• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //===--- HexagonGenInsert.cpp ---------------------------------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 
10 #define DEBUG_TYPE "hexinsert"
11 
12 #include "llvm/ADT/BitVector.h"
13 #include "llvm/ADT/DenseMap.h"
14 #include "llvm/ADT/PostOrderIterator.h"
15 #include "llvm/CodeGen/MachineDominators.h"
16 #include "llvm/CodeGen/MachineFunction.h"
17 #include "llvm/CodeGen/MachineFunctionPass.h"
18 #include "llvm/CodeGen/MachineInstrBuilder.h"
19 #include "llvm/CodeGen/MachineRegisterInfo.h"
20 #include "llvm/IR/Constants.h"
21 #include "llvm/Pass.h"
22 #include "llvm/PassRegistry.h"
23 #include "llvm/Support/CommandLine.h"
24 #include "llvm/Support/Debug.h"
25 #include "llvm/Support/Timer.h"
26 #include "llvm/Support/raw_ostream.h"
27 #include "llvm/Target/TargetMachine.h"
28 #include "llvm/Target/TargetRegisterInfo.h"
29 
30 #include "Hexagon.h"
31 #include "HexagonRegisterInfo.h"
32 #include "HexagonTargetMachine.h"
33 #include "HexagonBitTracker.h"
34 
35 #include <vector>
36 
37 using namespace llvm;
38 
39 static cl::opt<unsigned> VRegIndexCutoff("insert-vreg-cutoff", cl::init(~0U),
40   cl::Hidden, cl::ZeroOrMore, cl::desc("Vreg# cutoff for insert generation."));
41 // The distance cutoff is selected based on the precheckin-perf results:
42 // cutoffs 20, 25, 35, and 40 are worse than 30.
43 static cl::opt<unsigned> VRegDistCutoff("insert-dist-cutoff", cl::init(30U),
44   cl::Hidden, cl::ZeroOrMore, cl::desc("Vreg distance cutoff for insert "
45   "generation."));
46 
47 static cl::opt<bool> OptTiming("insert-timing", cl::init(false), cl::Hidden,
48   cl::ZeroOrMore, cl::desc("Enable timing of insert generation"));
49 static cl::opt<bool> OptTimingDetail("insert-timing-detail", cl::init(false),
50   cl::Hidden, cl::ZeroOrMore, cl::desc("Enable detailed timing of insert "
51   "generation"));
52 
53 static cl::opt<bool> OptSelectAll0("insert-all0", cl::init(false), cl::Hidden,
54   cl::ZeroOrMore);
55 static cl::opt<bool> OptSelectHas0("insert-has0", cl::init(false), cl::Hidden,
56   cl::ZeroOrMore);
57 // Whether to construct constant values via "insert". Could eliminate constant
58 // extenders, but often not practical.
59 static cl::opt<bool> OptConst("insert-const", cl::init(false), cl::Hidden,
60   cl::ZeroOrMore);
61 
62 namespace {
63   // The preprocessor gets confused when the DEBUG macro is passed larger
64   // chunks of code. Use this function to detect debugging.
isDebug()65   inline bool isDebug() {
66 #ifndef NDEBUG
67     return ::llvm::DebugFlag && ::llvm::isCurrentDebugType(DEBUG_TYPE);
68 #else
69     return false;
70 #endif
71   }
72 }
73 
74 
75 namespace {
76   // Set of virtual registers, based on BitVector.
77   struct RegisterSet : private BitVector {
78     RegisterSet() = default;
RegisterSet__anon3ece8ed90211::RegisterSet79     explicit RegisterSet(unsigned s, bool t = false) : BitVector(s, t) {}
80 
81     using BitVector::clear;
82 
find_first__anon3ece8ed90211::RegisterSet83     unsigned find_first() const {
84       int First = BitVector::find_first();
85       if (First < 0)
86         return 0;
87       return x2v(First);
88     }
89 
find_next__anon3ece8ed90211::RegisterSet90     unsigned find_next(unsigned Prev) const {
91       int Next = BitVector::find_next(v2x(Prev));
92       if (Next < 0)
93         return 0;
94       return x2v(Next);
95     }
96 
insert__anon3ece8ed90211::RegisterSet97     RegisterSet &insert(unsigned R) {
98       unsigned Idx = v2x(R);
99       ensure(Idx);
100       return static_cast<RegisterSet&>(BitVector::set(Idx));
101     }
remove__anon3ece8ed90211::RegisterSet102     RegisterSet &remove(unsigned R) {
103       unsigned Idx = v2x(R);
104       if (Idx >= size())
105         return *this;
106       return static_cast<RegisterSet&>(BitVector::reset(Idx));
107     }
108 
insert__anon3ece8ed90211::RegisterSet109     RegisterSet &insert(const RegisterSet &Rs) {
110       return static_cast<RegisterSet&>(BitVector::operator|=(Rs));
111     }
remove__anon3ece8ed90211::RegisterSet112     RegisterSet &remove(const RegisterSet &Rs) {
113       return static_cast<RegisterSet&>(BitVector::reset(Rs));
114     }
115 
operator []__anon3ece8ed90211::RegisterSet116     reference operator[](unsigned R) {
117       unsigned Idx = v2x(R);
118       ensure(Idx);
119       return BitVector::operator[](Idx);
120     }
operator []__anon3ece8ed90211::RegisterSet121     bool operator[](unsigned R) const {
122       unsigned Idx = v2x(R);
123       assert(Idx < size());
124       return BitVector::operator[](Idx);
125     }
has__anon3ece8ed90211::RegisterSet126     bool has(unsigned R) const {
127       unsigned Idx = v2x(R);
128       if (Idx >= size())
129         return false;
130       return BitVector::test(Idx);
131     }
132 
empty__anon3ece8ed90211::RegisterSet133     bool empty() const {
134       return !BitVector::any();
135     }
includes__anon3ece8ed90211::RegisterSet136     bool includes(const RegisterSet &Rs) const {
137       // A.BitVector::test(B)  <=>  A-B != {}
138       return !Rs.BitVector::test(*this);
139     }
intersects__anon3ece8ed90211::RegisterSet140     bool intersects(const RegisterSet &Rs) const {
141       return BitVector::anyCommon(Rs);
142     }
143 
144   private:
ensure__anon3ece8ed90211::RegisterSet145     void ensure(unsigned Idx) {
146       if (size() <= Idx)
147         resize(std::max(Idx+1, 32U));
148     }
v2x__anon3ece8ed90211::RegisterSet149     static inline unsigned v2x(unsigned v) {
150       return TargetRegisterInfo::virtReg2Index(v);
151     }
x2v__anon3ece8ed90211::RegisterSet152     static inline unsigned x2v(unsigned x) {
153       return TargetRegisterInfo::index2VirtReg(x);
154     }
155   };
156 
157 
158   struct PrintRegSet {
PrintRegSet__anon3ece8ed90211::PrintRegSet159     PrintRegSet(const RegisterSet &S, const TargetRegisterInfo *RI)
160       : RS(S), TRI(RI) {}
161     friend raw_ostream &operator<< (raw_ostream &OS,
162           const PrintRegSet &P);
163   private:
164     const RegisterSet &RS;
165     const TargetRegisterInfo *TRI;
166   };
167 
operator <<(raw_ostream & OS,const PrintRegSet & P)168   raw_ostream &operator<< (raw_ostream &OS, const PrintRegSet &P) {
169     OS << '{';
170     for (unsigned R = P.RS.find_first(); R; R = P.RS.find_next(R))
171       OS << ' ' << PrintReg(R, P.TRI);
172     OS << " }";
173     return OS;
174   }
175 }
176 
177 
178 namespace {
179   // A convenience class to associate unsigned numbers (such as virtual
180   // registers) with unsigned numbers.
181   struct UnsignedMap : public DenseMap<unsigned,unsigned> {
UnsignedMap__anon3ece8ed90311::UnsignedMap182     UnsignedMap() : BaseType() {}
183   private:
184     typedef DenseMap<unsigned,unsigned> BaseType;
185   };
186 
187   // A utility to establish an ordering between virtual registers:
188   // VRegA < VRegB  <=>  RegisterOrdering[VRegA] < RegisterOrdering[VRegB]
189   // This is meant as a cache for the ordering of virtual registers defined
190   // by a potentially expensive comparison function, or obtained by a proce-
191   // dure that should not be repeated each time two registers are compared.
192   struct RegisterOrdering : public UnsignedMap {
RegisterOrdering__anon3ece8ed90311::RegisterOrdering193     RegisterOrdering() : UnsignedMap() {}
operator []__anon3ece8ed90311::RegisterOrdering194     unsigned operator[](unsigned VR) const {
195       const_iterator F = find(VR);
196       assert(F != end());
197       return F->second;
198     }
199     // Add operator(), so that objects of this class can be used as
200     // comparators in std::sort et al.
operator ()__anon3ece8ed90311::RegisterOrdering201     bool operator() (unsigned VR1, unsigned VR2) const {
202       return operator[](VR1) < operator[](VR2);
203     }
204   };
205 }
206 
207 
208 namespace {
209   // Ordering of bit values. This class does not have operator[], but
210   // is supplies a comparison operator() for use in std:: algorithms.
