• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //=== MallocChecker.cpp - A malloc/free checker -------------------*- C++ -*--//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines malloc/free checker, which checks for potential memory
11 // leaks, double free, and use-after-free problems.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "ClangSACheckers.h"
16 #include "InterCheckerAPI.h"
17 #include "clang/AST/Attr.h"
18 #include "clang/AST/ParentMap.h"
19 #include "clang/Basic/SourceManager.h"
20 #include "clang/Basic/TargetInfo.h"
21 #include "clang/StaticAnalyzer/Core/BugReporter/BugType.h"
22 #include "clang/StaticAnalyzer/Core/Checker.h"
23 #include "clang/StaticAnalyzer/Core/CheckerManager.h"
24 #include "clang/StaticAnalyzer/Core/PathSensitive/CallEvent.h"
25 #include "clang/StaticAnalyzer/Core/PathSensitive/CheckerContext.h"
26 #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState.h"
27 #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramStateTrait.h"
28 #include "clang/StaticAnalyzer/Core/PathSensitive/SymbolManager.h"
29 #include "llvm/ADT/ImmutableMap.h"
30 #include "llvm/ADT/STLExtras.h"
31 #include "llvm/ADT/SmallString.h"
32 #include "llvm/ADT/StringExtras.h"
33 #include <climits>
34 #include <utility>
35 
36 using namespace clang;
37 using namespace ento;
38 
39 namespace {
40 
41 // Used to check correspondence between allocators and deallocators.
42 enum AllocationFamily {
43   AF_None,
44   AF_Malloc,
45   AF_CXXNew,
46   AF_CXXNewArray,
47   AF_IfNameIndex,
48   AF_Alloca
49 };
50 
51 class RefState {
52   enum Kind { // Reference to allocated memory.
53               Allocated,
54               // Reference to zero-allocated memory.
55               AllocatedOfSizeZero,
56               // Reference to released/freed memory.
57               Released,
58               // The responsibility for freeing resources has transferred from
59               // this reference. A relinquished symbol should not be freed.
60               Relinquished,
61               // We are no longer guaranteed to have observed all manipulations
62               // of this pointer/memory. For example, it could have been
63               // passed as a parameter to an opaque function.
64               Escaped
65   };
66 
67   const Stmt *S;
68   unsigned K : 3; // Kind enum, but stored as a bitfield.
69   unsigned Family : 29; // Rest of 32-bit word, currently just an allocation
70                         // family.
71 
RefState(Kind k,const Stmt * s,unsigned family)72   RefState(Kind k, const Stmt *s, unsigned family)
73     : S(s), K(k), Family(family) {
74     assert(family != AF_None);
75   }
76 public:
isAllocated() const77   bool isAllocated() const { return K == Allocated; }
isAllocatedOfSizeZero() const78   bool isAllocatedOfSizeZero() const { return K == AllocatedOfSizeZero; }
isReleased() const79   bool isReleased() const { return K == Released; }
isRelinquished() const80   bool isRelinquished() const { return K == Relinquished; }
isEscaped() const81   bool isEscaped() const { return K == Escaped; }
getAllocationFamily() const82   AllocationFamily getAllocationFamily() const {
83     return (AllocationFamily)Family;
84   }
getStmt() const85   const Stmt *getStmt() const { return S; }
86 
operator ==(const RefState & X) const87   bool operator==(const RefState &X) const {
88     return K == X.K && S == X.S && Family == X.Family;
89   }
90 
getAllocated(unsigned family,const Stmt * s)91   static RefState getAllocated(unsigned family, const Stmt *s) {
92     return RefState(Allocated, s, family);
93   }
getAllocatedOfSizeZero(const RefState * RS)94   static RefState getAllocatedOfSizeZero(const RefState *RS) {
95     return RefState(AllocatedOfSizeZero, RS->getStmt(),
96                     RS->getAllocationFamily());
97   }
getReleased(unsigned family,const Stmt * s)98   static RefState getReleased(unsigned family, const Stmt *s) {
99     return RefState(Released, s, family);
100   }
getRelinquished(unsigned family,const Stmt * s)101   static RefState getRelinquished(unsigned family, const Stmt *s) {
102     return RefState(Relinquished, s, family);
103   }
getEscaped(const RefState * RS)104   static RefState getEscaped(const RefState *RS) {
105     return RefState(Escaped, RS->getStmt(), RS->getAllocationFamily());
106   }
107 
Profile(llvm::FoldingSetNodeID & ID) const108   void Profile(llvm::FoldingSetNodeID &ID) const {
109     ID.AddInteger(K);
110     ID.AddPointer(S);
111     ID.AddInteger(Family);
112   }
113 
dump(raw_ostream & OS) const114   void dump(raw_ostream &OS) const {
115     switch (static_cast<Kind>(K)) {
116 #define CASE(ID) case ID: OS << #ID; break;
117     CASE(Allocated)
118     CASE(AllocatedOfSizeZero)
119     CASE(Released)
120     CASE(Relinquished)
121     CASE(Escaped)
122     }
123   }
124 
dump() const125   LLVM_DUMP_METHOD void dump() const { dump(llvm::errs()); }
126 };
127 
128 enum ReallocPairKind {
129   RPToBeFreedAfterFailure,
130   // The symbol has been freed when reallocation failed.
131   RPIsFreeOnFailure,
132   // The symbol does not need to be freed after reallocation fails.
133   RPDoNotTrackAfterFailure
134 };
135 
136 /// \class ReallocPair
137 /// \brief Stores information about the symbol being reallocated by a call to
138 /// 'realloc' to allow modeling failed reallocation later in the path.
139 struct ReallocPair {
140   // \brief The symbol which realloc reallocated.
141   SymbolRef ReallocatedSym;
142   ReallocPairKind Kind;
143 
ReallocPair__anond17b7d3c0111::ReallocPair144   ReallocPair(SymbolRef S, ReallocPairKind K) :
145     ReallocatedSym(S), Kind(K) {}
Profile__anond17b7d3c0111::ReallocPair146   void Profile(llvm::FoldingSetNodeID &ID) const {
147     ID.AddInteger(Kind);
148     ID.AddPointer(ReallocatedSym);
149   }
operator ==__anond17b7d3c0111::ReallocPair150   bool operator==(const ReallocPair &X) const {
151     return ReallocatedSym == X.ReallocatedSym &&
152            Kind == X.Kind;
153   }
154 };
155 
156 typedef std::pair<const ExplodedNode*, const MemRegion*> LeakInfo;
157 
158 class MallocChecker : public Checker<check::DeadSymbols,
159                                      check::PointerEscape,
160                                      check::ConstPointerEscape,
161                                      check::PreStmt<ReturnStmt>,
162                                      check::PreCall,
163                                      check::PostStmt<CallExpr>,
164                                      check::PostStmt<CXXNewExpr>,
165                                      check::PreStmt<CXXDeleteExpr>,
166                                      check::PostStmt<BlockExpr>,
167                                      check::PostObjCMessage,
168                                      check::Location,
169                                      eval::Assume>
170 {
171 public:
MallocChecker()172   MallocChecker()
173       : II_alloca(nullptr), II_win_alloca(nullptr), II_malloc(nullptr),
174         II_free(nullptr), II_realloc(nullptr), II_calloc(nullptr),
175         II_valloc(nullptr), II_reallocf(nullptr), II_strndup(nullptr),
176         II_strdup(nullptr), II_win_strdup(nullptr), II_kmalloc(nullptr),
177         II_if_nameindex(nullptr), II_if_freenameindex(nullptr),
178         II_wcsdup(nullptr), II_win_wcsdup(nullptr) {}
179 
180   /// In pessimistic mode, the checker assumes that it does not know which
181   /// functions might free the memory.
182   enum CheckKind {
183     CK_MallocChecker,
184     CK_NewDeleteChecker,
185     CK_NewDeleteLeaksChecker,
186     CK_MismatchedDeallocatorChecker,
187     CK_NumCheckKinds
188   };
189 
190   enum class MemoryOperationKind {
191     MOK_Allocate,
192     MOK_Free,
193     MOK_Any
194   };
195 
196   DefaultBool IsOptimistic;
197 
198   DefaultBool ChecksEnabled[CK_NumCheckKinds];
199   CheckName CheckNames[CK_NumCheckKinds];
200 
201   void checkPreCall(const CallEvent &Call, CheckerContext &C) const;
202   void checkPostStmt(const CallExpr *CE, CheckerContext &C) const;
203   void checkPostStmt(const CXXNewExpr *NE, CheckerContext &C) const;
204   void checkPreStmt(const CXXDeleteExpr *DE, CheckerContext &C) const;
205   void checkPostObjCMessage(const ObjCMethodCall &Call, CheckerContext &C) const;
206   void checkPostStmt(const BlockExpr *BE, CheckerContext &C) const;
207   void checkDeadSymbols(SymbolReaper &SymReaper, CheckerContext &C) const;
208   void checkPreStmt(const ReturnStmt *S, CheckerContext &C) const;
209   ProgramStateRef evalAssume(ProgramStateRef state, SVal Cond,
210                             bool Assumption) const;
211   void checkLocation(SVal l, bool isLoad, const Stmt *S,
212                      CheckerContext &C) const;
213 
214   ProgramStateRef checkPointerEscape(ProgramStateRef State,
215                                     const InvalidatedSymbols &Escaped,
216                                     const CallEvent *Call,
217                                     PointerEscapeKind Kind) const;
218   ProgramStateRef checkConstPointerEscape(ProgramStateRef State,
219                                           const InvalidatedSymbols &Escaped,
220                                           const CallEvent *Call,
221                                           PointerEscapeKind Kind) const;
222 
223   void printState(raw_ostream &Out, ProgramStateRef State,
224                   const char *NL, const char *Sep) const override;
225 
226 private:
227   mutable std::unique_ptr<BugType> BT_DoubleFree[CK_NumCheckKinds];
228   mutable std::unique_ptr<BugType> BT_DoubleDelete;
229   mutable std::unique_ptr<BugType> BT_Leak[CK_NumCheckKinds];
230   mutable std::unique_ptr<BugType> BT_UseFree[CK_NumCheckKinds];
231   mutable std::unique_ptr<BugType> BT_BadFree[CK_NumCheckKinds];
232   mutable std::unique_ptr<BugType> BT_FreeAlloca[CK_NumCheckKinds];
233   mutable std::unique_ptr<BugType> BT_MismatchedDealloc;
234   mutable std::unique_ptr<BugType> BT_OffsetFree[CK_NumCheckKinds];
235   mutable std::unique_ptr<BugType> BT_UseZerroAllocated[CK_NumCheckKinds];
236   mutable IdentifierInfo *II_alloca, *II_win_alloca, *II_malloc, *II_free,
237                          *II_realloc, *II_calloc, *II_valloc, *II_reallocf,
238                          *II_strndup, *II_strdup, *II_win_strdup, *II_kmalloc,
239                          *II_if_nameindex, *II_if_freenameindex, *II_wcsdup,
240                          *II_win_wcsdup;
241   mutable Optional<uint64_t> KernelZeroFlagVal;
242 
243   void initIdentifierInfo(ASTContext &C) const;
244 
245   /// \brief Determine family of a deallocation expression.
246   AllocationFamily getAllocationFamily(CheckerContext &C, const Stmt *S) const;
247 
248   /// \brief Print names of allocators and deallocators.
249   ///
250   /// \returns true on success.
251   bool printAllocDeallocName(raw_ostream &os, CheckerContext &C,
252                              const Expr *E) const;
253 
254   /// \brief Print expected name of an allocator based on the deallocator's
255   /// family derived from the DeallocExpr.
256   void printExpectedAllocName(raw_ostream &os, CheckerContext &C,
257                               const Expr *DeallocExpr) const;
258   /// \brief Print expected name of a deallocator based on the allocator's
259   /// family.
260   void printExpectedDeallocName(raw_ostream &os, AllocationFamily Family) const;
261 
262   ///@{
263   /// Check if this is one of the functions which can allocate/reallocate memory
264   /// pointed to by one of its arguments.
265   bool isMemFunction(const FunctionDecl *FD, ASTContext &C) const;
266   bool isCMemFunction(const FunctionDecl *FD,
267                       ASTContext &C,
268                       AllocationFamily Family,
269                       MemoryOperationKind MemKind) const;
270   bool isStandardNewDelete(const FunctionDecl *FD, ASTContext &C) const;
271   ///@}
272 
273   /// \brief Perform a zero-allocation check.
274   ProgramStateRef ProcessZeroAllocation(CheckerContext &C, const Expr *E,
275                                         const unsigned AllocationSizeArg,
276                                         ProgramStateRef State) const;
277 
278   ProgramStateRef MallocMemReturnsAttr(CheckerContext &C,
279                                        const CallExpr *CE,
280                                        const OwnershipAttr* Att,
281                                        ProgramStateRef State) const;
282   static ProgramStateRef MallocMemAux(CheckerContext &C, const CallExpr *CE,
283                                       const Expr *SizeEx, SVal Init,
284                                       ProgramStateRef State,
285                                       AllocationFamily Family = AF_Malloc);
286   static ProgramStateRef MallocMemAux(CheckerContext &C, const CallExpr *CE,
287                                       SVal SizeEx, SVal Init,
288                                       ProgramStateRef State,
289                                       AllocationFamily Family = AF_Malloc);
290 
291   // Check if this malloc() for special flags. At present that means M_ZERO or
292   // __GFP_ZERO (in which case, treat it like calloc).
293   llvm::Optional<ProgramStateRef>
294   performKernelMalloc(const CallExpr *CE, CheckerContext &C,
295                       const ProgramStateRef &State) const;
296 
297   /// Update the RefState to reflect the new memory allocation.
298   static ProgramStateRef
299   MallocUpdateRefState(CheckerContext &C, const Expr *E, ProgramStateRef State,
300                        AllocationFamily Family = AF_Malloc);
301 
302   ProgramStateRef FreeMemAttr(CheckerContext &C, const CallExpr *CE,
303                               const OwnershipAttr* Att,
304                               ProgramStateRef State) const;
305   ProgramStateRef FreeMemAux(CheckerContext &C, const CallExpr *CE,
306                              ProgramStateRef state, unsigned Num,
307                              bool Hold,
308                              bool &ReleasedAllocated,
309                              bool ReturnsNullOnFailure = false) const;
310   ProgramStateRef FreeMemAux(CheckerContext &C, const Expr *Arg,
311                              const Expr *ParentExpr,
312                              ProgramStateRef State,
313                              bool Hold,
314                              bool &ReleasedAllocated,
315                              bool ReturnsNullOnFailure = false) const;
316 
317   ProgramStateRef ReallocMem(CheckerContext &C, const CallExpr *CE,
318                              bool FreesMemOnFailure,
319                              ProgramStateRef State) const;
320   static ProgramStateRef CallocMem(CheckerContext &C, const CallExpr *CE,
321                                    ProgramStateRef State);
322 
323   ///\brief Check if the memory associated with this symbol was released.
324   bool isReleased(SymbolRef Sym, CheckerContext &C) const;
325 
326   bool checkUseAfterFree(SymbolRef Sym, CheckerContext &C, const Stmt *S) const;
327 
328   void checkUseZeroAllocated(SymbolRef Sym, CheckerContext &C,
329                              const Stmt *S) const;
330 
331   bool checkDoubleDelete(SymbolRef Sym, CheckerContext &C) const;
332 
333   /// Check if the function is known free memory, or if it is
334   /// "interesting" and should be modeled explicitly.
335   ///
336   /// \param [out] EscapingSymbol A function might not free memory in general,
337   ///   but could be known to free a particular symbol. In this case, false is
338   ///   returned and the single escaping symbol is returned through the out
339   ///   parameter.
340   ///
341   /// We assume that pointers do not escape through calls to system functions
342   /// not handled by this checker.
343   bool mayFreeAnyEscapedMemoryOrIsModeledExplicitly(const CallEvent *Call,
344                                    ProgramStateRef State,
345                                    SymbolRef &EscapingSymbol) const;
346 
347   // Implementation of the checkPointerEscape callabcks.
