Obj->getRelocationTypeName(R.getType(Obj->isMips64EL()), RelocName);
2976 SymbolName =
2977 unwrapOrError(Sym->getName(this->dumper()->getDynamicStringTable()));
2978 std::string Addend = "", Info, Offset, Value;
2979 Offset = to_string(format_hex_no_prefix(R.r_offset, Width));
2980 Info = to_string(format_hex_no_prefix(R.r_info, Width));
2981 Value = to_string(format_hex_no_prefix(Sym->getValue(), Width));
2982 int64_t RelAddend = R.r_addend;
2983 if (SymbolName.size() && IsRela) {
2984 if (R.r_addend < 0)
2985 Addend = " - ";
2986 else
2987 Addend = " + ";
2988 }
2989
2990 if (!SymbolName.size() && Sym->getValue() == 0)
2991 Value = "";
2992
2993 if (IsRela)
2994 Addend += to_string(format_hex_no_prefix(std::abs(RelAddend), 1));
2995
2996
2997 Fields[0].Str = Offset;
2998 Fields[1].Str = Info;
2999 Fields[2].Str = RelocName.c_str();
3000 Fields[3].Str = Value;
3001 Fields[4].Str = SymbolName;
3002 for (auto &Field : Fields)
3003 printField(Field);
3004 OS << Addend;
3005 OS << "\n";
3006 }
3007
3008 template <class ELFT>
printDynamicRelocations(const ELFO * Obj)3009 void GNUStyle<ELFT>::printDynamicRelocations(const ELFO *Obj) {
3010 const DynRegionInfo &DynRelRegion = this->dumper()->getDynRelRegion();
3011 const DynRegionInfo &DynRelaRegion = this->dumper()->getDynRelaRegion();
3012 const DynRegionInfo &DynPLTRelRegion = this->dumper()->getDynPLTRelRegion();
3013 if (DynRelaRegion.Size > 0) {
3014 OS << "\n'RELA' relocation section at offset "
3015 << format_hex(reinterpret_cast<const uint8_t *>(DynRelaRegion.Addr) -
3016 Obj->base(),
3017 1) << " contains " << DynRelaRegion.Size << " bytes:\n";
3018 printRelocHeader(OS, ELFT::Is64Bits, true);
3019 for (const Elf_Rela &Rela : this->dumper()->dyn_relas())
3020 printDynamicRelocation(Obj, Rela, true);
3021 }
3022 if (DynRelRegion.Size > 0) {
3023 OS << "\n'REL' relocation section at offset "
3024 << format_hex(reinterpret_cast<const uint8_t *>(DynRelRegion.Addr) -
3025 Obj->base(),
3026 1) << " contains " << DynRelRegion.Size << " bytes:\n";
3027 printRelocHeader(OS, ELFT::Is64Bits, false);
3028 for (const Elf_Rel &Rel : this->dumper()->dyn_rels()) {
3029 Elf_Rela Rela;
3030 Rela.r_offset = Rel.r_offset;
3031 Rela.r_info = Rel.r_info;
3032 Rela.r_addend = 0;
3033 printDynamicRelocation(Obj, Rela, false);
3034 }
3035 }
3036 if (DynPLTRelRegion.Size) {
3037 OS << "\n'PLT' relocation section at offset "
3038 << format_hex(reinterpret_cast<const uint8_t *>(DynPLTRelRegion.Addr) -
3039 Obj->base(),
3040 1) << " contains " << DynPLTRelRegion.Size << " bytes:\n";
3041 }
3042 if (DynPLTRelRegion.EntSize == sizeof(Elf_Rela)) {
3043 printRelocHeader(OS, ELFT::Is64Bits, true);
3044 for (const Elf_Rela &Rela : DynPLTRelRegion.getAsArrayRef<Elf_Rela>())
3045 printDynamicRelocation(Obj, Rela, true);
3046 } else {
3047 printRelocHeader(OS, ELFT::Is64Bits, false);
3048 for (const Elf_Rel &Rel : DynPLTRelRegion.getAsArrayRef<Elf_Rel>()) {
3049 Elf_Rela Rela;
3050 Rela.r_offset = Rel.r_offset;
3051 Rela.r_info = Rel.r_info;
3052 Rela.r_addend = 0;
3053 printDynamicRelocation(Obj, Rela, false);
3054 }
3055 }
3056 }
3057
3058 // Hash histogram shows statistics of how efficient the hash was for the
3059 // dynamic symbol table. The table shows number of hash buckets for different
3060 // lengths of chains as absolute number and percentage of the total buckets.
