1 //=== MallocChecker.cpp - A malloc/free checker -------------------*- C++ -*--//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines malloc/free checker, which checks for potential memory
11 // leaks, double free, and use-after-free problems.
12 //
13 //===----------------------------------------------------------------------===//
14
15 #include "ClangSACheckers.h"
16 #include "InterCheckerAPI.h"
17 #include "clang/AST/Attr.h"
18 #include "clang/AST/ParentMap.h"
19 #include "clang/Basic/SourceManager.h"
20 #include "clang/Basic/TargetInfo.h"
21 #include "clang/StaticAnalyzer/Core/BugReporter/BugType.h"
22 #include "clang/StaticAnalyzer/Core/Checker.h"
23 #include "clang/StaticAnalyzer/Core/CheckerManager.h"
24 #include "clang/StaticAnalyzer/Core/PathSensitive/CallEvent.h"
25 #include "clang/StaticAnalyzer/Core/PathSensitive/CheckerContext.h"
26 #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState.h"
27 #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramStateTrait.h"
28 #include "clang/StaticAnalyzer/Core/PathSensitive/SymbolManager.h"
29 #include "llvm/ADT/ImmutableMap.h"
30 #include "llvm/ADT/STLExtras.h"
31 #include "llvm/ADT/SmallString.h"
32 #include "llvm/ADT/StringExtras.h"
33 #include <climits>
34 #include <utility>
35
36 using namespace clang;
37 using namespace ento;
38
39 namespace {
40
41 // Used to check correspondence between allocators and deallocators.
42 enum AllocationFamily {
43 AF_None,
44 AF_Malloc,
45 AF_CXXNew,
46 AF_CXXNewArray,
47 AF_IfNameIndex,
48 AF_Alloca
49 };
50
51 class RefState {
52 enum Kind { // Reference to allocated memory.
53 Allocated,
54 // Reference to zero-allocated memory.
55 AllocatedOfSizeZero,
56 // Reference to released/freed memory.
57 Released,
58 // The responsibility for freeing resources has transferred from
59 // this reference. A relinquished symbol should not be freed.
60 Relinquished,
61 // We are no longer guaranteed to have observed all manipulations
62 // of this pointer/memory. For example, it could have been
63 // passed as a parameter to an opaque function.
64 Escaped
65 };
66
67 const Stmt *S;
68 unsigned K : 3; // Kind enum, but stored as a bitfield.
69 unsigned Family : 29; // Rest of 32-bit word, currently just an allocation
70 // family.
71
RefState(Kind k,const Stmt * s,unsigned family)72 RefState(Kind k, const Stmt *s, unsigned family)
73 : S(s), K(k), Family(family) {
74 assert(family != AF_None);
75 }
76 public:
isAllocated() const77 bool isAllocated() const { return K == Allocated; }
isAllocatedOfSizeZero() const78 bool isAllocatedOfSizeZero() const { return K == AllocatedOfSizeZero; }
isReleased() const79 bool isReleased() const { return K == Released; }
isRelinquished() const80 bool isRelinquished() const { return K == Relinquished; }
isEscaped() const81 bool isEscaped() const { return K == Escaped; }
getAllocationFamily() const82 AllocationFamily getAllocationFamily() const {
83 return (AllocationFamily)Family;
84 }
getStmt() const85 const Stmt *getStmt() const { return S; }
86
operator ==(const RefState & X) const87 bool operator==(const RefState &X) const {
88 return K == X.K && S == X.S && Family == X.Family;
89 }
90
getAllocated(unsigned family,const Stmt * s)91 static RefState getAllocated(unsigned family, const Stmt *s) {
92 return RefState(Allocated, s, family);
93 }
getAllocatedOfSizeZero(const RefState * RS)94 static RefState getAllocatedOfSizeZero(const RefState *RS) {
95 return RefState(AllocatedOfSizeZero, RS->getStmt(),
96 RS->getAllocationFamily());
97 }
getReleased(unsigned family,const Stmt * s)98 static RefState getReleased(unsigned family, const Stmt *s) {
99 return RefState(Released, s, family);
100 }
getRelinquished(unsigned family,const Stmt * s)101 static RefState getRelinquished(unsigned family, const Stmt *s) {
102 return RefState(Relinquished, s, family);
103 }
getEscaped(const RefState * RS)104 static RefState getEscaped(const RefState *RS) {
105 return RefState(Escaped, RS->getStmt(), RS->getAllocationFamily());
106 }
107
Profile(llvm::FoldingSetNodeID & ID) const108 void Profile(llvm::FoldingSetNodeID &ID) const {
109 ID.AddInteger(K);
110 ID.AddPointer(S);
111 ID.AddInteger(Family);
112 }
113
dump(raw_ostream & OS) const114 void dump(raw_ostream &OS) const {
115 switch (static_cast<Kind>(K)) {
116 #define CASE(ID) case ID: OS << #ID; break;
117 CASE(Allocated)
118 CASE(AllocatedOfSizeZero)
119 CASE(Released)
120 CASE(Relinquished)
121 CASE(Escaped)
122 }
123 }
124
dump() const125 LLVM_DUMP_METHOD void dump() const { dump(llvm::errs()); }
126 };
127
128 enum ReallocPairKind {
129 RPToBeFreedAfterFailure,
130 // The symbol has been freed when reallocation failed.
131 RPIsFreeOnFailure,
132 // The symbol does not need to be freed after reallocation fails.
133 RPDoNotTrackAfterFailure
134 };
135
136 /// \class ReallocPair
137 /// \brief Stores information about the symbol being reallocated by a call to
138 /// 'realloc' to allow modeling failed reallocation later in the path.
139 struct ReallocPair {
140 // \brief The symbol which realloc reallocated.
141 SymbolRef ReallocatedSym;
142 ReallocPairKind Kind;
143
ReallocPair__anond17b7d3c0111::ReallocPair144 ReallocPair(SymbolRef S, ReallocPairKind K) :
145 ReallocatedSym(S), Kind(K) {}
Profile__anond17b7d3c0111::ReallocPair146 void Profile(llvm::FoldingSetNodeID &ID) const {
147 ID.AddInteger(Kind);
148 ID.AddPointer(ReallocatedSym);
149 }
operator ==__anond17b7d3c0111::ReallocPair150 bool operator==(const ReallocPair &X) const {
151 return ReallocatedSym == X.ReallocatedSym &&
152 Kind == X.Kind;
153 }
154 };
155
156 typedef std::pair<const ExplodedNode*, const MemRegion*> LeakInfo;
157
158 class MallocChecker : public Checker<check::DeadSymbols,
159 check::PointerEscape,
160 check::ConstPointerEscape,
161 check::PreStmt<ReturnStmt>,
162 check::PreCall,
163 check::PostStmt<CallExpr>,
164 check::PostStmt<CXXNewExpr>,
165 check::PreStmt<CXXDeleteExpr>,
166 check::PostStmt<BlockExpr>,
167 check::PostObjCMessage,
168 check::Location,
169 eval::Assume>
170 {
171 public:
MallocChecker()172 MallocChecker()
173 : II_alloca(nullptr), II_win_alloca(nullptr), II_malloc(nullptr),
174 II_free(nullptr), II_realloc(nullptr), II_calloc(nullptr),
175 II_valloc(nullptr), II_reallocf(nullptr), II_strndup(nullptr),
176 II_strdup(nullptr), II_win_strdup(nullptr), II_kmalloc(nullptr),
177 II_if_nameindex(nullptr), II_if_freenameindex(nullptr),
178 II_wcsdup(nullptr), II_win_wcsdup(nullptr) {}
179
180 /// In pessimistic mode, the checker assumes that it does not know which
181 /// functions might free the memory.
182 enum CheckKind {
183 CK_MallocChecker,
184 CK_NewDeleteChecker,
185 CK_NewDeleteLeaksChecker,
186 CK_MismatchedDeallocatorChecker,
187 CK_NumCheckKinds
188 };
189
190 enum class MemoryOperationKind {
191 MOK_Allocate,
192 MOK_Free,
193 MOK_Any
194 };
195
196 DefaultBool IsOptimistic;
197
198 DefaultBool ChecksEnabled[CK_NumCheckKinds];
199 CheckName CheckNames[CK_NumCheckKinds];
200
201 void checkPreCall(const CallEvent &Call, CheckerContext &C) const;
202 void checkPostStmt(const CallExpr *CE, CheckerContext &C) const;
203 void checkPostStmt(const CXXNewExpr *NE, CheckerContext &C) const;
204 void checkPreStmt(const CXXDeleteExpr *DE, CheckerContext &C) const;
205 void checkPostObjCMessage(const ObjCMethodCall &Call, CheckerContext &C) const;
206 void checkPostStmt(const BlockExpr *BE, CheckerContext &C) const;
207 void checkDeadSymbols(SymbolReaper &SymReaper, CheckerContext &C) const;
208 void checkPreStmt(const ReturnStmt *S, CheckerContext &C) const;
209 ProgramStateRef evalAssume(ProgramStateRef state, SVal Cond,
210 bool Assumption) const;
211 void checkLocation(SVal l, bool isLoad, const Stmt *S,
212 CheckerContext &C) const;
213
214 ProgramStateRef checkPointerEscape(ProgramStateRef State,
215 const InvalidatedSymbols &Escaped,
216 const CallEvent *Call,
217 PointerEscapeKind Kind) const;
218 ProgramStateRef checkConstPointerEscape(ProgramStateRef State,
219 const InvalidatedSymbols &Escaped,
220 const CallEvent *Call,
221 PointerEscapeKind Kind) const;
222
223 void printState(raw_ostream &Out, ProgramStateRef State,
224 const char *NL, const char *Sep) const override;
225
226 private:
227 mutable std::unique_ptr<BugType> BT_DoubleFree[CK_NumCheckKinds];
228 mutable std::unique_ptr<BugType> BT_DoubleDelete;
229 mutable std::unique_ptr<BugType> BT_Leak[CK_NumCheckKinds];
230 mutable std::unique_ptr<BugType> BT_UseFree[CK_NumCheckKinds];
231 mutable std::unique_ptr<BugType> BT_BadFree[CK_NumCheckKinds];
232 mutable std::unique_ptr<BugType> BT_FreeAlloca[CK_NumCheckKinds];
233 mutable std::unique_ptr<BugType> BT_MismatchedDealloc;
234 mutable std::unique_ptr<BugType> BT_OffsetFree[CK_NumCheckKinds];
235 mutable std::unique_ptr<BugType> BT_UseZerroAllocated[CK_NumCheckKinds];
236 mutable IdentifierInfo *II_alloca, *II_win_alloca, *II_malloc, *II_free,
237 *II_realloc, *II_calloc, *II_valloc, *II_reallocf,
238 *II_strndup, *II_strdup, *II_win_strdup, *II_kmalloc,
239 *II_if_nameindex, *II_if_freenameindex, *II_wcsdup,
240 *II_win_wcsdup;
241 mutable Optional<uint64_t> KernelZeroFlagVal;
242
243 void initIdentifierInfo(ASTContext &C) const;
244
245 /// \brief Determine family of a deallocation expression.
246 AllocationFamily getAllocationFamily(CheckerContext &C, const Stmt *S) const;
247
248 /// \brief Print names of allocators and deallocators.
249 ///
250 /// \returns true on success.
251 bool printAllocDeallocName(raw_ostream &os, CheckerContext &C,
252 const Expr *E) const;
253
254 /// \brief Print expected name of an allocator based on the deallocator's
255 /// family derived from the DeallocExpr.
256 void printExpectedAllocName(raw_ostream &os, CheckerContext &C,
257 const Expr *DeallocExpr) const;
258 /// \brief Print expected name of a deallocator based on the allocator's
259 /// family.
260 void printExpectedDeallocName(raw_ostream &os, AllocationFamily Family) const;
261
262 ///@{
263 /// Check if this is one of the functions which can allocate/reallocate memory
264 /// pointed to by one of its arguments.
265 bool isMemFunction(const FunctionDecl *FD, ASTContext &C) const;
266 bool isCMemFunction(const FunctionDecl *FD,
267 ASTContext &C,
268 AllocationFamily Family,
269 MemoryOperationKind MemKind) const;
270 bool isStandardNewDelete(const FunctionDecl *FD, ASTContext &C) const;
271 ///@}
272
273 /// \brief Perform a zero-allocation check.
274 ProgramStateRef ProcessZeroAllocation(CheckerContext &C, const Expr *E,
275 const unsigned AllocationSizeArg,
276 ProgramStateRef State) const;
277
278 ProgramStateRef MallocMemReturnsAttr(CheckerContext &C,
279 const CallExpr *CE,
280 const OwnershipAttr* Att,
281 ProgramStateRef State) const;
282 static ProgramStateRef MallocMemAux(CheckerContext &C, const CallExpr *CE,
283 const Expr *SizeEx, SVal Init,
284 ProgramStateRef State,
285 AllocationFamily Family = AF_Malloc);
286 static ProgramStateRef MallocMemAux(CheckerContext &C, const CallExpr *CE,
287 SVal SizeEx, SVal Init,
288 ProgramStateRef State,
289 AllocationFamily Family = AF_Malloc);
290
291 // Check if this malloc() for special flags. At present that means M_ZERO or
292 // __GFP_ZERO (in which case, treat it like calloc).
293 llvm::Optional<ProgramStateRef>
294 performKernelMalloc(const CallExpr *CE, CheckerContext &C,
295 const ProgramStateRef &State) const;
296
297 /// Update the RefState to reflect the new memory allocation.
298 static ProgramStateRef
299 MallocUpdateRefState(CheckerContext &C, const Expr *E, ProgramStateRef State,
300 AllocationFamily Family = AF_Malloc);
301
302 ProgramStateRef FreeMemAttr(CheckerContext &C, const CallExpr *CE,
303 const OwnershipAttr* Att,
304 ProgramStateRef State) const;
305 ProgramStateRef FreeMemAux(CheckerContext &C, const CallExpr *CE,
306 ProgramStateRef state, unsigned Num,
307 bool Hold,
308 bool &ReleasedAllocated,
309 bool ReturnsNullOnFailure = false) const;
310 ProgramStateRef FreeMemAux(CheckerContext &C, const Expr *Arg,
311 const Expr *ParentExpr,
312 ProgramStateRef State,
313 bool Hold,
314 bool &ReleasedAllocated,
315 bool ReturnsNullOnFailure = false) const;
316
317 ProgramStateRef ReallocMem(CheckerContext &C, const CallExpr *CE,
318 bool FreesMemOnFailure,
319 ProgramStateRef State) const;
320 static ProgramStateRef CallocMem(CheckerContext &C, const CallExpr *CE,
321 ProgramStateRef State);
322
323 ///\brief Check if the memory associated with this symbol was released.
324 bool isReleased(SymbolRef Sym, CheckerContext &C) const;
325
326 bool checkUseAfterFree(SymbolRef Sym, CheckerContext &C, const Stmt *S) const;
327
328 void checkUseZeroAllocated(SymbolRef Sym, CheckerContext &C,
329 const Stmt *S) const;
330
331 bool checkDoubleDelete(SymbolRef Sym, CheckerContext &C) const;
332
333 /// Check if the function is known free memory, or if it is
334 /// "interesting" and should be modeled explicitly.
335 ///
336 /// \param [out] EscapingSymbol A function might not free memory in general,
337 /// but could be known to free a particular symbol. In this case, false is
338 /// returned and the single escaping symbol is returned through the out
339 /// parameter.
340 ///
341 /// We assume that pointers do not escape through calls to system functions
342 /// not handled by this checker.
343 bool mayFreeAnyEscapedMemoryOrIsModeledExplicitly(const CallEvent *Call,
344 ProgramStateRef State,
345 SymbolRef &EscapingSymbol) const;
346
347 // Implementation of the checkPointerEscape callabcks.