348   ProgramStateRef checkPointerEscapeAux(ProgramStateRef State,
349                                   const InvalidatedSymbols &Escaped,
350                                   const CallEvent *Call,
351                                   PointerEscapeKind Kind,
352                                   bool(*CheckRefState)(const RefState*)) const;
353 
354   ///@{
355   /// Tells if a given family/call/symbol is tracked by the current checker.
356   /// Sets CheckKind to the kind of the checker responsible for this
357   /// family/call/symbol.
358   Optional<CheckKind> getCheckIfTracked(AllocationFamily Family,
359                                         bool IsALeakCheck = false) const;
360   Optional<CheckKind> getCheckIfTracked(CheckerContext &C,
361                                         const Stmt *AllocDeallocStmt,
362                                         bool IsALeakCheck = false) const;
363   Optional<CheckKind> getCheckIfTracked(CheckerContext &C, SymbolRef Sym,
364                                         bool IsALeakCheck = false) const;
365   ///@}
366   static bool SummarizeValue(raw_ostream &os, SVal V);
367   static bool SummarizeRegion(raw_ostream &os, const MemRegion *MR);
368   void ReportBadFree(CheckerContext &C, SVal ArgVal, SourceRange Range,
369                      const Expr *DeallocExpr) const;
370   void ReportFreeAlloca(CheckerContext &C, SVal ArgVal,
371                         SourceRange Range) const;
372   void ReportMismatchedDealloc(CheckerContext &C, SourceRange Range,
373                                const Expr *DeallocExpr, const RefState *RS,
374                                SymbolRef Sym, bool OwnershipTransferred) const;
375   void ReportOffsetFree(CheckerContext &C, SVal ArgVal, SourceRange Range,
376                         const Expr *DeallocExpr,
377                         const Expr *AllocExpr = nullptr) const;
378   void ReportUseAfterFree(CheckerContext &C, SourceRange Range,
379                           SymbolRef Sym) const;
380   void ReportDoubleFree(CheckerContext &C, SourceRange Range, bool Released,
381                         SymbolRef Sym, SymbolRef PrevSym) const;
382 
383   void ReportDoubleDelete(CheckerContext &C, SymbolRef Sym) const;
384 
385   void ReportUseZeroAllocated(CheckerContext &C, SourceRange Range,
386                               SymbolRef Sym) const;
387 
388   /// Find the location of the allocation for Sym on the path leading to the
389   /// exploded node N.
390   LeakInfo getAllocationSite(const ExplodedNode *N, SymbolRef Sym,
391                              CheckerContext &C) const;
392 
393   void reportLeak(SymbolRef Sym, ExplodedNode *N, CheckerContext &C) const;
394 
395   /// The bug visitor which allows us to print extra diagnostics along the
396   /// BugReport path. For example, showing the allocation site of the leaked
397   /// region.
398   class MallocBugVisitor final
399       : public BugReporterVisitorImpl<MallocBugVisitor> {
400   protected:
401     enum NotificationMode {
402       Normal,
403       ReallocationFailed
404     };
405 
406     // The allocated region symbol tracked by the main analysis.
407     SymbolRef Sym;
408 
409     // The mode we are in, i.e. what kind of diagnostics will be emitted.
410     NotificationMode Mode;
411 
412     // A symbol from when the primary region should have been reallocated.
413     SymbolRef FailedReallocSymbol;
414 
415     bool IsLeak;
416 
417   public:
MallocBugVisitor(SymbolRef S,bool isLeak=false)418     MallocBugVisitor(SymbolRef S, bool isLeak = false)
419        : Sym(S), Mode(Normal), FailedReallocSymbol(nullptr), IsLeak(isLeak) {}
420 
Profile(llvm::FoldingSetNodeID & ID) const421     void Profile(llvm::FoldingSetNodeID &ID) const override {
422       static int X = 0;
423       ID.AddPointer(&X);
424       ID.AddPointer(Sym);
425     }
426 
isAllocated(const RefState * S,const RefState * SPrev,const Stmt * Stmt)427     inline bool isAllocated(const RefState *S, const RefState *SPrev,
428                             const Stmt *Stmt) {
429       // Did not track -> allocated. Other state (released) -> allocated.
430       return (Stmt && (isa<CallExpr>(Stmt) || isa<CXXNewExpr>(Stmt)) &&
431               (S && (S->isAllocated() || S->isAllocatedOfSizeZero())) &&
432               (!SPrev || !(SPrev->isAllocated() ||
433                            SPrev->isAllocatedOfSizeZero())));
434     }
435 
isReleased(const RefState * S,const RefState * SPrev,const Stmt * Stmt)436     inline bool isReleased(const RefState *S, const RefState *SPrev,
437                            const Stmt *Stmt) {
438       // Did not track -> released. Other state (allocated) -> released.
439       return (Stmt && (isa<CallExpr>(Stmt) || isa<CXXDeleteExpr>(Stmt)) &&
440               (S && S->isReleased()) && (!SPrev || !SPrev->isReleased()));
441     }
442 
isRelinquished(const RefState * S,const RefState * SPrev,const Stmt * Stmt)443     inline bool isRelinquished(const RefState *S, const RefState *SPrev,
444                                const Stmt *Stmt) {
445       // Did not track -> relinquished. Other state (allocated) -> relinquished.
446       return (Stmt && (isa<CallExpr>(Stmt) || isa<ObjCMessageExpr>(Stmt) ||
447                                               isa<ObjCPropertyRefExpr>(Stmt)) &&
448               (S && S->isRelinquished()) &&
449               (!SPrev || !SPrev->isRelinquished()));
450     }
451 
isReallocFailedCheck(const RefState * S,const RefState * SPrev,const Stmt * Stmt)452     inline bool isReallocFailedCheck(const RefState *S, const RefState *SPrev,
453                                      const Stmt *Stmt) {
454       // If the expression is not a call, and the state change is
455       // released -> allocated, it must be the realloc return value
456       // check. If we have to handle more cases here, it might be cleaner just
457       // to track this extra bit in the state itself.
458       return ((!Stmt || !isa<CallExpr>(Stmt)) &&
459               (S && (S->isAllocated() || S->isAllocatedOfSizeZero())) &&
460               (SPrev && !(SPrev->isAllocated() ||
461                           SPrev->isAllocatedOfSizeZero())));
462     }
463 
464     PathDiagnosticPiece *VisitNode(const ExplodedNode *N,
465                                    const ExplodedNode *PrevN,
466                                    BugReporterContext &BRC,
467                                    BugReport &BR) override;
468 
469     std::unique_ptr<PathDiagnosticPiece>
getEndPath(BugReporterContext & BRC,const ExplodedNode * EndPathNode,BugReport & BR)470     getEndPath(BugReporterContext &BRC, const ExplodedNode *EndPathNode,
471                BugReport &BR) override {
472       if (!IsLeak)
473         return nullptr;
474 
475       PathDiagnosticLocation L =
476         PathDiagnosticLocation::createEndOfPath(EndPathNode,
477                                                 BRC.getSourceManager());
478       // Do not add the statement itself as a range in case of leak.
479       return llvm::make_unique<PathDiagnosticEventPiece>(L, BR.getDescription(),
480                                                          false);
481     }
482 
483   private:
484     class StackHintGeneratorForReallocationFailed
485         : public StackHintGeneratorForSymbol {
486     public:
StackHintGeneratorForReallocationFailed(SymbolRef S,StringRef M)487       StackHintGeneratorForReallocationFailed(SymbolRef S, StringRef M)
488         : StackHintGeneratorForSymbol(S, M) {}
489 
getMessageForArg(const Expr * ArgE,unsigned ArgIndex)490       std::string getMessageForArg(const Expr *ArgE,
491                                    unsigned ArgIndex) override {
492         // Printed parameters start at 1, not 0.
493         ++ArgIndex;
494 
495         SmallString<200> buf;
496         llvm::raw_svector_ostream os(buf);
497 
498         os << "Reallocation of " << ArgIndex << llvm::getOrdinalSuffix(ArgIndex)
499            << " parameter failed";
500 
501         return os.str();
502       }
503 
getMessageForReturn(const CallExpr * CallExpr)504       std::string getMessageForReturn(const CallExpr *CallExpr) override {
505         return "Reallocation of returned value failed";
506       }
507     };
508   };
509 };
510 } // end anonymous namespace
511 
512 REGISTER_MAP_WITH_PROGRAMSTATE(RegionState, SymbolRef, RefState)
513 REGISTER_MAP_WITH_PROGRAMSTATE(ReallocPairs, SymbolRef, ReallocPair)
514 REGISTER_SET_WITH_PROGRAMSTATE(ReallocSizeZeroSymbols, SymbolRef)
515 
516 // A map from the freed symbol to the symbol representing the return value of
517 // the free function.
518 REGISTER_MAP_WITH_PROGRAMSTATE(FreeReturnValue, SymbolRef, SymbolRef)
519 
520 namespace {
521 class StopTrackingCallback final : public SymbolVisitor {
522   ProgramStateRef state;
523 public:
StopTrackingCallback(ProgramStateRef st)524   StopTrackingCallback(ProgramStateRef st) : state(std::move(st)) {}
getState() const525   ProgramStateRef getState() const { return state; }
526 
VisitSymbol(SymbolRef sym)527   bool VisitSymbol(SymbolRef sym) override {
528     state = state->remove<RegionState>(sym);
529     return true;
530   }
531 };
532 } // end anonymous namespace
533 
initIdentifierInfo(ASTContext & Ctx) const534 void MallocChecker::initIdentifierInfo(ASTContext &Ctx) const {
535   if (II_malloc)
536     return;
537   II_alloca = &Ctx.Idents.get("alloca");
538   II_malloc = &Ctx.Idents.get("malloc");
539   II_free = &Ctx.Idents.get("free");
540   II_realloc = &Ctx.Idents.get("realloc");
541   II_reallocf = &Ctx.Idents.get("reallocf");
542   II_calloc = &Ctx.Idents.get("calloc");
543   II_valloc = &Ctx.Idents.get("valloc");
544   II_strdup = &Ctx.Idents.get("strdup");
545   II_strndup = &Ctx.Idents.get("strndup");
546   II_wcsdup = &Ctx.Idents.get("wcsdup");
547   II_kmalloc = &Ctx.Idents.get("kmalloc");
548   II_if_nameindex = &Ctx.Idents.get("if_nameindex");
549   II_if_freenameindex = &Ctx.Idents.get("if_freenameindex");
550 
551   //MSVC uses `_`-prefixed instead, so we check for them too.
552   II_win_strdup = &Ctx.Idents.get("_strdup");
553   II_win_wcsdup = &Ctx.Idents.get("_wcsdup");
554   II_win_alloca = &Ctx.Idents.get("_alloca");
555 }
556 
isMemFunction(const FunctionDecl * FD,ASTContext & C) const557 bool MallocChecker::isMemFunction(const FunctionDecl *FD, ASTContext &C) const {
558   if (isCMemFunction(FD, C, AF_Malloc, MemoryOperationKind::MOK_Any))
559     return true;
560 
561   if (isCMemFunction(FD, C, AF_IfNameIndex, MemoryOperationKind::MOK_Any))
562     return true;
563 
564   if (isCMemFunction(FD, C, AF_Alloca, MemoryOperationKind::MOK_Any))
565     return true;
566 
567   if (isStandardNewDelete(FD, C))
568     return true;
569 
570   return false;
571 }
572 
isCMemFunction(const FunctionDecl * FD,ASTContext & C,AllocationFamily Family,MemoryOperationKind MemKind) const573 bool MallocChecker::isCMemFunction(const FunctionDecl *FD,
574                                    ASTContext &C,
575                                    AllocationFamily Family,
576                                    MemoryOperationKind MemKind) const {
577   if (!FD)
578     return false;
579 
580   bool CheckFree = (MemKind == MemoryOperationKind::MOK_Any ||
581                     MemKind == MemoryOperationKind::MOK_Free);
582   bool CheckAlloc = (MemKind == MemoryOperationKind::MOK_Any ||
583                      MemKind == MemoryOperationKind::MOK_Allocate);
584 
585   if (FD->getKind() == Decl::Function) {
586     const IdentifierInfo *FunI = FD->getIdentifier();
587     initIdentifierInfo(C);
588 
589     if (Family == AF_Malloc && CheckFree) {
590       if (FunI == II_free || FunI == II_realloc || FunI == II_reallocf)
591         return true;
592     }
593 
594     if (Family == AF_Malloc && CheckAlloc) {
595       if (FunI == II_malloc || FunI == II_realloc || FunI == II_reallocf ||
596           FunI == II_calloc || FunI == II_valloc || FunI == II_strdup ||
597           FunI == II_win_strdup || FunI == II_strndup || FunI == II_wcsdup ||
598           FunI == II_win_wcsdup || FunI == II_kmalloc)
599         return true;
600     }
601 
602     if (Family == AF_IfNameIndex && CheckFree) {
603       if (FunI == II_if_freenameindex)
604         return true;
605     }
606 
607     if (Family == AF_IfNameIndex && CheckAlloc) {
608       if (FunI == II_if_nameindex)
609         return true;
610     }
611 
612     if (Family == AF_Alloca && CheckAlloc) {
613       if (FunI == II_alloca || FunI == II_win_alloca)
614         return true;
615     }
616   }
617 
618   if (Family != AF_Malloc)
619     return false;
620 
621   if (IsOptimistic && FD->hasAttrs()) {
622     for (const auto *I : FD->specific_attrs<OwnershipAttr>()) {
623       OwnershipAttr::OwnershipKind OwnKind = I->getOwnKind();
624       if(OwnKind == OwnershipAttr::Takes || OwnKind == OwnershipAttr::Holds) {
625         if (CheckFree)
626           return true;
627       } else if (OwnKind == OwnershipAttr::Returns) {
628         if (CheckAlloc)
629           return true;
630       }
631     }
632   }
633 
634   return false;
635 }
636 
637 // Tells if the callee is one of the following:
638 // 1) A global non-placement new/delete operator function.
639 // 2) A global placement operator function with the single placement argument
640 //    of type std::nothrow_t.
isStandardNewDelete(const FunctionDecl * FD,ASTContext & C) const641 bool MallocChecker::isStandardNewDelete(const FunctionDecl *FD,
642                                         ASTContext &C) const {
643   if (!FD)
644     return false;
645 
646   OverloadedOperatorKind Kind = FD->getOverloadedOperator();
647   if (Kind != OO_New && Kind != OO_Array_New &&
648       Kind != OO_Delete && Kind != OO_Array_Delete)
649     return false;
650 
651   // Skip all operator new/delete methods.
652   if (isa<CXXMethodDecl>(FD))
653     return false;
654 
655   // Return true if tested operator is a standard placement nothrow operator.
656   if (FD->getNumParams() == 2) {
657     QualType T = FD->getParamDecl(1)->getType();
658     if (const IdentifierInfo *II = T.getBaseTypeIdentifier())
659       return II->getName().equals("nothrow_t");
660   }
661 
662   // Skip placement operators.
663   if (FD->getNumParams() != 1 || FD->isVariadic())
664     return false;
665 
666   // One of the standard new/new[]/delete/delete[] non-placement operators.
667   return true;
668 }
669 
performKernelMalloc(const CallExpr * CE,CheckerContext & C,const ProgramStateRef & State) const670 llvm::Optional<ProgramStateRef> MallocChecker::performKernelMalloc(
671   const CallExpr *CE, CheckerContext &C, const ProgramStateRef &State) const {
672   // 3-argument malloc(), as commonly used in {Free,Net,Open}BSD Kernels:
673   //
674   // void *malloc(unsigned long size, struct malloc_type *mtp, int flags);
675   //
676   // One of the possible flags is M_ZERO, which means 'give me back an
677   // allocation which is already zeroed', like calloc.
678 
679   // 2-argument kmalloc(), as used in the Linux kernel:
680   //
681   // void *kmalloc(size_t size, gfp_t flags);
682   //
683   // Has the similar flag value __GFP_ZERO.
684 
685   // This logic is largely cloned from O_CREAT in UnixAPIChecker, maybe some
686   // code could be shared.