3061 // Additionally cumulative coverage of symbols for each set of buckets.
3062 template <class ELFT>
printHashHistogram(const ELFFile<ELFT> * Obj)3063 void GNUStyle<ELFT>::printHashHistogram(const ELFFile<ELFT> *Obj) {
3064
3065 const Elf_Hash *HashTable = this->dumper()->getHashTable();
3066 const Elf_GnuHash *GnuHashTable = this->dumper()->getGnuHashTable();
3067
3068 // Print histogram for .hash section
3069 if (HashTable) {
3070 size_t NBucket = HashTable->nbucket;
3071 size_t NChain = HashTable->nchain;
3072 ArrayRef<Elf_Word> Buckets = HashTable->buckets();
3073 ArrayRef<Elf_Word> Chains = HashTable->chains();
3074 size_t TotalSyms = 0;
3075 // If hash table is correct, we have at least chains with 0 length
3076 size_t MaxChain = 1;
3077 size_t CumulativeNonZero = 0;
3078
3079 if (NChain == 0 || NBucket == 0)
3080 return;
3081
3082 std::vector<size_t> ChainLen(NBucket, 0);
3083 // Go over all buckets and and note chain lengths of each bucket (total
3084 // unique chain lengths).
3085 for (size_t B = 0; B < NBucket; B++) {
3086 for (size_t C = Buckets[B]; C > 0 && C < NChain; C = Chains[C])
3087 if (MaxChain <= ++ChainLen[B])
3088 MaxChain++;
3089 TotalSyms += ChainLen[B];
3090 }
3091
3092 if (!TotalSyms)
3093 return;
3094
3095 std::vector<size_t> Count(MaxChain, 0) ;
3096 // Count how long is the chain for each bucket
3097 for (size_t B = 0; B < NBucket; B++)
3098 ++Count[ChainLen[B]];
3099 // Print Number of buckets with each chain lengths and their cumulative
3100 // coverage of the symbols
3101 OS << "Histogram for bucket list length (total of " << NBucket
3102 << " buckets)\n"
3103 << " Length Number % of total Coverage\n";
3104 for (size_t I = 0; I < MaxChain; I++) {
3105 CumulativeNonZero += Count[I] * I;
3106 OS << format("%7lu %-10lu (%5.1f%%) %5.1f%%\n", I, Count[I],
3107 (Count[I] * 100.0) / NBucket,
3108 (CumulativeNonZero * 100.0) / TotalSyms);
3109 }
3110 }
3111
3112 // Print histogram for .gnu.hash section
3113 if (GnuHashTable) {
3114 size_t NBucket = GnuHashTable->nbuckets;
3115 ArrayRef<Elf_Word> Buckets = GnuHashTable->buckets();
3116 unsigned NumSyms = this->dumper()->dynamic_symbols().size();
3117 if (!NumSyms)
3118 return;
3119 ArrayRef<Elf_Word> Chains = GnuHashTable->values(NumSyms);
3120 size_t Symndx = GnuHashTable->symndx;
3121 size_t TotalSyms = 0;
3122 size_t MaxChain = 1;
3123 size_t CumulativeNonZero = 0;
3124
3125 if (Chains.size() == 0 || NBucket == 0)
3126 return;
3127
3128 std::vector<size_t> ChainLen(NBucket, 0);
3129
3130 for (size_t B = 0; B < NBucket; B++) {
3131 if (!Buckets[B])
3132 continue;
3133 size_t Len = 1;
3134 for (size_t C = Buckets[B] - Symndx;
3135 C < Chains.size() && (Chains[C] & 1) == 0; C++)
3136 if (MaxChain < ++Len)
3137 MaxChain++;
3138 ChainLen[B] = Len;
3139 TotalSyms += Len;
3140 }
3141 MaxChain++;
3142
3143 if (!TotalSyms)
3144 return;
3145
3146 std::vector<size_t> Count(MaxChain, 0) ;
3147 for (size_t B = 0; B < NBucket; B++)
3148 ++Count[ChainLen[B]];
3149 // Print Number of buckets with each chain lengths and their cumulative