348 ProgramStateRef checkPointerEscapeAux(ProgramStateRef State,
349 const InvalidatedSymbols &Escaped,
350 const CallEvent *Call,
351 PointerEscapeKind Kind,
352 bool(*CheckRefState)(const RefState*)) const;
353
354 ///@{
355 /// Tells if a given family/call/symbol is tracked by the current checker.
356 /// Sets CheckKind to the kind of the checker responsible for this
357 /// family/call/symbol.
358 Optional<CheckKind> getCheckIfTracked(AllocationFamily Family,
359 bool IsALeakCheck = false) const;
360 Optional<CheckKind> getCheckIfTracked(CheckerContext &C,
361 const Stmt *AllocDeallocStmt,
362 bool IsALeakCheck = false) const;
363 Optional<CheckKind> getCheckIfTracked(CheckerContext &C, SymbolRef Sym,
364 bool IsALeakCheck = false) const;
365 ///@}
366 static bool SummarizeValue(raw_ostream &os, SVal V);
367 static bool SummarizeRegion(raw_ostream &os, const MemRegion *MR);
368 void ReportBadFree(CheckerContext &C, SVal ArgVal, SourceRange Range,
369 const Expr *DeallocExpr) const;
370 void ReportFreeAlloca(CheckerContext &C, SVal ArgVal,
371 SourceRange Range) const;
372 void ReportMismatchedDealloc(CheckerContext &C, SourceRange Range,
373 const Expr *DeallocExpr, const RefState *RS,
374 SymbolRef Sym, bool OwnershipTransferred) const;
375 void ReportOffsetFree(CheckerContext &C, SVal ArgVal, SourceRange Range,
376 const Expr *DeallocExpr,
377 const Expr *AllocExpr = nullptr) const;
378 void ReportUseAfterFree(CheckerContext &C, SourceRange Range,
379 SymbolRef Sym) const;
380 void ReportDoubleFree(CheckerContext &C, SourceRange Range, bool Released,
381 SymbolRef Sym, SymbolRef PrevSym) const;
382
383 void ReportDoubleDelete(CheckerContext &C, SymbolRef Sym) const;
384
385 void ReportUseZeroAllocated(CheckerContext &C, SourceRange Range,
386 SymbolRef Sym) const;
387
388 /// Find the location of the allocation for Sym on the path leading to the
389 /// exploded node N.
390 LeakInfo getAllocationSite(const ExplodedNode *N, SymbolRef Sym,
391 CheckerContext &C) const;
392
393 void reportLeak(SymbolRef Sym, ExplodedNode *N, CheckerContext &C) const;
394
395 /// The bug visitor which allows us to print extra diagnostics along the
396 /// BugReport path. For example, showing the allocation site of the leaked
397 /// region.
398 class MallocBugVisitor final
399 : public BugReporterVisitorImpl<MallocBugVisitor> {
400 protected:
401 enum NotificationMode {
402 Normal,
403 ReallocationFailed
404 };
405
406 // The allocated region symbol tracked by the main analysis.
407 SymbolRef Sym;
408
409 // The mode we are in, i.e. what kind of diagnostics will be emitted.
410 NotificationMode Mode;
411
412 // A symbol from when the primary region should have been reallocated.
413 SymbolRef FailedReallocSymbol;
414
415 bool IsLeak;
416
417 public:
MallocBugVisitor(SymbolRef S,bool isLeak=false)418 MallocBugVisitor(SymbolRef S, bool isLeak = false)
419 : Sym(S), Mode(Normal), FailedReallocSymbol(nullptr), IsLeak(isLeak) {}
420
Profile(llvm::FoldingSetNodeID & ID) const421 void Profile(llvm::FoldingSetNodeID &ID) const override {
422 static int X = 0;
423 ID.AddPointer(&X);
424 ID.AddPointer(Sym);
425 }
426
isAllocated(const RefState * S,const RefState * SPrev,const Stmt * Stmt)427 inline bool isAllocated(const RefState *S, const RefState *SPrev,
428 const Stmt *Stmt) {
429 // Did not track -> allocated. Other state (released) -> allocated.
430 return (Stmt && (isa<CallExpr>(Stmt) || isa<CXXNewExpr>(Stmt)) &&
431 (S && (S->isAllocated() || S->isAllocatedOfSizeZero())) &&
432 (!SPrev || !(SPrev->isAllocated() ||
433 SPrev->isAllocatedOfSizeZero())));
434 }
435
isReleased(const RefState * S,const RefState * SPrev,const Stmt * Stmt)436 inline bool isReleased(const RefState *S, const RefState *SPrev,
437 const Stmt *Stmt) {
438 // Did not track -> released. Other state (allocated) -> released.
439 return (Stmt && (isa<CallExpr>(Stmt) || isa<CXXDeleteExpr>(Stmt)) &&
440 (S && S->isReleased()) && (!SPrev || !SPrev->isReleased()));
441 }
442
isRelinquished(const RefState * S,const RefState * SPrev,const Stmt * Stmt)443 inline bool isRelinquished(const RefState *S, const RefState *SPrev,
444 const Stmt *Stmt) {
445 // Did not track -> relinquished. Other state (allocated) -> relinquished.
446 return (Stmt && (isa<CallExpr>(Stmt) || isa<ObjCMessageExpr>(Stmt) ||
447 isa<ObjCPropertyRefExpr>(Stmt)) &&
448 (S && S->isRelinquished()) &&
449 (!SPrev || !SPrev->isRelinquished()));
450 }
451
isReallocFailedCheck(const RefState * S,const RefState * SPrev,const Stmt * Stmt)452 inline bool isReallocFailedCheck(const RefState *S, const RefState *SPrev,
453 const Stmt *Stmt) {
454 // If the expression is not a call, and the state change is
455 // released -> allocated, it must be the realloc return value
456 // check. If we have to handle more cases here, it might be cleaner just
457 // to track this extra bit in the state itself.
458 return ((!Stmt || !isa<CallExpr>(Stmt)) &&
459 (S && (S->isAllocated() || S->isAllocatedOfSizeZero())) &&
460 (SPrev && !(SPrev->isAllocated() ||
461 SPrev->isAllocatedOfSizeZero())));
462 }
463
464 PathDiagnosticPiece *VisitNode(const ExplodedNode *N,
465 const ExplodedNode *PrevN,
466 BugReporterContext &BRC,
467 BugReport &BR) override;
468
469 std::unique_ptr<PathDiagnosticPiece>
getEndPath(BugReporterContext & BRC,const ExplodedNode * EndPathNode,BugReport & BR)470 getEndPath(BugReporterContext &BRC, const ExplodedNode *EndPathNode,
471 BugReport &BR) override {
472 if (!IsLeak)
473 return nullptr;
474
475 PathDiagnosticLocation L =
476 PathDiagnosticLocation::createEndOfPath(EndPathNode,
477 BRC.getSourceManager());
478 // Do not add the statement itself as a range in case of leak.
479 return llvm::make_unique<PathDiagnosticEventPiece>(L, BR.getDescription(),
480 false);
481 }
482
483 private:
484 class StackHintGeneratorForReallocationFailed
485 : public StackHintGeneratorForSymbol {
486 public:
StackHintGeneratorForReallocationFailed(SymbolRef S,StringRef M)487 StackHintGeneratorForReallocationFailed(SymbolRef S, StringRef M)
488 : StackHintGeneratorForSymbol(S, M) {}
489
getMessageForArg(const Expr * ArgE,unsigned ArgIndex)490 std::string getMessageForArg(const Expr *ArgE,
491 unsigned ArgIndex) override {
492 // Printed parameters start at 1, not 0.
493 ++ArgIndex;
494
495 SmallString<200> buf;
496 llvm::raw_svector_ostream os(buf);
497
498 os << "Reallocation of " << ArgIndex << llvm::getOrdinalSuffix(ArgIndex)
499 << " parameter failed";
500
501 return os.str();
502 }
503
getMessageForReturn(const CallExpr * CallExpr)504 std::string getMessageForReturn(const CallExpr *CallExpr) override {
505 return "Reallocation of returned value failed";
506 }
507 };
508 };
509 };
510 } // end anonymous namespace
511
512 REGISTER_MAP_WITH_PROGRAMSTATE(RegionState, SymbolRef, RefState)
513 REGISTER_MAP_WITH_PROGRAMSTATE(ReallocPairs, SymbolRef, ReallocPair)
514 REGISTER_SET_WITH_PROGRAMSTATE(ReallocSizeZeroSymbols, SymbolRef)
515
516 // A map from the freed symbol to the symbol representing the return value of
517 // the free function.
518 REGISTER_MAP_WITH_PROGRAMSTATE(FreeReturnValue, SymbolRef, SymbolRef)
519
520 namespace {
521 class StopTrackingCallback final : public SymbolVisitor {
522 ProgramStateRef state;
523 public:
StopTrackingCallback(ProgramStateRef st)524 StopTrackingCallback(ProgramStateRef st) : state(std::move(st)) {}
getState() const525 ProgramStateRef getState() const { return state; }
526
VisitSymbol(SymbolRef sym)527 bool VisitSymbol(SymbolRef sym) override {
528 state = state->remove<RegionState>(sym);
529 return true;
530 }
531 };
532 } // end anonymous namespace
533
initIdentifierInfo(ASTContext & Ctx) const534 void MallocChecker::initIdentifierInfo(ASTContext &Ctx) const {
535 if (II_malloc)
536 return;
537 II_alloca = &Ctx.Idents.get("alloca");
538 II_malloc = &Ctx.Idents.get("malloc");
539 II_free = &Ctx.Idents.get("free");
540 II_realloc = &Ctx.Idents.get("realloc");
541 II_reallocf = &Ctx.Idents.get("reallocf");
542 II_calloc = &Ctx.Idents.get("calloc");
543 II_valloc = &Ctx.Idents.get("valloc");
544 II_strdup = &Ctx.Idents.get("strdup");
545 II_strndup = &Ctx.Idents.get("strndup");
546 II_wcsdup = &Ctx.Idents.get("wcsdup");
547 II_kmalloc = &Ctx.Idents.get("kmalloc");
548 II_if_nameindex = &Ctx.Idents.get("if_nameindex");
549 II_if_freenameindex = &Ctx.Idents.get("if_freenameindex");
550
551 //MSVC uses `_`-prefixed instead, so we check for them too.
552 II_win_strdup = &Ctx.Idents.get("_strdup");
553 II_win_wcsdup = &Ctx.Idents.get("_wcsdup");
554 II_win_alloca = &Ctx.Idents.get("_alloca");
555 }
556
isMemFunction(const FunctionDecl * FD,ASTContext & C) const557 bool MallocChecker::isMemFunction(const FunctionDecl *FD, ASTContext &C) const {
558 if (isCMemFunction(FD, C, AF_Malloc, MemoryOperationKind::MOK_Any))
559 return true;
560
561 if (isCMemFunction(FD, C, AF_IfNameIndex, MemoryOperationKind::MOK_Any))
562 return true;
563
564 if (isCMemFunction(FD, C, AF_Alloca, MemoryOperationKind::MOK_Any))
565 return true;
566
567 if (isStandardNewDelete(FD, C))
568 return true;
569
570 return false;
571 }
572
isCMemFunction(const FunctionDecl * FD,ASTContext & C,AllocationFamily Family,MemoryOperationKind MemKind) const573 bool MallocChecker::isCMemFunction(const FunctionDecl *FD,
574 ASTContext &C,
575 AllocationFamily Family,
576 MemoryOperationKind MemKind) const {
577 if (!FD)
578 return false;
579
580 bool CheckFree = (MemKind == MemoryOperationKind::MOK_Any ||
581 MemKind == MemoryOperationKind::MOK_Free);
582 bool CheckAlloc = (MemKind == MemoryOperationKind::MOK_Any ||
583 MemKind == MemoryOperationKind::MOK_Allocate);
584
585 if (FD->getKind() == Decl::Function) {
586 const IdentifierInfo *FunI = FD->getIdentifier();
587 initIdentifierInfo(C);
588
589 if (Family == AF_Malloc && CheckFree) {
590 if (FunI == II_free || FunI == II_realloc || FunI == II_reallocf)
591 return true;
592 }
593
594 if (Family == AF_Malloc && CheckAlloc) {
595 if (FunI == II_malloc || FunI == II_realloc || FunI == II_reallocf ||
596 FunI == II_calloc || FunI == II_valloc || FunI == II_strdup ||
597 FunI == II_win_strdup || FunI == II_strndup || FunI == II_wcsdup ||
598 FunI == II_win_wcsdup || FunI == II_kmalloc)
599 return true;
600 }
601
602 if (Family == AF_IfNameIndex && CheckFree) {
603 if (FunI == II_if_freenameindex)
604 return true;
605 }
606
607 if (Family == AF_IfNameIndex && CheckAlloc) {
608 if (FunI == II_if_nameindex)
609 return true;
610 }
611
612 if (Family == AF_Alloca && CheckAlloc) {
613 if (FunI == II_alloca || FunI == II_win_alloca)
614 return true;
615 }
616 }
617
618 if (Family != AF_Malloc)
619 return false;
620
621 if (IsOptimistic && FD->hasAttrs()) {
622 for (const auto *I : FD->specific_attrs<OwnershipAttr>()) {
623 OwnershipAttr::OwnershipKind OwnKind = I->getOwnKind();
624 if(OwnKind == OwnershipAttr::Takes || OwnKind == OwnershipAttr::Holds) {
625 if (CheckFree)
626 return true;
627 } else if (OwnKind == OwnershipAttr::Returns) {
628 if (CheckAlloc)
629 return true;
630 }
631 }
632 }
633
634 return false;
635 }
636
637 // Tells if the callee is one of the following:
638 // 1) A global non-placement new/delete operator function.
639 // 2) A global placement operator function with the single placement argument
640 // of type std::nothrow_t.
isStandardNewDelete(const FunctionDecl * FD,ASTContext & C) const641 bool MallocChecker::isStandardNewDelete(const FunctionDecl *FD,
642 ASTContext &C) const {
643 if (!FD)
644 return false;
645
646 OverloadedOperatorKind Kind = FD->getOverloadedOperator();
647 if (Kind != OO_New && Kind != OO_Array_New &&
648 Kind != OO_Delete && Kind != OO_Array_Delete)
649 return false;
650
651 // Skip all operator new/delete methods.
652 if (isa<CXXMethodDecl>(FD))
653 return false;
654
655 // Return true if tested operator is a standard placement nothrow operator.
656 if (FD->getNumParams() == 2) {
657 QualType T = FD->getParamDecl(1)->getType();
658 if (const IdentifierInfo *II = T.getBaseTypeIdentifier())
659 return II->getName().equals("nothrow_t");
660 }
661
662 // Skip placement operators.
663 if (FD->getNumParams() != 1 || FD->isVariadic())
664 return false;
665
666 // One of the standard new/new[]/delete/delete[] non-placement operators.
667 return true;
668 }
669
performKernelMalloc(const CallExpr * CE,CheckerContext & C,const ProgramStateRef & State) const670 llvm::Optional<ProgramStateRef> MallocChecker::performKernelMalloc(
671 const CallExpr *CE, CheckerContext &C, const ProgramStateRef &State) const {
672 // 3-argument malloc(), as commonly used in {Free,Net,Open}BSD Kernels:
673 //
674 // void *malloc(unsigned long size, struct malloc_type *mtp, int flags);
675 //
676 // One of the possible flags is M_ZERO, which means 'give me back an
677 // allocation which is already zeroed', like calloc.
678
679 // 2-argument kmalloc(), as used in the Linux kernel:
680 //
681 // void *kmalloc(size_t size, gfp_t flags);
682 //
683 // Has the similar flag value __GFP_ZERO.
684
685 // This logic is largely cloned from O_CREAT in UnixAPIChecker, maybe some
686 // code could be shared.