211   // The order is as follows:
212   // - 0 < 1 < ref
213   // - ref1 < ref2, if ord(ref1.Reg) < ord(ref2.Reg),
214   //   or ord(ref1.Reg) == ord(ref2.Reg), and ref1.Pos < ref2.Pos.
215   struct BitValueOrdering {
BitValueOrdering__anon3ece8ed90411::BitValueOrdering216     BitValueOrdering(const RegisterOrdering &RB) : BaseOrd(RB) {}
217     bool operator() (const BitTracker::BitValue &V1,
218           const BitTracker::BitValue &V2) const;
219     const RegisterOrdering &BaseOrd;
220   };
221 }
222 
223 
operator ()(const BitTracker::BitValue & V1,const BitTracker::BitValue & V2) const224 bool BitValueOrdering::operator() (const BitTracker::BitValue &V1,
225       const BitTracker::BitValue &V2) const {
226   if (V1 == V2)
227     return false;
228   // V1==0 => true, V2==0 => false
229   if (V1.is(0) || V2.is(0))
230     return V1.is(0);
231   // Neither of V1,V2 is 0, and V1!=V2.
232   // V2==1 => false, V1==1 => true
233   if (V2.is(1) || V1.is(1))
234     return !V2.is(1);
235   // Both V1,V2 are refs.
236   unsigned Ind1 = BaseOrd[V1.RefI.Reg], Ind2 = BaseOrd[V2.RefI.Reg];
237   if (Ind1 != Ind2)
238     return Ind1 < Ind2;
239   // If V1.Pos==V2.Pos
240   assert(V1.RefI.Pos != V2.RefI.Pos && "Bit values should be different");
241   return V1.RefI.Pos < V2.RefI.Pos;
242 }
243 
244 
245 namespace {
246   // Cache for the BitTracker's cell map. Map lookup has a logarithmic
247   // complexity, this class will memoize the lookup results to reduce
248   // the access time for repeated lookups of the same cell.
249   struct CellMapShadow {
CellMapShadow__anon3ece8ed90511::CellMapShadow250     CellMapShadow(const BitTracker &T) : BT(T) {}
lookup__anon3ece8ed90511::CellMapShadow251     const BitTracker::RegisterCell &lookup(unsigned VR) {
252       unsigned RInd = TargetRegisterInfo::virtReg2Index(VR);
253       // Grow the vector to at least 32 elements.
254       if (RInd >= CVect.size())
255         CVect.resize(std::max(RInd+16, 32U), 0);
256       const BitTracker::RegisterCell *CP = CVect[RInd];
257       if (CP == 0)
258         CP = CVect[RInd] = &BT.lookup(VR);
259       return *CP;
260     }
261 
262     const BitTracker &BT;
263 
264   private:
265     typedef std::vector<const BitTracker::RegisterCell*> CellVectType;
266     CellVectType CVect;
267   };
268 }
269 
270 
271 namespace {
272   // Comparator class for lexicographic ordering of virtual registers
273   // according to the corresponding BitTracker::RegisterCell objects.
274   struct RegisterCellLexCompare {
RegisterCellLexCompare__anon3ece8ed90611::RegisterCellLexCompare275     RegisterCellLexCompare(const BitValueOrdering &BO, CellMapShadow &M)
276       : BitOrd(BO), CM(M) {}
277     bool operator() (unsigned VR1, unsigned VR2) const;
278   private:
279     const BitValueOrdering &BitOrd;
280     CellMapShadow &CM;
281   };
282 
283   // Comparator class for lexicographic ordering of virtual registers
284   // according to the specified bits of the corresponding BitTracker::
285   // RegisterCell objects.
286   // Specifically, this class will be used to compare bit B of a register
287   // cell for a selected virtual register R with bit N of any register
288   // other than R.
289   struct RegisterCellBitCompareSel {
RegisterCellBitCompareSel__anon3ece8ed90611::RegisterCellBitCompareSel290     RegisterCellBitCompareSel(unsigned R, unsigned B, unsigned N,
291           const BitValueOrdering &BO, CellMapShadow &M)
292       : SelR(R), SelB(B), BitN(N), BitOrd(BO), CM(M) {}
293     bool operator() (unsigned VR1, unsigned VR2) const;
294   private:
295     const unsigned SelR, SelB;
296     const unsigned BitN;
297     const BitValueOrdering &BitOrd;
298     CellMapShadow &CM;
299   };
300 }
301 
302 
operator ()(unsigned VR1,unsigned VR2) const303 bool RegisterCellLexCompare::operator() (unsigned VR1, unsigned VR2) const {
304   // Ordering of registers, made up from two given orderings:
305   // - the ordering of the register numbers, and
306   // - the ordering of register cells.
307   // Def. R1 < R2 if:
308   // - cell(R1) < cell(R2), or
309   // - cell(R1) == cell(R2), and index(R1) < index(R2).
310   //
311   // For register cells, the ordering is lexicographic, with index 0 being
312   // the most significant.
313   if (VR1 == VR2)
314     return false;
315 
316   const BitTracker::RegisterCell &RC1 = CM.lookup(VR1), &RC2 = CM.lookup(VR2);
317   uint16_t W1 = RC1.width(), W2 = RC2.width();
318   for (uint16_t i = 0, w = std::min(W1, W2); i < w; ++i) {
319     const BitTracker::BitValue &V1 = RC1[i], &V2 = RC2[i];
320     if (V1 != V2)
321       return BitOrd(V1, V2);
322   }
323   // Cells are equal up until the common length.
324   if (W1 != W2)
325     return W1 < W2;
326 
327   return BitOrd.BaseOrd[VR1] < BitOrd.BaseOrd[VR2];
328 }
329 
330 
operator ()(unsigned VR1,unsigned VR2) const331 bool RegisterCellBitCompareSel::operator() (unsigned VR1, unsigned VR2) const {
332   if (VR1 == VR2)
333     return false;
334   const BitTracker::RegisterCell &RC1 = CM.lookup(VR1);
335   const BitTracker::RegisterCell &RC2 = CM.lookup(VR2);
336   uint16_t W1 = RC1.width(), W2 = RC2.width();
337   uint16_t Bit1 = (VR1 == SelR) ? SelB : BitN;
338   uint16_t Bit2 = (VR2 == SelR) ? SelB : BitN;
339   // If Bit1 exceeds the width of VR1, then:
340   // - return false, if at the same time Bit2 exceeds VR2, or
341   // - return true, otherwise.
342   // (I.e. "a bit value that does not exist is less than any bit value
343   // that does exist".)
344   if (W1 <= Bit1)
345     return Bit2 < W2;
346   // If Bit1 is within VR1, but Bit2 is not within VR2, return false.
347   if (W2 <= Bit2)
348     return false;
349 
350   const BitTracker::BitValue &V1 = RC1[Bit1], V2 = RC2[Bit2];
351   if (V1 != V2)
352     return BitOrd(V1, V2);
353   return false;
354 }
355 
356 
357 namespace {
358   class OrderedRegisterList {
359     typedef std::vector<unsigned> ListType;
360   public:
OrderedRegisterList(const RegisterOrdering & RO)361     OrderedRegisterList(const RegisterOrdering &RO) : Ord(RO) {}
362     void insert(unsigned VR);
363     void remove(unsigned VR);
operator [](unsigned Idx) const364     unsigned operator[](unsigned Idx) const {
365       assert(Idx < Seq.size());
366       return Seq[Idx];
367     }
size() const368     unsigned size() const {
369       return Seq.size();
370     }
371 
372     typedef ListType::iterator iterator;
373     typedef ListType::const_iterator const_iterator;
begin()374     iterator begin() { return Seq.begin(); }
end()375     iterator end() { return Seq.end(); }
begin() const376     const_iterator begin() const { return Seq.begin(); }
end() const377     const_iterator end() const { return Seq.end(); }
378 
379     // Convenience function to convert an iterator to the corresponding index.