3150 // coverage of the symbols
3151 OS << "Histogram for `.gnu.hash' bucket list length (total of " << NBucket
3152 << " buckets)\n"
3153 << " Length Number % of total Coverage\n";
3154 for (size_t I = 0; I <MaxChain; I++) {
3155 CumulativeNonZero += Count[I] * I;
3156 OS << format("%7lu %-10lu (%5.1f%%) %5.1f%%\n", I, Count[I],
3157 (Count[I] * 100.0) / NBucket,
3158 (CumulativeNonZero * 100.0) / TotalSyms);
3159 }
3160 }
3161 }
3162
printFileHeaders(const ELFO * Obj)3163 template <class ELFT> void LLVMStyle<ELFT>::printFileHeaders(const ELFO *Obj) {
3164 const Elf_Ehdr *e = Obj->getHeader();
3165 {
3166 DictScope D(W, "ElfHeader");
3167 {
3168 DictScope D(W, "Ident");
3169 W.printBinary("Magic", makeArrayRef(e->e_ident).slice(ELF::EI_MAG0, 4));
3170 W.printEnum("Class", e->e_ident[ELF::EI_CLASS], makeArrayRef(ElfClass));
3171 W.printEnum("DataEncoding", e->e_ident[ELF::EI_DATA],
3172 makeArrayRef(ElfDataEncoding));
3173 W.printNumber("FileVersion", e->e_ident[ELF::EI_VERSION]);
3174
3175 // Handle architecture specific OS/ABI values.
3176 if (e->e_machine == ELF::EM_AMDGPU &&
3177 e->e_ident[ELF::EI_OSABI] == ELF::ELFOSABI_AMDGPU_HSA)
3178 W.printHex("OS/ABI", "AMDGPU_HSA", ELF::ELFOSABI_AMDGPU_HSA);
3179 else
3180 W.printEnum("OS/ABI", e->e_ident[ELF::EI_OSABI],
3181 makeArrayRef(ElfOSABI));
3182 W.printNumber("ABIVersion", e->e_ident[ELF::EI_ABIVERSION]);
3183 W.printBinary("Unused", makeArrayRef(e->e_ident).slice(ELF::EI_PAD));
3184 }
3185
3186 W.printEnum("Type", e->e_type, makeArrayRef(ElfObjectFileType));
3187 W.printEnum("Machine", e->e_machine, makeArrayRef(ElfMachineType));
3188 W.printNumber("Version", e->e_version);
3189 W.printHex("Entry", e->e_entry);
3190 W.printHex("ProgramHeaderOffset", e->e_phoff);
3191 W.printHex("SectionHeaderOffset", e->e_shoff);
3192 if (e->e_machine == EM_MIPS)
3193 W.printFlags("Flags", e->e_flags, makeArrayRef(ElfHeaderMipsFlags),
3194 unsigned(ELF::EF_MIPS_ARCH), unsigned(ELF::EF_MIPS_ABI),
3195 unsigned(ELF::EF_MIPS_MACH));
3196 else
3197 W.printFlags("Flags", e->e_flags);
3198 W.printNumber("HeaderSize", e->e_ehsize);
3199 W.printNumber("ProgramHeaderEntrySize", e->e_phentsize);
3200 W.printNumber("ProgramHeaderCount", e->e_phnum);
3201 W.printNumber("SectionHeaderEntrySize", e->e_shentsize);
3202 W.printNumber("SectionHeaderCount", e->e_shnum);
3203 W.printNumber("StringTableSectionIndex", e->e_shstrndx);
3204 }
3205 }
3206
3207 template <class ELFT>
printGroupSections(const ELFO * Obj)3208 void LLVMStyle<ELFT>::printGroupSections(const ELFO *Obj) {
3209 DictScope Lists(W, "Groups");
3210 uint32_t SectionIndex = 0;
3211 bool HasGroups = false;
3212 for (const Elf_Shdr &Sec : Obj->sections()) {
3213 if (Sec.sh_type == ELF::SHT_GROUP) {
3214 HasGroups = true;
3215 const Elf_Shdr *Symtab = unwrapOrError(Obj->getSection(Sec.sh_link));
3216 StringRef StrTable = unwrapOrError(Obj->getStringTableForSymtab(*Symtab));
3217 const Elf_Sym *Sym = Obj->template getEntry<Elf_Sym>(Symtab, Sec.sh_info);
3218 auto Data = unwrapOrError(
3219 Obj->template getSectionContentsAsArray<Elf_Word>(&Sec));