687 
688   ASTContext &Ctx = C.getASTContext();
689   llvm::Triple::OSType OS = Ctx.getTargetInfo().getTriple().getOS();
690 
691   if (!KernelZeroFlagVal.hasValue()) {
692     if (OS == llvm::Triple::FreeBSD)
693       KernelZeroFlagVal = 0x0100;
694     else if (OS == llvm::Triple::NetBSD)
695       KernelZeroFlagVal = 0x0002;
696     else if (OS == llvm::Triple::OpenBSD)
697       KernelZeroFlagVal = 0x0008;
698     else if (OS == llvm::Triple::Linux)
699       // __GFP_ZERO
700       KernelZeroFlagVal = 0x8000;
701     else
702       // FIXME: We need a more general way of getting the M_ZERO value.
703       // See also: O_CREAT in UnixAPIChecker.cpp.
704 
705       // Fall back to normal malloc behavior on platforms where we don't
706       // know M_ZERO.
707       return None;
708   }
709 
710   // We treat the last argument as the flags argument, and callers fall-back to
711   // normal malloc on a None return. This works for the FreeBSD kernel malloc
712   // as well as Linux kmalloc.
713   if (CE->getNumArgs() < 2)
714     return None;
715 
716   const Expr *FlagsEx = CE->getArg(CE->getNumArgs() - 1);
717   const SVal V = State->getSVal(FlagsEx, C.getLocationContext());
718   if (!V.getAs<NonLoc>()) {
719     // The case where 'V' can be a location can only be due to a bad header,
720     // so in this case bail out.
721     return None;
722   }
723 
724   NonLoc Flags = V.castAs<NonLoc>();
725   NonLoc ZeroFlag = C.getSValBuilder()
726       .makeIntVal(KernelZeroFlagVal.getValue(), FlagsEx->getType())
727       .castAs<NonLoc>();
728   SVal MaskedFlagsUC = C.getSValBuilder().evalBinOpNN(State, BO_And,
729                                                       Flags, ZeroFlag,
730                                                       FlagsEx->getType());
731   if (MaskedFlagsUC.isUnknownOrUndef())
732     return None;
733   DefinedSVal MaskedFlags = MaskedFlagsUC.castAs<DefinedSVal>();
734 
735   // Check if maskedFlags is non-zero.
736   ProgramStateRef TrueState, FalseState;
737   std::tie(TrueState, FalseState) = State->assume(MaskedFlags);
738 
739   // If M_ZERO is set, treat this like calloc (initialized).
740   if (TrueState && !FalseState) {
741     SVal ZeroVal = C.getSValBuilder().makeZeroVal(Ctx.CharTy);
742     return MallocMemAux(C, CE, CE->getArg(0), ZeroVal, TrueState);
743   }
744 
745   return None;
746 }
747 
checkPostStmt(const CallExpr * CE,CheckerContext & C) const748 void MallocChecker::checkPostStmt(const CallExpr *CE, CheckerContext &C) const {
749   if (C.wasInlined)
750     return;
751 
752   const FunctionDecl *FD = C.getCalleeDecl(CE);
753   if (!FD)
754     return;
755 
756   ProgramStateRef State = C.getState();
757   bool ReleasedAllocatedMemory = false;
758 
759   if (FD->getKind() == Decl::Function) {
760     initIdentifierInfo(C.getASTContext());
761     IdentifierInfo *FunI = FD->getIdentifier();
762 
763     if (FunI == II_malloc) {
764       if (CE->getNumArgs() < 1)
765         return;
766       if (CE->getNumArgs() < 3) {
767         State = MallocMemAux(C, CE, CE->getArg(0), UndefinedVal(), State);
768         if (CE->getNumArgs() == 1)
769           State = ProcessZeroAllocation(C, CE, 0, State);
770       } else if (CE->getNumArgs() == 3) {
771         llvm::Optional<ProgramStateRef> MaybeState =
772           performKernelMalloc(CE, C, State);
773         if (MaybeState.hasValue())
774           State = MaybeState.getValue();
775         else
776           State = MallocMemAux(C, CE, CE->getArg(0), UndefinedVal(), State);
777       }
778     } else if (FunI == II_kmalloc) {
779       llvm::Optional<ProgramStateRef> MaybeState =
780         performKernelMalloc(CE, C, State);
781       if (MaybeState.hasValue())
782         State = MaybeState.getValue();
783       else
784         State = MallocMemAux(C, CE, CE->getArg(0), UndefinedVal(), State);
785     } else if (FunI == II_valloc) {
786       if (CE->getNumArgs() < 1)
787         return;
788       State = MallocMemAux(C, CE, CE->getArg(0), UndefinedVal(), State);
789       State = ProcessZeroAllocation(C, CE, 0, State);
790     } else if (FunI == II_realloc) {
791       State = ReallocMem(C, CE, false, State);
792       State = ProcessZeroAllocation(C, CE, 1, State);
793     } else if (FunI == II_reallocf) {
794       State = ReallocMem(C, CE, true, State);
795       State = ProcessZeroAllocation(C, CE, 1, State);
796     } else if (FunI == II_calloc) {
797       State = CallocMem(C, CE, State);
798       State = ProcessZeroAllocation(C, CE, 0, State);
799       State = ProcessZeroAllocation(C, CE, 1, State);
800     } else if (FunI == II_free) {
801       State = FreeMemAux(C, CE, State, 0, false, ReleasedAllocatedMemory);
802     } else if (FunI == II_strdup || FunI == II_win_strdup ||
803                FunI == II_wcsdup || FunI == II_win_wcsdup) {
804       State = MallocUpdateRefState(C, CE, State);
805     } else if (FunI == II_strndup) {
806       State = MallocUpdateRefState(C, CE, State);
807     } else if (FunI == II_alloca || FunI == II_win_alloca) {
808       State = MallocMemAux(C, CE, CE->getArg(0), UndefinedVal(), State,
809                            AF_Alloca);
810       State = ProcessZeroAllocation(C, CE, 0, State);
811     } else if (isStandardNewDelete(FD, C.getASTContext())) {
812       // Process direct calls to operator new/new[]/delete/delete[] functions
813       // as distinct from new/new[]/delete/delete[] expressions that are
814       // processed by the checkPostStmt callbacks for CXXNewExpr and
815       // CXXDeleteExpr.
816       OverloadedOperatorKind K = FD->getOverloadedOperator();
817       if (K == OO_New) {
818         State = MallocMemAux(C, CE, CE->getArg(0), UndefinedVal(), State,
819                              AF_CXXNew);
820         State = ProcessZeroAllocation(C, CE, 0, State);
821       }
822       else if (K == OO_Array_New) {
823         State = MallocMemAux(C, CE, CE->getArg(0), UndefinedVal(), State,
824                              AF_CXXNewArray);
825         State = ProcessZeroAllocation(C, CE, 0, State);
826       }
827       else if (K == OO_Delete || K == OO_Array_Delete)
828         State = FreeMemAux(C, CE, State, 0, false, ReleasedAllocatedMemory);
829       else
830         llvm_unreachable("not a new/delete operator");
831     } else if (FunI == II_if_nameindex) {
832       // Should we model this differently? We can allocate a fixed number of
833       // elements with zeros in the last one.
834       State = MallocMemAux(C, CE, UnknownVal(), UnknownVal(), State,
835                            AF_IfNameIndex);
836     } else if (FunI == II_if_freenameindex) {
837       State = FreeMemAux(C, CE, State, 0, false, ReleasedAllocatedMemory);
838     }
839   }
840 
841   if (IsOptimistic || ChecksEnabled[CK_MismatchedDeallocatorChecker]) {
842     // Check all the attributes, if there are any.
843     // There can be multiple of these attributes.
844     if (FD->hasAttrs())
845       for (const auto *I : FD->specific_attrs<OwnershipAttr>()) {
846         switch (I->getOwnKind()) {
847         case OwnershipAttr::Returns:
848           State = MallocMemReturnsAttr(C, CE, I, State);
849           break;
850         case OwnershipAttr::Takes:
851         case OwnershipAttr::Holds:
852           State = FreeMemAttr(C, CE, I, State);
853           break;
854         }
855       }
856   }
857   C.addTransition(State);
858 }
859 
860 // Performs a 0-sized allocations check.
ProcessZeroAllocation(CheckerContext & C,const Expr * E,const unsigned AllocationSizeArg,ProgramStateRef State) const861 ProgramStateRef MallocChecker::ProcessZeroAllocation(CheckerContext &C,
862                                                const Expr *E,
863                                                const unsigned AllocationSizeArg,
864                                                ProgramStateRef State) const {
865   if (!State)
866     return nullptr;
867 
868   const Expr *Arg = nullptr;
869 
870   if (const CallExpr *CE = dyn_cast<CallExpr>(E)) {
871     Arg = CE->getArg(AllocationSizeArg);
872   }
873   else if (const CXXNewExpr *NE = dyn_cast<CXXNewExpr>(E)) {
874     if (NE->isArray())
875       Arg = NE->getArraySize();
876     else
877       return State;
878   }
879   else
880     llvm_unreachable("not a CallExpr or CXXNewExpr");
881 
882   assert(Arg);
883 
884   Optional<DefinedSVal> DefArgVal =
885       State->getSVal(Arg, C.getLocationContext()).getAs<DefinedSVal>();
886 
887   if (!DefArgVal)
888     return State;
889 
890   // Check if the allocation size is 0.
891   ProgramStateRef TrueState, FalseState;
892   SValBuilder &SvalBuilder = C.getSValBuilder();
893   DefinedSVal Zero =
894       SvalBuilder.makeZeroVal(Arg->getType()).castAs<DefinedSVal>();
895 
896   std::tie(TrueState, FalseState) =
897       State->assume(SvalBuilder.evalEQ(State, *DefArgVal, Zero));
898 
899   if (TrueState && !FalseState) {
900     SVal retVal = State->getSVal(E, C.getLocationContext());
901     SymbolRef Sym = retVal.getAsLocSymbol();
902     if (!Sym)
903       return State;
904 
905     const RefState *RS = State->get<RegionState>(Sym);
906     if (RS) {
907       if (RS->isAllocated())
908         return TrueState->set<RegionState>(Sym,
909                                           RefState::getAllocatedOfSizeZero(RS));
910       else
911         return State;
912     } else {
913       // Case of zero-size realloc. Historically 'realloc(ptr, 0)' is treated as
914       // 'free(ptr)' and the returned value from 'realloc(ptr, 0)' is not
915       // tracked. Add zero-reallocated Sym to the state to catch references
916       // to zero-allocated memory.
917       return TrueState->add<ReallocSizeZeroSymbols>(Sym);
918     }
919   }
920 
921   // Assume the value is non-zero going forward.
922   assert(FalseState);
923   return FalseState;
924 }
925 
getDeepPointeeType(QualType T)926 static QualType getDeepPointeeType(QualType T) {
927   QualType Result = T, PointeeType = T->getPointeeType();
928   while (!PointeeType.isNull()) {
929     Result = PointeeType;
930     PointeeType = PointeeType->getPointeeType();
931   }
932   return Result;
933 }
934 
treatUnusedNewEscaped(const CXXNewExpr * NE)935 static bool treatUnusedNewEscaped(const CXXNewExpr *NE) {
936 
937   const CXXConstructExpr *ConstructE = NE->getConstructExpr();
938   if (!ConstructE)
939     return false;
940 
941   if (!NE->getAllocatedType()->getAsCXXRecordDecl())
942     return false;
943 
944   const CXXConstructorDecl *CtorD = ConstructE->getConstructor();
945 
946   // Iterate over the constructor parameters.
947   for (const auto *CtorParam : CtorD->parameters()) {
948 
949     QualType CtorParamPointeeT = CtorParam->getType()->getPointeeType();
950     if (CtorParamPointeeT.isNull())
951       continue;
952 
953     CtorParamPointeeT = getDeepPointeeType(CtorParamPointeeT);
954 
955     if (CtorParamPointeeT->getAsCXXRecordDecl())
956       return true;
957   }
958 
959   return false;
960 }
961 
checkPostStmt(const CXXNewExpr * NE,CheckerContext & C) const962 void MallocChecker::checkPostStmt(const CXXNewExpr *NE,
963                                   CheckerContext &C) const {
964 
965   if (NE->getNumPlacementArgs())
966     for (CXXNewExpr::const_arg_iterator I = NE->placement_arg_begin(),
967          E = NE->placement_arg_end(); I != E; ++I)
968       if (SymbolRef Sym = C.getSVal(*I).getAsSymbol())
969         checkUseAfterFree(Sym, C, *I);
970 
971   if (!isStandardNewDelete(NE->getOperatorNew(), C.getASTContext()))
972     return;
973 
974   ParentMap &PM = C.getLocationContext()->getParentMap();
975   if (!PM.isConsumedExpr(NE) && treatUnusedNewEscaped(NE))
976     return;
977 
978   ProgramStateRef State = C.getState();
979   // The return value from operator new is bound to a specified initialization
980   // value (if any) and we don't want to loose this value. So we call
981   // MallocUpdateRefState() instead of MallocMemAux() which breakes the
982   // existing binding.
983   State = MallocUpdateRefState(C, NE, State, NE->isArray() ? AF_CXXNewArray
984                                                            : AF_CXXNew);
985   State = ProcessZeroAllocation(C, NE, 0, State);
986   C.addTransition(State);
987 }
988 
checkPreStmt(const CXXDeleteExpr * DE,CheckerContext & C) const989 void MallocChecker::checkPreStmt(const CXXDeleteExpr *DE,
990                                  CheckerContext &C) const {
991 
992   if (!ChecksEnabled[CK_NewDeleteChecker])
993     if (SymbolRef Sym = C.getSVal(DE->getArgument()).getAsSymbol())
994       checkUseAfterFree(Sym, C, DE->getArgument());
995 
996   if (!isStandardNewDelete(DE->getOperatorDelete(), C.getASTContext()))
997     return;
998 
999   ProgramStateRef State = C.getState();
1000   bool ReleasedAllocated;
1001   State = FreeMemAux(C, DE->getArgument(), DE, State,
1002                      /*Hold*/false, ReleasedAllocated);
1003 
1004   C.addTransition(State);
1005 }
1006 
isKnownDeallocObjCMethodName(const ObjCMethodCall & Call)1007 static bool isKnownDeallocObjCMethodName(const ObjCMethodCall &Call) {
1008   // If the first selector piece is one of the names below, assume that the
1009   // object takes ownership of the memory, promising to eventually deallocate it
1010   // with free().
1011   // Ex:  [NSData dataWithBytesNoCopy:bytes length:10];
1012   // (...unless a 'freeWhenDone' parameter is false, but that's checked later.)
1013   StringRef FirstSlot = Call.getSelector().getNameForSlot(0);
1014   return FirstSlot == "dataWithBytesNoCopy" ||
1015          FirstSlot == "initWithBytesNoCopy" ||
1016          FirstSlot == "initWithCharactersNoCopy";
1017 }
1018 
getFreeWhenDoneArg(const ObjCMethodCall & Call)1019 static Optional<bool> getFreeWhenDoneArg(const ObjCMethodCall &Call) {
1020   Selector S = Call.getSelector();
1021 
1022   // FIXME: We should not rely on fully-constrained symbols being folded.