idx(iterator It) const380     unsigned idx(iterator It) const { return It-begin(); }
381   private:
382     ListType Seq;
383     const RegisterOrdering &Ord;
384   };
385 
386 
387   struct PrintORL {
PrintORL__anon3ece8ed90711::PrintORL388     PrintORL(const OrderedRegisterList &L, const TargetRegisterInfo *RI)
389       : RL(L), TRI(RI) {}
390     friend raw_ostream &operator<< (raw_ostream &OS, const PrintORL &P);
391   private:
392     const OrderedRegisterList &RL;
393     const TargetRegisterInfo *TRI;
394   };
395 
operator <<(raw_ostream & OS,const PrintORL & P)396   raw_ostream &operator<< (raw_ostream &OS, const PrintORL &P) {
397     OS << '(';
398     OrderedRegisterList::const_iterator B = P.RL.begin(), E = P.RL.end();
399     for (OrderedRegisterList::const_iterator I = B; I != E; ++I) {
400       if (I != B)
401         OS << ", ";
402       OS << PrintReg(*I, P.TRI);
403     }
404     OS << ')';
405     return OS;
406   }
407 }
408 
409 
insert(unsigned VR)410 void OrderedRegisterList::insert(unsigned VR) {
411   iterator L = std::lower_bound(Seq.begin(), Seq.end(), VR, Ord);
412   if (L == Seq.end())
413     Seq.push_back(VR);
414   else
415     Seq.insert(L, VR);
416 }
417 
418 
remove(unsigned VR)419 void OrderedRegisterList::remove(unsigned VR) {
420   iterator L = std::lower_bound(Seq.begin(), Seq.end(), VR, Ord);
421   assert(L != Seq.end());
422   Seq.erase(L);
423 }
424 
425 
426 namespace {
427   // A record of the insert form. The fields correspond to the operands
428   // of the "insert" instruction:
429   // ... = insert(SrcR, InsR, #Wdh, #Off)
430   struct IFRecord {
IFRecord__anon3ece8ed90811::IFRecord431     IFRecord(unsigned SR = 0, unsigned IR = 0, uint16_t W = 0, uint16_t O = 0)
432       : SrcR(SR), InsR(IR), Wdh(W), Off(O) {}
433     unsigned SrcR, InsR;
434     uint16_t Wdh, Off;
435   };
436 
437   struct PrintIFR {
PrintIFR__anon3ece8ed90811::PrintIFR438     PrintIFR(const IFRecord &R, const TargetRegisterInfo *RI)
439       : IFR(R), TRI(RI) {}
440   private:
441     const IFRecord &IFR;
442     const TargetRegisterInfo *TRI;
443     friend raw_ostream &operator<< (raw_ostream &OS, const PrintIFR &P);
444   };
445 
operator <<(raw_ostream & OS,const PrintIFR & P)446   raw_ostream &operator<< (raw_ostream &OS, const PrintIFR &P) {
447     unsigned SrcR = P.IFR.SrcR, InsR = P.IFR.InsR;
448     OS << '(' << PrintReg(SrcR, P.TRI) << ',' << PrintReg(InsR, P.TRI)
449        << ",#" << P.IFR.Wdh << ",#" << P.IFR.Off << ')';
450     return OS;
451   }
452 
453   typedef std::pair<IFRecord,RegisterSet> IFRecordWithRegSet;
454 }
455 
456 
457 namespace llvm {
458   void initializeHexagonGenInsertPass(PassRegistry&);
459   FunctionPass *createHexagonGenInsert();
460 }
461 
462 
463 namespace {
464   class HexagonGenInsert : public MachineFunctionPass {
465   public:
466     static char ID;
HexagonGenInsert()467     HexagonGenInsert() : MachineFunctionPass(ID), HII(0), HRI(0) {
468       initializeHexagonGenInsertPass(*PassRegistry::getPassRegistry());
469     }
getPassName() const470     virtual const char *getPassName() const {
471       return "Hexagon generate \"insert\" instructions";
472     }
getAnalysisUsage(AnalysisUsage & AU) const473     virtual void getAnalysisUsage(AnalysisUsage &AU) const {
474       AU.addRequired<MachineDominatorTree>();
475       AU.addPreserved<MachineDominatorTree>();
476       MachineFunctionPass::getAnalysisUsage(AU);
477     }
478     virtual bool runOnMachineFunction(MachineFunction &MF);
479 
480   private:
481     typedef DenseMap<std::pair<unsigned,unsigned>,unsigned> PairMapType;
482 
483     void buildOrderingMF(RegisterOrdering &RO) const;
484     void buildOrderingBT(RegisterOrdering &RB, RegisterOrdering &RO) const;
485     bool isIntClass(const TargetRegisterClass *RC) const;
486     bool isConstant(unsigned VR) const;
487     bool isSmallConstant(unsigned VR) const;
488     bool isValidInsertForm(unsigned DstR, unsigned SrcR, unsigned InsR,
489           uint16_t L, uint16_t S) const;
490     bool findSelfReference(unsigned VR) const;
491     bool findNonSelfReference(unsigned VR) const;
492     void getInstrDefs(const MachineInstr *MI, RegisterSet &Defs) const;
493     void getInstrUses(const MachineInstr *MI, RegisterSet &Uses) const;
494     unsigned distance(const MachineBasicBlock *FromB,
495           const MachineBasicBlock *ToB, const UnsignedMap &RPO,
496           PairMapType &M) const;
497     unsigned distance(MachineBasicBlock::const_iterator FromI,
498           MachineBasicBlock::const_iterator ToI, const UnsignedMap &RPO,
499           PairMapType &M) const;
500     bool findRecordInsertForms(unsigned VR, OrderedRegisterList &AVs);
501     void collectInBlock(MachineBasicBlock *B, OrderedRegisterList &AVs);
502     void findRemovableRegisters(unsigned VR, IFRecord IF,
503           RegisterSet &RMs) const;
504     void computeRemovableRegisters();
505 
506     void pruneEmptyLists();
507     void pruneCoveredSets(unsigned VR);
508     void pruneUsesTooFar(unsigned VR, const UnsignedMap &RPO, PairMapType &M);
509     void pruneRegCopies(unsigned VR);
510     void pruneCandidates();
511     void selectCandidates();
512     bool generateInserts();
513 
514     bool removeDeadCode(MachineDomTreeNode *N);
515 
516     // IFRecord coupled with a set of potentially removable registers:
517     typedef std::vector<IFRecordWithRegSet> IFListType;
518     typedef DenseMap<unsigned,IFListType> IFMapType;  // vreg -> IFListType
519 
520     void dump_map() const;
521 
522     const HexagonInstrInfo *HII;
523     const HexagonRegisterInfo *HRI;
524 
525     MachineFunction *MFN;
526     MachineRegisterInfo *MRI;
527     MachineDominatorTree *MDT;
528     CellMapShadow *CMS;
529 
530     RegisterOrdering BaseOrd;
531     RegisterOrdering CellOrd;
532     IFMapType IFMap;
533   };
534 
535   char HexagonGenInsert::ID = 0;
536 }
537 
538 
dump_map() const539 void HexagonGenInsert::dump_map() const {
540   typedef IFMapType::const_iterator iterator;
541   for (iterator I = IFMap.begin(), E = IFMap.end(); I != E; ++I) {
542     dbgs() << "  " << PrintReg(I->first, HRI) << ":\n";
543     const IFListType &LL = I->second;
544     for (unsigned i = 0, n = LL.size(); i < n; ++i)
545       dbgs() << "    " << PrintIFR(LL[i].first, HRI) << ", "
546              << PrintRegSet(LL[i].second, HRI) << '\n';
547   }
548 }
549 
550 
buildOrderingMF(RegisterOrdering & RO) const551 void HexagonGenInsert::buildOrderingMF(RegisterOrdering &RO) const {
552   unsigned Index = 0;
553   typedef MachineFunction::const_iterator mf_iterator;
554   for (mf_iterator A = MFN->begin(), Z = MFN->end(); A != Z; ++A) {
555     const MachineBasicBlock &B = *A;
556     if (!CMS->BT.reached(&B))
557       continue;
558     typedef MachineBasicBlock::const_iterator mb_iterator;
559     for (mb_iterator I = B.begin(), E = B.end(); I != E; ++I) {
560       const MachineInstr *MI = &*I;
561       for (unsigned i = 0, n = MI->getNumOperands(); i < n; ++i) {
562         const MachineOperand &MO = MI->getOperand(i);
563         if (MO.isReg() && MO.isDef()) {
564           unsigned R = MO.getReg();
565           assert(MO.getSubReg() == 0 && "Unexpected subregister in definition");
566           if (TargetRegisterInfo::isVirtualRegister(R))
567             RO.insert(std::make_pair(R, Index++));
568         }
569       }
570     }
571   }
572   // Since some virtual registers may have had their def and uses eliminated,
573   // they are no longer referenced in the code, and so they will not appear
574   // in the map.
575 }
576 
577 
buildOrderingBT(RegisterOrdering & RB,RegisterOrdering & RO) const578 void HexagonGenInsert::buildOrderingBT(RegisterOrdering &RB,
579       RegisterOrdering &RO) const {
580   // Create a vector of all virtual registers (collect them from the base
581   // ordering RB), and then sort it using the RegisterCell comparator.
582   BitValueOrdering BVO(RB);
583   RegisterCellLexCompare LexCmp(BVO, *CMS);
584   typedef std::vector<unsigned> SortableVectorType;
585   SortableVectorType VRs;
586   for (RegisterOrdering::iterator I = RB.begin(), E = RB.end(); I != E; ++I)
587     VRs.push_back(I->first);
588   std::sort(VRs.begin(), VRs.end(), LexCmp);
589   // Transfer the results to the outgoing register ordering.