687
688 ASTContext &Ctx = C.getASTContext();
689 llvm::Triple::OSType OS = Ctx.getTargetInfo().getTriple().getOS();
690
691 if (!KernelZeroFlagVal.hasValue()) {
692 if (OS == llvm::Triple::FreeBSD)
693 KernelZeroFlagVal = 0x0100;
694 else if (OS == llvm::Triple::NetBSD)
695 KernelZeroFlagVal = 0x0002;
696 else if (OS == llvm::Triple::OpenBSD)
697 KernelZeroFlagVal = 0x0008;
698 else if (OS == llvm::Triple::Linux)
699 // __GFP_ZERO
700 KernelZeroFlagVal = 0x8000;
701 else
702 // FIXME: We need a more general way of getting the M_ZERO value.
703 // See also: O_CREAT in UnixAPIChecker.cpp.
704
705 // Fall back to normal malloc behavior on platforms where we don't
706 // know M_ZERO.
707 return None;
708 }
709
710 // We treat the last argument as the flags argument, and callers fall-back to
711 // normal malloc on a None return. This works for the FreeBSD kernel malloc
712 // as well as Linux kmalloc.
713 if (CE->getNumArgs() < 2)
714 return None;
715
716 const Expr *FlagsEx = CE->getArg(CE->getNumArgs() - 1);
717 const SVal V = State->getSVal(FlagsEx, C.getLocationContext());
718 if (!V.getAs<NonLoc>()) {
719 // The case where 'V' can be a location can only be due to a bad header,
720 // so in this case bail out.
721 return None;
722 }
723
724 NonLoc Flags = V.castAs<NonLoc>();
725 NonLoc ZeroFlag = C.getSValBuilder()
726 .makeIntVal(KernelZeroFlagVal.getValue(), FlagsEx->getType())
727 .castAs<NonLoc>();
728 SVal MaskedFlagsUC = C.getSValBuilder().evalBinOpNN(State, BO_And,
729 Flags, ZeroFlag,
730 FlagsEx->getType());
731 if (MaskedFlagsUC.isUnknownOrUndef())
732 return None;
733 DefinedSVal MaskedFlags = MaskedFlagsUC.castAs<DefinedSVal>();
734
735 // Check if maskedFlags is non-zero.
736 ProgramStateRef TrueState, FalseState;
737 std::tie(TrueState, FalseState) = State->assume(MaskedFlags);
738
739 // If M_ZERO is set, treat this like calloc (initialized).
740 if (TrueState && !FalseState) {
741 SVal ZeroVal = C.getSValBuilder().makeZeroVal(Ctx.CharTy);
742 return MallocMemAux(C, CE, CE->getArg(0), ZeroVal, TrueState);
743 }
744
745 return None;
746 }
747
checkPostStmt(const CallExpr * CE,CheckerContext & C) const748 void MallocChecker::checkPostStmt(const CallExpr *CE, CheckerContext &C) const {
749 if (C.wasInlined)
750 return;
751
752 const FunctionDecl *FD = C.getCalleeDecl(CE);
753 if (!FD)
754 return;
755
756 ProgramStateRef State = C.getState();
757 bool ReleasedAllocatedMemory = false;
758
759 if (FD->getKind() == Decl::Function) {
760 initIdentifierInfo(C.getASTContext());
761 IdentifierInfo *FunI = FD->getIdentifier();
762
763 if (FunI == II_malloc) {
764 if (CE->getNumArgs() < 1)
765 return;
766 if (CE->getNumArgs() < 3) {
767 State = MallocMemAux(C, CE, CE->getArg(0), UndefinedVal(), State);
768 if (CE->getNumArgs() == 1)
769 State = ProcessZeroAllocation(C, CE, 0, State);
770 } else if (CE->getNumArgs() == 3) {
771 llvm::Optional<ProgramStateRef> MaybeState =
772 performKernelMalloc(CE, C, State);
773 if (MaybeState.hasValue())
774 State = MaybeState.getValue();
775 else
776 State = MallocMemAux(C, CE, CE->getArg(0), UndefinedVal(), State);
777 }
778 } else if (FunI == II_kmalloc) {
779 llvm::Optional<ProgramStateRef> MaybeState =
780 performKernelMalloc(CE, C, State);
781 if (MaybeState.hasValue())
782 State = MaybeState.getValue();
783 else
784 State = MallocMemAux(C, CE, CE->getArg(0), UndefinedVal(), State);
785 } else if (FunI == II_valloc) {
786 if (CE->getNumArgs() < 1)
787 return;
788 State = MallocMemAux(C, CE, CE->getArg(0), UndefinedVal(), State);
789 State = ProcessZeroAllocation(C, CE, 0, State);
790 } else if (FunI == II_realloc) {
791 State = ReallocMem(C, CE, false, State);
792 State = ProcessZeroAllocation(C, CE, 1, State);
793 } else if (FunI == II_reallocf) {
794 State = ReallocMem(C, CE, true, State);
795 State = ProcessZeroAllocation(C, CE, 1, State);
796 } else if (FunI == II_calloc) {
797 State = CallocMem(C, CE, State);
798 State = ProcessZeroAllocation(C, CE, 0, State);
799 State = ProcessZeroAllocation(C, CE, 1, State);
800 } else if (FunI == II_free) {
801 State = FreeMemAux(C, CE, State, 0, false, ReleasedAllocatedMemory);
802 } else if (FunI == II_strdup || FunI == II_win_strdup ||
803 FunI == II_wcsdup || FunI == II_win_wcsdup) {
804 State = MallocUpdateRefState(C, CE, State);
805 } else if (FunI == II_strndup) {
806 State = MallocUpdateRefState(C, CE, State);
807 } else if (FunI == II_alloca || FunI == II_win_alloca) {
808 State = MallocMemAux(C, CE, CE->getArg(0), UndefinedVal(), State,
809 AF_Alloca);
810 State = ProcessZeroAllocation(C, CE, 0, State);
811 } else if (isStandardNewDelete(FD, C.getASTContext())) {
812 // Process direct calls to operator new/new[]/delete/delete[] functions
813 // as distinct from new/new[]/delete/delete[] expressions that are
814 // processed by the checkPostStmt callbacks for CXXNewExpr and
815 // CXXDeleteExpr.
816 OverloadedOperatorKind K = FD->getOverloadedOperator();
817 if (K == OO_New) {
818 State = MallocMemAux(C, CE, CE->getArg(0), UndefinedVal(), State,
819 AF_CXXNew);
820 State = ProcessZeroAllocation(C, CE, 0, State);
821 }
822 else if (K == OO_Array_New) {
823 State = MallocMemAux(C, CE, CE->getArg(0), UndefinedVal(), State,
824 AF_CXXNewArray);
825 State = ProcessZeroAllocation(C, CE, 0, State);
826 }
827 else if (K == OO_Delete || K == OO_Array_Delete)
828 State = FreeMemAux(C, CE, State, 0, false, ReleasedAllocatedMemory);
829 else
830 llvm_unreachable("not a new/delete operator");
831 } else if (FunI == II_if_nameindex) {
832 // Should we model this differently? We can allocate a fixed number of
833 // elements with zeros in the last one.
834 State = MallocMemAux(C, CE, UnknownVal(), UnknownVal(), State,
835 AF_IfNameIndex);
836 } else if (FunI == II_if_freenameindex) {
837 State = FreeMemAux(C, CE, State, 0, false, ReleasedAllocatedMemory);
838 }
839 }
840
841 if (IsOptimistic || ChecksEnabled[CK_MismatchedDeallocatorChecker]) {
842 // Check all the attributes, if there are any.
843 // There can be multiple of these attributes.
844 if (FD->hasAttrs())
845 for (const auto *I : FD->specific_attrs<OwnershipAttr>()) {
846 switch (I->getOwnKind()) {
847 case OwnershipAttr::Returns:
848 State = MallocMemReturnsAttr(C, CE, I, State);
849 break;
850 case OwnershipAttr::Takes:
851 case OwnershipAttr::Holds:
852 State = FreeMemAttr(C, CE, I, State);
853 break;
854 }
855 }
856 }
857 C.addTransition(State);
858 }
859
860 // Performs a 0-sized allocations check.
ProcessZeroAllocation(CheckerContext & C,const Expr * E,const unsigned AllocationSizeArg,ProgramStateRef State) const861 ProgramStateRef MallocChecker::ProcessZeroAllocation(CheckerContext &C,
862 const Expr *E,
863 const unsigned AllocationSizeArg,
864 ProgramStateRef State) const {
865 if (!State)
866 return nullptr;
867
868 const Expr *Arg = nullptr;
869
870 if (const CallExpr *CE = dyn_cast<CallExpr>(E)) {
871 Arg = CE->getArg(AllocationSizeArg);
872 }
873 else if (const CXXNewExpr *NE = dyn_cast<CXXNewExpr>(E)) {
874 if (NE->isArray())
875 Arg = NE->getArraySize();
876 else
877 return State;
878 }
879 else
880 llvm_unreachable("not a CallExpr or CXXNewExpr");
881
882 assert(Arg);
883
884 Optional<DefinedSVal> DefArgVal =
885 State->getSVal(Arg, C.getLocationContext()).getAs<DefinedSVal>();
886
887 if (!DefArgVal)
888 return State;
889
890 // Check if the allocation size is 0.
891 ProgramStateRef TrueState, FalseState;
892 SValBuilder &SvalBuilder = C.getSValBuilder();
893 DefinedSVal Zero =
894 SvalBuilder.makeZeroVal(Arg->getType()).castAs<DefinedSVal>();
895
896 std::tie(TrueState, FalseState) =
897 State->assume(SvalBuilder.evalEQ(State, *DefArgVal, Zero));
898
899 if (TrueState && !FalseState) {
900 SVal retVal = State->getSVal(E, C.getLocationContext());
901 SymbolRef Sym = retVal.getAsLocSymbol();
902 if (!Sym)
903 return State;
904
905 const RefState *RS = State->get<RegionState>(Sym);
906 if (RS) {
907 if (RS->isAllocated())
908 return TrueState->set<RegionState>(Sym,
909 RefState::getAllocatedOfSizeZero(RS));
910 else
911 return State;
912 } else {
913 // Case of zero-size realloc. Historically 'realloc(ptr, 0)' is treated as
914 // 'free(ptr)' and the returned value from 'realloc(ptr, 0)' is not
915 // tracked. Add zero-reallocated Sym to the state to catch references
916 // to zero-allocated memory.
917 return TrueState->add<ReallocSizeZeroSymbols>(Sym);
918 }
919 }
920
921 // Assume the value is non-zero going forward.
922 assert(FalseState);
923 return FalseState;
924 }
925
getDeepPointeeType(QualType T)926 static QualType getDeepPointeeType(QualType T) {
927 QualType Result = T, PointeeType = T->getPointeeType();
928 while (!PointeeType.isNull()) {
929 Result = PointeeType;
930 PointeeType = PointeeType->getPointeeType();
931 }
932 return Result;
933 }
934
treatUnusedNewEscaped(const CXXNewExpr * NE)935 static bool treatUnusedNewEscaped(const CXXNewExpr *NE) {
936
937 const CXXConstructExpr *ConstructE = NE->getConstructExpr();
938 if (!ConstructE)
939 return false;
940
941 if (!NE->getAllocatedType()->getAsCXXRecordDecl())
942 return false;
943
944 const CXXConstructorDecl *CtorD = ConstructE->getConstructor();
945
946 // Iterate over the constructor parameters.
947 for (const auto *CtorParam : CtorD->parameters()) {
948
949 QualType CtorParamPointeeT = CtorParam->getType()->getPointeeType();
950 if (CtorParamPointeeT.isNull())
951 continue;
952
953 CtorParamPointeeT = getDeepPointeeType(CtorParamPointeeT);
954
955 if (CtorParamPointeeT->getAsCXXRecordDecl())
956 return true;
957 }
958
959 return false;
960 }
961
checkPostStmt(const CXXNewExpr * NE,CheckerContext & C) const962 void MallocChecker::checkPostStmt(const CXXNewExpr *NE,
963 CheckerContext &C) const {
964
965 if (NE->getNumPlacementArgs())
966 for (CXXNewExpr::const_arg_iterator I = NE->placement_arg_begin(),
967 E = NE->placement_arg_end(); I != E; ++I)
968 if (SymbolRef Sym = C.getSVal(*I).getAsSymbol())
969 checkUseAfterFree(Sym, C, *I);
970
971 if (!isStandardNewDelete(NE->getOperatorNew(), C.getASTContext()))
972 return;
973
974 ParentMap &PM = C.getLocationContext()->getParentMap();
975 if (!PM.isConsumedExpr(NE) && treatUnusedNewEscaped(NE))
976 return;
977
978 ProgramStateRef State = C.getState();
979 // The return value from operator new is bound to a specified initialization
980 // value (if any) and we don't want to loose this value. So we call
981 // MallocUpdateRefState() instead of MallocMemAux() which breakes the
982 // existing binding.
983 State = MallocUpdateRefState(C, NE, State, NE->isArray() ? AF_CXXNewArray
984 : AF_CXXNew);
985 State = ProcessZeroAllocation(C, NE, 0, State);
986 C.addTransition(State);
987 }
988
checkPreStmt(const CXXDeleteExpr * DE,CheckerContext & C) const989 void MallocChecker::checkPreStmt(const CXXDeleteExpr *DE,
990 CheckerContext &C) const {
991
992 if (!ChecksEnabled[CK_NewDeleteChecker])
993 if (SymbolRef Sym = C.getSVal(DE->getArgument()).getAsSymbol())
994 checkUseAfterFree(Sym, C, DE->getArgument());
995
996 if (!isStandardNewDelete(DE->getOperatorDelete(), C.getASTContext()))
997 return;
998
999 ProgramStateRef State = C.getState();
1000 bool ReleasedAllocated;
1001 State = FreeMemAux(C, DE->getArgument(), DE, State,
1002 /*Hold*/false, ReleasedAllocated);
1003
1004 C.addTransition(State);
1005 }
1006
isKnownDeallocObjCMethodName(const ObjCMethodCall & Call)1007 static bool isKnownDeallocObjCMethodName(const ObjCMethodCall &Call) {
1008 // If the first selector piece is one of the names below, assume that the
1009 // object takes ownership of the memory, promising to eventually deallocate it
1010 // with free().
1011 // Ex: [NSData dataWithBytesNoCopy:bytes length:10];
1012 // (...unless a 'freeWhenDone' parameter is false, but that's checked later.)
1013 StringRef FirstSlot = Call.getSelector().getNameForSlot(0);
1014 return FirstSlot == "dataWithBytesNoCopy" ||
1015 FirstSlot == "initWithBytesNoCopy" ||
1016 FirstSlot == "initWithCharactersNoCopy";
1017 }
1018
getFreeWhenDoneArg(const ObjCMethodCall & Call)1019 static Optional<bool> getFreeWhenDoneArg(const ObjCMethodCall &Call) {
1020 Selector S = Call.getSelector();
1021
1022 // FIXME: We should not rely on fully-constrained symbols being folded.