1023   for (unsigned i = 1; i < S.getNumArgs(); ++i)
1024     if (S.getNameForSlot(i).equals("freeWhenDone"))
1025       return !Call.getArgSVal(i).isZeroConstant();
1026 
1027   return None;
1028 }
1029 
checkPostObjCMessage(const ObjCMethodCall & Call,CheckerContext & C) const1030 void MallocChecker::checkPostObjCMessage(const ObjCMethodCall &Call,
1031                                          CheckerContext &C) const {
1032   if (C.wasInlined)
1033     return;
1034 
1035   if (!isKnownDeallocObjCMethodName(Call))
1036     return;
1037 
1038   if (Optional<bool> FreeWhenDone = getFreeWhenDoneArg(Call))
1039     if (!*FreeWhenDone)
1040       return;
1041 
1042   bool ReleasedAllocatedMemory;
1043   ProgramStateRef State = FreeMemAux(C, Call.getArgExpr(0),
1044                                      Call.getOriginExpr(), C.getState(),
1045                                      /*Hold=*/true, ReleasedAllocatedMemory,
1046                                      /*RetNullOnFailure=*/true);
1047 
1048   C.addTransition(State);
1049 }
1050 
1051 ProgramStateRef
MallocMemReturnsAttr(CheckerContext & C,const CallExpr * CE,const OwnershipAttr * Att,ProgramStateRef State) const1052 MallocChecker::MallocMemReturnsAttr(CheckerContext &C, const CallExpr *CE,
1053                                     const OwnershipAttr *Att,
1054                                     ProgramStateRef State) const {
1055   if (!State)
1056     return nullptr;
1057 
1058   if (Att->getModule() != II_malloc)
1059     return nullptr;
1060 
1061   OwnershipAttr::args_iterator I = Att->args_begin(), E = Att->args_end();
1062   if (I != E) {
1063     return MallocMemAux(C, CE, CE->getArg(*I), UndefinedVal(), State);
1064   }
1065   return MallocMemAux(C, CE, UnknownVal(), UndefinedVal(), State);
1066 }
1067 
MallocMemAux(CheckerContext & C,const CallExpr * CE,const Expr * SizeEx,SVal Init,ProgramStateRef State,AllocationFamily Family)1068 ProgramStateRef MallocChecker::MallocMemAux(CheckerContext &C,
1069                                             const CallExpr *CE,
1070                                             const Expr *SizeEx, SVal Init,
1071                                             ProgramStateRef State,
1072                                             AllocationFamily Family) {
1073   if (!State)
1074     return nullptr;
1075 
1076   return MallocMemAux(C, CE, State->getSVal(SizeEx, C.getLocationContext()),
1077                       Init, State, Family);
1078 }
1079 
MallocMemAux(CheckerContext & C,const CallExpr * CE,SVal Size,SVal Init,ProgramStateRef State,AllocationFamily Family)1080 ProgramStateRef MallocChecker::MallocMemAux(CheckerContext &C,
1081                                            const CallExpr *CE,
1082                                            SVal Size, SVal Init,
1083                                            ProgramStateRef State,
1084                                            AllocationFamily Family) {
1085   if (!State)
1086     return nullptr;
1087 
1088   // We expect the malloc functions to return a pointer.
1089   if (!Loc::isLocType(CE->getType()))
1090     return nullptr;
1091 
1092   // Bind the return value to the symbolic value from the heap region.
1093   // TODO: We could rewrite post visit to eval call; 'malloc' does not have
1094   // side effects other than what we model here.
1095   unsigned Count = C.blockCount();
1096   SValBuilder &svalBuilder = C.getSValBuilder();
1097   const LocationContext *LCtx = C.getPredecessor()->getLocationContext();
1098   DefinedSVal RetVal = svalBuilder.getConjuredHeapSymbolVal(CE, LCtx, Count)
1099       .castAs<DefinedSVal>();
1100   State = State->BindExpr(CE, C.getLocationContext(), RetVal);
1101 
1102   // Fill the region with the initialization value.
1103   State = State->bindDefault(RetVal, Init);
1104 
1105   // Set the region's extent equal to the Size parameter.
1106   const SymbolicRegion *R =
1107       dyn_cast_or_null<SymbolicRegion>(RetVal.getAsRegion());
1108   if (!R)
1109     return nullptr;
1110   if (Optional<DefinedOrUnknownSVal> DefinedSize =
1111           Size.getAs<DefinedOrUnknownSVal>()) {
1112     SValBuilder &svalBuilder = C.getSValBuilder();
1113     DefinedOrUnknownSVal Extent = R->getExtent(svalBuilder);
1114     DefinedOrUnknownSVal extentMatchesSize =
1115         svalBuilder.evalEQ(State, Extent, *DefinedSize);
1116 
1117     State = State->assume(extentMatchesSize, true);
1118     assert(State);
1119   }
1120 
1121   return MallocUpdateRefState(C, CE, State, Family);
1122 }
1123 
MallocUpdateRefState(CheckerContext & C,const Expr * E,ProgramStateRef State,AllocationFamily Family)1124 ProgramStateRef MallocChecker::MallocUpdateRefState(CheckerContext &C,
1125                                                     const Expr *E,
1126                                                     ProgramStateRef State,
1127                                                     AllocationFamily Family) {
1128   if (!State)
1129     return nullptr;
1130 
1131   // Get the return value.
1132   SVal retVal = State->getSVal(E, C.getLocationContext());
1133 
1134   // We expect the malloc functions to return a pointer.
1135   if (!retVal.getAs<Loc>())
1136     return nullptr;
1137 
1138   SymbolRef Sym = retVal.getAsLocSymbol();
1139   assert(Sym);
1140 
1141   // Set the symbol's state to Allocated.
1142   return State->set<RegionState>(Sym, RefState::getAllocated(Family, E));
1143 }
1144 
FreeMemAttr(CheckerContext & C,const CallExpr * CE,const OwnershipAttr * Att,ProgramStateRef State) const1145 ProgramStateRef MallocChecker::FreeMemAttr(CheckerContext &C,
1146                                            const CallExpr *CE,
1147                                            const OwnershipAttr *Att,
1148                                            ProgramStateRef State) const {
1149   if (!State)
1150     return nullptr;
1151 
1152   if (Att->getModule() != II_malloc)
1153     return nullptr;
1154 
1155   bool ReleasedAllocated = false;
1156 
1157   for (const auto &Arg : Att->args()) {
1158     ProgramStateRef StateI = FreeMemAux(C, CE, State, Arg,
1159                                Att->getOwnKind() == OwnershipAttr::Holds,
1160                                ReleasedAllocated);
1161     if (StateI)
1162       State = StateI;
1163   }
1164   return State;
1165 }
1166 
FreeMemAux(CheckerContext & C,const CallExpr * CE,ProgramStateRef State,unsigned Num,bool Hold,bool & ReleasedAllocated,bool ReturnsNullOnFailure) const1167 ProgramStateRef MallocChecker::FreeMemAux(CheckerContext &C,
1168                                           const CallExpr *CE,
1169                                           ProgramStateRef State,
1170                                           unsigned Num,
1171                                           bool Hold,
1172                                           bool &ReleasedAllocated,
1173                                           bool ReturnsNullOnFailure) const {
1174   if (!State)
1175     return nullptr;
1176 
1177   if (CE->getNumArgs() < (Num + 1))
1178     return nullptr;
1179 
1180   return FreeMemAux(C, CE->getArg(Num), CE, State, Hold,
1181                     ReleasedAllocated, ReturnsNullOnFailure);
1182 }
1183 
1184 /// Checks if the previous call to free on the given symbol failed - if free
1185 /// failed, returns true. Also, returns the corresponding return value symbol.
didPreviousFreeFail(ProgramStateRef State,SymbolRef Sym,SymbolRef & RetStatusSymbol)1186 static bool didPreviousFreeFail(ProgramStateRef State,
1187                                 SymbolRef Sym, SymbolRef &RetStatusSymbol) {
1188   const SymbolRef *Ret = State->get<FreeReturnValue>(Sym);
1189   if (Ret) {
1190     assert(*Ret && "We should not store the null return symbol");
1191     ConstraintManager &CMgr = State->getConstraintManager();
1192     ConditionTruthVal FreeFailed = CMgr.isNull(State, *Ret);
1193     RetStatusSymbol = *Ret;
1194     return FreeFailed.isConstrainedTrue();
1195   }
1196   return false;
1197 }
1198 
getAllocationFamily(CheckerContext & C,const Stmt * S) const1199 AllocationFamily MallocChecker::getAllocationFamily(CheckerContext &C,
1200                                                     const Stmt *S) const {
1201   if (!S)
1202     return AF_None;
1203 
1204   if (const CallExpr *CE = dyn_cast<CallExpr>(S)) {
1205     const FunctionDecl *FD = C.getCalleeDecl(CE);
1206 
1207     if (!FD)
1208       FD = dyn_cast<FunctionDecl>(CE->getCalleeDecl());
1209 
1210     ASTContext &Ctx = C.getASTContext();
1211 
1212     if (isCMemFunction(FD, Ctx, AF_Malloc, MemoryOperationKind::MOK_Any))
1213       return AF_Malloc;
1214 
1215     if (isStandardNewDelete(FD, Ctx)) {
1216       OverloadedOperatorKind Kind = FD->getOverloadedOperator();
1217       if (Kind == OO_New || Kind == OO_Delete)
1218         return AF_CXXNew;
1219       else if (Kind == OO_Array_New || Kind == OO_Array_Delete)
1220         return AF_CXXNewArray;
1221     }
1222 
1223     if (isCMemFunction(FD, Ctx, AF_IfNameIndex, MemoryOperationKind::MOK_Any))
1224       return AF_IfNameIndex;
1225 
1226     if (isCMemFunction(FD, Ctx, AF_Alloca, MemoryOperationKind::MOK_Any))
1227       return AF_Alloca;
1228 
1229     return AF_None;
1230   }
1231 
1232   if (const CXXNewExpr *NE = dyn_cast<CXXNewExpr>(S))
1233     return NE->isArray() ? AF_CXXNewArray : AF_CXXNew;
1234 
1235   if (const CXXDeleteExpr *DE = dyn_cast<CXXDeleteExpr>(S))
1236     return DE->isArrayForm() ? AF_CXXNewArray : AF_CXXNew;
1237 
1238   if (isa<ObjCMessageExpr>(S))
1239     return AF_Malloc;
1240 
1241   return AF_None;
1242 }
1243 
printAllocDeallocName(raw_ostream & os,CheckerContext & C,const Expr * E) const1244 bool MallocChecker::printAllocDeallocName(raw_ostream &os, CheckerContext &C,
1245                                           const Expr *E) const {
1246   if (const CallExpr *CE = dyn_cast<CallExpr>(E)) {
1247     // FIXME: This doesn't handle indirect calls.
1248     const FunctionDecl *FD = CE->getDirectCallee();
1249     if (!FD)
1250       return false;
1251 
1252     os << *FD;
1253     if (!FD->isOverloadedOperator())
1254       os << "()";
1255     return true;
1256   }
1257 
1258   if (const ObjCMessageExpr *Msg = dyn_cast<ObjCMessageExpr>(E)) {
1259     if (Msg->isInstanceMessage())
1260       os << "-";
1261     else
1262       os << "+";
1263     Msg->getSelector().print(os);
1264     return true;
1265   }
1266 
1267   if (const CXXNewExpr *NE = dyn_cast<CXXNewExpr>(E)) {
1268     os << "'"
1269        << getOperatorSpelling(NE->getOperatorNew()->getOverloadedOperator())
1270        << "'";
1271     return true;
1272   }
1273 
1274   if (const CXXDeleteExpr *DE = dyn_cast<CXXDeleteExpr>(E)) {
1275     os << "'"
1276        << getOperatorSpelling(DE->getOperatorDelete()->getOverloadedOperator())
1277        << "'";
1278     return true;
1279   }
1280 
1281   return false;
1282 }
1283 
printExpectedAllocName(raw_ostream & os,CheckerContext & C,const Expr * E) const1284 void MallocChecker::printExpectedAllocName(raw_ostream &os, CheckerContext &C,
1285                                            const Expr *E) const {
1286   AllocationFamily Family = getAllocationFamily(C, E);
1287 
1288   switch(Family) {
1289     case AF_Malloc: os << "malloc()"; return;
1290     case AF_CXXNew: os << "'new'"; return;
1291     case AF_CXXNewArray: os << "'new[]'"; return;
1292     case AF_IfNameIndex: os << "'if_nameindex()'"; return;
1293     case AF_Alloca:
1294     case AF_None: llvm_unreachable("not a deallocation expression");
1295   }
1296 }
1297 
printExpectedDeallocName(raw_ostream & os,AllocationFamily Family) const1298 void MallocChecker::printExpectedDeallocName(raw_ostream &os,
1299                                              AllocationFamily Family) const {
1300   switch(Family) {
1301     case AF_Malloc: os << "free()"; return;
1302     case AF_CXXNew: os << "'delete'"; return;
1303     case AF_CXXNewArray: os << "'delete[]'"; return;
1304     case AF_IfNameIndex: os << "'if_freenameindex()'"; return;
1305     case AF_Alloca:
1306     case AF_None: llvm_unreachable("suspicious argument");
1307   }
1308 }
1309 
FreeMemAux(CheckerContext & C,const Expr * ArgExpr,const Expr * ParentExpr,ProgramStateRef State,bool Hold,bool & ReleasedAllocated,bool ReturnsNullOnFailure) const1310 ProgramStateRef MallocChecker::FreeMemAux(CheckerContext &C,
1311                                           const Expr *ArgExpr,
1312                                           const Expr *ParentExpr,
1313                                           ProgramStateRef State,
1314                                           bool Hold,
1315                                           bool &ReleasedAllocated,
1316                                           bool ReturnsNullOnFailure) const {
1317 
1318   if (!State)
1319     return nullptr;
1320 
1321   SVal ArgVal = State->getSVal(ArgExpr, C.getLocationContext());
1322   if (!ArgVal.getAs<DefinedOrUnknownSVal>())
1323     return nullptr;
1324   DefinedOrUnknownSVal location = ArgVal.castAs<DefinedOrUnknownSVal>();
1325 
1326   // Check for null dereferences.
1327   if (!location.getAs<Loc>())
1328     return nullptr;
1329 
1330   // The explicit NULL case, no operation is performed.
1331   ProgramStateRef notNullState, nullState;
1332   std::tie(notNullState, nullState) = State->assume(location);
1333   if (nullState && !notNullState)
1334     return nullptr;
1335 
1336   // Unknown values could easily be okay
1337   // Undefined values are handled elsewhere
1338   if (ArgVal.isUnknownOrUndef())
1339     return nullptr;
1340 
1341   const MemRegion *R = ArgVal.getAsRegion();
1342 
1343   // Nonlocs can't be freed, of course.
1344   // Non-region locations (labels and fixed addresses) also shouldn't be freed.
1345   if (!R) {
1346     ReportBadFree(C, ArgVal, ArgExpr->getSourceRange(), ParentExpr);
1347     return nullptr;
1348   }
1349 
1350   R = R->StripCasts();
1351 
1352   // Blocks might show up as heap data, but should not be free()d
1353   if (isa<BlockDataRegion>(R)) {
1354     ReportBadFree(C, ArgVal, ArgExpr->getSourceRange(), ParentExpr);
1355     return nullptr;
1356   }
1357 
1358   const MemSpaceRegion *MS = R->getMemorySpace();
1359 
1360   // Parameters, locals, statics, globals, and memory returned by
1361   // __builtin_alloca() shouldn't be freed.
1362   if (!(isa<UnknownSpaceRegion>(MS) || isa<HeapSpaceRegion>(MS))) {
1363     // FIXME: at the time this code was written, malloc() regions were
1364     // represented by conjured symbols, which are all in UnknownSpaceRegion.
1365     // This means that there isn't actually anything from HeapSpaceRegion
1366     // that should be freed, even though we allow it here.
1367     // Of course, free() can work on memory allocated outside the current
1368     // function, so UnknownSpaceRegion is always a possibility.
1369     // False negatives are better than false positives.
1370 
1371     if (isa<AllocaRegion>(R))
1372       ReportFreeAlloca(C, ArgVal, ArgExpr->getSourceRange());
1373     else
1374       ReportBadFree(C, ArgVal, ArgExpr->getSourceRange(), ParentExpr);
1375 
1376     return nullptr;
1377   }
1378 
1379   const SymbolicRegion *SrBase = dyn_cast<SymbolicRegion>(R->getBaseRegion());
1380   // Various cases could lead to non-symbol values here.
1381   // For now, ignore them.
1382   if (!SrBase)
1383     return nullptr;
1384 
1385   SymbolRef SymBase = SrBase->getSymbol();
1386   const RefState *RsBase = State->get<RegionState>(SymBase);
1387   SymbolRef PreviousRetStatusSymbol = nullptr;
1388 
1389   if (RsBase) {
1390 
1391     // Memory returned by alloca() shouldn't be freed.