590   for (unsigned i = 0, n = VRs.size(); i < n; ++i)
591     RO.insert(std::make_pair(VRs[i], i));
592 }
593 
594 
isIntClass(const TargetRegisterClass * RC) const595 inline bool HexagonGenInsert::isIntClass(const TargetRegisterClass *RC) const {
596   return RC == &Hexagon::IntRegsRegClass || RC == &Hexagon::DoubleRegsRegClass;
597 }
598 
599 
isConstant(unsigned VR) const600 bool HexagonGenInsert::isConstant(unsigned VR) const {
601   const BitTracker::RegisterCell &RC = CMS->lookup(VR);
602   uint16_t W = RC.width();
603   for (uint16_t i = 0; i < W; ++i) {
604     const BitTracker::BitValue &BV = RC[i];
605     if (BV.is(0) || BV.is(1))
606       continue;
607     return false;
608   }
609   return true;
610 }
611 
612 
isSmallConstant(unsigned VR) const613 bool HexagonGenInsert::isSmallConstant(unsigned VR) const {
614   const BitTracker::RegisterCell &RC = CMS->lookup(VR);
615   uint16_t W = RC.width();
616   if (W > 64)
617     return false;
618   uint64_t V = 0, B = 1;
619   for (uint16_t i = 0; i < W; ++i) {
620     const BitTracker::BitValue &BV = RC[i];
621     if (BV.is(1))
622       V |= B;
623     else if (!BV.is(0))
624       return false;
625     B <<= 1;
626   }
627 
628   // For 32-bit registers, consider: Rd = #s16.
629   if (W == 32)
630     return isInt<16>(V);
631 
632   // For 64-bit registers, it's Rdd = #s8 or Rdd = combine(#s8,#s8)
633   return isInt<8>(Lo_32(V)) && isInt<8>(Hi_32(V));
634 }
635 
636 
isValidInsertForm(unsigned DstR,unsigned SrcR,unsigned InsR,uint16_t L,uint16_t S) const637 bool HexagonGenInsert::isValidInsertForm(unsigned DstR, unsigned SrcR,
638       unsigned InsR, uint16_t L, uint16_t S) const {
639   const TargetRegisterClass *DstRC = MRI->getRegClass(DstR);
640   const TargetRegisterClass *SrcRC = MRI->getRegClass(SrcR);
641   const TargetRegisterClass *InsRC = MRI->getRegClass(InsR);
642   // Only integet (32-/64-bit) register classes.
643   if (!isIntClass(DstRC) || !isIntClass(SrcRC) || !isIntClass(InsRC))
644     return false;
645   // The "source" register must be of the same class as DstR.
646   if (DstRC != SrcRC)
647     return false;
648   if (DstRC == InsRC)
649     return true;
650   // A 64-bit register can only be generated from other 64-bit registers.
651   if (DstRC == &Hexagon::DoubleRegsRegClass)
652     return false;
653   // Otherwise, the L and S cannot span 32-bit word boundary.
654   if (S < 32 && S+L > 32)
655     return false;
656   return true;
657 }
658 
659 
findSelfReference(unsigned VR) const660 bool HexagonGenInsert::findSelfReference(unsigned VR) const {
661   const BitTracker::RegisterCell &RC = CMS->lookup(VR);
662   for (uint16_t i = 0, w = RC.width(); i < w; ++i) {
663     const BitTracker::BitValue &V = RC[i];
664     if (V.Type == BitTracker::BitValue::Ref && V.RefI.Reg == VR)
665       return true;
666   }
667   return false;
668 }
669 
670 
findNonSelfReference(unsigned VR) const671 bool HexagonGenInsert::findNonSelfReference(unsigned VR) const {
672   BitTracker::RegisterCell RC = CMS->lookup(VR);
673   for (uint16_t i = 0, w = RC.width(); i < w; ++i) {
674     const BitTracker::BitValue &V = RC[i];
675     if (V.Type == BitTracker::BitValue::Ref && V.RefI.Reg != VR)
676       return true;
677   }
678   return false;
679 }
680 
681 
getInstrDefs(const MachineInstr * MI,RegisterSet & Defs) const682 void HexagonGenInsert::getInstrDefs(const MachineInstr *MI,
683       RegisterSet &Defs) const {
684   for (unsigned i = 0, n = MI->getNumOperands(); i < n; ++i) {
685     const MachineOperand &MO = MI->getOperand(i);
686     if (!MO.isReg() || !MO.isDef())
687       continue;
688     unsigned R = MO.getReg();
689     if (!TargetRegisterInfo::isVirtualRegister(R))
690       continue;
691     Defs.insert(R);
692   }
693 }
694 
695 
getInstrUses(const MachineInstr * MI,RegisterSet & Uses) const696 void HexagonGenInsert::getInstrUses(const MachineInstr *MI,
697       RegisterSet &Uses) const {
698   for (unsigned i = 0, n = MI->getNumOperands(); i < n; ++i) {
699     const MachineOperand &MO = MI->getOperand(i);
700     if (!MO.isReg() || !MO.isUse())
701       continue;
702     unsigned R = MO.getReg();
703     if (!TargetRegisterInfo::isVirtualRegister(R))
704       continue;
705     Uses.insert(R);
706   }
707 }
708 
709 
distance(const MachineBasicBlock * FromB,const MachineBasicBlock * ToB,const UnsignedMap & RPO,PairMapType & M) const710 unsigned HexagonGenInsert::distance(const MachineBasicBlock *FromB,
711       const MachineBasicBlock *ToB, const UnsignedMap &RPO,
712       PairMapType &M) const {
713   // Forward distance from the end of a block to the beginning of it does
714   // not make sense. This function should not be called with FromB == ToB.
715   assert(FromB != ToB);
716 
717   unsigned FromN = FromB->getNumber(), ToN = ToB->getNumber();
718   // If we have already computed it, return the cached result.
719   PairMapType::iterator F = M.find(std::make_pair(FromN, ToN));
720   if (F != M.end())
721     return F->second;
722   unsigned ToRPO = RPO.lookup(ToN);
723 
724   unsigned MaxD = 0;
725   typedef MachineBasicBlock::const_pred_iterator pred_iterator;
726   for (pred_iterator I = ToB->pred_begin(), E = ToB->pred_end(); I != E; ++I) {
727     const MachineBasicBlock *PB = *I;
728     // Skip back edges. Also, if FromB is a predecessor of ToB, the distance
729     // along that path will be 0, and we don't need to do any calculations
730     // on it.
731     if (PB == FromB || RPO.lookup(PB->getNumber()) >= ToRPO)
732       continue;
733     unsigned D = PB->size() + distance(FromB, PB, RPO, M);
734     if (D > MaxD)
735       MaxD = D;
736   }
737 
738   // Memoize the result for later lookup.
739   M.insert(std::make_pair(std::make_pair(FromN, ToN), MaxD));
740   return MaxD;
741 }
742 
743 
distance(MachineBasicBlock::const_iterator FromI,MachineBasicBlock::const_iterator ToI,const UnsignedMap & RPO,PairMapType & M) const744 unsigned HexagonGenInsert::distance(MachineBasicBlock::const_iterator FromI,
745       MachineBasicBlock::const_iterator ToI, const UnsignedMap &RPO,
746       PairMapType &M) const {
747   const MachineBasicBlock *FB = FromI->getParent(), *TB = ToI->getParent();
748   if (FB == TB)
749     return std::distance(FromI, ToI);
750   unsigned D1 = std::distance(TB->begin(), ToI);
751   unsigned D2 = distance(FB, TB, RPO, M);
752   unsigned D3 = std::distance(FromI, FB->end());
753   return D1+D2+D3;
754 }
755 
756 
findRecordInsertForms(unsigned VR,OrderedRegisterList & AVs)757 bool HexagonGenInsert::findRecordInsertForms(unsigned VR,
758       OrderedRegisterList &AVs) {
759   if (isDebug()) {
760     dbgs() << LLVM_FUNCTION_NAME << ": " << PrintReg(VR, HRI)
761            << "  AVs: " << PrintORL(AVs, HRI) << "\n";
762   }
763   if (AVs.size() == 0)
764     return false;
765 
766   typedef OrderedRegisterList::iterator iterator;
767   BitValueOrdering BVO(BaseOrd);
768   const BitTracker::RegisterCell &RC = CMS->lookup(VR);
769   uint16_t W = RC.width();
770 
771   typedef std::pair<unsigned,uint16_t> RSRecord;  // (reg,shift)
772   typedef std::vector<RSRecord> RSListType;
773   // Have a map, with key being the matching prefix length, and the value
774   // being the list of pairs (R,S), where R's prefix matches VR at S.
775   // (DenseMap<uint16_t,RSListType> fails to instantiate.)
776   typedef DenseMap<unsigned,RSListType> LRSMapType;
777   LRSMapType LM;
778 
779   // Conceptually, rotate the cell RC right (i.e. towards the LSB) by S,
780   // and find matching prefixes from AVs with the rotated RC. Such a prefix
781   // would match a string of bits (of length L) in RC starting at S.