3220 DictScope D(W, "Group");
3221 StringRef Name = unwrapOrError(Obj->getSectionName(&Sec));
3222 W.printNumber("Name", Name, Sec.sh_name);
3223 W.printNumber("Index", SectionIndex);
3224 W.printHex("Type", getGroupType(Data[0]), Data[0]);
3225 W.startLine() << "Signature: " << StrTable.data() + Sym->st_name << "\n";
3226 {
3227 ListScope L(W, "Section(s) in group");
3228 size_t Member = 1;
3229 while (Member < Data.size()) {
3230 auto Sec = unwrapOrError(Obj->getSection(Data[Member]));
3231 const StringRef Name = unwrapOrError(Obj->getSectionName(Sec));
3232 W.startLine() << Name << " (" << Data[Member++] << ")\n";
3233 }
3234 }
3235 }
3236 ++SectionIndex;
3237 }
3238 if (!HasGroups)
3239 W.startLine() << "There are no group sections in the file.\n";
3240 }
3241
printRelocations(const ELFO * Obj)3242 template <class ELFT> void LLVMStyle<ELFT>::printRelocations(const ELFO *Obj) {
3243 ListScope D(W, "Relocations");
3244
3245 int SectionNumber = -1;
3246 for (const Elf_Shdr &Sec : Obj->sections()) {
3247 ++SectionNumber;
3248
3249 if (Sec.sh_type != ELF::SHT_REL && Sec.sh_type != ELF::SHT_RELA)
3250 continue;
3251
3252 StringRef Name = unwrapOrError(Obj->getSectionName(&Sec));
3253
3254 W.startLine() << "Section (" << SectionNumber << ") " << Name << " {\n";
3255 W.indent();
3256
3257 printRelocations(&Sec, Obj);
3258
3259 W.unindent();
3260 W.startLine() << "}\n";
3261 }
3262 }
3263
3264 template <class ELFT>
printRelocations(const Elf_Shdr * Sec,const ELFO * Obj)3265 void LLVMStyle<ELFT>::printRelocations(const Elf_Shdr *Sec, const ELFO *Obj) {
3266 const Elf_Shdr *SymTab = unwrapOrError(Obj->getSection(Sec->sh_link));
3267
3268 switch (Sec->sh_type) {
3269 case ELF::SHT_REL:
3270 for (const Elf_Rel &R : Obj->rels(Sec)) {
3271 Elf_Rela Rela;
3272 Rela.r_offset = R.r_offset;
3273 Rela.r_info = R.r_info;
3274 Rela.r_addend = 0;
3275 printRelocation(Obj, Rela, SymTab);
3276 }
3277 break;
3278 case ELF::SHT_RELA:
3279 for (const Elf_Rela &R : Obj->relas(Sec))
3280 printRelocation(Obj, R, SymTab);
3281 break;
3282 }
3283 }
3284
3285 template <class ELFT>
printRelocation(const ELFO * Obj,Elf_Rela Rel,const Elf_Shdr * SymTab)3286 void LLVMStyle<ELFT>::printRelocation(const ELFO *Obj, Elf_Rela Rel,
3287 const Elf_Shdr *SymTab) {
3288 SmallString<32> RelocName;
3289 Obj->getRelocationTypeName(Rel.getType(Obj->isMips64EL()), RelocName);
3290 StringRef TargetName;
3291 const Elf_Sym *Sym = Obj->getRelocationSymbol(&Rel, SymTab);
3292 if (Sym && Sym->getType() == ELF::STT_SECTION) {
3293 const Elf_Shdr *Sec = unwrapOrError(
3294 Obj->getSection(Sym, SymTab, this->dumper()->getShndxTable()));
3295 TargetName = unwrapOrError(Obj->getSectionName(Sec));
3296 } else if (Sym) {
3297 StringRef StrTable = unwrapOrError(Obj->getStringTableForSymtab(*SymTab));
3298 TargetName = unwrapOrError(Sym->getName(StrTable));
3299 }
3300
3301 if (opts::ExpandRelocs) {
3302 DictScope Group(W, "Relocation");
3303 W.printHex("Offset", Rel.r_offset);
3304 W.printNumber("Type", RelocName, (int)Rel.getType(Obj->isMips64EL()));