1392     if (RsBase->getAllocationFamily() == AF_Alloca) {
1393       ReportFreeAlloca(C, ArgVal, ArgExpr->getSourceRange());
1394       return nullptr;
1395     }
1396 
1397     // Check for double free first.
1398     if ((RsBase->isReleased() || RsBase->isRelinquished()) &&
1399         !didPreviousFreeFail(State, SymBase, PreviousRetStatusSymbol)) {
1400       ReportDoubleFree(C, ParentExpr->getSourceRange(), RsBase->isReleased(),
1401                        SymBase, PreviousRetStatusSymbol);
1402       return nullptr;
1403 
1404     // If the pointer is allocated or escaped, but we are now trying to free it,
1405     // check that the call to free is proper.
1406     } else if (RsBase->isAllocated() || RsBase->isAllocatedOfSizeZero() ||
1407                RsBase->isEscaped()) {
1408 
1409       // Check if an expected deallocation function matches the real one.
1410       bool DeallocMatchesAlloc =
1411         RsBase->getAllocationFamily() == getAllocationFamily(C, ParentExpr);
1412       if (!DeallocMatchesAlloc) {
1413         ReportMismatchedDealloc(C, ArgExpr->getSourceRange(),
1414                                 ParentExpr, RsBase, SymBase, Hold);
1415         return nullptr;
1416       }
1417 
1418       // Check if the memory location being freed is the actual location
1419       // allocated, or an offset.
1420       RegionOffset Offset = R->getAsOffset();
1421       if (Offset.isValid() &&
1422           !Offset.hasSymbolicOffset() &&
1423           Offset.getOffset() != 0) {
1424         const Expr *AllocExpr = cast<Expr>(RsBase->getStmt());
1425         ReportOffsetFree(C, ArgVal, ArgExpr->getSourceRange(), ParentExpr,
1426                          AllocExpr);
1427         return nullptr;
1428       }
1429     }
1430   }
1431 
1432   ReleasedAllocated = (RsBase != nullptr) && (RsBase->isAllocated() ||
1433                                               RsBase->isAllocatedOfSizeZero());
1434 
1435   // Clean out the info on previous call to free return info.
1436   State = State->remove<FreeReturnValue>(SymBase);
1437 
1438   // Keep track of the return value. If it is NULL, we will know that free
1439   // failed.
1440   if (ReturnsNullOnFailure) {
1441     SVal RetVal = C.getSVal(ParentExpr);
1442     SymbolRef RetStatusSymbol = RetVal.getAsSymbol();
1443     if (RetStatusSymbol) {
1444       C.getSymbolManager().addSymbolDependency(SymBase, RetStatusSymbol);
1445       State = State->set<FreeReturnValue>(SymBase, RetStatusSymbol);
1446     }
1447   }
1448 
1449   AllocationFamily Family = RsBase ? RsBase->getAllocationFamily()
1450                                    : getAllocationFamily(C, ParentExpr);
1451   // Normal free.
1452   if (Hold)
1453     return State->set<RegionState>(SymBase,
1454                                    RefState::getRelinquished(Family,
1455                                                              ParentExpr));
1456 
1457   return State->set<RegionState>(SymBase,
1458                                  RefState::getReleased(Family, ParentExpr));
1459 }
1460 
1461 Optional<MallocChecker::CheckKind>
getCheckIfTracked(AllocationFamily Family,bool IsALeakCheck) const1462 MallocChecker::getCheckIfTracked(AllocationFamily Family,
1463                                  bool IsALeakCheck) const {
1464   switch (Family) {
1465   case AF_Malloc:
1466   case AF_Alloca:
1467   case AF_IfNameIndex: {
1468     if (ChecksEnabled[CK_MallocChecker])
1469       return CK_MallocChecker;
1470 
1471     return Optional<MallocChecker::CheckKind>();
1472   }
1473   case AF_CXXNew:
1474   case AF_CXXNewArray: {
1475     if (IsALeakCheck) {
1476       if (ChecksEnabled[CK_NewDeleteLeaksChecker])
1477         return CK_NewDeleteLeaksChecker;
1478     }
1479     else {
1480       if (ChecksEnabled[CK_NewDeleteChecker])
1481         return CK_NewDeleteChecker;
1482     }
1483     return Optional<MallocChecker::CheckKind>();
1484   }
1485   case AF_None: {
1486     llvm_unreachable("no family");
1487   }
1488   }
1489   llvm_unreachable("unhandled family");
1490 }
1491 
1492 Optional<MallocChecker::CheckKind>
getCheckIfTracked(CheckerContext & C,const Stmt * AllocDeallocStmt,bool IsALeakCheck) const1493 MallocChecker::getCheckIfTracked(CheckerContext &C,
1494                                  const Stmt *AllocDeallocStmt,
1495                                  bool IsALeakCheck) const {
1496   return getCheckIfTracked(getAllocationFamily(C, AllocDeallocStmt),
1497                            IsALeakCheck);
1498 }
1499 
1500 Optional<MallocChecker::CheckKind>
getCheckIfTracked(CheckerContext & C,SymbolRef Sym,bool IsALeakCheck) const1501 MallocChecker::getCheckIfTracked(CheckerContext &C, SymbolRef Sym,
1502                                  bool IsALeakCheck) const {
1503   if (C.getState()->contains<ReallocSizeZeroSymbols>(Sym))
1504     return CK_MallocChecker;
1505 
1506   const RefState *RS = C.getState()->get<RegionState>(Sym);
1507   assert(RS);
1508   return getCheckIfTracked(RS->getAllocationFamily(), IsALeakCheck);
1509 }
1510 
SummarizeValue(raw_ostream & os,SVal V)1511 bool MallocChecker::SummarizeValue(raw_ostream &os, SVal V) {
1512   if (Optional<nonloc::ConcreteInt> IntVal = V.getAs<nonloc::ConcreteInt>())
1513     os << "an integer (" << IntVal->getValue() << ")";
1514   else if (Optional<loc::ConcreteInt> ConstAddr = V.getAs<loc::ConcreteInt>())
1515     os << "a constant address (" << ConstAddr->getValue() << ")";
1516   else if (Optional<loc::GotoLabel> Label = V.getAs<loc::GotoLabel>())
1517     os << "the address of the label '" << Label->getLabel()->getName() << "'";
1518   else
1519     return false;
1520 
1521   return true;
1522 }
1523 
SummarizeRegion(raw_ostream & os,const MemRegion * MR)1524 bool MallocChecker::SummarizeRegion(raw_ostream &os,
1525                                     const MemRegion *MR) {
1526   switch (MR->getKind()) {
1527   case MemRegion::FunctionCodeRegionKind: {
1528     const NamedDecl *FD = cast<FunctionCodeRegion>(MR)->getDecl();
1529     if (FD)
1530       os << "the address of the function '" << *FD << '\'';
1531     else
1532       os << "the address of a function";
1533     return true;
1534   }
1535   case MemRegion::BlockCodeRegionKind:
1536     os << "block text";
1537     return true;
1538   case MemRegion::BlockDataRegionKind:
1539     // FIXME: where the block came from?
1540     os << "a block";
1541     return true;
1542   default: {
1543     const MemSpaceRegion *MS = MR->getMemorySpace();
1544 
1545     if (isa<StackLocalsSpaceRegion>(MS)) {
1546       const VarRegion *VR = dyn_cast<VarRegion>(MR);
1547       const VarDecl *VD;
1548       if (VR)
1549         VD = VR->getDecl();
1550       else
1551         VD = nullptr;
1552 
1553       if (VD)
1554         os << "the address of the local variable '" << VD->getName() << "'";
1555       else
1556         os << "the address of a local stack variable";
1557       return true;
1558     }
1559 
1560     if (isa<StackArgumentsSpaceRegion>(MS)) {
1561       const VarRegion *VR = dyn_cast<VarRegion>(MR);
1562       const VarDecl *VD;
1563       if (VR)
1564         VD = VR->getDecl();
1565       else
1566         VD = nullptr;
1567 
1568       if (VD)
1569         os << "the address of the parameter '" << VD->getName() << "'";
1570       else
1571         os << "the address of a parameter";
1572       return true;
1573     }
1574 
1575     if (isa<GlobalsSpaceRegion>(MS)) {
1576       const VarRegion *VR = dyn_cast<VarRegion>(MR);
1577       const VarDecl *VD;
1578       if (VR)
1579         VD = VR->getDecl();
1580       else
1581         VD = nullptr;
1582 
1583       if (VD) {
1584         if (VD->isStaticLocal())
1585           os << "the address of the static variable '" << VD->getName() << "'";
1586         else
1587           os << "the address of the global variable '" << VD->getName() << "'";
1588       } else
1589         os << "the address of a global variable";
1590       return true;
1591     }
1592 
1593     return false;
1594   }
1595   }
1596 }
1597 
ReportBadFree(CheckerContext & C,SVal ArgVal,SourceRange Range,const Expr * DeallocExpr) const1598 void MallocChecker::ReportBadFree(CheckerContext &C, SVal ArgVal,
1599                                   SourceRange Range,
1600                                   const Expr *DeallocExpr) const {
1601 
1602   if (!ChecksEnabled[CK_MallocChecker] &&
1603       !ChecksEnabled[CK_NewDeleteChecker])
1604     return;
1605 
1606   Optional<MallocChecker::CheckKind> CheckKind =
1607       getCheckIfTracked(C, DeallocExpr);
1608   if (!CheckKind.hasValue())
1609     return;
1610 
1611   if (ExplodedNode *N = C.generateErrorNode()) {
1612     if (!BT_BadFree[*CheckKind])
1613       BT_BadFree[*CheckKind].reset(
1614           new BugType(CheckNames[*CheckKind], "Bad free", "Memory Error"));
1615 
1616     SmallString<100> buf;
1617     llvm::raw_svector_ostream os(buf);
1618 
1619     const MemRegion *MR = ArgVal.getAsRegion();
1620     while (const ElementRegion *ER = dyn_cast_or_null<ElementRegion>(MR))
1621       MR = ER->getSuperRegion();
1622 
1623     os << "Argument to ";
1624     if (!printAllocDeallocName(os, C, DeallocExpr))
1625       os << "deallocator";
1626 
1627     os << " is ";
1628     bool Summarized = MR ? SummarizeRegion(os, MR)
1629                          : SummarizeValue(os, ArgVal);
1630     if (Summarized)
1631       os << ", which is not memory allocated by ";
1632     else
1633       os << "not memory allocated by ";
1634 
1635     printExpectedAllocName(os, C, DeallocExpr);
1636 
1637     auto R = llvm::make_unique<BugReport>(*BT_BadFree[*CheckKind], os.str(), N);
1638     R->markInteresting(MR);
1639     R->addRange(Range);
1640     C.emitReport(std::move(R));
1641   }
1642 }
1643 
ReportFreeAlloca(CheckerContext & C,SVal ArgVal,SourceRange Range) const1644 void MallocChecker::ReportFreeAlloca(CheckerContext &C, SVal ArgVal,
1645                                      SourceRange Range) const {
1646 
1647   Optional<MallocChecker::CheckKind> CheckKind;
1648 
1649   if (ChecksEnabled[CK_MallocChecker])
1650     CheckKind = CK_MallocChecker;
1651   else if (ChecksEnabled[CK_MismatchedDeallocatorChecker])
1652     CheckKind = CK_MismatchedDeallocatorChecker;
1653   else
1654     return;
1655 
1656   if (ExplodedNode *N = C.generateErrorNode()) {
1657     if (!BT_FreeAlloca[*CheckKind])
1658       BT_FreeAlloca[*CheckKind].reset(
1659           new BugType(CheckNames[*CheckKind], "Free alloca()", "Memory Error"));
1660 
1661     auto R = llvm::make_unique<BugReport>(
1662         *BT_FreeAlloca[*CheckKind],
1663         "Memory allocated by alloca() should not be deallocated", N);
1664     R->markInteresting(ArgVal.getAsRegion());
1665     R->addRange(Range);
1666     C.emitReport(std::move(R));
1667   }
1668 }
1669 
ReportMismatchedDealloc(CheckerContext & C,SourceRange Range,const Expr * DeallocExpr,const RefState * RS,SymbolRef Sym,bool OwnershipTransferred) const1670 void MallocChecker::ReportMismatchedDealloc(CheckerContext &C,
1671                                             SourceRange Range,
1672                                             const Expr *DeallocExpr,
1673                                             const RefState *RS,
1674                                             SymbolRef Sym,
1675                                             bool OwnershipTransferred) const {
1676 
1677   if (!ChecksEnabled[CK_MismatchedDeallocatorChecker])
1678     return;
1679 
1680   if (ExplodedNode *N = C.generateErrorNode()) {
1681     if (!BT_MismatchedDealloc)
1682       BT_MismatchedDealloc.reset(
1683           new BugType(CheckNames[CK_MismatchedDeallocatorChecker],
1684                       "Bad deallocator", "Memory Error"));
1685 
1686     SmallString<100> buf;
1687     llvm::raw_svector_ostream os(buf);
1688 
1689     const Expr *AllocExpr = cast<Expr>(RS->getStmt());
1690     SmallString<20> AllocBuf;
1691     llvm::raw_svector_ostream AllocOs(AllocBuf);
1692     SmallString<20> DeallocBuf;
1693     llvm::raw_svector_ostream DeallocOs(DeallocBuf);
1694 
1695     if (OwnershipTransferred) {
1696       if (printAllocDeallocName(DeallocOs, C, DeallocExpr))
1697         os << DeallocOs.str() << " cannot";
1698       else
1699         os << "Cannot";
1700 
1701       os << " take ownership of memory";
1702 
1703       if (printAllocDeallocName(AllocOs, C, AllocExpr))
1704         os << " allocated by " << AllocOs.str();
1705     } else {
1706       os << "Memory";
1707       if (printAllocDeallocName(AllocOs, C, AllocExpr))
1708         os << " allocated by " << AllocOs.str();
1709 
1710       os << " should be deallocated by ";
1711         printExpectedDeallocName(os, RS->getAllocationFamily());
1712 
1713       if (printAllocDeallocName(DeallocOs, C, DeallocExpr))
1714         os << ", not " << DeallocOs.str();
1715     }
1716 
1717     auto R = llvm::make_unique<BugReport>(*BT_MismatchedDealloc, os.str(), N);
1718     R->markInteresting(Sym);
1719     R->addRange(Range);
1720     R->addVisitor(llvm::make_unique<MallocBugVisitor>(Sym));
1721     C.emitReport(std::move(R));
1722   }
1723 }
1724 
ReportOffsetFree(CheckerContext & C,SVal ArgVal,SourceRange Range,const Expr * DeallocExpr,const Expr * AllocExpr) const1725 void MallocChecker::ReportOffsetFree(CheckerContext &C, SVal ArgVal,
1726                                      SourceRange Range, const Expr *DeallocExpr,
1727                                      const Expr *AllocExpr) const {
1728 
1729 
1730   if (!ChecksEnabled[CK_MallocChecker] &&
1731       !ChecksEnabled[CK_NewDeleteChecker])
1732     return;
1733 
1734   Optional<MallocChecker::CheckKind> CheckKind =
1735       getCheckIfTracked(C, AllocExpr);
1736   if (!CheckKind.hasValue())
1737     return;
1738 
1739   ExplodedNode *N = C.generateErrorNode();
1740   if (!N)
1741     return;
1742 
1743   if (!BT_OffsetFree[*CheckKind])
1744     BT_OffsetFree[*CheckKind].reset(
1745         new BugType(CheckNames[*CheckKind], "Offset free", "Memory Error"));
1746 
1747   SmallString<100> buf;
1748   llvm::raw_svector_ostream os(buf);
1749   SmallString<20> AllocNameBuf;
1750   llvm::raw_svector_ostream AllocNameOs(AllocNameBuf);
1751 
1752   const MemRegion *MR = ArgVal.getAsRegion();