782   for (uint16_t S = 0; S < W; ++S) {
783     iterator B = AVs.begin(), E = AVs.end();
784     // The registers in AVs are ordered according to the lexical order of
785     // the corresponding register cells. This means that the range of regis-
786     // ters in AVs that match a prefix of length L+1 will be contained in
787     // the range that matches a prefix of length L. This means that we can
788     // keep narrowing the search space as the prefix length goes up. This
789     // helps reduce the overall complexity of the search.
790     uint16_t L;
791     for (L = 0; L < W-S; ++L) {
792       // Compare against VR's bits starting at S, which emulates rotation
793       // of VR by S.
794       RegisterCellBitCompareSel RCB(VR, S+L, L, BVO, *CMS);
795       iterator NewB = std::lower_bound(B, E, VR, RCB);
796       iterator NewE = std::upper_bound(NewB, E, VR, RCB);
797       // For the registers that are eliminated from the next range, L is
798       // the longest prefix matching VR at position S (their prefixes
799       // differ from VR at S+L). If L>0, record this information for later
800       // use.
801       if (L > 0) {
802         for (iterator I = B; I != NewB; ++I)
803           LM[L].push_back(std::make_pair(*I, S));
804         for (iterator I = NewE; I != E; ++I)
805           LM[L].push_back(std::make_pair(*I, S));
806       }
807       B = NewB, E = NewE;
808       if (B == E)
809         break;
810     }
811     // Record the final register range. If this range is non-empty, then
812     // L=W-S.
813     assert(B == E || L == W-S);
814     if (B != E) {
815       for (iterator I = B; I != E; ++I)
816         LM[L].push_back(std::make_pair(*I, S));
817       // If B!=E, then we found a range of registers whose prefixes cover the
818       // rest of VR from position S. There is no need to further advance S.
819       break;
820     }
821   }
822 
823   if (isDebug()) {
824     dbgs() << "Prefixes matching register " << PrintReg(VR, HRI) << "\n";
825     for (LRSMapType::iterator I = LM.begin(), E = LM.end(); I != E; ++I) {
826       dbgs() << "  L=" << I->first << ':';
827       const RSListType &LL = I->second;
828       for (unsigned i = 0, n = LL.size(); i < n; ++i)
829         dbgs() << " (" << PrintReg(LL[i].first, HRI) << ",@"
830                << LL[i].second << ')';
831       dbgs() << '\n';
832     }
833   }
834 
835 
836   bool Recorded = false;
837 
838   for (iterator I = AVs.begin(), E = AVs.end(); I != E; ++I) {
839     unsigned SrcR = *I;
840     int FDi = -1, LDi = -1;   // First/last different bit.
841     const BitTracker::RegisterCell &AC = CMS->lookup(SrcR);
842     uint16_t AW = AC.width();
843     for (uint16_t i = 0, w = std::min(W, AW); i < w; ++i) {
844       if (RC[i] == AC[i])
845         continue;
846       if (FDi == -1)
847         FDi = i;
848       LDi = i;
849     }
850     if (FDi == -1)
851       continue;  // TODO (future): Record identical registers.
852     // Look for a register whose prefix could patch the range [FD..LD]
853     // where VR and SrcR differ.
854     uint16_t FD = FDi, LD = LDi;  // Switch to unsigned type.
855     uint16_t MinL = LD-FD+1;
856     for (uint16_t L = MinL; L < W; ++L) {
857       LRSMapType::iterator F = LM.find(L);
858       if (F == LM.end())
859         continue;
860       RSListType &LL = F->second;
861       for (unsigned i = 0, n = LL.size(); i < n; ++i) {
862         uint16_t S = LL[i].second;
863         // MinL is the minimum length of the prefix. Any length above MinL
864         // allows some flexibility as to where the prefix can start:
865         // given the extra length EL=L-MinL, the prefix must start between
866         // max(0,FD-EL) and FD.
867         if (S > FD)   // Starts too late.
868           continue;
869         uint16_t EL = L-MinL;
870         uint16_t LowS = (EL < FD) ? FD-EL : 0;
871         if (S < LowS) // Starts too early.
872           continue;
873         unsigned InsR = LL[i].first;
874         if (!isValidInsertForm(VR, SrcR, InsR, L, S))
875           continue;
876         if (isDebug()) {
877           dbgs() << PrintReg(VR, HRI) << " = insert(" << PrintReg(SrcR, HRI)
878                  << ',' << PrintReg(InsR, HRI) << ",#" << L << ",#"
879                  << S << ")\n";
880         }
881         IFRecordWithRegSet RR(IFRecord(SrcR, InsR, L, S), RegisterSet());
882         IFMap[VR].push_back(RR);
883         Recorded = true;
884       }
885     }
886   }
887 
888   return Recorded;
889 }
890 
891 
collectInBlock(MachineBasicBlock * B,OrderedRegisterList & AVs)892 void HexagonGenInsert::collectInBlock(MachineBasicBlock *B,
893       OrderedRegisterList &AVs) {
894   if (isDebug())
895     dbgs() << "visiting block BB#" << B->getNumber() << "\n";
896 
897   // First, check if this block is reachable at all. If not, the bit tracker
898   // will not have any information about registers in it.
899   if (!CMS->BT.reached(B))
900     return;
901 
902   bool DoConst = OptConst;
903   // Keep a separate set of registers defined in this block, so that we
904   // can remove them from the list of available registers once all DT
905   // successors have been processed.
906   RegisterSet BlockDefs, InsDefs;
907   for (MachineBasicBlock::iterator I = B->begin(), E = B->end(); I != E; ++I) {
908     MachineInstr *MI = &*I;
909     InsDefs.clear();
910     getInstrDefs(MI, InsDefs);
911     // Leave those alone. They are more transparent than "insert".
912     bool Skip = MI->isCopy() || MI->isRegSequence();
913 
914     if (!Skip) {
915       // Visit all defined registers, and attempt to find the corresponding
916       // "insert" representations.
917       for (unsigned VR = InsDefs.find_first(); VR; VR = InsDefs.find_next(VR)) {
918         // Do not collect registers that are known to be compile-time cons-
919         // tants, unless requested.
920         if (!DoConst && isConstant(VR))
921           continue;
922         // If VR's cell contains a reference to VR, then VR cannot be defined
923         // via "insert". If VR is a constant that can be generated in a single
924         // instruction (without constant extenders), generating it via insert
925         // makes no sense.
926         if (findSelfReference(VR) || isSmallConstant(VR))
927           continue;
928 
929         findRecordInsertForms(VR, AVs);
930       }
931     }
932 
933     // Insert the defined registers into the list of available registers
934     // after they have been processed.
935     for (unsigned VR = InsDefs.find_first(); VR; VR = InsDefs.find_next(VR))
936       AVs.insert(VR);
937     BlockDefs.insert(InsDefs);
938   }
939 
940   MachineDomTreeNode *N = MDT->getNode(B);
941   typedef GraphTraits<MachineDomTreeNode*> GTN;
942   typedef GTN::ChildIteratorType ChildIter;
943   for (ChildIter I = GTN::child_begin(N), E = GTN::child_end(N); I != E; ++I) {
944     MachineBasicBlock *SB = (*I)->getBlock();
945     collectInBlock(SB, AVs);
946   }
947 
948   for (unsigned VR = BlockDefs.find_first(); VR; VR = BlockDefs.find_next(VR))
949     AVs.remove(VR);
950 }
951 
952 
findRemovableRegisters(unsigned VR,IFRecord IF,RegisterSet & RMs) const953 void HexagonGenInsert::findRemovableRegisters(unsigned VR, IFRecord IF,
954       RegisterSet &RMs) const {
955   // For a given register VR and a insert form, find the registers that are
956   // used by the current definition of VR, and which would no longer be
957   // needed for it after the definition of VR is replaced with the insert
958   // form. These are the registers that could potentially become dead.
959   RegisterSet Regs[2];
960 
961   unsigned S = 0;  // Register set selector.
962   Regs[S].insert(VR);
963 
964   while (!Regs[S].empty()) {
965     // Breadth-first search.
966     unsigned OtherS = 1-S;
967     Regs[OtherS].clear();
968     for (unsigned R = Regs[S].find_first(); R; R = Regs[S].find_next(R)) {
969       Regs[S].remove(R);
970       if (R == IF.SrcR || R == IF.InsR)
971         continue;
972       // Check if a given register has bits that are references to any other
973       // registers. This is to detect situations where the instruction that
974       // defines register R takes register Q as an operand, but R itself does
975       // not contain any bits from Q. Loads are examples of how this could
976       // happen:
977       //   R = load Q
978       // In this case (assuming we do not have any knowledge about the loaded
979       // value), we must not treat R as a "conveyance" of the bits from Q.
980       // (The information in BT about R's bits would have them as constants,
981       // in case of zero-extending loads, or refs to R.)
982       if (!findNonSelfReference(R))
983         continue;
984       RMs.insert(R);
985       const MachineInstr *DefI = MRI->getVRegDef(R);
986       assert(DefI);
987       // Do not iterate past PHI nodes to avoid infinite loops. This can
988       // make the final set a bit less accurate, but the removable register
989       // sets are an approximation anyway.