1023 for (unsigned i = 1; i < S.getNumArgs(); ++i)
1024 if (S.getNameForSlot(i).equals("freeWhenDone"))
1025 return !Call.getArgSVal(i).isZeroConstant();
1026
1027 return None;
1028 }
1029
checkPostObjCMessage(const ObjCMethodCall & Call,CheckerContext & C) const1030 void MallocChecker::checkPostObjCMessage(const ObjCMethodCall &Call,
1031 CheckerContext &C) const {
1032 if (C.wasInlined)
1033 return;
1034
1035 if (!isKnownDeallocObjCMethodName(Call))
1036 return;
1037
1038 if (Optional<bool> FreeWhenDone = getFreeWhenDoneArg(Call))
1039 if (!*FreeWhenDone)
1040 return;
1041
1042 bool ReleasedAllocatedMemory;
1043 ProgramStateRef State = FreeMemAux(C, Call.getArgExpr(0),
1044 Call.getOriginExpr(), C.getState(),
1045 /*Hold=*/true, ReleasedAllocatedMemory,
1046 /*RetNullOnFailure=*/true);
1047
1048 C.addTransition(State);
1049 }
1050
1051 ProgramStateRef
MallocMemReturnsAttr(CheckerContext & C,const CallExpr * CE,const OwnershipAttr * Att,ProgramStateRef State) const1052 MallocChecker::MallocMemReturnsAttr(CheckerContext &C, const CallExpr *CE,
1053 const OwnershipAttr *Att,
1054 ProgramStateRef State) const {
1055 if (!State)
1056 return nullptr;
1057
1058 if (Att->getModule() != II_malloc)
1059 return nullptr;
1060
1061 OwnershipAttr::args_iterator I = Att->args_begin(), E = Att->args_end();
1062 if (I != E) {
1063 return MallocMemAux(C, CE, CE->getArg(*I), UndefinedVal(), State);
1064 }
1065 return MallocMemAux(C, CE, UnknownVal(), UndefinedVal(), State);
1066 }
1067
MallocMemAux(CheckerContext & C,const CallExpr * CE,const Expr * SizeEx,SVal Init,ProgramStateRef State,AllocationFamily Family)1068 ProgramStateRef MallocChecker::MallocMemAux(CheckerContext &C,
1069 const CallExpr *CE,
1070 const Expr *SizeEx, SVal Init,
1071 ProgramStateRef State,
1072 AllocationFamily Family) {
1073 if (!State)
1074 return nullptr;
1075
1076 return MallocMemAux(C, CE, State->getSVal(SizeEx, C.getLocationContext()),
1077 Init, State, Family);
1078 }
1079
MallocMemAux(CheckerContext & C,const CallExpr * CE,SVal Size,SVal Init,ProgramStateRef State,AllocationFamily Family)1080 ProgramStateRef MallocChecker::MallocMemAux(CheckerContext &C,
1081 const CallExpr *CE,
1082 SVal Size, SVal Init,
1083 ProgramStateRef State,
1084 AllocationFamily Family) {
1085 if (!State)
1086 return nullptr;
1087
1088 // We expect the malloc functions to return a pointer.
1089 if (!Loc::isLocType(CE->getType()))
1090 return nullptr;
1091
1092 // Bind the return value to the symbolic value from the heap region.
1093 // TODO: We could rewrite post visit to eval call; 'malloc' does not have
1094 // side effects other than what we model here.
1095 unsigned Count = C.blockCount();
1096 SValBuilder &svalBuilder = C.getSValBuilder();
1097 const LocationContext *LCtx = C.getPredecessor()->getLocationContext();
1098 DefinedSVal RetVal = svalBuilder.getConjuredHeapSymbolVal(CE, LCtx, Count)
1099 .castAs<DefinedSVal>();
1100 State = State->BindExpr(CE, C.getLocationContext(), RetVal);
1101
1102 // Fill the region with the initialization value.
1103 State = State->bindDefault(RetVal, Init);
1104
1105 // Set the region's extent equal to the Size parameter.
1106 const SymbolicRegion *R =
1107 dyn_cast_or_null<SymbolicRegion>(RetVal.getAsRegion());
1108 if (!R)
1109 return nullptr;
1110 if (Optional<DefinedOrUnknownSVal> DefinedSize =
1111 Size.getAs<DefinedOrUnknownSVal>()) {
1112 SValBuilder &svalBuilder = C.getSValBuilder();
1113 DefinedOrUnknownSVal Extent = R->getExtent(svalBuilder);
1114 DefinedOrUnknownSVal extentMatchesSize =
1115 svalBuilder.evalEQ(State, Extent, *DefinedSize);
1116
1117 State = State->assume(extentMatchesSize, true);
1118 assert(State);
1119 }
1120
1121 return MallocUpdateRefState(C, CE, State, Family);
1122 }
1123
MallocUpdateRefState(CheckerContext & C,const Expr * E,ProgramStateRef State,AllocationFamily Family)1124 ProgramStateRef MallocChecker::MallocUpdateRefState(CheckerContext &C,
1125 const Expr *E,
1126 ProgramStateRef State,
1127 AllocationFamily Family) {
1128 if (!State)
1129 return nullptr;
1130
1131 // Get the return value.
1132 SVal retVal = State->getSVal(E, C.getLocationContext());
1133
1134 // We expect the malloc functions to return a pointer.
1135 if (!retVal.getAs<Loc>())
1136 return nullptr;
1137
1138 SymbolRef Sym = retVal.getAsLocSymbol();
1139 assert(Sym);
1140
1141 // Set the symbol's state to Allocated.
1142 return State->set<RegionState>(Sym, RefState::getAllocated(Family, E));
1143 }
1144
FreeMemAttr(CheckerContext & C,const CallExpr * CE,const OwnershipAttr * Att,ProgramStateRef State) const1145 ProgramStateRef MallocChecker::FreeMemAttr(CheckerContext &C,
1146 const CallExpr *CE,
1147 const OwnershipAttr *Att,
1148 ProgramStateRef State) const {
1149 if (!State)
1150 return nullptr;
1151
1152 if (Att->getModule() != II_malloc)
1153 return nullptr;
1154
1155 bool ReleasedAllocated = false;
1156
1157 for (const auto &Arg : Att->args()) {
1158 ProgramStateRef StateI = FreeMemAux(C, CE, State, Arg,
1159 Att->getOwnKind() == OwnershipAttr::Holds,
1160 ReleasedAllocated);
1161 if (StateI)
1162 State = StateI;
1163 }
1164 return State;
1165 }
1166
FreeMemAux(CheckerContext & C,const CallExpr * CE,ProgramStateRef State,unsigned Num,bool Hold,bool & ReleasedAllocated,bool ReturnsNullOnFailure) const1167 ProgramStateRef MallocChecker::FreeMemAux(CheckerContext &C,
1168 const CallExpr *CE,
1169 ProgramStateRef State,
1170 unsigned Num,
1171 bool Hold,
1172 bool &ReleasedAllocated,
1173 bool ReturnsNullOnFailure) const {
1174 if (!State)
1175 return nullptr;
1176
1177 if (CE->getNumArgs() < (Num + 1))
1178 return nullptr;
1179
1180 return FreeMemAux(C, CE->getArg(Num), CE, State, Hold,
1181 ReleasedAllocated, ReturnsNullOnFailure);
1182 }
1183
1184 /// Checks if the previous call to free on the given symbol failed - if free
1185 /// failed, returns true. Also, returns the corresponding return value symbol.
didPreviousFreeFail(ProgramStateRef State,SymbolRef Sym,SymbolRef & RetStatusSymbol)1186 static bool didPreviousFreeFail(ProgramStateRef State,
1187 SymbolRef Sym, SymbolRef &RetStatusSymbol) {
1188 const SymbolRef *Ret = State->get<FreeReturnValue>(Sym);
1189 if (Ret) {
1190 assert(*Ret && "We should not store the null return symbol");
1191 ConstraintManager &CMgr = State->getConstraintManager();
1192 ConditionTruthVal FreeFailed = CMgr.isNull(State, *Ret);
1193 RetStatusSymbol = *Ret;
1194 return FreeFailed.isConstrainedTrue();
1195 }
1196 return false;
1197 }
1198
getAllocationFamily(CheckerContext & C,const Stmt * S) const1199 AllocationFamily MallocChecker::getAllocationFamily(CheckerContext &C,
1200 const Stmt *S) const {
1201 if (!S)
1202 return AF_None;
1203
1204 if (const CallExpr *CE = dyn_cast<CallExpr>(S)) {
1205 const FunctionDecl *FD = C.getCalleeDecl(CE);
1206
1207 if (!FD)
1208 FD = dyn_cast<FunctionDecl>(CE->getCalleeDecl());
1209
1210 ASTContext &Ctx = C.getASTContext();
1211
1212 if (isCMemFunction(FD, Ctx, AF_Malloc, MemoryOperationKind::MOK_Any))
1213 return AF_Malloc;
1214
1215 if (isStandardNewDelete(FD, Ctx)) {
1216 OverloadedOperatorKind Kind = FD->getOverloadedOperator();
1217 if (Kind == OO_New || Kind == OO_Delete)
1218 return AF_CXXNew;
1219 else if (Kind == OO_Array_New || Kind == OO_Array_Delete)
1220 return AF_CXXNewArray;
1221 }
1222
1223 if (isCMemFunction(FD, Ctx, AF_IfNameIndex, MemoryOperationKind::MOK_Any))
1224 return AF_IfNameIndex;
1225
1226 if (isCMemFunction(FD, Ctx, AF_Alloca, MemoryOperationKind::MOK_Any))
1227 return AF_Alloca;
1228
1229 return AF_None;
1230 }
1231
1232 if (const CXXNewExpr *NE = dyn_cast<CXXNewExpr>(S))
1233 return NE->isArray() ? AF_CXXNewArray : AF_CXXNew;
1234
1235 if (const CXXDeleteExpr *DE = dyn_cast<CXXDeleteExpr>(S))
1236 return DE->isArrayForm() ? AF_CXXNewArray : AF_CXXNew;
1237
1238 if (isa<ObjCMessageExpr>(S))
1239 return AF_Malloc;
1240
1241 return AF_None;
1242 }
1243
printAllocDeallocName(raw_ostream & os,CheckerContext & C,const Expr * E) const1244 bool MallocChecker::printAllocDeallocName(raw_ostream &os, CheckerContext &C,
1245 const Expr *E) const {
1246 if (const CallExpr *CE = dyn_cast<CallExpr>(E)) {
1247 // FIXME: This doesn't handle indirect calls.
1248 const FunctionDecl *FD = CE->getDirectCallee();
1249 if (!FD)
1250 return false;
1251
1252 os << *FD;
1253 if (!FD->isOverloadedOperator())
1254 os << "()";
1255 return true;
1256 }
1257
1258 if (const ObjCMessageExpr *Msg = dyn_cast<ObjCMessageExpr>(E)) {
1259 if (Msg->isInstanceMessage())
1260 os << "-";
1261 else
1262 os << "+";
1263 Msg->getSelector().print(os);
1264 return true;
1265 }
1266
1267 if (const CXXNewExpr *NE = dyn_cast<CXXNewExpr>(E)) {
1268 os << "'"
1269 << getOperatorSpelling(NE->getOperatorNew()->getOverloadedOperator())
1270 << "'";
1271 return true;
1272 }
1273
1274 if (const CXXDeleteExpr *DE = dyn_cast<CXXDeleteExpr>(E)) {
1275 os << "'"
1276 << getOperatorSpelling(DE->getOperatorDelete()->getOverloadedOperator())
1277 << "'";
1278 return true;
1279 }
1280
1281 return false;
1282 }
1283
printExpectedAllocName(raw_ostream & os,CheckerContext & C,const Expr * E) const1284 void MallocChecker::printExpectedAllocName(raw_ostream &os, CheckerContext &C,
1285 const Expr *E) const {
1286 AllocationFamily Family = getAllocationFamily(C, E);
1287
1288 switch(Family) {
1289 case AF_Malloc: os << "malloc()"; return;
1290 case AF_CXXNew: os << "'new'"; return;
1291 case AF_CXXNewArray: os << "'new[]'"; return;
1292 case AF_IfNameIndex: os << "'if_nameindex()'"; return;
1293 case AF_Alloca:
1294 case AF_None: llvm_unreachable("not a deallocation expression");
1295 }
1296 }
1297
printExpectedDeallocName(raw_ostream & os,AllocationFamily Family) const1298 void MallocChecker::printExpectedDeallocName(raw_ostream &os,
1299 AllocationFamily Family) const {
1300 switch(Family) {
1301 case AF_Malloc: os << "free()"; return;
1302 case AF_CXXNew: os << "'delete'"; return;
1303 case AF_CXXNewArray: os << "'delete[]'"; return;
1304 case AF_IfNameIndex: os << "'if_freenameindex()'"; return;
1305 case AF_Alloca:
1306 case AF_None: llvm_unreachable("suspicious argument");
1307 }
1308 }
1309
FreeMemAux(CheckerContext & C,const Expr * ArgExpr,const Expr * ParentExpr,ProgramStateRef State,bool Hold,bool & ReleasedAllocated,bool ReturnsNullOnFailure) const1310 ProgramStateRef MallocChecker::FreeMemAux(CheckerContext &C,
1311 const Expr *ArgExpr,
1312 const Expr *ParentExpr,
1313 ProgramStateRef State,
1314 bool Hold,
1315 bool &ReleasedAllocated,
1316 bool ReturnsNullOnFailure) const {
1317
1318 if (!State)
1319 return nullptr;
1320
1321 SVal ArgVal = State->getSVal(ArgExpr, C.getLocationContext());
1322 if (!ArgVal.getAs<DefinedOrUnknownSVal>())
1323 return nullptr;
1324 DefinedOrUnknownSVal location = ArgVal.castAs<DefinedOrUnknownSVal>();
1325
1326 // Check for null dereferences.
1327 if (!location.getAs<Loc>())
1328 return nullptr;
1329
1330 // The explicit NULL case, no operation is performed.
1331 ProgramStateRef notNullState, nullState;
1332 std::tie(notNullState, nullState) = State->assume(location);
1333 if (nullState && !notNullState)
1334 return nullptr;
1335
1336 // Unknown values could easily be okay
1337 // Undefined values are handled elsewhere
1338 if (ArgVal.isUnknownOrUndef())
1339 return nullptr;
1340
1341 const MemRegion *R = ArgVal.getAsRegion();
1342
1343 // Nonlocs can't be freed, of course.
1344 // Non-region locations (labels and fixed addresses) also shouldn't be freed.
1345 if (!R) {
1346 ReportBadFree(C, ArgVal, ArgExpr->getSourceRange(), ParentExpr);
1347 return nullptr;
1348 }
1349
1350 R = R->StripCasts();
1351
1352 // Blocks might show up as heap data, but should not be free()d
1353 if (isa<BlockDataRegion>(R)) {
1354 ReportBadFree(C, ArgVal, ArgExpr->getSourceRange(), ParentExpr);
1355 return nullptr;
1356 }
1357
1358 const MemSpaceRegion *MS = R->getMemorySpace();
1359
1360 // Parameters, locals, statics, globals, and memory returned by
1361 // __builtin_alloca() shouldn't be freed.
1362 if (!(isa<UnknownSpaceRegion>(MS) || isa<HeapSpaceRegion>(MS))) {
1363 // FIXME: at the time this code was written, malloc() regions were
1364 // represented by conjured symbols, which are all in UnknownSpaceRegion.
1365 // This means that there isn't actually anything from HeapSpaceRegion
1366 // that should be freed, even though we allow it here.
1367 // Of course, free() can work on memory allocated outside the current
1368 // function, so UnknownSpaceRegion is always a possibility.
1369 // False negatives are better than false positives.
1370
1371 if (isa<AllocaRegion>(R))
1372 ReportFreeAlloca(C, ArgVal, ArgExpr->getSourceRange());
1373 else
1374 ReportBadFree(C, ArgVal, ArgExpr->getSourceRange(), ParentExpr);
1375
1376 return nullptr;
1377 }
1378
1379 const SymbolicRegion *SrBase = dyn_cast<SymbolicRegion>(R->getBaseRegion());
1380 // Various cases could lead to non-symbol values here.
1381 // For now, ignore them.
1382 if (!SrBase)
1383 return nullptr;
1384
1385 SymbolRef SymBase = SrBase->getSymbol();
1386 const RefState *RsBase = State->get<RegionState>(SymBase);
1387 SymbolRef PreviousRetStatusSymbol = nullptr;
1388
1389 if (RsBase) {
1390
1391 // Memory returned by alloca() shouldn't be freed.