1753   assert(MR && "Only MemRegion based symbols can have offset free errors");
1754 
1755   RegionOffset Offset = MR->getAsOffset();
1756   assert((Offset.isValid() &&
1757           !Offset.hasSymbolicOffset() &&
1758           Offset.getOffset() != 0) &&
1759          "Only symbols with a valid offset can have offset free errors");
1760 
1761   int offsetBytes = Offset.getOffset() / C.getASTContext().getCharWidth();
1762 
1763   os << "Argument to ";
1764   if (!printAllocDeallocName(os, C, DeallocExpr))
1765     os << "deallocator";
1766   os << " is offset by "
1767      << offsetBytes
1768      << " "
1769      << ((abs(offsetBytes) > 1) ? "bytes" : "byte")
1770      << " from the start of ";
1771   if (AllocExpr && printAllocDeallocName(AllocNameOs, C, AllocExpr))
1772     os << "memory allocated by " << AllocNameOs.str();
1773   else
1774     os << "allocated memory";
1775 
1776   auto R = llvm::make_unique<BugReport>(*BT_OffsetFree[*CheckKind], os.str(), N);
1777   R->markInteresting(MR->getBaseRegion());
1778   R->addRange(Range);
1779   C.emitReport(std::move(R));
1780 }
1781 
ReportUseAfterFree(CheckerContext & C,SourceRange Range,SymbolRef Sym) const1782 void MallocChecker::ReportUseAfterFree(CheckerContext &C, SourceRange Range,
1783                                        SymbolRef Sym) const {
1784 
1785   if (!ChecksEnabled[CK_MallocChecker] &&
1786       !ChecksEnabled[CK_NewDeleteChecker])
1787     return;
1788 
1789   Optional<MallocChecker::CheckKind> CheckKind = getCheckIfTracked(C, Sym);
1790   if (!CheckKind.hasValue())
1791     return;
1792 
1793   if (ExplodedNode *N = C.generateErrorNode()) {
1794     if (!BT_UseFree[*CheckKind])
1795       BT_UseFree[*CheckKind].reset(new BugType(
1796           CheckNames[*CheckKind], "Use-after-free", "Memory Error"));
1797 
1798     auto R = llvm::make_unique<BugReport>(*BT_UseFree[*CheckKind],
1799                                          "Use of memory after it is freed", N);
1800 
1801     R->markInteresting(Sym);
1802     R->addRange(Range);
1803     R->addVisitor(llvm::make_unique<MallocBugVisitor>(Sym));
1804     C.emitReport(std::move(R));
1805   }
1806 }
1807 
ReportDoubleFree(CheckerContext & C,SourceRange Range,bool Released,SymbolRef Sym,SymbolRef PrevSym) const1808 void MallocChecker::ReportDoubleFree(CheckerContext &C, SourceRange Range,
1809                                      bool Released, SymbolRef Sym,
1810                                      SymbolRef PrevSym) const {
1811 
1812   if (!ChecksEnabled[CK_MallocChecker] &&
1813       !ChecksEnabled[CK_NewDeleteChecker])
1814     return;
1815 
1816   Optional<MallocChecker::CheckKind> CheckKind = getCheckIfTracked(C, Sym);
1817   if (!CheckKind.hasValue())
1818     return;
1819 
1820   if (ExplodedNode *N = C.generateErrorNode()) {
1821     if (!BT_DoubleFree[*CheckKind])
1822       BT_DoubleFree[*CheckKind].reset(
1823           new BugType(CheckNames[*CheckKind], "Double free", "Memory Error"));
1824 
1825     auto R = llvm::make_unique<BugReport>(
1826         *BT_DoubleFree[*CheckKind],
1827         (Released ? "Attempt to free released memory"
1828                   : "Attempt to free non-owned memory"),
1829         N);
1830     R->addRange(Range);
1831     R->markInteresting(Sym);
1832     if (PrevSym)
1833       R->markInteresting(PrevSym);
1834     R->addVisitor(llvm::make_unique<MallocBugVisitor>(Sym));
1835     C.emitReport(std::move(R));
1836   }
1837 }
1838 
ReportDoubleDelete(CheckerContext & C,SymbolRef Sym) const1839 void MallocChecker::ReportDoubleDelete(CheckerContext &C, SymbolRef Sym) const {
1840 
1841   if (!ChecksEnabled[CK_NewDeleteChecker])
1842     return;
1843 
1844   Optional<MallocChecker::CheckKind> CheckKind = getCheckIfTracked(C, Sym);
1845   if (!CheckKind.hasValue())
1846     return;
1847 
1848   if (ExplodedNode *N = C.generateErrorNode()) {
1849     if (!BT_DoubleDelete)
1850       BT_DoubleDelete.reset(new BugType(CheckNames[CK_NewDeleteChecker],
1851                                         "Double delete", "Memory Error"));
1852 
1853     auto R = llvm::make_unique<BugReport>(
1854         *BT_DoubleDelete, "Attempt to delete released memory", N);
1855 
1856     R->markInteresting(Sym);
1857     R->addVisitor(llvm::make_unique<MallocBugVisitor>(Sym));
1858     C.emitReport(std::move(R));
1859   }
1860 }
1861 
ReportUseZeroAllocated(CheckerContext & C,SourceRange Range,SymbolRef Sym) const1862 void MallocChecker::ReportUseZeroAllocated(CheckerContext &C,
1863                                            SourceRange Range,
1864                                            SymbolRef Sym) const {
1865 
1866   if (!ChecksEnabled[CK_MallocChecker] &&
1867       !ChecksEnabled[CK_NewDeleteChecker])
1868     return;
1869 
1870   Optional<MallocChecker::CheckKind> CheckKind = getCheckIfTracked(C, Sym);
1871 
1872   if (!CheckKind.hasValue())
1873     return;
1874 
1875   if (ExplodedNode *N = C.generateErrorNode()) {
1876     if (!BT_UseZerroAllocated[*CheckKind])
1877       BT_UseZerroAllocated[*CheckKind].reset(new BugType(
1878           CheckNames[*CheckKind], "Use of zero allocated", "Memory Error"));
1879 
1880     auto R = llvm::make_unique<BugReport>(*BT_UseZerroAllocated[*CheckKind],
1881                                          "Use of zero-allocated memory", N);
1882 
1883     R->addRange(Range);
1884     if (Sym) {
1885       R->markInteresting(Sym);
1886       R->addVisitor(llvm::make_unique<MallocBugVisitor>(Sym));
1887     }
1888     C.emitReport(std::move(R));
1889   }
1890 }
1891 
ReallocMem(CheckerContext & C,const CallExpr * CE,bool FreesOnFail,ProgramStateRef State) const1892 ProgramStateRef MallocChecker::ReallocMem(CheckerContext &C,
1893                                           const CallExpr *CE,
1894                                           bool FreesOnFail,
1895                                           ProgramStateRef State) const {
1896   if (!State)
1897     return nullptr;
1898 
1899   if (CE->getNumArgs() < 2)
1900     return nullptr;
1901 
1902   const Expr *arg0Expr = CE->getArg(0);
1903   const LocationContext *LCtx = C.getLocationContext();
1904   SVal Arg0Val = State->getSVal(arg0Expr, LCtx);
1905   if (!Arg0Val.getAs<DefinedOrUnknownSVal>())
1906     return nullptr;
1907   DefinedOrUnknownSVal arg0Val = Arg0Val.castAs<DefinedOrUnknownSVal>();
1908 
1909   SValBuilder &svalBuilder = C.getSValBuilder();
1910 
1911   DefinedOrUnknownSVal PtrEQ =
1912     svalBuilder.evalEQ(State, arg0Val, svalBuilder.makeNull());
1913 
1914   // Get the size argument. If there is no size arg then give up.
1915   const Expr *Arg1 = CE->getArg(1);
1916   if (!Arg1)
1917     return nullptr;
1918 
1919   // Get the value of the size argument.
1920   SVal Arg1ValG = State->getSVal(Arg1, LCtx);
1921   if (!Arg1ValG.getAs<DefinedOrUnknownSVal>())
1922     return nullptr;
1923   DefinedOrUnknownSVal Arg1Val = Arg1ValG.castAs<DefinedOrUnknownSVal>();
1924 
1925   // Compare the size argument to 0.
1926   DefinedOrUnknownSVal SizeZero =
1927     svalBuilder.evalEQ(State, Arg1Val,
1928                        svalBuilder.makeIntValWithPtrWidth(0, false));
1929 
1930   ProgramStateRef StatePtrIsNull, StatePtrNotNull;
1931   std::tie(StatePtrIsNull, StatePtrNotNull) = State->assume(PtrEQ);
1932   ProgramStateRef StateSizeIsZero, StateSizeNotZero;
1933   std::tie(StateSizeIsZero, StateSizeNotZero) = State->assume(SizeZero);
1934   // We only assume exceptional states if they are definitely true; if the
1935   // state is under-constrained, assume regular realloc behavior.
1936   bool PrtIsNull = StatePtrIsNull && !StatePtrNotNull;
1937   bool SizeIsZero = StateSizeIsZero && !StateSizeNotZero;
1938 
1939   // If the ptr is NULL and the size is not 0, the call is equivalent to
1940   // malloc(size).
1941   if ( PrtIsNull && !SizeIsZero) {
1942     ProgramStateRef stateMalloc = MallocMemAux(C, CE, CE->getArg(1),
1943                                                UndefinedVal(), StatePtrIsNull);
1944     return stateMalloc;
1945   }
1946 
1947   if (PrtIsNull && SizeIsZero)
1948     return State;
1949 
1950   // Get the from and to pointer symbols as in toPtr = realloc(fromPtr, size).
1951   assert(!PrtIsNull);
1952   SymbolRef FromPtr = arg0Val.getAsSymbol();
1953   SVal RetVal = State->getSVal(CE, LCtx);
1954   SymbolRef ToPtr = RetVal.getAsSymbol();
1955   if (!FromPtr || !ToPtr)
1956     return nullptr;
1957 
1958   bool ReleasedAllocated = false;
1959 
1960   // If the size is 0, free the memory.
1961   if (SizeIsZero)
1962     if (ProgramStateRef stateFree = FreeMemAux(C, CE, StateSizeIsZero, 0,
1963                                                false, ReleasedAllocated)){
1964       // The semantics of the return value are:
1965       // If size was equal to 0, either NULL or a pointer suitable to be passed
1966       // to free() is returned. We just free the input pointer and do not add
1967       // any constrains on the output pointer.
1968       return stateFree;
1969     }
1970 
1971   // Default behavior.
1972   if (ProgramStateRef stateFree =
1973         FreeMemAux(C, CE, State, 0, false, ReleasedAllocated)) {
1974 
1975     ProgramStateRef stateRealloc = MallocMemAux(C, CE, CE->getArg(1),
1976                                                 UnknownVal(), stateFree);
1977     if (!stateRealloc)
1978       return nullptr;
1979 
1980     ReallocPairKind Kind = RPToBeFreedAfterFailure;
1981     if (FreesOnFail)
1982       Kind = RPIsFreeOnFailure;
1983     else if (!ReleasedAllocated)
1984       Kind = RPDoNotTrackAfterFailure;
1985 
1986     // Record the info about the reallocated symbol so that we could properly
1987     // process failed reallocation.
1988     stateRealloc = stateRealloc->set<ReallocPairs>(ToPtr,
1989                                                    ReallocPair(FromPtr, Kind));
1990     // The reallocated symbol should stay alive for as long as the new symbol.
1991     C.getSymbolManager().addSymbolDependency(ToPtr, FromPtr);
1992     return stateRealloc;
1993   }
1994   return nullptr;
1995 }
1996 
CallocMem(CheckerContext & C,const CallExpr * CE,ProgramStateRef State)1997 ProgramStateRef MallocChecker::CallocMem(CheckerContext &C, const CallExpr *CE,
1998                                          ProgramStateRef State) {
1999   if (!State)
2000     return nullptr;
2001 
2002   if (CE->getNumArgs() < 2)
2003     return nullptr;
2004 
2005   SValBuilder &svalBuilder = C.getSValBuilder();
2006   const LocationContext *LCtx = C.getLocationContext();
2007   SVal count = State->getSVal(CE->getArg(0), LCtx);
2008   SVal elementSize = State->getSVal(CE->getArg(1), LCtx);
2009   SVal TotalSize = svalBuilder.evalBinOp(State, BO_Mul, count, elementSize,
2010                                         svalBuilder.getContext().getSizeType());
2011   SVal zeroVal = svalBuilder.makeZeroVal(svalBuilder.getContext().CharTy);
2012 
2013   return MallocMemAux(C, CE, TotalSize, zeroVal, State);
2014 }
2015 
2016 LeakInfo
getAllocationSite(const ExplodedNode * N,SymbolRef Sym,CheckerContext & C) const2017 MallocChecker::getAllocationSite(const ExplodedNode *N, SymbolRef Sym,
2018                                  CheckerContext &C) const {
2019   const LocationContext *LeakContext = N->getLocationContext();
2020   // Walk the ExplodedGraph backwards and find the first node that referred to
2021   // the tracked symbol.
2022   const ExplodedNode *AllocNode = N;
2023   const MemRegion *ReferenceRegion = nullptr;
2024 
2025   while (N) {
2026     ProgramStateRef State = N->getState();
2027     if (!State->get<RegionState>(Sym))
2028       break;
2029 
2030     // Find the most recent expression bound to the symbol in the current
2031     // context.
2032       if (!ReferenceRegion) {
2033         if (const MemRegion *MR = C.getLocationRegionIfPostStore(N)) {
2034           SVal Val = State->getSVal(MR);
2035           if (Val.getAsLocSymbol() == Sym) {
2036             const VarRegion* VR = MR->getBaseRegion()->getAs<VarRegion>();
2037             // Do not show local variables belonging to a function other than
2038             // where the error is reported.
2039             if (!VR ||
2040                 (VR->getStackFrame() == LeakContext->getCurrentStackFrame()))
2041               ReferenceRegion = MR;
2042           }
2043         }
2044       }
2045 
2046     // Allocation node, is the last node in the current or parent context in
2047     // which the symbol was tracked.
2048     const LocationContext *NContext = N->getLocationContext();
2049     if (NContext == LeakContext ||
2050         NContext->isParentOf(LeakContext))
2051       AllocNode = N;
2052     N = N->pred_empty() ? nullptr : *(N->pred_begin());
2053   }
2054 
2055   return LeakInfo(AllocNode, ReferenceRegion);
2056 }
2057 
reportLeak(SymbolRef Sym,ExplodedNode * N,CheckerContext & C) const2058 void MallocChecker::reportLeak(SymbolRef Sym, ExplodedNode *N,
2059                                CheckerContext &C) const {
2060 
2061   if (!ChecksEnabled[CK_MallocChecker] &&
2062       !ChecksEnabled[CK_NewDeleteLeaksChecker])
2063     return;
2064 
2065   const RefState *RS = C.getState()->get<RegionState>(Sym);
2066   assert(RS && "cannot leak an untracked symbol");
2067   AllocationFamily Family = RS->getAllocationFamily();
2068 
2069   if (Family == AF_Alloca)
2070     return;
2071 
2072   Optional<MallocChecker::CheckKind>
2073       CheckKind = getCheckIfTracked(Family, true);
2074 
2075   if (!CheckKind.hasValue())
2076     return;
2077 
2078   assert(N);
2079   if (!BT_Leak[*CheckKind]) {
2080     BT_Leak[*CheckKind].reset(
2081         new BugType(CheckNames[*CheckKind], "Memory leak", "Memory Error"));
2082     // Leaks should not be reported if they are post-dominated by a sink:
2083     // (1) Sinks are higher importance bugs.
2084     // (2) NoReturnFunctionChecker uses sink nodes to represent paths ending
2085     //     with __noreturn functions such as assert() or exit(). We choose not
2086     //     to report leaks on such paths.
2087     BT_Leak[*CheckKind]->setSuppressOnSink(true);
2088   }
2089 
2090   // Most bug reports are cached at the location where they occurred.
2091   // With leaks, we want to unique them by the location where they were
2092   // allocated, and only report a single path.