990       if (DefI->isPHI())
991         continue;
992       getInstrUses(DefI, Regs[OtherS]);
993     }
994     S = OtherS;
995   }
996   // The register VR is added to the list as a side-effect of the algorithm,
997   // but it is not "potentially removable". A potentially removable register
998   // is one that may become unused (dead) after conversion to the insert form
999   // IF, and obviously VR (or its replacement) will not become dead by apply-
1000   // ing IF.
1001   RMs.remove(VR);
1002 }
1003 
1004 
computeRemovableRegisters()1005 void HexagonGenInsert::computeRemovableRegisters() {
1006   for (IFMapType::iterator I = IFMap.begin(), E = IFMap.end(); I != E; ++I) {
1007     IFListType &LL = I->second;
1008     for (unsigned i = 0, n = LL.size(); i < n; ++i)
1009       findRemovableRegisters(I->first, LL[i].first, LL[i].second);
1010   }
1011 }
1012 
1013 
pruneEmptyLists()1014 void HexagonGenInsert::pruneEmptyLists() {
1015   // Remove all entries from the map, where the register has no insert forms
1016   // associated with it.
1017   typedef SmallVector<IFMapType::iterator,16> IterListType;
1018   IterListType Prune;
1019   for (IFMapType::iterator I = IFMap.begin(), E = IFMap.end(); I != E; ++I) {
1020     if (I->second.size() == 0)
1021       Prune.push_back(I);
1022   }
1023   for (unsigned i = 0, n = Prune.size(); i < n; ++i)
1024     IFMap.erase(Prune[i]);
1025 }
1026 
1027 
pruneCoveredSets(unsigned VR)1028 void HexagonGenInsert::pruneCoveredSets(unsigned VR) {
1029   IFMapType::iterator F = IFMap.find(VR);
1030   assert(F != IFMap.end());
1031   IFListType &LL = F->second;
1032 
1033   // First, examine the IF candidates for register VR whose removable-regis-
1034   // ter sets are empty. This means that a given candidate will not help eli-
1035   // minate any registers, but since "insert" is not a constant-extendable
1036   // instruction, using such a candidate may reduce code size if the defini-
1037   // tion of VR is constant-extended.
1038   // If there exists a candidate with a non-empty set, the ones with empty
1039   // sets will not be used and can be removed.
1040   MachineInstr *DefVR = MRI->getVRegDef(VR);
1041   bool DefEx = HII->isConstExtended(DefVR);
1042   bool HasNE = false;
1043   for (unsigned i = 0, n = LL.size(); i < n; ++i) {
1044     if (LL[i].second.empty())
1045       continue;
1046     HasNE = true;
1047     break;
1048   }
1049   if (!DefEx || HasNE) {
1050     // The definition of VR is not constant-extended, or there is a candidate
1051     // with a non-empty set. Remove all candidates with empty sets.
1052     auto IsEmpty = [] (const IFRecordWithRegSet &IR) -> bool {
1053       return IR.second.empty();
1054     };
1055     auto End = std::remove_if(LL.begin(), LL.end(), IsEmpty);
1056     if (End != LL.end())
1057       LL.erase(End, LL.end());
1058   } else {
1059     // The definition of VR is constant-extended, and all candidates have
1060     // empty removable-register sets. Pick the maximum candidate, and remove
1061     // all others. The "maximum" does not have any special meaning here, it
1062     // is only so that the candidate that will remain on the list is selec-
1063     // ted deterministically.
1064     IFRecord MaxIF = LL[0].first;
1065     for (unsigned i = 1, n = LL.size(); i < n; ++i) {
1066       // If LL[MaxI] < LL[i], then MaxI = i.
1067       const IFRecord &IF = LL[i].first;
1068       unsigned M0 = BaseOrd[MaxIF.SrcR], M1 = BaseOrd[MaxIF.InsR];
1069       unsigned R0 = BaseOrd[IF.SrcR], R1 = BaseOrd[IF.InsR];
1070       if (M0 > R0)
1071         continue;
1072       if (M0 == R0) {
1073         if (M1 > R1)
1074           continue;
1075         if (M1 == R1) {
1076           if (MaxIF.Wdh > IF.Wdh)
1077             continue;
1078           if (MaxIF.Wdh == IF.Wdh && MaxIF.Off >= IF.Off)
1079             continue;
1080         }
1081       }
1082       // MaxIF < IF.
1083       MaxIF = IF;
1084     }
1085     // Remove everything except the maximum candidate. All register sets
1086     // are empty, so no need to preserve anything.
1087     LL.clear();
1088     LL.push_back(std::make_pair(MaxIF, RegisterSet()));
1089   }
1090 
1091   // Now, remove those whose sets of potentially removable registers are
1092   // contained in another IF candidate for VR. For example, given these
1093   // candidates for vreg45,
1094   //   %vreg45:
1095   //     (%vreg44,%vreg41,#9,#8), { %vreg42 }
1096   //     (%vreg43,%vreg41,#9,#8), { %vreg42 %vreg44 }
1097   // remove the first one, since it is contained in the second one.
1098   for (unsigned i = 0, n = LL.size(); i < n; ) {
1099     const RegisterSet &RMi = LL[i].second;
1100     unsigned j = 0;
1101     while (j < n) {
1102       if (j != i && LL[j].second.includes(RMi))
1103         break;
1104       j++;
1105     }
1106     if (j == n) {   // RMi not contained in anything else.
1107       i++;
1108       continue;
1109     }
1110     LL.erase(LL.begin()+i);
1111     n = LL.size();
1112   }
1113 }
1114 
1115 
pruneUsesTooFar(unsigned VR,const UnsignedMap & RPO,PairMapType & M)1116 void HexagonGenInsert::pruneUsesTooFar(unsigned VR, const UnsignedMap &RPO,
1117       PairMapType &M) {
1118   IFMapType::iterator F = IFMap.find(VR);
1119   assert(F != IFMap.end());
1120   IFListType &LL = F->second;
1121   unsigned Cutoff = VRegDistCutoff;
1122   const MachineInstr *DefV = MRI->getVRegDef(VR);
1123 
1124   for (unsigned i = LL.size(); i > 0; --i) {
1125     unsigned SR = LL[i-1].first.SrcR, IR = LL[i-1].first.InsR;
1126     const MachineInstr *DefS = MRI->getVRegDef(SR);
1127     const MachineInstr *DefI = MRI->getVRegDef(IR);
1128     unsigned DSV = distance(DefS, DefV, RPO, M);
1129     if (DSV < Cutoff) {
1130       unsigned DIV = distance(DefI, DefV, RPO, M);
1131       if (DIV < Cutoff)
1132         continue;
1133     }
1134     LL.erase(LL.begin()+(i-1));
1135   }
1136 }
1137 
1138 
pruneRegCopies(unsigned VR)1139 void HexagonGenInsert::pruneRegCopies(unsigned VR) {
1140   IFMapType::iterator F = IFMap.find(VR);
1141   assert(F != IFMap.end());
1142   IFListType &LL = F->second;
1143 
1144   auto IsCopy = [] (const IFRecordWithRegSet &IR) -> bool {
1145     return IR.first.Wdh == 32 && (IR.first.Off == 0 || IR.first.Off == 32);
1146   };
1147   auto End = std::remove_if(LL.begin(), LL.end(), IsCopy);
1148   if (End != LL.end())
1149     LL.erase(End, LL.end());
1150 }
1151 
1152 
pruneCandidates()1153 void HexagonGenInsert::pruneCandidates() {
1154   // Remove candidates that are not beneficial, regardless of the final
1155   // selection method.
1156   // First, remove candidates whose potentially removable set is a subset
1157   // of another candidate's set.
1158   for (IFMapType::iterator I = IFMap.begin(), E = IFMap.end(); I != E; ++I)
1159     pruneCoveredSets(I->first);
1160 
1161   UnsignedMap RPO;
1162   typedef ReversePostOrderTraversal<const MachineFunction*> RPOTType;
1163   RPOTType RPOT(MFN);
1164   unsigned RPON = 0;
1165   for (RPOTType::rpo_iterator I = RPOT.begin(), E = RPOT.end(); I != E; ++I)
1166     RPO[(*I)->getNumber()] = RPON++;
1167 
1168   PairMapType Memo; // Memoization map for distance calculation.
1169   // Remove candidates that would use registers defined too far away.
1170   for (IFMapType::iterator I = IFMap.begin(), E = IFMap.end(); I != E; ++I)
1171     pruneUsesTooFar(I->first, RPO, Memo);
1172 
1173   pruneEmptyLists();
1174 
1175   for (IFMapType::iterator I = IFMap.begin(), E = IFMap.end(); I != E; ++I)
1176     pruneRegCopies(I->first);
1177 }
1178 
1179 
1180 namespace {
1181   // Class for comparing IF candidates for registers that have multiple of
1182   // them. The smaller the candidate, according to this ordering, the better.
1183   // First, compare the number of zeros in the associated potentially remova-
1184   // ble register sets. "Zero" indicates that the register is very likely to
1185   // become dead after this transformation.
1186   // Second, compare "averages", i.e. use-count per size. The lower wins.