1392 if (RsBase->getAllocationFamily() == AF_Alloca) {
1393 ReportFreeAlloca(C, ArgVal, ArgExpr->getSourceRange());
1394 return nullptr;
1395 }
1396
1397 // Check for double free first.
1398 if ((RsBase->isReleased() || RsBase->isRelinquished()) &&
1399 !didPreviousFreeFail(State, SymBase, PreviousRetStatusSymbol)) {
1400 ReportDoubleFree(C, ParentExpr->getSourceRange(), RsBase->isReleased(),
1401 SymBase, PreviousRetStatusSymbol);
1402 return nullptr;
1403
1404 // If the pointer is allocated or escaped, but we are now trying to free it,
1405 // check that the call to free is proper.
1406 } else if (RsBase->isAllocated() || RsBase->isAllocatedOfSizeZero() ||
1407 RsBase->isEscaped()) {
1408
1409 // Check if an expected deallocation function matches the real one.
1410 bool DeallocMatchesAlloc =
1411 RsBase->getAllocationFamily() == getAllocationFamily(C, ParentExpr);
1412 if (!DeallocMatchesAlloc) {
1413 ReportMismatchedDealloc(C, ArgExpr->getSourceRange(),
1414 ParentExpr, RsBase, SymBase, Hold);
1415 return nullptr;
1416 }
1417
1418 // Check if the memory location being freed is the actual location
1419 // allocated, or an offset.
1420 RegionOffset Offset = R->getAsOffset();
1421 if (Offset.isValid() &&
1422 !Offset.hasSymbolicOffset() &&
1423 Offset.getOffset() != 0) {
1424 const Expr *AllocExpr = cast<Expr>(RsBase->getStmt());
1425 ReportOffsetFree(C, ArgVal, ArgExpr->getSourceRange(), ParentExpr,
1426 AllocExpr);
1427 return nullptr;
1428 }
1429 }
1430 }
1431
1432 ReleasedAllocated = (RsBase != nullptr) && (RsBase->isAllocated() ||
1433 RsBase->isAllocatedOfSizeZero());
1434
1435 // Clean out the info on previous call to free return info.
1436 State = State->remove<FreeReturnValue>(SymBase);
1437
1438 // Keep track of the return value. If it is NULL, we will know that free
1439 // failed.
1440 if (ReturnsNullOnFailure) {
1441 SVal RetVal = C.getSVal(ParentExpr);
1442 SymbolRef RetStatusSymbol = RetVal.getAsSymbol();
1443 if (RetStatusSymbol) {
1444 C.getSymbolManager().addSymbolDependency(SymBase, RetStatusSymbol);
1445 State = State->set<FreeReturnValue>(SymBase, RetStatusSymbol);
1446 }
1447 }
1448
1449 AllocationFamily Family = RsBase ? RsBase->getAllocationFamily()
1450 : getAllocationFamily(C, ParentExpr);
1451 // Normal free.
1452 if (Hold)
1453 return State->set<RegionState>(SymBase,
1454 RefState::getRelinquished(Family,
1455 ParentExpr));
1456
1457 return State->set<RegionState>(SymBase,
1458 RefState::getReleased(Family, ParentExpr));
1459 }
1460
1461 Optional<MallocChecker::CheckKind>
getCheckIfTracked(AllocationFamily Family,bool IsALeakCheck) const1462 MallocChecker::getCheckIfTracked(AllocationFamily Family,
1463 bool IsALeakCheck) const {
1464 switch (Family) {
1465 case AF_Malloc:
1466 case AF_Alloca:
1467 case AF_IfNameIndex: {
1468 if (ChecksEnabled[CK_MallocChecker])
1469 return CK_MallocChecker;
1470
1471 return Optional<MallocChecker::CheckKind>();
1472 }
1473 case AF_CXXNew:
1474 case AF_CXXNewArray: {
1475 if (IsALeakCheck) {
1476 if (ChecksEnabled[CK_NewDeleteLeaksChecker])
1477 return CK_NewDeleteLeaksChecker;
1478 }
1479 else {
1480 if (ChecksEnabled[CK_NewDeleteChecker])
1481 return CK_NewDeleteChecker;
1482 }
1483 return Optional<MallocChecker::CheckKind>();
1484 }
1485 case AF_None: {
1486 llvm_unreachable("no family");
1487 }
1488 }
1489 llvm_unreachable("unhandled family");
1490 }
1491
1492 Optional<MallocChecker::CheckKind>
getCheckIfTracked(CheckerContext & C,const Stmt * AllocDeallocStmt,bool IsALeakCheck) const1493 MallocChecker::getCheckIfTracked(CheckerContext &C,
1494 const Stmt *AllocDeallocStmt,
1495 bool IsALeakCheck) const {
1496 return getCheckIfTracked(getAllocationFamily(C, AllocDeallocStmt),
1497 IsALeakCheck);
1498 }
1499
1500 Optional<MallocChecker::CheckKind>
getCheckIfTracked(CheckerContext & C,SymbolRef Sym,bool IsALeakCheck) const1501 MallocChecker::getCheckIfTracked(CheckerContext &C, SymbolRef Sym,
1502 bool IsALeakCheck) const {
1503 if (C.getState()->contains<ReallocSizeZeroSymbols>(Sym))
1504 return CK_MallocChecker;
1505
1506 const RefState *RS = C.getState()->get<RegionState>(Sym);
1507 assert(RS);
1508 return getCheckIfTracked(RS->getAllocationFamily(), IsALeakCheck);
1509 }
1510
SummarizeValue(raw_ostream & os,SVal V)1511 bool MallocChecker::SummarizeValue(raw_ostream &os, SVal V) {
1512 if (Optional<nonloc::ConcreteInt> IntVal = V.getAs<nonloc::ConcreteInt>())
1513 os << "an integer (" << IntVal->getValue() << ")";
1514 else if (Optional<loc::ConcreteInt> ConstAddr = V.getAs<loc::ConcreteInt>())
1515 os << "a constant address (" << ConstAddr->getValue() << ")";
1516 else if (Optional<loc::GotoLabel> Label = V.getAs<loc::GotoLabel>())
1517 os << "the address of the label '" << Label->getLabel()->getName() << "'";
1518 else
1519 return false;
1520
1521 return true;
1522 }
1523
SummarizeRegion(raw_ostream & os,const MemRegion * MR)1524 bool MallocChecker::SummarizeRegion(raw_ostream &os,
1525 const MemRegion *MR) {
1526 switch (MR->getKind()) {
1527 case MemRegion::FunctionCodeRegionKind: {
1528 const NamedDecl *FD = cast<FunctionCodeRegion>(MR)->getDecl();
1529 if (FD)
1530 os << "the address of the function '" << *FD << '\'';
1531 else
1532 os << "the address of a function";
1533 return true;
1534 }
1535 case MemRegion::BlockCodeRegionKind:
1536 os << "block text";
1537 return true;
1538 case MemRegion::BlockDataRegionKind:
1539 // FIXME: where the block came from?
1540 os << "a block";
1541 return true;
1542 default: {
1543 const MemSpaceRegion *MS = MR->getMemorySpace();
1544
1545 if (isa<StackLocalsSpaceRegion>(MS)) {
1546 const VarRegion *VR = dyn_cast<VarRegion>(MR);
1547 const VarDecl *VD;
1548 if (VR)
1549 VD = VR->getDecl();
1550 else
1551 VD = nullptr;
1552
1553 if (VD)
1554 os << "the address of the local variable '" << VD->getName() << "'";
1555 else
1556 os << "the address of a local stack variable";
1557 return true;
1558 }
1559
1560 if (isa<StackArgumentsSpaceRegion>(MS)) {
1561 const VarRegion *VR = dyn_cast<VarRegion>(MR);
1562 const VarDecl *VD;
1563 if (VR)
1564 VD = VR->getDecl();
1565 else
1566 VD = nullptr;
1567
1568 if (VD)
1569 os << "the address of the parameter '" << VD->getName() << "'";
1570 else
1571 os << "the address of a parameter";
1572 return true;
1573 }
1574
1575 if (isa<GlobalsSpaceRegion>(MS)) {
1576 const VarRegion *VR = dyn_cast<VarRegion>(MR);
1577 const VarDecl *VD;
1578 if (VR)
1579 VD = VR->getDecl();
1580 else
1581 VD = nullptr;
1582
1583 if (VD) {
1584 if (VD->isStaticLocal())
1585 os << "the address of the static variable '" << VD->getName() << "'";
1586 else
1587 os << "the address of the global variable '" << VD->getName() << "'";
1588 } else
1589 os << "the address of a global variable";
1590 return true;
1591 }
1592
1593 return false;
1594 }
1595 }
1596 }
1597
ReportBadFree(CheckerContext & C,SVal ArgVal,SourceRange Range,const Expr * DeallocExpr) const1598 void MallocChecker::ReportBadFree(CheckerContext &C, SVal ArgVal,
1599 SourceRange Range,
1600 const Expr *DeallocExpr) const {
1601
1602 if (!ChecksEnabled[CK_MallocChecker] &&
1603 !ChecksEnabled[CK_NewDeleteChecker])
1604 return;
1605
1606 Optional<MallocChecker::CheckKind> CheckKind =
1607 getCheckIfTracked(C, DeallocExpr);
1608 if (!CheckKind.hasValue())
1609 return;
1610
1611 if (ExplodedNode *N = C.generateErrorNode()) {
1612 if (!BT_BadFree[*CheckKind])
1613 BT_BadFree[*CheckKind].reset(
1614 new BugType(CheckNames[*CheckKind], "Bad free", "Memory Error"));
1615
1616 SmallString<100> buf;
1617 llvm::raw_svector_ostream os(buf);
1618
1619 const MemRegion *MR = ArgVal.getAsRegion();
1620 while (const ElementRegion *ER = dyn_cast_or_null<ElementRegion>(MR))
1621 MR = ER->getSuperRegion();
1622
1623 os << "Argument to ";
1624 if (!printAllocDeallocName(os, C, DeallocExpr))
1625 os << "deallocator";
1626
1627 os << " is ";
1628 bool Summarized = MR ? SummarizeRegion(os, MR)
1629 : SummarizeValue(os, ArgVal);
1630 if (Summarized)
1631 os << ", which is not memory allocated by ";
1632 else
1633 os << "not memory allocated by ";
1634
1635 printExpectedAllocName(os, C, DeallocExpr);
1636
1637 auto R = llvm::make_unique<BugReport>(*BT_BadFree[*CheckKind], os.str(), N);
1638 R->markInteresting(MR);
1639 R->addRange(Range);
1640 C.emitReport(std::move(R));
1641 }
1642 }
1643
ReportFreeAlloca(CheckerContext & C,SVal ArgVal,SourceRange Range) const1644 void MallocChecker::ReportFreeAlloca(CheckerContext &C, SVal ArgVal,
1645 SourceRange Range) const {
1646
1647 Optional<MallocChecker::CheckKind> CheckKind;
1648
1649 if (ChecksEnabled[CK_MallocChecker])
1650 CheckKind = CK_MallocChecker;
1651 else if (ChecksEnabled[CK_MismatchedDeallocatorChecker])
1652 CheckKind = CK_MismatchedDeallocatorChecker;
1653 else
1654 return;
1655
1656 if (ExplodedNode *N = C.generateErrorNode()) {
1657 if (!BT_FreeAlloca[*CheckKind])
1658 BT_FreeAlloca[*CheckKind].reset(
1659 new BugType(CheckNames[*CheckKind], "Free alloca()", "Memory Error"));
1660
1661 auto R = llvm::make_unique<BugReport>(
1662 *BT_FreeAlloca[*CheckKind],
1663 "Memory allocated by alloca() should not be deallocated", N);
1664 R->markInteresting(ArgVal.getAsRegion());
1665 R->addRange(Range);
1666 C.emitReport(std::move(R));
1667 }
1668 }
1669
ReportMismatchedDealloc(CheckerContext & C,SourceRange Range,const Expr * DeallocExpr,const RefState * RS,SymbolRef Sym,bool OwnershipTransferred) const1670 void MallocChecker::ReportMismatchedDealloc(CheckerContext &C,
1671 SourceRange Range,
1672 const Expr *DeallocExpr,
1673 const RefState *RS,
1674 SymbolRef Sym,
1675 bool OwnershipTransferred) const {
1676
1677 if (!ChecksEnabled[CK_MismatchedDeallocatorChecker])
1678 return;
1679
1680 if (ExplodedNode *N = C.generateErrorNode()) {
1681 if (!BT_MismatchedDealloc)
1682 BT_MismatchedDealloc.reset(
1683 new BugType(CheckNames[CK_MismatchedDeallocatorChecker],
1684 "Bad deallocator", "Memory Error"));
1685
1686 SmallString<100> buf;
1687 llvm::raw_svector_ostream os(buf);
1688
1689 const Expr *AllocExpr = cast<Expr>(RS->getStmt());
1690 SmallString<20> AllocBuf;
1691 llvm::raw_svector_ostream AllocOs(AllocBuf);
1692 SmallString<20> DeallocBuf;
1693 llvm::raw_svector_ostream DeallocOs(DeallocBuf);
1694
1695 if (OwnershipTransferred) {
1696 if (printAllocDeallocName(DeallocOs, C, DeallocExpr))
1697 os << DeallocOs.str() << " cannot";
1698 else
1699 os << "Cannot";
1700
1701 os << " take ownership of memory";
1702
1703 if (printAllocDeallocName(AllocOs, C, AllocExpr))
1704 os << " allocated by " << AllocOs.str();
1705 } else {
1706 os << "Memory";
1707 if (printAllocDeallocName(AllocOs, C, AllocExpr))
1708 os << " allocated by " << AllocOs.str();
1709
1710 os << " should be deallocated by ";
1711 printExpectedDeallocName(os, RS->getAllocationFamily());
1712
1713 if (printAllocDeallocName(DeallocOs, C, DeallocExpr))
1714 os << ", not " << DeallocOs.str();
1715 }
1716
1717 auto R = llvm::make_unique<BugReport>(*BT_MismatchedDealloc, os.str(), N);
1718 R->markInteresting(Sym);
1719 R->addRange(Range);
1720 R->addVisitor(llvm::make_unique<MallocBugVisitor>(Sym));
1721 C.emitReport(std::move(R));
1722 }
1723 }
1724
ReportOffsetFree(CheckerContext & C,SVal ArgVal,SourceRange Range,const Expr * DeallocExpr,const Expr * AllocExpr) const1725 void MallocChecker::ReportOffsetFree(CheckerContext &C, SVal ArgVal,
1726 SourceRange Range, const Expr *DeallocExpr,
1727 const Expr *AllocExpr) const {
1728
1729
1730 if (!ChecksEnabled[CK_MallocChecker] &&
1731 !ChecksEnabled[CK_NewDeleteChecker])
1732 return;
1733
1734 Optional<MallocChecker::CheckKind> CheckKind =
1735 getCheckIfTracked(C, AllocExpr);
1736 if (!CheckKind.hasValue())
1737 return;
1738
1739 ExplodedNode *N = C.generateErrorNode();
1740 if (!N)
1741 return;
1742
1743 if (!BT_OffsetFree[*CheckKind])
1744 BT_OffsetFree[*CheckKind].reset(
1745 new BugType(CheckNames[*CheckKind], "Offset free", "Memory Error"));
1746
1747 SmallString<100> buf;
1748 llvm::raw_svector_ostream os(buf);
1749 SmallString<20> AllocNameBuf;
1750 llvm::raw_svector_ostream AllocNameOs(AllocNameBuf);
1751
1752 const MemRegion *MR = ArgVal.getAsRegion();
1753 assert(MR && "Only MemRegion based symbols can have offset free errors");
1754
1755 RegionOffset Offset = MR->getAsOffset();
1756 assert((Offset.isValid() &&
1757 !Offset.hasSymbolicOffset() &&