2093   PathDiagnosticLocation LocUsedForUniqueing;
2094   const ExplodedNode *AllocNode = nullptr;
2095   const MemRegion *Region = nullptr;
2096   std::tie(AllocNode, Region) = getAllocationSite(N, Sym, C);
2097 
2098   ProgramPoint P = AllocNode->getLocation();
2099   const Stmt *AllocationStmt = nullptr;
2100   if (Optional<CallExitEnd> Exit = P.getAs<CallExitEnd>())
2101     AllocationStmt = Exit->getCalleeContext()->getCallSite();
2102   else if (Optional<StmtPoint> SP = P.getAs<StmtPoint>())
2103     AllocationStmt = SP->getStmt();
2104   if (AllocationStmt)
2105     LocUsedForUniqueing = PathDiagnosticLocation::createBegin(AllocationStmt,
2106                                               C.getSourceManager(),
2107                                               AllocNode->getLocationContext());
2108 
2109   SmallString<200> buf;
2110   llvm::raw_svector_ostream os(buf);
2111   if (Region && Region->canPrintPretty()) {
2112     os << "Potential leak of memory pointed to by ";
2113     Region->printPretty(os);
2114   } else {
2115     os << "Potential memory leak";
2116   }
2117 
2118   auto R = llvm::make_unique<BugReport>(
2119       *BT_Leak[*CheckKind], os.str(), N, LocUsedForUniqueing,
2120       AllocNode->getLocationContext()->getDecl());
2121   R->markInteresting(Sym);
2122   R->addVisitor(llvm::make_unique<MallocBugVisitor>(Sym, true));
2123   C.emitReport(std::move(R));
2124 }
2125 
checkDeadSymbols(SymbolReaper & SymReaper,CheckerContext & C) const2126 void MallocChecker::checkDeadSymbols(SymbolReaper &SymReaper,
2127                                      CheckerContext &C) const
2128 {
2129   if (!SymReaper.hasDeadSymbols())
2130     return;
2131 
2132   ProgramStateRef state = C.getState();
2133   RegionStateTy RS = state->get<RegionState>();
2134   RegionStateTy::Factory &F = state->get_context<RegionState>();
2135 
2136   SmallVector<SymbolRef, 2> Errors;
2137   for (RegionStateTy::iterator I = RS.begin(), E = RS.end(); I != E; ++I) {
2138     if (SymReaper.isDead(I->first)) {
2139       if (I->second.isAllocated() || I->second.isAllocatedOfSizeZero())
2140         Errors.push_back(I->first);
2141       // Remove the dead symbol from the map.
2142       RS = F.remove(RS, I->first);
2143 
2144     }
2145   }
2146 
2147   // Cleanup the Realloc Pairs Map.
2148   ReallocPairsTy RP = state->get<ReallocPairs>();
2149   for (ReallocPairsTy::iterator I = RP.begin(), E = RP.end(); I != E; ++I) {
2150     if (SymReaper.isDead(I->first) ||
2151         SymReaper.isDead(I->second.ReallocatedSym)) {
2152       state = state->remove<ReallocPairs>(I->first);
2153     }
2154   }
2155 
2156   // Cleanup the FreeReturnValue Map.
2157   FreeReturnValueTy FR = state->get<FreeReturnValue>();
2158   for (FreeReturnValueTy::iterator I = FR.begin(), E = FR.end(); I != E; ++I) {
2159     if (SymReaper.isDead(I->first) ||
2160         SymReaper.isDead(I->second)) {
2161       state = state->remove<FreeReturnValue>(I->first);
2162     }
2163   }
2164 
2165   // Generate leak node.
2166   ExplodedNode *N = C.getPredecessor();
2167   if (!Errors.empty()) {
2168     static CheckerProgramPointTag Tag("MallocChecker", "DeadSymbolsLeak");
2169     N = C.generateNonFatalErrorNode(C.getState(), &Tag);
2170     if (N) {
2171       for (SmallVectorImpl<SymbolRef>::iterator
2172            I = Errors.begin(), E = Errors.end(); I != E; ++I) {
2173         reportLeak(*I, N, C);
2174       }
2175     }
2176   }
2177 
2178   C.addTransition(state->set<RegionState>(RS), N);
2179 }
2180 
checkPreCall(const CallEvent & Call,CheckerContext & C) const2181 void MallocChecker::checkPreCall(const CallEvent &Call,
2182                                  CheckerContext &C) const {
2183 
2184   if (const CXXDestructorCall *DC = dyn_cast<CXXDestructorCall>(&Call)) {
2185     SymbolRef Sym = DC->getCXXThisVal().getAsSymbol();
2186     if (!Sym || checkDoubleDelete(Sym, C))
2187       return;
2188   }
2189 
2190   // We will check for double free in the post visit.
2191   if (const AnyFunctionCall *FC = dyn_cast<AnyFunctionCall>(&Call)) {
2192     const FunctionDecl *FD = FC->getDecl();
2193     if (!FD)
2194       return;
2195 
2196     ASTContext &Ctx = C.getASTContext();
2197     if (ChecksEnabled[CK_MallocChecker] &&
2198         (isCMemFunction(FD, Ctx, AF_Malloc, MemoryOperationKind::MOK_Free) ||
2199          isCMemFunction(FD, Ctx, AF_IfNameIndex,
2200                         MemoryOperationKind::MOK_Free)))
2201       return;
2202 
2203     if (ChecksEnabled[CK_NewDeleteChecker] &&
2204         isStandardNewDelete(FD, Ctx))
2205       return;
2206   }
2207 
2208   // Check if the callee of a method is deleted.
2209   if (const CXXInstanceCall *CC = dyn_cast<CXXInstanceCall>(&Call)) {
2210     SymbolRef Sym = CC->getCXXThisVal().getAsSymbol();
2211     if (!Sym || checkUseAfterFree(Sym, C, CC->getCXXThisExpr()))
2212       return;
2213   }
2214 
2215   // Check arguments for being used after free.
2216   for (unsigned I = 0, E = Call.getNumArgs(); I != E; ++I) {
2217     SVal ArgSVal = Call.getArgSVal(I);
2218     if (ArgSVal.getAs<Loc>()) {
2219       SymbolRef Sym = ArgSVal.getAsSymbol();
2220       if (!Sym)
2221         continue;
2222       if (checkUseAfterFree(Sym, C, Call.getArgExpr(I)))
2223         return;
2224     }
2225   }
2226 }
2227 
checkPreStmt(const ReturnStmt * S,CheckerContext & C) const2228 void MallocChecker::checkPreStmt(const ReturnStmt *S, CheckerContext &C) const {
2229   const Expr *E = S->getRetValue();
2230   if (!E)
2231     return;
2232 
2233   // Check if we are returning a symbol.
2234   ProgramStateRef State = C.getState();
2235   SVal RetVal = State->getSVal(E, C.getLocationContext());
2236   SymbolRef Sym = RetVal.getAsSymbol();
2237   if (!Sym)
2238     // If we are returning a field of the allocated struct or an array element,
2239     // the callee could still free the memory.
2240     // TODO: This logic should be a part of generic symbol escape callback.
2241     if (const MemRegion *MR = RetVal.getAsRegion())
2242       if (isa<FieldRegion>(MR) || isa<ElementRegion>(MR))
2243         if (const SymbolicRegion *BMR =
2244               dyn_cast<SymbolicRegion>(MR->getBaseRegion()))
2245           Sym = BMR->getSymbol();
2246 
2247   // Check if we are returning freed memory.
2248   if (Sym)
2249     checkUseAfterFree(Sym, C, E);
2250 }
2251 
2252 // TODO: Blocks should be either inlined or should call invalidate regions
2253 // upon invocation. After that's in place, special casing here will not be
2254 // needed.
checkPostStmt(const BlockExpr * BE,CheckerContext & C) const2255 void MallocChecker::checkPostStmt(const BlockExpr *BE,
2256                                   CheckerContext &C) const {
2257 
2258   // Scan the BlockDecRefExprs for any object the retain count checker
2259   // may be tracking.
2260   if (!BE->getBlockDecl()->hasCaptures())
2261     return;
2262 
2263   ProgramStateRef state = C.getState();
2264   const BlockDataRegion *R =
2265     cast<BlockDataRegion>(state->getSVal(BE,
2266                                          C.getLocationContext()).getAsRegion());
2267 
2268   BlockDataRegion::referenced_vars_iterator I = R->referenced_vars_begin(),
2269                                             E = R->referenced_vars_end();
2270 
2271   if (I == E)
2272     return;
2273 
2274   SmallVector<const MemRegion*, 10> Regions;
2275   const LocationContext *LC = C.getLocationContext();
2276   MemRegionManager &MemMgr = C.getSValBuilder().getRegionManager();
2277 
2278   for ( ; I != E; ++I) {
2279     const VarRegion *VR = I.getCapturedRegion();
2280     if (VR->getSuperRegion() == R) {
2281       VR = MemMgr.getVarRegion(VR->getDecl(), LC);
2282     }
2283     Regions.push_back(VR);
2284   }
2285 
2286   state =
2287     state->scanReachableSymbols<StopTrackingCallback>(Regions.data(),
2288                                     Regions.data() + Regions.size()).getState();
2289   C.addTransition(state);
2290 }
2291 
isReleased(SymbolRef Sym,CheckerContext & C) const2292 bool MallocChecker::isReleased(SymbolRef Sym, CheckerContext &C) const {
2293   assert(Sym);
2294   const RefState *RS = C.getState()->get<RegionState>(Sym);
2295   return (RS && RS->isReleased());
2296 }
2297 
checkUseAfterFree(SymbolRef Sym,CheckerContext & C,const Stmt * S) const2298 bool MallocChecker::checkUseAfterFree(SymbolRef Sym, CheckerContext &C,
2299                                       const Stmt *S) const {
2300 
2301   if (isReleased(Sym, C)) {
2302     ReportUseAfterFree(C, S->getSourceRange(), Sym);
2303     return true;
2304   }
2305 
2306   return false;
2307 }
2308 
checkUseZeroAllocated(SymbolRef Sym,CheckerContext & C,const Stmt * S) const2309 void MallocChecker::checkUseZeroAllocated(SymbolRef Sym, CheckerContext &C,
2310                                           const Stmt *S) const {
2311   assert(Sym);
2312 
2313   if (const RefState *RS = C.getState()->get<RegionState>(Sym)) {
2314     if (RS->isAllocatedOfSizeZero())
2315       ReportUseZeroAllocated(C, RS->getStmt()->getSourceRange(), Sym);
2316   }
2317   else if (C.getState()->contains<ReallocSizeZeroSymbols>(Sym)) {
2318     ReportUseZeroAllocated(C, S->getSourceRange(), Sym);
2319   }
2320 }
2321 
checkDoubleDelete(SymbolRef Sym,CheckerContext & C) const2322 bool MallocChecker::checkDoubleDelete(SymbolRef Sym, CheckerContext &C) const {
2323 
2324   if (isReleased(Sym, C)) {
2325     ReportDoubleDelete(C, Sym);
2326     return true;
2327   }
2328   return false;
2329 }
2330 
2331 // Check if the location is a freed symbolic region.
checkLocation(SVal l,bool isLoad,const Stmt * S,CheckerContext & C) const2332 void MallocChecker::checkLocation(SVal l, bool isLoad, const Stmt *S,
2333                                   CheckerContext &C) const {
2334   SymbolRef Sym = l.getLocSymbolInBase();
2335   if (Sym) {
2336     checkUseAfterFree(Sym, C, S);
2337     checkUseZeroAllocated(Sym, C, S);
2338   }
2339 }
2340 
2341 // If a symbolic region is assumed to NULL (or another constant), stop tracking
2342 // it - assuming that allocation failed on this path.
evalAssume(ProgramStateRef state,SVal Cond,bool Assumption) const2343 ProgramStateRef MallocChecker::evalAssume(ProgramStateRef state,
2344                                               SVal Cond,
2345                                               bool Assumption) const {
2346   RegionStateTy RS = state->get<RegionState>();
2347   for (RegionStateTy::iterator I = RS.begin(), E = RS.end(); I != E; ++I) {
2348     // If the symbol is assumed to be NULL, remove it from consideration.
2349     ConstraintManager &CMgr = state->getConstraintManager();
2350     ConditionTruthVal AllocFailed = CMgr.isNull(state, I.getKey());
2351     if (AllocFailed.isConstrainedTrue())
2352       state = state->remove<RegionState>(I.getKey());
2353   }
2354 
2355   // Realloc returns 0 when reallocation fails, which means that we should
2356   // restore the state of the pointer being reallocated.
2357   ReallocPairsTy RP = state->get<ReallocPairs>();
2358   for (ReallocPairsTy::iterator I = RP.begin(), E = RP.end(); I != E; ++I) {
2359     // If the symbol is assumed to be NULL, remove it from consideration.
2360     ConstraintManager &CMgr = state->getConstraintManager();
2361     ConditionTruthVal AllocFailed = CMgr.isNull(state, I.getKey());
2362     if (!AllocFailed.isConstrainedTrue())
2363       continue;
2364 
2365     SymbolRef ReallocSym = I.getData().ReallocatedSym;
2366     if (const RefState *RS = state->get<RegionState>(ReallocSym)) {
2367       if (RS->isReleased()) {
2368         if (I.getData().Kind == RPToBeFreedAfterFailure)
2369           state = state->set<RegionState>(ReallocSym,
2370               RefState::getAllocated(RS->getAllocationFamily(), RS->getStmt()));
2371         else if (I.getData().Kind == RPDoNotTrackAfterFailure)
2372           state = state->remove<RegionState>(ReallocSym);
2373         else
2374           assert(I.getData().Kind == RPIsFreeOnFailure);
2375       }
2376     }
2377     state = state->remove<ReallocPairs>(I.getKey());
2378   }
2379 
2380   return state;
2381 }
2382 
mayFreeAnyEscapedMemoryOrIsModeledExplicitly(const CallEvent * Call,ProgramStateRef State,SymbolRef & EscapingSymbol) const2383 bool MallocChecker::mayFreeAnyEscapedMemoryOrIsModeledExplicitly(
2384                                               const CallEvent *Call,
2385                                               ProgramStateRef State,
2386                                               SymbolRef &EscapingSymbol) const {
2387   assert(Call);
2388   EscapingSymbol = nullptr;
2389 
2390   // For now, assume that any C++ or block call can free memory.
2391   // TODO: If we want to be more optimistic here, we'll need to make sure that
2392   // regions escape to C++ containers. They seem to do that even now, but for
2393   // mysterious reasons.
2394   if (!(isa<SimpleFunctionCall>(Call) || isa<ObjCMethodCall>(Call)))
2395     return true;
2396 
2397   // Check Objective-C messages by selector name.
2398   if (const ObjCMethodCall *Msg = dyn_cast<ObjCMethodCall>(Call)) {
2399     // If it's not a framework call, or if it takes a callback, assume it
2400     // can free memory.
2401     if (!Call->isInSystemHeader() || Call->argumentsMayEscape())
2402       return true;
2403 
2404     // If it's a method we know about, handle it explicitly post-call.
2405     // This should happen before the "freeWhenDone" check below.
2406     if (isKnownDeallocObjCMethodName(*Msg))
2407       return false;
2408 
2409     // If there's a "freeWhenDone" parameter, but the method isn't one we know
2410     // about, we can't be sure that the object will use free() to deallocate the
2411     // memory, so we can't model it explicitly. The best we can do is use it to
2412     // decide whether the pointer escapes.
2413     if (Optional<bool> FreeWhenDone = getFreeWhenDoneArg(*Msg))
2414       return *FreeWhenDone;
2415 
2416     // If the first selector piece ends with "NoCopy", and there is no
2417     // "freeWhenDone" parameter set to zero, we know ownership is being
2418     // transferred. Again, though, we can't be sure that the object will use
2419     // free() to deallocate the memory, so we can't model it explicitly.
2420     StringRef FirstSlot = Msg->getSelector().getNameForSlot(0);
2421     if (FirstSlot.endswith("NoCopy"))
2422       return true;
2423 
2424     // If the first selector starts with addPointer, insertPointer,
2425     // or replacePointer, assume we are dealing with NSPointerArray or similar.