1187   // After that, it does not really matter which one is smaller. Resolve
1188   // the tie in some deterministic way.
1189   struct IFOrdering {
IFOrdering__anon3ece8ed90c11::IFOrdering1190     IFOrdering(const UnsignedMap &UC, const RegisterOrdering &BO)
1191       : UseC(UC), BaseOrd(BO) {}
1192     bool operator() (const IFRecordWithRegSet &A,
1193           const IFRecordWithRegSet &B) const;
1194   private:
1195     void stats(const RegisterSet &Rs, unsigned &Size, unsigned &Zero,
1196           unsigned &Sum) const;
1197     const UnsignedMap &UseC;
1198     const RegisterOrdering &BaseOrd;
1199   };
1200 }
1201 
1202 
operator ()(const IFRecordWithRegSet & A,const IFRecordWithRegSet & B) const1203 bool IFOrdering::operator() (const IFRecordWithRegSet &A,
1204       const IFRecordWithRegSet &B) const {
1205   unsigned SizeA = 0, ZeroA = 0, SumA = 0;
1206   unsigned SizeB = 0, ZeroB = 0, SumB = 0;
1207   stats(A.second, SizeA, ZeroA, SumA);
1208   stats(B.second, SizeB, ZeroB, SumB);
1209 
1210   // We will pick the minimum element. The more zeros, the better.
1211   if (ZeroA != ZeroB)
1212     return ZeroA > ZeroB;
1213   // Compare SumA/SizeA with SumB/SizeB, lower is better.
1214   uint64_t AvgA = SumA*SizeB, AvgB = SumB*SizeA;
1215   if (AvgA != AvgB)
1216     return AvgA < AvgB;
1217 
1218   // The sets compare identical so far. Resort to comparing the IF records.
1219   // The actual values don't matter, this is only for determinism.
1220   unsigned OSA = BaseOrd[A.first.SrcR], OSB = BaseOrd[B.first.SrcR];
1221   if (OSA != OSB)
1222     return OSA < OSB;
1223   unsigned OIA = BaseOrd[A.first.InsR], OIB = BaseOrd[B.first.InsR];
1224   if (OIA != OIB)
1225     return OIA < OIB;
1226   if (A.first.Wdh != B.first.Wdh)
1227     return A.first.Wdh < B.first.Wdh;
1228   return A.first.Off < B.first.Off;
1229 }
1230 
1231 
stats(const RegisterSet & Rs,unsigned & Size,unsigned & Zero,unsigned & Sum) const1232 void IFOrdering::stats(const RegisterSet &Rs, unsigned &Size, unsigned &Zero,
1233       unsigned &Sum) const {
1234   for (unsigned R = Rs.find_first(); R; R = Rs.find_next(R)) {
1235     UnsignedMap::const_iterator F = UseC.find(R);
1236     assert(F != UseC.end());
1237     unsigned UC = F->second;
1238     if (UC == 0)
1239       Zero++;
1240     Sum += UC;
1241     Size++;
1242   }
1243 }
1244 
1245 
selectCandidates()1246 void HexagonGenInsert::selectCandidates() {
1247   // Some registers may have multiple valid candidates. Pick the best one
1248   // (or decide not to use any).
1249 
1250   // Compute the "removability" measure of R:
1251   // For each potentially removable register R, record the number of regis-
1252   // ters with IF candidates, where R appears in at least one set.
1253   RegisterSet AllRMs;
1254   UnsignedMap UseC, RemC;
1255   IFMapType::iterator End = IFMap.end();
1256 
1257   for (IFMapType::iterator I = IFMap.begin(); I != End; ++I) {
1258     const IFListType &LL = I->second;
1259     RegisterSet TT;
1260     for (unsigned i = 0, n = LL.size(); i < n; ++i)
1261       TT.insert(LL[i].second);
1262     for (unsigned R = TT.find_first(); R; R = TT.find_next(R))
1263       RemC[R]++;
1264     AllRMs.insert(TT);
1265   }
1266 
1267   for (unsigned R = AllRMs.find_first(); R; R = AllRMs.find_next(R)) {
1268     typedef MachineRegisterInfo::use_nodbg_iterator use_iterator;
1269     typedef SmallSet<const MachineInstr*,16> InstrSet;
1270     InstrSet UIs;
1271     // Count as the number of instructions in which R is used, not the
1272     // number of operands.
1273     use_iterator E = MRI->use_nodbg_end();
1274     for (use_iterator I = MRI->use_nodbg_begin(R); I != E; ++I)
1275       UIs.insert(I->getParent());
1276     unsigned C = UIs.size();
1277     // Calculate a measure, which is the number of instructions using R,
1278     // minus the "removability" count computed earlier.
1279     unsigned D = RemC[R];
1280     UseC[R] = (C > D) ? C-D : 0;  // doz
1281   }
1282 
1283 
1284   bool SelectAll0 = OptSelectAll0, SelectHas0 = OptSelectHas0;
1285   if (!SelectAll0 && !SelectHas0)
1286     SelectAll0 = true;
1287 
1288   // The smaller the number UseC for a given register R, the "less used"
1289   // R is aside from the opportunities for removal offered by generating
1290   // "insert" instructions.
1291   // Iterate over the IF map, and for those registers that have multiple
1292   // candidates, pick the minimum one according to IFOrdering.
1293   IFOrdering IFO(UseC, BaseOrd);
1294   for (IFMapType::iterator I = IFMap.begin(); I != End; ++I) {
1295     IFListType &LL = I->second;
1296     if (LL.empty())
1297       continue;
1298     // Get the minimum element, remember it and clear the list. If the
1299     // element found is adequate, we will put it back on the list, other-
1300     // wise the list will remain empty, and the entry for this register
1301     // will be removed (i.e. this register will not be replaced by insert).
1302     IFListType::iterator MinI = std::min_element(LL.begin(), LL.end(), IFO);
1303     assert(MinI != LL.end());
1304     IFRecordWithRegSet M = *MinI;
1305     LL.clear();
1306 
1307     // We want to make sure that this replacement will have a chance to be
1308     // beneficial, and that means that we want to have indication that some
1309     // register will be removed. The most likely registers to be eliminated
1310     // are the use operands in the definition of I->first. Accept/reject a
1311     // candidate based on how many of its uses it can potentially eliminate.
1312 
1313     RegisterSet Us;
1314     const MachineInstr *DefI = MRI->getVRegDef(I->first);
1315     getInstrUses(DefI, Us);
1316     bool Accept = false;
1317 
1318     if (SelectAll0) {
1319       bool All0 = true;
1320       for (unsigned R = Us.find_first(); R; R = Us.find_next(R)) {
1321         if (UseC[R] == 0)
1322           continue;
1323         All0 = false;
1324         break;
1325       }
1326       Accept = All0;
1327     } else if (SelectHas0) {
1328       bool Has0 = false;
1329       for (unsigned R = Us.find_first(); R; R = Us.find_next(R)) {
1330         if (UseC[R] != 0)
1331           continue;
1332         Has0 = true;
1333         break;
1334       }
1335       Accept = Has0;
1336     }
1337     if (Accept)
1338       LL.push_back(M);
1339   }
1340 
1341   // Remove candidates that add uses of removable registers, unless the
1342   // removable registers are among replacement candidates.
1343   // Recompute the removable registers, since some candidates may have
1344   // been eliminated.
1345   AllRMs.clear();
1346   for (IFMapType::iterator I = IFMap.begin(); I != End; ++I) {
1347     const IFListType &LL = I->second;
1348     if (LL.size() > 0)
1349       AllRMs.insert(LL[0].second);
1350   }
1351   for (IFMapType::iterator I = IFMap.begin(); I != End; ++I) {
1352     IFListType &LL = I->second;
1353     if (LL.size() == 0)
1354       continue;
1355     unsigned SR = LL[0].first.SrcR, IR = LL[0].first.InsR;
1356     if (AllRMs[SR] || AllRMs[IR])
1357       LL.clear();
1358   }
1359 
1360   pruneEmptyLists();
1361 }
1362 
1363 
generateInserts()1364 bool HexagonGenInsert::generateInserts() {
1365   // Create a new register for each one from IFMap, and store them in the
1366   // map.
1367   UnsignedMap RegMap;
1368   for (IFMapType::iterator I = IFMap.begin(), E = IFMap.end(); I != E; ++I) {
1369     unsigned VR = I->first;
1370     const TargetRegisterClass *RC = MRI->getRegClass(VR);
1371     unsigned NewVR = MRI->createVirtualRegister(RC);
1372     RegMap[VR] = NewVR;
1373   }
1374 
1375   // We can generate the "insert" instructions using potentially stale re-
1376   // gisters: SrcR and InsR for a given VR may be among other registers that
1377   // are also replaced. This is fine, we will do the mass "rauw" a bit later.