1758 Offset.getOffset() != 0) &&
1759 "Only symbols with a valid offset can have offset free errors");
1760
1761 int offsetBytes = Offset.getOffset() / C.getASTContext().getCharWidth();
1762
1763 os << "Argument to ";
1764 if (!printAllocDeallocName(os, C, DeallocExpr))
1765 os << "deallocator";
1766 os << " is offset by "
1767 << offsetBytes
1768 << " "
1769 << ((abs(offsetBytes) > 1) ? "bytes" : "byte")
1770 << " from the start of ";
1771 if (AllocExpr && printAllocDeallocName(AllocNameOs, C, AllocExpr))
1772 os << "memory allocated by " << AllocNameOs.str();
1773 else
1774 os << "allocated memory";
1775
1776 auto R = llvm::make_unique<BugReport>(*BT_OffsetFree[*CheckKind], os.str(), N);
1777 R->markInteresting(MR->getBaseRegion());
1778 R->addRange(Range);
1779 C.emitReport(std::move(R));
1780 }
1781
ReportUseAfterFree(CheckerContext & C,SourceRange Range,SymbolRef Sym) const1782 void MallocChecker::ReportUseAfterFree(CheckerContext &C, SourceRange Range,
1783 SymbolRef Sym) const {
1784
1785 if (!ChecksEnabled[CK_MallocChecker] &&
1786 !ChecksEnabled[CK_NewDeleteChecker])
1787 return;
1788
1789 Optional<MallocChecker::CheckKind> CheckKind = getCheckIfTracked(C, Sym);
1790 if (!CheckKind.hasValue())
1791 return;
1792
1793 if (ExplodedNode *N = C.generateErrorNode()) {
1794 if (!BT_UseFree[*CheckKind])
1795 BT_UseFree[*CheckKind].reset(new BugType(
1796 CheckNames[*CheckKind], "Use-after-free", "Memory Error"));
1797
1798 auto R = llvm::make_unique<BugReport>(*BT_UseFree[*CheckKind],
1799 "Use of memory after it is freed", N);
1800
1801 R->markInteresting(Sym);
1802 R->addRange(Range);
1803 R->addVisitor(llvm::make_unique<MallocBugVisitor>(Sym));
1804 C.emitReport(std::move(R));
1805 }
1806 }
1807
ReportDoubleFree(CheckerContext & C,SourceRange Range,bool Released,SymbolRef Sym,SymbolRef PrevSym) const1808 void MallocChecker::ReportDoubleFree(CheckerContext &C, SourceRange Range,
1809 bool Released, SymbolRef Sym,
1810 SymbolRef PrevSym) const {
1811
1812 if (!ChecksEnabled[CK_MallocChecker] &&
1813 !ChecksEnabled[CK_NewDeleteChecker])
1814 return;
1815
1816 Optional<MallocChecker::CheckKind> CheckKind = getCheckIfTracked(C, Sym);
1817 if (!CheckKind.hasValue())
1818 return;
1819
1820 if (ExplodedNode *N = C.generateErrorNode()) {
1821 if (!BT_DoubleFree[*CheckKind])
1822 BT_DoubleFree[*CheckKind].reset(
1823 new BugType(CheckNames[*CheckKind], "Double free", "Memory Error"));
1824
1825 auto R = llvm::make_unique<BugReport>(
1826 *BT_DoubleFree[*CheckKind],
1827 (Released ? "Attempt to free released memory"
1828 : "Attempt to free non-owned memory"),
1829 N);
1830 R->addRange(Range);
1831 R->markInteresting(Sym);
1832 if (PrevSym)
1833 R->markInteresting(PrevSym);
1834 R->addVisitor(llvm::make_unique<MallocBugVisitor>(Sym));
1835 C.emitReport(std::move(R));
1836 }
1837 }
1838
ReportDoubleDelete(CheckerContext & C,SymbolRef Sym) const1839 void MallocChecker::ReportDoubleDelete(CheckerContext &C, SymbolRef Sym) const {
1840
1841 if (!ChecksEnabled[CK_NewDeleteChecker])
1842 return;
1843
1844 Optional<MallocChecker::CheckKind> CheckKind = getCheckIfTracked(C, Sym);
1845 if (!CheckKind.hasValue())
1846 return;
1847
1848 if (ExplodedNode *N = C.generateErrorNode()) {
1849 if (!BT_DoubleDelete)
1850 BT_DoubleDelete.reset(new BugType(CheckNames[CK_NewDeleteChecker],
1851 "Double delete", "Memory Error"));
1852
1853 auto R = llvm::make_unique<BugReport>(
1854 *BT_DoubleDelete, "Attempt to delete released memory", N);
1855
1856 R->markInteresting(Sym);
1857 R->addVisitor(llvm::make_unique<MallocBugVisitor>(Sym));
1858 C.emitReport(std::move(R));
1859 }
1860 }
1861
ReportUseZeroAllocated(CheckerContext & C,SourceRange Range,SymbolRef Sym) const1862 void MallocChecker::ReportUseZeroAllocated(CheckerContext &C,
1863 SourceRange Range,
1864 SymbolRef Sym) const {
1865
1866 if (!ChecksEnabled[CK_MallocChecker] &&
1867 !ChecksEnabled[CK_NewDeleteChecker])
1868 return;
1869
1870 Optional<MallocChecker::CheckKind> CheckKind = getCheckIfTracked(C, Sym);
1871
1872 if (!CheckKind.hasValue())
1873 return;
1874
1875 if (ExplodedNode *N = C.generateErrorNode()) {
1876 if (!BT_UseZerroAllocated[*CheckKind])
1877 BT_UseZerroAllocated[*CheckKind].reset(new BugType(
1878 CheckNames[*CheckKind], "Use of zero allocated", "Memory Error"));
1879
1880 auto R = llvm::make_unique<BugReport>(*BT_UseZerroAllocated[*CheckKind],
1881 "Use of zero-allocated memory", N);
1882
1883 R->addRange(Range);
1884 if (Sym) {
1885 R->markInteresting(Sym);
1886 R->addVisitor(llvm::make_unique<MallocBugVisitor>(Sym));
1887 }
1888 C.emitReport(std::move(R));
1889 }
1890 }
1891
ReallocMem(CheckerContext & C,const CallExpr * CE,bool FreesOnFail,ProgramStateRef State) const1892 ProgramStateRef MallocChecker::ReallocMem(CheckerContext &C,
1893 const CallExpr *CE,
1894 bool FreesOnFail,
1895 ProgramStateRef State) const {
1896 if (!State)
1897 return nullptr;
1898
1899 if (CE->getNumArgs() < 2)
1900 return nullptr;
1901
1902 const Expr *arg0Expr = CE->getArg(0);
1903 const LocationContext *LCtx = C.getLocationContext();
1904 SVal Arg0Val = State->getSVal(arg0Expr, LCtx);
1905 if (!Arg0Val.getAs<DefinedOrUnknownSVal>())
1906 return nullptr;
1907 DefinedOrUnknownSVal arg0Val = Arg0Val.castAs<DefinedOrUnknownSVal>();
1908
1909 SValBuilder &svalBuilder = C.getSValBuilder();
1910
1911 DefinedOrUnknownSVal PtrEQ =
1912 svalBuilder.evalEQ(State, arg0Val, svalBuilder.makeNull());
1913
1914 // Get the size argument. If there is no size arg then give up.
1915 const Expr *Arg1 = CE->getArg(1);
1916 if (!Arg1)
1917 return nullptr;
1918
1919 // Get the value of the size argument.
1920 SVal Arg1ValG = State->getSVal(Arg1, LCtx);
1921 if (!Arg1ValG.getAs<DefinedOrUnknownSVal>())
1922 return nullptr;
1923 DefinedOrUnknownSVal Arg1Val = Arg1ValG.castAs<DefinedOrUnknownSVal>();
1924
1925 // Compare the size argument to 0.
1926 DefinedOrUnknownSVal SizeZero =
1927 svalBuilder.evalEQ(State, Arg1Val,
1928 svalBuilder.makeIntValWithPtrWidth(0, false));
1929
1930 ProgramStateRef StatePtrIsNull, StatePtrNotNull;
1931 std::tie(StatePtrIsNull, StatePtrNotNull) = State->assume(PtrEQ);
1932 ProgramStateRef StateSizeIsZero, StateSizeNotZero;
1933 std::tie(StateSizeIsZero, StateSizeNotZero) = State->assume(SizeZero);
1934 // We only assume exceptional states if they are definitely true; if the
1935 // state is under-constrained, assume regular realloc behavior.
1936 bool PrtIsNull = StatePtrIsNull && !StatePtrNotNull;
1937 bool SizeIsZero = StateSizeIsZero && !StateSizeNotZero;
1938
1939 // If the ptr is NULL and the size is not 0, the call is equivalent to
1940 // malloc(size).
1941 if ( PrtIsNull && !SizeIsZero) {
1942 ProgramStateRef stateMalloc = MallocMemAux(C, CE, CE->getArg(1),
1943 UndefinedVal(), StatePtrIsNull);
1944 return stateMalloc;
1945 }
1946
1947 if (PrtIsNull && SizeIsZero)
1948 return State;
1949
1950 // Get the from and to pointer symbols as in toPtr = realloc(fromPtr, size).
1951 assert(!PrtIsNull);
1952 SymbolRef FromPtr = arg0Val.getAsSymbol();
1953 SVal RetVal = State->getSVal(CE, LCtx);
1954 SymbolRef ToPtr = RetVal.getAsSymbol();
1955 if (!FromPtr || !ToPtr)
1956 return nullptr;
1957
1958 bool ReleasedAllocated = false;
1959
1960 // If the size is 0, free the memory.
1961 if (SizeIsZero)
1962 if (ProgramStateRef stateFree = FreeMemAux(C, CE, StateSizeIsZero, 0,
1963 false, ReleasedAllocated)){
1964 // The semantics of the return value are:
1965 // If size was equal to 0, either NULL or a pointer suitable to be passed
1966 // to free() is returned. We just free the input pointer and do not add
1967 // any constrains on the output pointer.
1968 return stateFree;
1969 }
1970
1971 // Default behavior.
1972 if (ProgramStateRef stateFree =
1973 FreeMemAux(C, CE, State, 0, false, ReleasedAllocated)) {
1974
1975 ProgramStateRef stateRealloc = MallocMemAux(C, CE, CE->getArg(1),
1976 UnknownVal(), stateFree);
1977 if (!stateRealloc)
1978 return nullptr;
1979
1980 ReallocPairKind Kind = RPToBeFreedAfterFailure;
1981 if (FreesOnFail)
1982 Kind = RPIsFreeOnFailure;
1983 else if (!ReleasedAllocated)
1984 Kind = RPDoNotTrackAfterFailure;
1985
1986 // Record the info about the reallocated symbol so that we could properly
1987 // process failed reallocation.
1988 stateRealloc = stateRealloc->set<ReallocPairs>(ToPtr,
1989 ReallocPair(FromPtr, Kind));
1990 // The reallocated symbol should stay alive for as long as the new symbol.
1991 C.getSymbolManager().addSymbolDependency(ToPtr, FromPtr);
1992 return stateRealloc;
1993 }
1994 return nullptr;
1995 }
1996
CallocMem(CheckerContext & C,const CallExpr * CE,ProgramStateRef State)1997 ProgramStateRef MallocChecker::CallocMem(CheckerContext &C, const CallExpr *CE,
1998 ProgramStateRef State) {
1999 if (!State)
2000 return nullptr;
2001
2002 if (CE->getNumArgs() < 2)
2003 return nullptr;
2004
2005 SValBuilder &svalBuilder = C.getSValBuilder();
2006 const LocationContext *LCtx = C.getLocationContext();
2007 SVal count = State->getSVal(CE->getArg(0), LCtx);
2008 SVal elementSize = State->getSVal(CE->getArg(1), LCtx);
2009 SVal TotalSize = svalBuilder.evalBinOp(State, BO_Mul, count, elementSize,
2010 svalBuilder.getContext().getSizeType());
2011 SVal zeroVal = svalBuilder.makeZeroVal(svalBuilder.getContext().CharTy);
2012
2013 return MallocMemAux(C, CE, TotalSize, zeroVal, State);
2014 }
2015
2016 LeakInfo
getAllocationSite(const ExplodedNode * N,SymbolRef Sym,CheckerContext & C) const2017 MallocChecker::getAllocationSite(const ExplodedNode *N, SymbolRef Sym,
2018 CheckerContext &C) const {
2019 const LocationContext *LeakContext = N->getLocationContext();
2020 // Walk the ExplodedGraph backwards and find the first node that referred to
2021 // the tracked symbol.
2022 const ExplodedNode *AllocNode = N;
2023 const MemRegion *ReferenceRegion = nullptr;
2024
2025 while (N) {
2026 ProgramStateRef State = N->getState();
2027 if (!State->get<RegionState>(Sym))
2028 break;
2029
2030 // Find the most recent expression bound to the symbol in the current
2031 // context.
2032 if (!ReferenceRegion) {
2033 if (const MemRegion *MR = C.getLocationRegionIfPostStore(N)) {
2034 SVal Val = State->getSVal(MR);
2035 if (Val.getAsLocSymbol() == Sym) {
2036 const VarRegion* VR = MR->getBaseRegion()->getAs<VarRegion>();
2037 // Do not show local variables belonging to a function other than
2038 // where the error is reported.
2039 if (!VR ||
2040 (VR->getStackFrame() == LeakContext->getCurrentStackFrame()))
2041 ReferenceRegion = MR;
2042 }
2043 }
2044 }
2045
2046 // Allocation node, is the last node in the current or parent context in
2047 // which the symbol was tracked.
2048 const LocationContext *NContext = N->getLocationContext();
2049 if (NContext == LeakContext ||
2050 NContext->isParentOf(LeakContext))
2051 AllocNode = N;
2052 N = N->pred_empty() ? nullptr : *(N->pred_begin());
2053 }
2054
2055 return LeakInfo(AllocNode, ReferenceRegion);
2056 }
2057
reportLeak(SymbolRef Sym,ExplodedNode * N,CheckerContext & C) const2058 void MallocChecker::reportLeak(SymbolRef Sym, ExplodedNode *N,
2059 CheckerContext &C) const {
2060
2061 if (!ChecksEnabled[CK_MallocChecker] &&
2062 !ChecksEnabled[CK_NewDeleteLeaksChecker])
2063 return;
2064
2065 const RefState *RS = C.getState()->get<RegionState>(Sym);
2066 assert(RS && "cannot leak an untracked symbol");
2067 AllocationFamily Family = RS->getAllocationFamily();
2068
2069 if (Family == AF_Alloca)
2070 return;
2071
2072 Optional<MallocChecker::CheckKind>
2073 CheckKind = getCheckIfTracked(Family, true);
2074
2075 if (!CheckKind.hasValue())
2076 return;
2077
2078 assert(N);
2079 if (!BT_Leak[*CheckKind]) {
2080 BT_Leak[*CheckKind].reset(
2081 new BugType(CheckNames[*CheckKind], "Memory leak", "Memory Error"));
2082 // Leaks should not be reported if they are post-dominated by a sink:
2083 // (1) Sinks are higher importance bugs.
2084 // (2) NoReturnFunctionChecker uses sink nodes to represent paths ending
2085 // with __noreturn functions such as assert() or exit(). We choose not
2086 // to report leaks on such paths.
2087 BT_Leak[*CheckKind]->setSuppressOnSink(true);
2088 }
2089
2090 // Most bug reports are cached at the location where they occurred.
2091 // With leaks, we want to unique them by the location where they were
2092 // allocated, and only report a single path.