2426     // This is similar to C++ containers (vector); we still might want to check
2427     // that the pointers get freed by following the container itself.
2428     if (FirstSlot.startswith("addPointer") ||
2429         FirstSlot.startswith("insertPointer") ||
2430         FirstSlot.startswith("replacePointer") ||
2431         FirstSlot.equals("valueWithPointer")) {
2432       return true;
2433     }
2434 
2435     // We should escape receiver on call to 'init'. This is especially relevant
2436     // to the receiver, as the corresponding symbol is usually not referenced
2437     // after the call.
2438     if (Msg->getMethodFamily() == OMF_init) {
2439       EscapingSymbol = Msg->getReceiverSVal().getAsSymbol();
2440       return true;
2441     }
2442 
2443     // Otherwise, assume that the method does not free memory.
2444     // Most framework methods do not free memory.
2445     return false;
2446   }
2447 
2448   // At this point the only thing left to handle is straight function calls.
2449   const FunctionDecl *FD = cast<SimpleFunctionCall>(Call)->getDecl();
2450   if (!FD)
2451     return true;
2452 
2453   ASTContext &ASTC = State->getStateManager().getContext();
2454 
2455   // If it's one of the allocation functions we can reason about, we model
2456   // its behavior explicitly.
2457   if (isMemFunction(FD, ASTC))
2458     return false;
2459 
2460   // If it's not a system call, assume it frees memory.
2461   if (!Call->isInSystemHeader())
2462     return true;
2463 
2464   // White list the system functions whose arguments escape.
2465   const IdentifierInfo *II = FD->getIdentifier();
2466   if (!II)
2467     return true;
2468   StringRef FName = II->getName();
2469 
2470   // White list the 'XXXNoCopy' CoreFoundation functions.
2471   // We specifically check these before
2472   if (FName.endswith("NoCopy")) {
2473     // Look for the deallocator argument. We know that the memory ownership
2474     // is not transferred only if the deallocator argument is
2475     // 'kCFAllocatorNull'.
2476     for (unsigned i = 1; i < Call->getNumArgs(); ++i) {
2477       const Expr *ArgE = Call->getArgExpr(i)->IgnoreParenCasts();
2478       if (const DeclRefExpr *DE = dyn_cast<DeclRefExpr>(ArgE)) {
2479         StringRef DeallocatorName = DE->getFoundDecl()->getName();
2480         if (DeallocatorName == "kCFAllocatorNull")
2481           return false;
2482       }
2483     }
2484     return true;
2485   }
2486 
2487   // Associating streams with malloced buffers. The pointer can escape if
2488   // 'closefn' is specified (and if that function does free memory),
2489   // but it will not if closefn is not specified.
2490   // Currently, we do not inspect the 'closefn' function (PR12101).
2491   if (FName == "funopen")
2492     if (Call->getNumArgs() >= 4 && Call->getArgSVal(4).isConstant(0))
2493       return false;
2494 
2495   // Do not warn on pointers passed to 'setbuf' when used with std streams,
2496   // these leaks might be intentional when setting the buffer for stdio.
2497   // http://stackoverflow.com/questions/2671151/who-frees-setvbuf-buffer
2498   if (FName == "setbuf" || FName =="setbuffer" ||
2499       FName == "setlinebuf" || FName == "setvbuf") {
2500     if (Call->getNumArgs() >= 1) {
2501       const Expr *ArgE = Call->getArgExpr(0)->IgnoreParenCasts();
2502       if (const DeclRefExpr *ArgDRE = dyn_cast<DeclRefExpr>(ArgE))
2503         if (const VarDecl *D = dyn_cast<VarDecl>(ArgDRE->getDecl()))
2504           if (D->getCanonicalDecl()->getName().find("std") != StringRef::npos)
2505             return true;
2506     }
2507   }
2508 
2509   // A bunch of other functions which either take ownership of a pointer or
2510   // wrap the result up in a struct or object, meaning it can be freed later.
2511   // (See RetainCountChecker.) Not all the parameters here are invalidated,
2512   // but the Malloc checker cannot differentiate between them. The right way
2513   // of doing this would be to implement a pointer escapes callback.
2514   if (FName == "CGBitmapContextCreate" ||
2515       FName == "CGBitmapContextCreateWithData" ||
2516       FName == "CVPixelBufferCreateWithBytes" ||
2517       FName == "CVPixelBufferCreateWithPlanarBytes" ||
2518       FName == "OSAtomicEnqueue") {
2519     return true;
2520   }
2521 
2522   if (FName == "postEvent" &&
2523       FD->getQualifiedNameAsString() == "QCoreApplication::postEvent") {
2524     return true;
2525   }
2526 
2527   if (FName == "postEvent" &&
2528       FD->getQualifiedNameAsString() == "QCoreApplication::postEvent") {
2529     return true;
2530   }
2531 
2532   // Handle cases where we know a buffer's /address/ can escape.
2533   // Note that the above checks handle some special cases where we know that
2534   // even though the address escapes, it's still our responsibility to free the
2535   // buffer.
2536   if (Call->argumentsMayEscape())
2537     return true;
2538 
2539   // Otherwise, assume that the function does not free memory.
2540   // Most system calls do not free the memory.
2541   return false;
2542 }
2543 
retTrue(const RefState * RS)2544 static bool retTrue(const RefState *RS) {
2545   return true;
2546 }
2547 
checkIfNewOrNewArrayFamily(const RefState * RS)2548 static bool checkIfNewOrNewArrayFamily(const RefState *RS) {
2549   return (RS->getAllocationFamily() == AF_CXXNewArray ||
2550           RS->getAllocationFamily() == AF_CXXNew);
2551 }
2552 
checkPointerEscape(ProgramStateRef State,const InvalidatedSymbols & Escaped,const CallEvent * Call,PointerEscapeKind Kind) const2553 ProgramStateRef MallocChecker::checkPointerEscape(ProgramStateRef State,
2554                                              const InvalidatedSymbols &Escaped,
2555                                              const CallEvent *Call,
2556                                              PointerEscapeKind Kind) const {
2557   return checkPointerEscapeAux(State, Escaped, Call, Kind, &retTrue);
2558 }
2559 
checkConstPointerEscape(ProgramStateRef State,const InvalidatedSymbols & Escaped,const CallEvent * Call,PointerEscapeKind Kind) const2560 ProgramStateRef MallocChecker::checkConstPointerEscape(ProgramStateRef State,
2561                                               const InvalidatedSymbols &Escaped,
2562                                               const CallEvent *Call,
2563                                               PointerEscapeKind Kind) const {
2564   return checkPointerEscapeAux(State, Escaped, Call, Kind,
2565                                &checkIfNewOrNewArrayFamily);
2566 }
2567 
checkPointerEscapeAux(ProgramStateRef State,const InvalidatedSymbols & Escaped,const CallEvent * Call,PointerEscapeKind Kind,bool (* CheckRefState)(const RefState *)) const2568 ProgramStateRef MallocChecker::checkPointerEscapeAux(ProgramStateRef State,
2569                                               const InvalidatedSymbols &Escaped,
2570                                               const CallEvent *Call,
2571                                               PointerEscapeKind Kind,
2572                                   bool(*CheckRefState)(const RefState*)) const {
2573   // If we know that the call does not free memory, or we want to process the
2574   // call later, keep tracking the top level arguments.
2575   SymbolRef EscapingSymbol = nullptr;
2576   if (Kind == PSK_DirectEscapeOnCall &&
2577       !mayFreeAnyEscapedMemoryOrIsModeledExplicitly(Call, State,
2578                                                     EscapingSymbol) &&
2579       !EscapingSymbol) {
2580     return State;
2581   }
2582 
2583   for (InvalidatedSymbols::const_iterator I = Escaped.begin(),
2584        E = Escaped.end();
2585        I != E; ++I) {
2586     SymbolRef sym = *I;
2587 
2588     if (EscapingSymbol && EscapingSymbol != sym)
2589       continue;
2590 
2591     if (const RefState *RS = State->get<RegionState>(sym)) {
2592       if ((RS->isAllocated() || RS->isAllocatedOfSizeZero()) &&
2593           CheckRefState(RS)) {
2594         State = State->remove<RegionState>(sym);
2595         State = State->set<RegionState>(sym, RefState::getEscaped(RS));
2596       }
2597     }
2598   }
2599   return State;
2600 }
2601 
findFailedReallocSymbol(ProgramStateRef currState,ProgramStateRef prevState)2602 static SymbolRef findFailedReallocSymbol(ProgramStateRef currState,
2603                                          ProgramStateRef prevState) {
2604   ReallocPairsTy currMap = currState->get<ReallocPairs>();
2605   ReallocPairsTy prevMap = prevState->get<ReallocPairs>();
2606 
2607   for (ReallocPairsTy::iterator I = prevMap.begin(), E = prevMap.end();
2608        I != E; ++I) {
2609     SymbolRef sym = I.getKey();
2610     if (!currMap.lookup(sym))
2611       return sym;
2612   }
2613 
2614   return nullptr;
2615 }
2616 
2617 PathDiagnosticPiece *
VisitNode(const ExplodedNode * N,const ExplodedNode * PrevN,BugReporterContext & BRC,BugReport & BR)2618 MallocChecker::MallocBugVisitor::VisitNode(const ExplodedNode *N,
2619                                            const ExplodedNode *PrevN,
2620                                            BugReporterContext &BRC,
2621                                            BugReport &BR) {
2622   ProgramStateRef state = N->getState();
2623   ProgramStateRef statePrev = PrevN->getState();
2624 
2625   const RefState *RS = state->get<RegionState>(Sym);
2626   const RefState *RSPrev = statePrev->get<RegionState>(Sym);
2627   if (!RS)
2628     return nullptr;
2629 
2630   const Stmt *S = nullptr;
2631   const char *Msg = nullptr;
2632   StackHintGeneratorForSymbol *StackHint = nullptr;
2633 
2634   // Retrieve the associated statement.
2635   ProgramPoint ProgLoc = N->getLocation();
2636   if (Optional<StmtPoint> SP = ProgLoc.getAs<StmtPoint>()) {
2637     S = SP->getStmt();
2638   } else if (Optional<CallExitEnd> Exit = ProgLoc.getAs<CallExitEnd>()) {
2639     S = Exit->getCalleeContext()->getCallSite();
2640   } else if (Optional<BlockEdge> Edge = ProgLoc.getAs<BlockEdge>()) {
2641     // If an assumption was made on a branch, it should be caught
2642     // here by looking at the state transition.
2643     S = Edge->getSrc()->getTerminator();
2644   }
2645 
2646   if (!S)
2647     return nullptr;
2648 
2649   // FIXME: We will eventually need to handle non-statement-based events
2650   // (__attribute__((cleanup))).
2651 
2652   // Find out if this is an interesting point and what is the kind.
2653   if (Mode == Normal) {
2654     if (isAllocated(RS, RSPrev, S)) {
2655       Msg = "Memory is allocated";
2656       StackHint = new StackHintGeneratorForSymbol(Sym,
2657                                                   "Returned allocated memory");
2658     } else if (isReleased(RS, RSPrev, S)) {
2659       Msg = "Memory is released";
2660       StackHint = new StackHintGeneratorForSymbol(Sym,
2661                                              "Returning; memory was released");
2662     } else if (isRelinquished(RS, RSPrev, S)) {
2663       Msg = "Memory ownership is transferred";
2664       StackHint = new StackHintGeneratorForSymbol(Sym, "");
2665     } else if (isReallocFailedCheck(RS, RSPrev, S)) {
2666       Mode = ReallocationFailed;
2667       Msg = "Reallocation failed";
2668       StackHint = new StackHintGeneratorForReallocationFailed(Sym,
2669                                                        "Reallocation failed");
2670 
2671       if (SymbolRef sym = findFailedReallocSymbol(state, statePrev)) {
2672         // Is it possible to fail two reallocs WITHOUT testing in between?
2673         assert((!FailedReallocSymbol || FailedReallocSymbol == sym) &&
2674           "We only support one failed realloc at a time.");
2675         BR.markInteresting(sym);
2676         FailedReallocSymbol = sym;
2677       }
2678     }
2679 
2680   // We are in a special mode if a reallocation failed later in the path.
2681   } else if (Mode == ReallocationFailed) {
2682     assert(FailedReallocSymbol && "No symbol to look for.");
2683 
2684     // Is this is the first appearance of the reallocated symbol?
2685     if (!statePrev->get<RegionState>(FailedReallocSymbol)) {
2686       // We're at the reallocation point.
2687       Msg = "Attempt to reallocate memory";
2688       StackHint = new StackHintGeneratorForSymbol(Sym,
2689                                                  "Returned reallocated memory");
2690       FailedReallocSymbol = nullptr;
2691       Mode = Normal;
2692     }
2693   }
2694 
2695   if (!Msg)
2696     return nullptr;
2697   assert(StackHint);
2698 
2699   // Generate the extra diagnostic.
2700   PathDiagnosticLocation Pos(S, BRC.getSourceManager(),
2701                              N->getLocationContext());
2702   return new PathDiagnosticEventPiece(Pos, Msg, true, StackHint);
2703 }
2704 
printState(raw_ostream & Out,ProgramStateRef State,const char * NL,const char * Sep) const2705 void MallocChecker::printState(raw_ostream &Out, ProgramStateRef State,
2706                                const char *NL, const char *Sep) const {
2707 
2708   RegionStateTy RS = State->get<RegionState>();
2709 
2710   if (!RS.isEmpty()) {
2711     Out << Sep << "MallocChecker :" << NL;
2712     for (RegionStateTy::iterator I = RS.begin(), E = RS.end(); I != E; ++I) {
2713       const RefState *RefS = State->get<RegionState>(I.getKey());
2714       AllocationFamily Family = RefS->getAllocationFamily();
2715       Optional<MallocChecker::CheckKind> CheckKind = getCheckIfTracked(Family);
2716       if (!CheckKind.hasValue())
2717          CheckKind = getCheckIfTracked(Family, true);
2718 
2719       I.getKey()->dumpToStream(Out);
2720       Out << " : ";
2721       I.getData().dump(Out);
2722       if (CheckKind.hasValue())
2723         Out << " (" << CheckNames[*CheckKind].getName() << ")";
2724       Out << NL;
2725     }
2726   }
2727 }
2728 
registerNewDeleteLeaksChecker(CheckerManager & mgr)2729 void ento::registerNewDeleteLeaksChecker(CheckerManager &mgr) {
2730   registerCStringCheckerBasic(mgr);
2731   MallocChecker *checker = mgr.registerChecker<MallocChecker>();
2732   checker->IsOptimistic = mgr.getAnalyzerOptions().getBooleanOption(
2733       "Optimistic", false, checker);
2734   checker->ChecksEnabled[MallocChecker::CK_NewDeleteLeaksChecker] = true;
2735   checker->CheckNames[MallocChecker::CK_NewDeleteLeaksChecker] =
2736       mgr.getCurrentCheckName();
2737   // We currently treat NewDeleteLeaks checker as a subchecker of NewDelete
2738   // checker.
2739   if (!checker->ChecksEnabled[MallocChecker::CK_NewDeleteChecker])
2740     checker->ChecksEnabled[MallocChecker::CK_NewDeleteChecker] = true;
2741 }
2742 
2743 #define REGISTER_CHECKER(name)                                                 \
2744   void ento::register##name(CheckerManager &mgr) {                             \
2745     registerCStringCheckerBasic(mgr);                                          \
2746     MallocChecker *checker = mgr.registerChecker<MallocChecker>();             \
2747     checker->IsOptimistic = mgr.getAnalyzerOptions().getBooleanOption(         \
2748         "Optimistic", false, checker);                                         \
2749     checker->ChecksEnabled[MallocChecker::CK_##name] = true;                   \
2750     checker->CheckNames[MallocChecker::CK_##name] = mgr.getCurrentCheckName(); \
2751   }
2752 
2753 REGISTER_CHECKER(MallocChecker)
2754 REGISTER_CHECKER(NewDeleteChecker)
2755 REGISTER_CHECKER(MismatchedDeallocatorChecker)
2756