1378   for (IFMapType::iterator I = IFMap.begin(), E = IFMap.end(); I != E; ++I) {
1379     MachineInstr *MI = MRI->getVRegDef(I->first);
1380     MachineBasicBlock &B = *MI->getParent();
1381     DebugLoc DL = MI->getDebugLoc();
1382     unsigned NewR = RegMap[I->first];
1383     bool R32 = MRI->getRegClass(NewR) == &Hexagon::IntRegsRegClass;
1384     const MCInstrDesc &D = R32 ? HII->get(Hexagon::S2_insert)
1385                                : HII->get(Hexagon::S2_insertp);
1386     IFRecord IF = I->second[0].first;
1387     unsigned Wdh = IF.Wdh, Off = IF.Off;
1388     unsigned InsS = 0;
1389     if (R32 && MRI->getRegClass(IF.InsR) == &Hexagon::DoubleRegsRegClass) {
1390       InsS = Hexagon::subreg_loreg;
1391       if (Off >= 32) {
1392         InsS = Hexagon::subreg_hireg;
1393         Off -= 32;
1394       }
1395     }
1396     // Advance to the proper location for inserting instructions. This could
1397     // be B.end().
1398     MachineBasicBlock::iterator At = MI;
1399     if (MI->isPHI())
1400       At = B.getFirstNonPHI();
1401 
1402     BuildMI(B, At, DL, D, NewR)
1403       .addReg(IF.SrcR)
1404       .addReg(IF.InsR, 0, InsS)
1405       .addImm(Wdh)
1406       .addImm(Off);
1407 
1408     MRI->clearKillFlags(IF.SrcR);
1409     MRI->clearKillFlags(IF.InsR);
1410   }
1411 
1412   for (IFMapType::iterator I = IFMap.begin(), E = IFMap.end(); I != E; ++I) {
1413     MachineInstr *DefI = MRI->getVRegDef(I->first);
1414     MRI->replaceRegWith(I->first, RegMap[I->first]);
1415     DefI->eraseFromParent();
1416   }
1417 
1418   return true;
1419 }
1420 
1421 
removeDeadCode(MachineDomTreeNode * N)1422 bool HexagonGenInsert::removeDeadCode(MachineDomTreeNode *N) {
1423   bool Changed = false;
1424   typedef GraphTraits<MachineDomTreeNode*> GTN;
1425   for (auto I = GTN::child_begin(N), E = GTN::child_end(N); I != E; ++I)
1426     Changed |= removeDeadCode(*I);
1427 
1428   MachineBasicBlock *B = N->getBlock();
1429   std::vector<MachineInstr*> Instrs;
1430   for (auto I = B->rbegin(), E = B->rend(); I != E; ++I)
1431     Instrs.push_back(&*I);
1432 
1433   for (auto I = Instrs.begin(), E = Instrs.end(); I != E; ++I) {
1434     MachineInstr *MI = *I;
1435     unsigned Opc = MI->getOpcode();
1436     // Do not touch lifetime markers. This is why the target-independent DCE
1437     // cannot be used.
1438     if (Opc == TargetOpcode::LIFETIME_START ||
1439         Opc == TargetOpcode::LIFETIME_END)
1440       continue;
1441     bool Store = false;
1442     if (MI->isInlineAsm() || !MI->isSafeToMove(nullptr, Store))
1443       continue;
1444 
1445     bool AllDead = true;
1446     SmallVector<unsigned,2> Regs;
1447     for (ConstMIOperands Op(*MI); Op.isValid(); ++Op) {
1448       if (!Op->isReg() || !Op->isDef())
1449         continue;
1450       unsigned R = Op->getReg();
1451       if (!TargetRegisterInfo::isVirtualRegister(R) ||
1452           !MRI->use_nodbg_empty(R)) {
1453         AllDead = false;
1454         break;
1455       }
1456       Regs.push_back(R);
1457     }
1458     if (!AllDead)
1459       continue;
1460 
1461     B->erase(MI);
1462     for (unsigned I = 0, N = Regs.size(); I != N; ++I)
1463       MRI->markUsesInDebugValueAsUndef(Regs[I]);
1464     Changed = true;
1465   }
1466 
1467   return Changed;
1468 }
1469 
1470 
runOnMachineFunction(MachineFunction & MF)1471 bool HexagonGenInsert::runOnMachineFunction(MachineFunction &MF) {
1472   if (skipFunction(*MF.getFunction()))
1473     return false;
1474 
1475   bool Timing = OptTiming, TimingDetail = Timing && OptTimingDetail;
1476   bool Changed = false;
1477   TimerGroup __G("hexinsert");
1478   NamedRegionTimer __T("hexinsert", Timing && !TimingDetail);
1479 
1480   // Sanity check: one, but not both.
1481   assert(!OptSelectAll0 || !OptSelectHas0);
1482 
1483   IFMap.clear();
1484   BaseOrd.clear();
1485   CellOrd.clear();
1486 
1487   const auto &ST = MF.getSubtarget<HexagonSubtarget>();
1488   HII = ST.getInstrInfo();
1489   HRI = ST.getRegisterInfo();
1490   MFN = &MF;
1491   MRI = &MF.getRegInfo();
1492   MDT = &getAnalysis<MachineDominatorTree>();
1493 
1494   // Clean up before any further processing, so that dead code does not
1495   // get used in a newly generated "insert" instruction. Have a custom
1496   // version of DCE that preserves lifetime markers. Without it, merging
1497   // of stack objects can fail to recognize and merge disjoint objects
1498   // leading to unnecessary stack growth.
1499   Changed = removeDeadCode(MDT->getRootNode());
1500 
1501   const HexagonEvaluator HE(*HRI, *MRI, *HII, MF);
1502   BitTracker BTLoc(HE, MF);
1503   BTLoc.trace(isDebug());
1504   BTLoc.run();
1505   CellMapShadow MS(BTLoc);
1506   CMS = &MS;
1507 
1508   buildOrderingMF(BaseOrd);
1509   buildOrderingBT(BaseOrd, CellOrd);
1510 
1511   if (isDebug()) {
1512     dbgs() << "Cell ordering:\n";
1513     for (RegisterOrdering::iterator I = CellOrd.begin(), E = CellOrd.end();
1514         I != E; ++I) {
1515       unsigned VR = I->first, Pos = I->second;
1516       dbgs() << PrintReg(VR, HRI) << " -> " << Pos << "\n";
1517     }
1518   }
1519 
1520   // Collect candidates for conversion into the insert forms.
1521   MachineBasicBlock *RootB = MDT->getRoot();
1522   OrderedRegisterList AvailR(CellOrd);
1523 
1524   {
1525     NamedRegionTimer _T("collection", "hexinsert", TimingDetail);
1526     collectInBlock(RootB, AvailR);
1527     // Complete the information gathered in IFMap.
1528     computeRemovableRegisters();
1529   }
1530 
1531   if (isDebug()) {
1532     dbgs() << "Candidates after collection:\n";
1533     dump_map();
1534   }
1535 
1536   if (IFMap.empty())
1537     return Changed;
1538 
1539   {
1540     NamedRegionTimer _T("pruning", "hexinsert", TimingDetail);
1541     pruneCandidates();
1542   }
1543 
1544   if (isDebug()) {
1545     dbgs() << "Candidates after pruning:\n";
1546     dump_map();
1547   }
1548 
1549   if (IFMap.empty())
1550     return Changed;
1551 
1552   {
1553     NamedRegionTimer _T("selection", "hexinsert", TimingDetail);
1554     selectCandidates();
1555   }
1556 
1557   if (isDebug()) {
1558     dbgs() << "Candidates after selection:\n";
1559     dump_map();
1560   }
1561 
1562   // Filter out vregs beyond the cutoff.
1563   if (VRegIndexCutoff.getPosition()) {
1564     unsigned Cutoff = VRegIndexCutoff;
1565     typedef SmallVector<IFMapType::iterator,16> IterListType;
1566     IterListType Out;
1567     for (IFMapType::iterator I = IFMap.begin(), E = IFMap.end(); I != E; ++I) {
1568       unsigned Idx = TargetRegisterInfo::virtReg2Index(I->first);
1569       if (Idx >= Cutoff)
1570         Out.push_back(I);
1571     }
1572     for (unsigned i = 0, n = Out.size(); i < n; ++i)
1573       IFMap.erase(Out[i]);
1574   }
1575   if (IFMap.empty())
1576     return Changed;
1577 
1578   {
1579     NamedRegionTimer _T("generation", "hexinsert", TimingDetail);
1580     generateInserts();
1581   }
1582 
1583   return true;
1584 }
1585 
1586 
createHexagonGenInsert()1587 FunctionPass *llvm::createHexagonGenInsert() {
1588   return new HexagonGenInsert();
1589 }
1590 
1591 
1592 //===----------------------------------------------------------------------===//
1593 //                         Public Constructor Functions
1594 //===----------------------------------------------------------------------===//
1595 
1596 INITIALIZE_PASS_BEGIN(HexagonGenInsert, "hexinsert",
1597   "Hexagon generate \"insert\" instructions", false, false)
1598 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
1599 INITIALIZE_PASS_END(HexagonGenInsert, "hexinsert",
1600   "Hexagon generate \"insert\" instructions", false, false)
1601