2093 PathDiagnosticLocation LocUsedForUniqueing;
2094 const ExplodedNode *AllocNode = nullptr;
2095 const MemRegion *Region = nullptr;
2096 std::tie(AllocNode, Region) = getAllocationSite(N, Sym, C);
2097
2098 ProgramPoint P = AllocNode->getLocation();
2099 const Stmt *AllocationStmt = nullptr;
2100 if (Optional<CallExitEnd> Exit = P.getAs<CallExitEnd>())
2101 AllocationStmt = Exit->getCalleeContext()->getCallSite();
2102 else if (Optional<StmtPoint> SP = P.getAs<StmtPoint>())
2103 AllocationStmt = SP->getStmt();
2104 if (AllocationStmt)
2105 LocUsedForUniqueing = PathDiagnosticLocation::createBegin(AllocationStmt,
2106 C.getSourceManager(),
2107 AllocNode->getLocationContext());
2108
2109 SmallString<200> buf;
2110 llvm::raw_svector_ostream os(buf);
2111 if (Region && Region->canPrintPretty()) {
2112 os << "Potential leak of memory pointed to by ";
2113 Region->printPretty(os);
2114 } else {
2115 os << "Potential memory leak";
2116 }
2117
2118 auto R = llvm::make_unique<BugReport>(
2119 *BT_Leak[*CheckKind], os.str(), N, LocUsedForUniqueing,
2120 AllocNode->getLocationContext()->getDecl());
2121 R->markInteresting(Sym);
2122 R->addVisitor(llvm::make_unique<MallocBugVisitor>(Sym, true));
2123 C.emitReport(std::move(R));
2124 }
2125
checkDeadSymbols(SymbolReaper & SymReaper,CheckerContext & C) const2126 void MallocChecker::checkDeadSymbols(SymbolReaper &SymReaper,
2127 CheckerContext &C) const
2128 {
2129 if (!SymReaper.hasDeadSymbols())
2130 return;
2131
2132 ProgramStateRef state = C.getState();
2133 RegionStateTy RS = state->get<RegionState>();
2134 RegionStateTy::Factory &F = state->get_context<RegionState>();
2135
2136 SmallVector<SymbolRef, 2> Errors;
2137 for (RegionStateTy::iterator I = RS.begin(), E = RS.end(); I != E; ++I) {
2138 if (SymReaper.isDead(I->first)) {
2139 if (I->second.isAllocated() || I->second.isAllocatedOfSizeZero())
2140 Errors.push_back(I->first);
2141 // Remove the dead symbol from the map.
2142 RS = F.remove(RS, I->first);
2143
2144 }
2145 }
2146
2147 // Cleanup the Realloc Pairs Map.
2148 ReallocPairsTy RP = state->get<ReallocPairs>();
2149 for (ReallocPairsTy::iterator I = RP.begin(), E = RP.end(); I != E; ++I) {
2150 if (SymReaper.isDead(I->first) ||
2151 SymReaper.isDead(I->second.ReallocatedSym)) {
2152 state = state->remove<ReallocPairs>(I->first);
2153 }
2154 }
2155
2156 // Cleanup the FreeReturnValue Map.
2157 FreeReturnValueTy FR = state->get<FreeReturnValue>();
2158 for (FreeReturnValueTy::iterator I = FR.begin(), E = FR.end(); I != E; ++I) {
2159 if (SymReaper.isDead(I->first) ||
2160 SymReaper.isDead(I->second)) {
2161 state = state->remove<FreeReturnValue>(I->first);
2162 }
2163 }
2164
2165 // Generate leak node.
2166 ExplodedNode *N = C.getPredecessor();
2167 if (!Errors.empty()) {
2168 static CheckerProgramPointTag Tag("MallocChecker", "DeadSymbolsLeak");
2169 N = C.generateNonFatalErrorNode(C.getState(), &Tag);
2170 if (N) {
2171 for (SmallVectorImpl<SymbolRef>::iterator
2172 I = Errors.begin(), E = Errors.end(); I != E; ++I) {
2173 reportLeak(*I, N, C);
2174 }
2175 }
2176 }
2177
2178 C.addTransition(state->set<RegionState>(RS), N);
2179 }
2180
checkPreCall(const CallEvent & Call,CheckerContext & C) const2181 void MallocChecker::checkPreCall(const CallEvent &Call,
2182 CheckerContext &C) const {
2183
2184 if (const CXXDestructorCall *DC = dyn_cast<CXXDestructorCall>(&Call)) {
2185 SymbolRef Sym = DC->getCXXThisVal().getAsSymbol();
2186 if (!Sym || checkDoubleDelete(Sym, C))
2187 return;
2188 }
2189
2190 // We will check for double free in the post visit.
2191 if (const AnyFunctionCall *FC = dyn_cast<AnyFunctionCall>(&Call)) {
2192 const FunctionDecl *FD = FC->getDecl();
2193 if (!FD)
2194 return;
2195
2196 ASTContext &Ctx = C.getASTContext();
2197 if (ChecksEnabled[CK_MallocChecker] &&
2198 (isCMemFunction(FD, Ctx, AF_Malloc, MemoryOperationKind::MOK_Free) ||
2199 isCMemFunction(FD, Ctx, AF_IfNameIndex,
2200 MemoryOperationKind::MOK_Free)))
2201 return;
2202
2203 if (ChecksEnabled[CK_NewDeleteChecker] &&
2204 isStandardNewDelete(FD, Ctx))
2205 return;
2206 }
2207
2208 // Check if the callee of a method is deleted.
2209 if (const CXXInstanceCall *CC = dyn_cast<CXXInstanceCall>(&Call)) {
2210 SymbolRef Sym = CC->getCXXThisVal().getAsSymbol();
2211 if (!Sym || checkUseAfterFree(Sym, C, CC->getCXXThisExpr()))
2212 return;
2213 }
2214
2215 // Check arguments for being used after free.
2216 for (unsigned I = 0, E = Call.getNumArgs(); I != E; ++I) {
2217 SVal ArgSVal = Call.getArgSVal(I);
2218 if (ArgSVal.getAs<Loc>()) {
2219 SymbolRef Sym = ArgSVal.getAsSymbol();
2220 if (!Sym)
2221 continue;
2222 if (checkUseAfterFree(Sym, C, Call.getArgExpr(I)))
2223 return;
2224 }
2225 }
2226 }
2227
checkPreStmt(const ReturnStmt * S,CheckerContext & C) const2228 void MallocChecker::checkPreStmt(const ReturnStmt *S, CheckerContext &C) const {
2229 const Expr *E = S->getRetValue();
2230 if (!E)
2231 return;
2232
2233 // Check if we are returning a symbol.
2234 ProgramStateRef State = C.getState();
2235 SVal RetVal = State->getSVal(E, C.getLocationContext());
2236 SymbolRef Sym = RetVal.getAsSymbol();
2237 if (!Sym)
2238 // If we are returning a field of the allocated struct or an array element,
2239 // the callee could still free the memory.
2240 // TODO: This logic should be a part of generic symbol escape callback.
2241 if (const MemRegion *MR = RetVal.getAsRegion())
2242 if (isa<FieldRegion>(MR) || isa<ElementRegion>(MR))
2243 if (const SymbolicRegion *BMR =
2244 dyn_cast<SymbolicRegion>(MR->getBaseRegion()))
2245 Sym = BMR->getSymbol();
2246
2247 // Check if we are returning freed memory.
2248 if (Sym)
2249 checkUseAfterFree(Sym, C, E);
2250 }
2251
2252 // TODO: Blocks should be either inlined or should call invalidate regions
2253 // upon invocation. After that's in place, special casing here will not be
2254 // needed.
checkPostStmt(const BlockExpr * BE,CheckerContext & C) const2255 void MallocChecker::checkPostStmt(const BlockExpr *BE,
2256 CheckerContext &C) const {
2257
2258 // Scan the BlockDecRefExprs for any object the retain count checker
2259 // may be tracking.
2260 if (!BE->getBlockDecl()->hasCaptures())
2261 return;
2262
2263 ProgramStateRef state = C.getState();
2264 const BlockDataRegion *R =
2265 cast<BlockDataRegion>(state->getSVal(BE,
2266 C.getLocationContext()).getAsRegion());
2267
2268 BlockDataRegion::referenced_vars_iterator I = R->referenced_vars_begin(),
2269 E = R->referenced_vars_end();
2270
2271 if (I == E)
2272 return;
2273
2274 SmallVector<const MemRegion*, 10> Regions;
2275 const LocationContext *LC = C.getLocationContext();
2276 MemRegionManager &MemMgr = C.getSValBuilder().getRegionManager();
2277
2278 for ( ; I != E; ++I) {
2279 const VarRegion *VR = I.getCapturedRegion();
2280 if (VR->getSuperRegion() == R) {
2281 VR = MemMgr.getVarRegion(VR->getDecl(), LC);
2282 }
2283 Regions.push_back(VR);
2284 }
2285
2286 state =
2287 state->scanReachableSymbols<StopTrackingCallback>(Regions.data(),
2288 Regions.data() + Regions.size()).getState();
2289 C.addTransition(state);
2290 }
2291
isReleased(SymbolRef Sym,CheckerContext & C) const2292 bool MallocChecker::isReleased(SymbolRef Sym, CheckerContext &C) const {
2293 assert(Sym);
2294 const RefState *RS = C.getState()->get<RegionState>(Sym);
2295 return (RS && RS->isReleased());
2296 }
2297
checkUseAfterFree(SymbolRef Sym,CheckerContext & C,const Stmt * S) const2298 bool MallocChecker::checkUseAfterFree(SymbolRef Sym, CheckerContext &C,
2299 const Stmt *S) const {
2300
2301 if (isReleased(Sym, C)) {
2302 ReportUseAfterFree(C, S->getSourceRange(), Sym);
2303 return true;
2304 }
2305
2306 return false;
2307 }
2308
checkUseZeroAllocated(SymbolRef Sym,CheckerContext & C,const Stmt * S) const2309 void MallocChecker::checkUseZeroAllocated(SymbolRef Sym, CheckerContext &C,
2310 const Stmt *S) const {
2311 assert(Sym);
2312
2313 if (const RefState *RS = C.getState()->get<RegionState>(Sym)) {
2314 if (RS->isAllocatedOfSizeZero())
2315 ReportUseZeroAllocated(C, RS->getStmt()->getSourceRange(), Sym);
2316 }
2317 else if (C.getState()->contains<ReallocSizeZeroSymbols>(Sym)) {
2318 ReportUseZeroAllocated(C, S->getSourceRange(), Sym);
2319 }
2320 }
2321
checkDoubleDelete(SymbolRef Sym,CheckerContext & C) const2322 bool MallocChecker::checkDoubleDelete(SymbolRef Sym, CheckerContext &C) const {
2323
2324 if (isReleased(Sym, C)) {
2325 ReportDoubleDelete(C, Sym);
2326 return true;
2327 }
2328 return false;
2329 }
2330
2331 // Check if the location is a freed symbolic region.
checkLocation(SVal l,bool isLoad,const Stmt * S,CheckerContext & C) const2332 void MallocChecker::checkLocation(SVal l, bool isLoad, const Stmt *S,
2333 CheckerContext &C) const {
2334 SymbolRef Sym = l.getLocSymbolInBase();
2335 if (Sym) {
2336 checkUseAfterFree(Sym, C, S);
2337 checkUseZeroAllocated(Sym, C, S);
2338 }
2339 }
2340
2341 // If a symbolic region is assumed to NULL (or another constant), stop tracking
2342 // it - assuming that allocation failed on this path.
evalAssume(ProgramStateRef state,SVal Cond,bool Assumption) const2343 ProgramStateRef MallocChecker::evalAssume(ProgramStateRef state,
2344 SVal Cond,
2345 bool Assumption) const {
2346 RegionStateTy RS = state->get<RegionState>();
2347 for (RegionStateTy::iterator I = RS.begin(), E = RS.end(); I != E; ++I) {
2348 // If the symbol is assumed to be NULL, remove it from consideration.
2349 ConstraintManager &CMgr = state->getConstraintManager();
2350 ConditionTruthVal AllocFailed = CMgr.isNull(state, I.getKey());
2351 if (AllocFailed.isConstrainedTrue())
2352 state = state->remove<RegionState>(I.getKey());
2353 }
2354
2355 // Realloc returns 0 when reallocation fails, which means that we should
2356 // restore the state of the pointer being reallocated.
2357 ReallocPairsTy RP = state->get<ReallocPairs>();
2358 for (ReallocPairsTy::iterator I = RP.begin(), E = RP.end(); I != E; ++I) {
2359 // If the symbol is assumed to be NULL, remove it from consideration.
2360 ConstraintManager &CMgr = state->getConstraintManager();
2361 ConditionTruthVal AllocFailed = CMgr.isNull(state, I.getKey());
2362 if (!AllocFailed.isConstrainedTrue())
2363 continue;
2364
2365 SymbolRef ReallocSym = I.getData().ReallocatedSym;
2366 if (const RefState *RS = state->get<RegionState>(ReallocSym)) {
2367 if (RS->isReleased()) {
2368 if (I.getData().Kind == RPToBeFreedAfterFailure)
2369 state = state->set<RegionState>(ReallocSym,
2370 RefState::getAllocated(RS->getAllocationFamily(), RS->getStmt()));
2371 else if (I.getData().Kind == RPDoNotTrackAfterFailure)
2372 state = state->remove<RegionState>(ReallocSym);
2373 else
2374 assert(I.getData().Kind == RPIsFreeOnFailure);
2375 }
2376 }
2377 state = state->remove<ReallocPairs>(I.getKey());
2378 }
2379
2380 return state;
2381 }
2382
mayFreeAnyEscapedMemoryOrIsModeledExplicitly(const CallEvent * Call,ProgramStateRef State,SymbolRef & EscapingSymbol) const2383 bool MallocChecker::mayFreeAnyEscapedMemoryOrIsModeledExplicitly(
2384 const CallEvent *Call,
2385 ProgramStateRef State,
2386 SymbolRef &EscapingSymbol) const {
2387 assert(Call);
2388 EscapingSymbol = nullptr;
2389
2390 // For now, assume that any C++ or block call can free memory.
2391 // TODO: If we want to be more optimistic here, we'll need to make sure that
2392 // regions escape to C++ containers. They seem to do that even now, but for
2393 // mysterious reasons.
2394 if (!(isa<SimpleFunctionCall>(Call) || isa<ObjCMethodCall>(Call)))
2395 return true;
2396
2397 // Check Objective-C messages by selector name.
2398 if (const ObjCMethodCall *Msg = dyn_cast<ObjCMethodCall>(Call)) {
2399 // If it's not a framework call, or if it takes a callback, assume it
2400 // can free memory.
2401 if (!Call->isInSystemHeader() || Call->argumentsMayEscape())
2402 return true;
2403
2404 // If it's a method we know about, handle it explicitly post-call.
2405 // This should happen before the "freeWhenDone" check below.
2406 if (isKnownDeallocObjCMethodName(*Msg))
2407 return false;
2408
2409 // If there's a "freeWhenDone" parameter, but the method isn't one we know
2410 // about, we can't be sure that the object will use free() to deallocate the
2411 // memory, so we can't model it explicitly. The best we can do is use it to
2412 // decide whether the pointer escapes.
2413 if (Optional<bool> FreeWhenDone = getFreeWhenDoneArg(*Msg))
2414 return *FreeWhenDone;
2415
2416 // If the first selector piece ends with "NoCopy", and there is no
2417 // "freeWhenDone" parameter set to zero, we know ownership is being
2418 // transferred. Again, though, we can't be sure that the object will use
2419 // free() to deallocate the memory, so we can't model it explicitly.
2420 StringRef FirstSlot = Msg->getSelector().getNameForSlot(0);
2421 if (FirstSlot.endswith("NoCopy"))
2422 return true;
2423
2424 // If the first selector starts with addPointer, insertPointer,
2425 // or replacePointer, assume we are dealing with NSPointerArray or similar.