3305 W.printNumber("Symbol", TargetName.size() > 0 ? TargetName : "-",
3306 Rel.getSymbol(Obj->isMips64EL()));
3307 W.printHex("Addend", Rel.r_addend);
3308 } else {
3309 raw_ostream &OS = W.startLine();
3310 OS << W.hex(Rel.r_offset) << " " << RelocName << " "
3311 << (TargetName.size() > 0 ? TargetName : "-") << " "
3312 << W.hex(Rel.r_addend) << "\n";
3313 }
3314 }
3315
printSections(const ELFO * Obj)3316 template <class ELFT> void LLVMStyle<ELFT>::printSections(const ELFO *Obj) {
3317 ListScope SectionsD(W, "Sections");
3318
3319 int SectionIndex = -1;
3320 for (const Elf_Shdr &Sec : Obj->sections()) {
3321 ++SectionIndex;
3322
3323 StringRef Name = unwrapOrError(Obj->getSectionName(&Sec));
3324
3325 DictScope SectionD(W, "Section");
3326 W.printNumber("Index", SectionIndex);
3327 W.printNumber("Name", Name, Sec.sh_name);
3328 W.printHex("Type",
3329 getElfSectionType(Obj->getHeader()->e_machine, Sec.sh_type),
3330 Sec.sh_type);
3331 std::vector<EnumEntry<unsigned>> SectionFlags(std::begin(ElfSectionFlags),
3332 std::end(ElfSectionFlags));
3333 switch (Obj->getHeader()->e_machine) {
3334 case EM_AMDGPU:
3335 SectionFlags.insert(SectionFlags.end(), std::begin(ElfAMDGPUSectionFlags),
3336 std::end(ElfAMDGPUSectionFlags));
3337 break;
3338 case EM_HEXAGON:
3339 SectionFlags.insert(SectionFlags.end(),
3340 std::begin(ElfHexagonSectionFlags),
3341 std::end(ElfHexagonSectionFlags));
3342 break;
3343 case EM_MIPS:
3344 SectionFlags.insert(SectionFlags.end(), std::begin(ElfMipsSectionFlags),
3345 std::end(ElfMipsSectionFlags));
3346 break;
3347 case EM_X86_64:
3348 SectionFlags.insert(SectionFlags.end(), std::begin(ElfX86_64SectionFlags),
3349 std::end(ElfX86_64SectionFlags));
3350 break;
3351 case EM_XCORE:
3352 SectionFlags.insert(SectionFlags.end(), std::begin(ElfXCoreSectionFlags),
3353 std::end(ElfXCoreSectionFlags));
3354 break;
3355 default:
3356 // Nothing to do.
3357 break;
3358 }
3359 W.printFlags("Flags", Sec.sh_flags, makeArrayRef(SectionFlags));
3360 W.printHex("Address", Sec.sh_addr);
3361 W.printHex("Offset", Sec.sh_offset);
3362 W.printNumber("Size", Sec.sh_size);
3363 W.printNumber("Link", Sec.sh_link);
3364 W.printNumber("Info", Sec.sh_info);
3365 W.printNumber("AddressAlignment", Sec.sh_addralign);
3366 W.printNumber("EntrySize", Sec.sh_entsize);
3367
3368 if (opts::SectionRelocations) {
3369 ListScope D(W, "Relocations");
3370 printRelocations(&Sec, Obj);
3371 }
3372
3373 if (opts::SectionSymbols) {
3374 ListScope D(W, "Symbols");
3375 const Elf_Shdr *Symtab = this->dumper()->getDotSymtabSec();
3376 StringRef StrTable = unwrapOrError(Obj->getStringTableForSymtab(*Symtab));
3377
3378 for (const Elf_Sym &Sym : Obj->symbols(Symtab)) {
3379 const Elf_Shdr *SymSec = unwrapOrError(
3380 Obj->getSection(&Sym, Symtab, this->dumper()->getShndxTable()));
3381 if (SymSec == &Sec)
3382 printSymbol(Obj, &Sym, Obj->symbol_begin(Symtab), StrTable, false);
3383 }
3384 }
3385
3386 if (opts::SectionData && Sec.sh_type != ELF::SHT_NOBITS) {
3387 ArrayRef<uint8_t> Data = unwrapOrError(Obj->getSectionContents(&Sec));