2426 // This is similar to C++ containers (vector); we still might want to check
2427 // that the pointers get freed by following the container itself.
2428 if (FirstSlot.startswith("addPointer") ||
2429 FirstSlot.startswith("insertPointer") ||
2430 FirstSlot.startswith("replacePointer") ||
2431 FirstSlot.equals("valueWithPointer")) {
2432 return true;
2433 }
2434
2435 // We should escape receiver on call to 'init'. This is especially relevant
2436 // to the receiver, as the corresponding symbol is usually not referenced
2437 // after the call.
2438 if (Msg->getMethodFamily() == OMF_init) {
2439 EscapingSymbol = Msg->getReceiverSVal().getAsSymbol();
2440 return true;
2441 }
2442
2443 // Otherwise, assume that the method does not free memory.
2444 // Most framework methods do not free memory.
2445 return false;
2446 }
2447
2448 // At this point the only thing left to handle is straight function calls.
2449 const FunctionDecl *FD = cast<SimpleFunctionCall>(Call)->getDecl();
2450 if (!FD)
2451 return true;
2452
2453 ASTContext &ASTC = State->getStateManager().getContext();
2454
2455 // If it's one of the allocation functions we can reason about, we model
2456 // its behavior explicitly.
2457 if (isMemFunction(FD, ASTC))
2458 return false;
2459
2460 // If it's not a system call, assume it frees memory.
2461 if (!Call->isInSystemHeader())
2462 return true;
2463
2464 // White list the system functions whose arguments escape.
2465 const IdentifierInfo *II = FD->getIdentifier();
2466 if (!II)
2467 return true;
2468 StringRef FName = II->getName();
2469
2470 // White list the 'XXXNoCopy' CoreFoundation functions.
2471 // We specifically check these before
2472 if (FName.endswith("NoCopy")) {
2473 // Look for the deallocator argument. We know that the memory ownership
2474 // is not transferred only if the deallocator argument is
2475 // 'kCFAllocatorNull'.
2476 for (unsigned i = 1; i < Call->getNumArgs(); ++i) {
2477 const Expr *ArgE = Call->getArgExpr(i)->IgnoreParenCasts();
2478 if (const DeclRefExpr *DE = dyn_cast<DeclRefExpr>(ArgE)) {
2479 StringRef DeallocatorName = DE->getFoundDecl()->getName();
2480 if (DeallocatorName == "kCFAllocatorNull")
2481 return false;
2482 }
2483 }
2484 return true;
2485 }
2486
2487 // Associating streams with malloced buffers. The pointer can escape if
2488 // 'closefn' is specified (and if that function does free memory),
2489 // but it will not if closefn is not specified.
2490 // Currently, we do not inspect the 'closefn' function (PR12101).
2491 if (FName == "funopen")
2492 if (Call->getNumArgs() >= 4 && Call->getArgSVal(4).isConstant(0))
2493 return false;
2494
2495 // Do not warn on pointers passed to 'setbuf' when used with std streams,
2496 // these leaks might be intentional when setting the buffer for stdio.
2497 // http://stackoverflow.com/questions/2671151/who-frees-setvbuf-buffer
2498 if (FName == "setbuf" || FName =="setbuffer" ||
2499 FName == "setlinebuf" || FName == "setvbuf") {
2500 if (Call->getNumArgs() >= 1) {
2501 const Expr *ArgE = Call->getArgExpr(0)->IgnoreParenCasts();
2502 if (const DeclRefExpr *ArgDRE = dyn_cast<DeclRefExpr>(ArgE))
2503 if (const VarDecl *D = dyn_cast<VarDecl>(ArgDRE->getDecl()))
2504 if (D->getCanonicalDecl()->getName().find("std") != StringRef::npos)
2505 return true;
2506 }
2507 }
2508
2509 // A bunch of other functions which either take ownership of a pointer or
2510 // wrap the result up in a struct or object, meaning it can be freed later.
2511 // (See RetainCountChecker.) Not all the parameters here are invalidated,
2512 // but the Malloc checker cannot differentiate between them. The right way
2513 // of doing this would be to implement a pointer escapes callback.
2514 if (FName == "CGBitmapContextCreate" ||
2515 FName == "CGBitmapContextCreateWithData" ||
2516 FName == "CVPixelBufferCreateWithBytes" ||
2517 FName == "CVPixelBufferCreateWithPlanarBytes" ||
2518 FName == "OSAtomicEnqueue") {
2519 return true;
2520 }
2521
2522 if (FName == "postEvent" &&
2523 FD->getQualifiedNameAsString() == "QCoreApplication::postEvent") {
2524 return true;
2525 }
2526
2527 if (FName == "postEvent" &&
2528 FD->getQualifiedNameAsString() == "QCoreApplication::postEvent") {
2529 return true;
2530 }
2531
2532 // Handle cases where we know a buffer's /address/ can escape.
2533 // Note that the above checks handle some special cases where we know that
2534 // even though the address escapes, it's still our responsibility to free the
2535 // buffer.
2536 if (Call->argumentsMayEscape())
2537 return true;
2538
2539 // Otherwise, assume that the function does not free memory.
2540 // Most system calls do not free the memory.
2541 return false;
2542 }
2543
retTrue(const RefState * RS)2544 static bool retTrue(const RefState *RS) {
2545 return true;
2546 }
2547
checkIfNewOrNewArrayFamily(const RefState * RS)2548 static bool checkIfNewOrNewArrayFamily(const RefState *RS) {
2549 return (RS->getAllocationFamily() == AF_CXXNewArray ||
2550 RS->getAllocationFamily() == AF_CXXNew);
2551 }
2552
checkPointerEscape(ProgramStateRef State,const InvalidatedSymbols & Escaped,const CallEvent * Call,PointerEscapeKind Kind) const2553 ProgramStateRef MallocChecker::checkPointerEscape(ProgramStateRef State,
2554 const InvalidatedSymbols &Escaped,
2555 const CallEvent *Call,
2556 PointerEscapeKind Kind) const {
2557 return checkPointerEscapeAux(State, Escaped, Call, Kind, &retTrue);
2558 }
2559
checkConstPointerEscape(ProgramStateRef State,const InvalidatedSymbols & Escaped,const CallEvent * Call,PointerEscapeKind Kind) const2560 ProgramStateRef MallocChecker::checkConstPointerEscape(ProgramStateRef State,
2561 const InvalidatedSymbols &Escaped,
2562 const CallEvent *Call,
2563 PointerEscapeKind Kind) const {
2564 return checkPointerEscapeAux(State, Escaped, Call, Kind,
2565 &checkIfNewOrNewArrayFamily);
2566 }
2567
checkPointerEscapeAux(ProgramStateRef State,const InvalidatedSymbols & Escaped,const CallEvent * Call,PointerEscapeKind Kind,bool (* CheckRefState)(const RefState *)) const2568 ProgramStateRef MallocChecker::checkPointerEscapeAux(ProgramStateRef State,
2569 const InvalidatedSymbols &Escaped,
2570 const CallEvent *Call,
2571 PointerEscapeKind Kind,
2572 bool(*CheckRefState)(const RefState*)) const {
2573 // If we know that the call does not free memory, or we want to process the
2574 // call later, keep tracking the top level arguments.
2575 SymbolRef EscapingSymbol = nullptr;
2576 if (Kind == PSK_DirectEscapeOnCall &&
2577 !mayFreeAnyEscapedMemoryOrIsModeledExplicitly(Call, State,
2578 EscapingSymbol) &&
2579 !EscapingSymbol) {
2580 return State;
2581 }
2582
2583 for (InvalidatedSymbols::const_iterator I = Escaped.begin(),
2584 E = Escaped.end();
2585 I != E; ++I) {
2586 SymbolRef sym = *I;
2587
2588 if (EscapingSymbol && EscapingSymbol != sym)
2589 continue;
2590
2591 if (const RefState *RS = State->get<RegionState>(sym)) {
2592 if ((RS->isAllocated() || RS->isAllocatedOfSizeZero()) &&
2593 CheckRefState(RS)) {
2594 State = State->remove<RegionState>(sym);
2595 State = State->set<RegionState>(sym, RefState::getEscaped(RS));
2596 }
2597 }
2598 }
2599 return State;
2600 }
2601
findFailedReallocSymbol(ProgramStateRef currState,ProgramStateRef prevState)2602 static SymbolRef findFailedReallocSymbol(ProgramStateRef currState,
2603 ProgramStateRef prevState) {
2604 ReallocPairsTy currMap = currState->get<ReallocPairs>();
2605 ReallocPairsTy prevMap = prevState->get<ReallocPairs>();
2606
2607 for (ReallocPairsTy::iterator I = prevMap.begin(), E = prevMap.end();
2608 I != E; ++I) {
2609 SymbolRef sym = I.getKey();
2610 if (!currMap.lookup(sym))
2611 return sym;
2612 }
2613
2614 return nullptr;
2615 }
2616
2617 PathDiagnosticPiece *
VisitNode(const ExplodedNode * N,const ExplodedNode * PrevN,BugReporterContext & BRC,BugReport & BR)2618 MallocChecker::MallocBugVisitor::VisitNode(const ExplodedNode *N,
2619 const ExplodedNode *PrevN,
2620 BugReporterContext &BRC,
2621 BugReport &BR) {
2622 ProgramStateRef state = N->getState();
2623 ProgramStateRef statePrev = PrevN->getState();
2624
2625 const RefState *RS = state->get<RegionState>(Sym);
2626 const RefState *RSPrev = statePrev->get<RegionState>(Sym);
2627 if (!RS)
2628 return nullptr;
2629
2630 const Stmt *S = nullptr;
2631 const char *Msg = nullptr;
2632 StackHintGeneratorForSymbol *StackHint = nullptr;
2633
2634 // Retrieve the associated statement.
2635 ProgramPoint ProgLoc = N->getLocation();
2636 if (Optional<StmtPoint> SP = ProgLoc.getAs<StmtPoint>()) {
2637 S = SP->getStmt();
2638 } else if (Optional<CallExitEnd> Exit = ProgLoc.getAs<CallExitEnd>()) {
2639 S = Exit->getCalleeContext()->getCallSite();
2640 } else if (Optional<BlockEdge> Edge = ProgLoc.getAs<BlockEdge>()) {
2641 // If an assumption was made on a branch, it should be caught
2642 // here by looking at the state transition.
2643 S = Edge->getSrc()->getTerminator();
2644 }
2645
2646 if (!S)
2647 return nullptr;
2648
2649 // FIXME: We will eventually need to handle non-statement-based events
2650 // (__attribute__((cleanup))).
2651
2652 // Find out if this is an interesting point and what is the kind.
2653 if (Mode == Normal) {
2654 if (isAllocated(RS, RSPrev, S)) {
2655 Msg = "Memory is allocated";
2656 StackHint = new StackHintGeneratorForSymbol(Sym,
2657 "Returned allocated memory");
2658 } else if (isReleased(RS, RSPrev, S)) {
2659 Msg = "Memory is released";
2660 StackHint = new StackHintGeneratorForSymbol(Sym,
2661 "Returning; memory was released");
2662 } else if (isRelinquished(RS, RSPrev, S)) {
2663 Msg = "Memory ownership is transferred";
2664 StackHint = new StackHintGeneratorForSymbol(Sym, "");
2665 } else if (isReallocFailedCheck(RS, RSPrev, S)) {
2666 Mode = ReallocationFailed;
2667 Msg = "Reallocation failed";
2668 StackHint = new StackHintGeneratorForReallocationFailed(Sym,
2669 "Reallocation failed");
2670
2671 if (SymbolRef sym = findFailedReallocSymbol(state, statePrev)) {
2672 // Is it possible to fail two reallocs WITHOUT testing in between?
2673 assert((!FailedReallocSymbol || FailedReallocSymbol == sym) &&
2674 "We only support one failed realloc at a time.");
2675 BR.markInteresting(sym);
2676 FailedReallocSymbol = sym;
2677 }
2678 }
2679
2680 // We are in a special mode if a reallocation failed later in the path.
2681 } else if (Mode == ReallocationFailed) {
2682 assert(FailedReallocSymbol && "No symbol to look for.");
2683
2684 // Is this is the first appearance of the reallocated symbol?
2685 if (!statePrev->get<RegionState>(FailedReallocSymbol)) {
2686 // We're at the reallocation point.
2687 Msg = "Attempt to reallocate memory";
2688 StackHint = new StackHintGeneratorForSymbol(Sym,
2689 "Returned reallocated memory");
2690 FailedReallocSymbol = nullptr;
2691 Mode = Normal;
2692 }
2693 }
2694
2695 if (!Msg)
2696 return nullptr;
2697 assert(StackHint);
2698
2699 // Generate the extra diagnostic.
2700 PathDiagnosticLocation Pos(S, BRC.getSourceManager(),
2701 N->getLocationContext());
2702 return new PathDiagnosticEventPiece(Pos, Msg, true, StackHint);
2703 }
2704
printState(raw_ostream & Out,ProgramStateRef State,const char * NL,const char * Sep) const2705 void MallocChecker::printState(raw_ostream &Out, ProgramStateRef State,
2706 const char *NL, const char *Sep) const {
2707
2708 RegionStateTy RS = State->get<RegionState>();
2709
2710 if (!RS.isEmpty()) {
2711 Out << Sep << "MallocChecker :" << NL;
2712 for (RegionStateTy::iterator I = RS.begin(), E = RS.end(); I != E; ++I) {
2713 const RefState *RefS = State->get<RegionState>(I.getKey());
2714 AllocationFamily Family = RefS->getAllocationFamily();
2715 Optional<MallocChecker::CheckKind> CheckKind = getCheckIfTracked(Family);
2716 if (!CheckKind.hasValue())
2717 CheckKind = getCheckIfTracked(Family, true);
2718
2719 I.getKey()->dumpToStream(Out);
2720 Out << " : ";
2721 I.getData().dump(Out);
2722 if (CheckKind.hasValue())
2723 Out << " (" << CheckNames[*CheckKind].getName() << ")";
2724 Out << NL;
2725 }
2726 }
2727 }
2728
registerNewDeleteLeaksChecker(CheckerManager & mgr)2729 void ento::registerNewDeleteLeaksChecker(CheckerManager &mgr) {
2730 registerCStringCheckerBasic(mgr);
2731 MallocChecker *checker = mgr.registerChecker<MallocChecker>();
2732 checker->IsOptimistic = mgr.getAnalyzerOptions().getBooleanOption(
2733 "Optimistic", false, checker);
2734 checker->ChecksEnabled[MallocChecker::CK_NewDeleteLeaksChecker] = true;
2735 checker->CheckNames[MallocChecker::CK_NewDeleteLeaksChecker] =
2736 mgr.getCurrentCheckName();
2737 // We currently treat NewDeleteLeaks checker as a subchecker of NewDelete
2738 // checker.
2739 if (!checker->ChecksEnabled[MallocChecker::CK_NewDeleteChecker])
2740 checker->ChecksEnabled[MallocChecker::CK_NewDeleteChecker] = true;
2741 }
2742
2743 #define REGISTER_CHECKER(name) \
2744 void ento::register##name(CheckerManager &mgr) { \
2745 registerCStringCheckerBasic(mgr); \
2746 MallocChecker *checker = mgr.registerChecker<MallocChecker>(); \
2747 checker->IsOptimistic = mgr.getAnalyzerOptions().getBooleanOption( \
2748 "Optimistic", false, checker); \
2749 checker->ChecksEnabled[MallocChecker::CK_##name] = true; \
2750 checker->CheckNames[MallocChecker::CK_##name] = mgr.getCurrentCheckName(); \
2751 }
2752
2753 REGISTER_CHECKER(MallocChecker)
2754 REGISTER_CHECKER(NewDeleteChecker)
2755 REGISTER_CHECKER(MismatchedDeallocatorChecker)
2756