3388 W.printBinaryBlock("SectionData",
3389 StringRef((const char *)Data.data(), Data.size()));
3390 }
3391 }
3392 }
3393
3394 template <class ELFT>
printSymbol(const ELFO * Obj,const Elf_Sym * Symbol,const Elf_Sym * First,StringRef StrTable,bool IsDynamic)3395 void LLVMStyle<ELFT>::printSymbol(const ELFO *Obj, const Elf_Sym *Symbol,
3396 const Elf_Sym *First, StringRef StrTable,
3397 bool IsDynamic) {
3398 unsigned SectionIndex = 0;
3399 StringRef SectionName;
3400 getSectionNameIndex(*Obj, Symbol, First, this->dumper()->getShndxTable(),
3401 SectionName, SectionIndex);
3402 std::string FullSymbolName =
3403 this->dumper()->getFullSymbolName(Symbol, StrTable, IsDynamic);
3404 unsigned char SymbolType = Symbol->getType();
3405
3406 DictScope D(W, "Symbol");
3407 W.printNumber("Name", FullSymbolName, Symbol->st_name);
3408 W.printHex("Value", Symbol->st_value);
3409 W.printNumber("Size", Symbol->st_size);
3410 W.printEnum("Binding", Symbol->getBinding(), makeArrayRef(ElfSymbolBindings));
3411 if (Obj->getHeader()->e_machine == ELF::EM_AMDGPU &&
3412 SymbolType >= ELF::STT_LOOS && SymbolType < ELF::STT_HIOS)
3413 W.printEnum("Type", SymbolType, makeArrayRef(AMDGPUSymbolTypes));
3414 else
3415 W.printEnum("Type", SymbolType, makeArrayRef(ElfSymbolTypes));
3416 if (Symbol->st_other == 0)
3417 // Usually st_other flag is zero. Do not pollute the output
3418 // by flags enumeration in that case.
3419 W.printNumber("Other", 0);
3420 else {
3421 std::vector<EnumEntry<unsigned>> SymOtherFlags(std::begin(ElfSymOtherFlags),
3422 std::end(ElfSymOtherFlags));
3423 if (Obj->getHeader()->e_machine == EM_MIPS) {
3424 // Someones in their infinite wisdom decided to make STO_MIPS_MIPS16
3425 // flag overlapped with other ST_MIPS_xxx flags. So consider both
3426 // cases separately.
3427 if ((Symbol->st_other & STO_MIPS_MIPS16) == STO_MIPS_MIPS16)
3428 SymOtherFlags.insert(SymOtherFlags.end(),
3429 std::begin(ElfMips16SymOtherFlags),
3430 std::end(ElfMips16SymOtherFlags));
3431 else
3432 SymOtherFlags.insert(SymOtherFlags.end(),
3433 std::begin(ElfMipsSymOtherFlags),
3434 std::end(ElfMipsSymOtherFlags));
3435 }
3436 W.printFlags("Other", Symbol->st_other, makeArrayRef(SymOtherFlags), 0x3u);
3437 }
3438 W.printHex("Section", SectionName, SectionIndex);
3439 }
3440
printSymbols(const ELFO * Obj)3441 template <class ELFT> void LLVMStyle<ELFT>::printSymbols(const ELFO *Obj) {
3442 ListScope Group(W, "Symbols");
3443 this->dumper()->printSymbolsHelper(false);
3444 }
3445
3446 template <class ELFT>
printDynamicSymbols(const ELFO * Obj)3447 void LLVMStyle<ELFT>::printDynamicSymbols(const ELFO *Obj) {
3448 ListScope Group(W, "DynamicSymbols");
3449 this->dumper()->printSymbolsHelper(true);
3450 }
3451
3452 template <class ELFT>
printDynamicRelocations(const ELFO * Obj)3453 void LLVMStyle<ELFT>::printDynamicRelocations(const ELFO *Obj) {
3454 const DynRegionInfo &DynRelRegion = this->dumper()->getDynRelRegion();
3455 const DynRegionInfo &DynRelaRegion = this->dumper()->getDynRelaRegion();
3456 const DynRegionInfo &DynPLTRelRegion = this->dumper()->getDynPLTRelRegion();
3457 if (DynRelRegion.Size && DynRelaRegion.Size)
3458 report_fatal_error("There are both REL and RELA dynamic relocations");
3459 W.startLine() << "Dynamic Relocations {\n";
3460 W.indent();
3461 if (DynRelaRegion.Size > 0)
3462 for (const Elf_Rela &Rela : this->dumper()->dyn_relas())
3463 printDynamicRelocation(Obj, Rela);
3464 else
3465 for (const Elf_Rel &Rel : this->dumper()->dyn_rels()) {
3466 Elf_Rela Rela;
3467 Rela.r_offset = Rel.r_offset;
3468 Rela.r_info = Rel.r_info;
3469 Rela.r_addend = 0;
3470 printDynamicRelocation(Obj, Rela);
3471 }
3472 if (DynPLTRelRegion.EntSize == sizeof(Elf_Rela))
3473 for (const Elf_Rela &Rela : DynPLTRelRegion.getAsArrayRef<Elf_Rela>())
3474 printDynamicRelocation(Obj, Rela);
3475 else
3476 for (const Elf_Rel &Rel : DynPLTRelRegion.getAsArrayRef<Elf_Rel>()) {
3477 Elf_Rela Rela;
3478 Rela.r_offset = Rel.r_offset;
3479 Rela.r_info = Rel.r_info;
3480 Rela.r_addend = 0;
3481 printDynamicRelocation(Obj, Rela);
3482 }
3483 W.unindent();
3484 W.startLine() << "}\n";
3485 }
3486
3487 template <class ELFT>
printDynamicRelocation(const ELFO * Obj,Elf_Rela Rel)3488 void LLVMStyle<ELFT>::printDynamicRelocation(const ELFO *Obj, Elf_Rela Rel) {
3489 SmallString<32> RelocName;
3490 Obj->getRelocationTypeName(Rel.getType(Obj->isMips64EL()), RelocName);
3491 StringRef SymbolName;
3492 uint32_t SymIndex = Rel.getSymbol(Obj->isMips64EL());
3493 const Elf_Sym *Sym = this->dumper()->dynamic_symbols().begin() + SymIndex;
3494 SymbolName =
3495 unwrapOrError(Sym->getName(this->dumper()->getDynamicStringTable()));
3496 if (opts::ExpandRelocs) {
3497 DictScope Group(W, "Relocation");
3498 W.printHex("Offset", Rel.r_offset);
3499 W.printNumber("Type", RelocName, (int)Rel.getType(Obj->isMips64EL()));
3500 W.printString("Symbol", SymbolName.size() > 0 ? SymbolName : "-");
3501 W.printHex("Addend", Rel.r_addend);
3502 } else {
3503 raw_ostream &OS = W.startLine();
3504 OS << W.hex(Rel.r_offset) << " " << RelocName << " "
3505 << (SymbolName.size() > 0 ? SymbolName : "-") << " "
3506 << W.hex(Rel.r_addend) << "\n";
3507 }
3508 }
3509
3510 template <class ELFT>
printProgramHeaders(const ELFO * Obj)3511 void LLVMStyle<ELFT>::printProgramHeaders(const ELFO *Obj) {
3512 ListScope L(W, "ProgramHeaders");
3513
3514 for (const Elf_Phdr &Phdr : Obj->program_headers()) {
3515 DictScope P(W, "ProgramHeader");
3516 W.printHex("Type",
3517 getElfSegmentType(Obj->getHeader()->e_machine, Phdr.p_type),
3518 Phdr.p_type);
3519 W.printHex("Offset", Phdr.p_offset);
3520 W.printHex("VirtualAddress", Phdr.p_vaddr);
3521 W.printHex("PhysicalAddress", Phdr.p_paddr);
3522 W.printNumber("FileSize", Phdr.p_filesz);
3523 W.printNumber("MemSize", Phdr.p_memsz);
3524 W.printFlags("Flags", Phdr.p_flags, makeArrayRef(ElfSegmentFlags));
3525 W.printNumber("Alignment", Phdr.p_align);
3526 }
3527 }
3528 template <class ELFT>
printHashHistogram(const ELFFile<ELFT> * Obj)3529 void LLVMStyle<ELFT>::printHashHistogram(const ELFFile<ELFT> *Obj) {
3530 W.startLine() << "Hash Histogram not implemented!\n";
3531 }
3532