1 /*
2 * Copyright (C) 2007 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17 #define LOG_TAG "MemoryDealer"
18
19 #include <binder/MemoryDealer.h>
20 #include <binder/IPCThreadState.h>
21 #include <binder/MemoryBase.h>
22
23 #include <utils/Log.h>
24 #include <utils/SortedVector.h>
25 #include <utils/String8.h>
26 #include <utils/threads.h>
27
28 #include <stdint.h>
29 #include <stdio.h>
30 #include <stdlib.h>
31 #include <fcntl.h>
32 #include <unistd.h>
33 #include <errno.h>
34 #include <string.h>
35
36 #include <sys/stat.h>
37 #include <sys/types.h>
38 #include <sys/mman.h>
39 #include <sys/file.h>
40
41 namespace android {
42 // ----------------------------------------------------------------------------
43
44 /*
45 * A simple templatized doubly linked-list implementation
46 */
47
48 template <typename NODE>
49 class LinkedList
50 {
51 NODE* mFirst;
52 NODE* mLast;
53
54 public:
LinkedList()55 LinkedList() : mFirst(0), mLast(0) { }
isEmpty() const56 bool isEmpty() const { return mFirst == 0; }
head() const57 NODE const* head() const { return mFirst; }
head()58 NODE* head() { return mFirst; }
tail() const59 NODE const* tail() const { return mLast; }
tail()60 NODE* tail() { return mLast; }
61
insertAfter(NODE * node,NODE * newNode)62 void insertAfter(NODE* node, NODE* newNode) {
63 newNode->prev = node;
64 newNode->next = node->next;
65 if (node->next == 0) mLast = newNode;
66 else node->next->prev = newNode;
67 node->next = newNode;
68 }
69
insertBefore(NODE * node,NODE * newNode)70 void insertBefore(NODE* node, NODE* newNode) {
71 newNode->prev = node->prev;
72 newNode->next = node;
73 if (node->prev == 0) mFirst = newNode;
74 else node->prev->next = newNode;
75 node->prev = newNode;
76 }
77
insertHead(NODE * newNode)78 void insertHead(NODE* newNode) {
79 if (mFirst == 0) {
80 mFirst = mLast = newNode;
81 newNode->prev = newNode->next = 0;
82 } else {
83 newNode->prev = 0;
84 newNode->next = mFirst;
85 mFirst->prev = newNode;
86 mFirst = newNode;
87 }
88 }
89
insertTail(NODE * newNode)90 void insertTail(NODE* newNode) {
91 if (mLast == 0) {
92 insertHead(newNode);
93 } else {
94 newNode->prev = mLast;
95 newNode->next = 0;
96 mLast->next = newNode;
97 mLast = newNode;
98 }
99 }
100
remove(NODE * node)101 NODE* remove(NODE* node) {
102 if (node->prev == 0) mFirst = node->next;
103 else node->prev->next = node->next;
104 if (node->next == 0) mLast = node->prev;
105 else node->next->prev = node->prev;
106 return node;
107 }
108 };
109
110 // ----------------------------------------------------------------------------
111
112 class Allocation : public MemoryBase {
113 public:
114 Allocation(const sp<MemoryDealer>& dealer,
115 const sp<IMemoryHeap>& heap, ssize_t offset, size_t size);
116 virtual ~Allocation();
117 private:
118 sp<MemoryDealer> mDealer;
119 };
120
121 // ----------------------------------------------------------------------------
122
123 class SimpleBestFitAllocator
124 {
125 enum {
126 PAGE_ALIGNED = 0x00000001
127 };
128 public:
129 explicit SimpleBestFitAllocator(size_t size);
130 ~SimpleBestFitAllocator();
131
132 size_t allocate(size_t size, uint32_t flags = 0);
133 status_t deallocate(size_t offset);
134 size_t size() const;
135 void dump(const char* what) const;
136 void dump(String8& res, const char* what) const;
137
getAllocationAlignment()138 static size_t getAllocationAlignment() { return kMemoryAlign; }
139
140 private:
141
142 struct chunk_t {
chunk_tandroid::SimpleBestFitAllocator::chunk_t143 chunk_t(size_t start, size_t size)
144 : start(start), size(size), free(1), prev(0), next(0) {
145 }
146 size_t start;
147 size_t size : 28;
148 int free : 4;
149 mutable chunk_t* prev;
150 mutable chunk_t* next;
151 };
152
153 ssize_t alloc(size_t size, uint32_t flags);
154 chunk_t* dealloc(size_t start);
155 void dump_l(const char* what) const;
156 void dump_l(String8& res, const char* what) const;
157
158 static const int kMemoryAlign;
159 mutable Mutex mLock;
160 LinkedList<chunk_t> mList;
161 size_t mHeapSize;
162 };
163
164 // ----------------------------------------------------------------------------
165
Allocation(const sp<MemoryDealer> & dealer,const sp<IMemoryHeap> & heap,ssize_t offset,size_t size)166 Allocation::Allocation(
167 const sp<MemoryDealer>& dealer,
168 const sp<IMemoryHeap>& heap, ssize_t offset, size_t size)
169 : MemoryBase(heap, offset, size), mDealer(dealer)
170 {
171 #ifndef NDEBUG
172 void* const start_ptr = (void*)(intptr_t(heap->base()) + offset);
173 memset(start_ptr, 0xda, size);
174 #endif
175 }
176
~Allocation()177 Allocation::~Allocation()
178 {
179 size_t freedOffset = getOffset();
180 size_t freedSize = getSize();
181 if (freedSize) {
182 /* NOTE: it's VERY important to not free allocations of size 0 because
183 * they're special as they don't have any record in the allocator
184 * and could alias some real allocation (their offset is zero). */
185
186 // keep the size to unmap in excess
187 size_t pagesize = getpagesize();
188 size_t start = freedOffset;
189 size_t end = start + freedSize;
190 start &= ~(pagesize-1);
191 end = (end + pagesize-1) & ~(pagesize-1);
192
193 // give back to the kernel the pages we don't need
194 size_t free_start = freedOffset;
195 size_t free_end = free_start + freedSize;
196 if (start < free_start)
197 start = free_start;
198 if (end > free_end)
199 end = free_end;
200 start = (start + pagesize-1) & ~(pagesize-1);
201 end &= ~(pagesize-1);
202
203 if (start < end) {
204 void* const start_ptr = (void*)(intptr_t(getHeap()->base()) + start);
205 size_t size = end-start;
206
207 #ifndef NDEBUG
208 memset(start_ptr, 0xdf, size);
209 #endif
210
211 // MADV_REMOVE is not defined on Dapper based Goobuntu
212 #ifdef MADV_REMOVE
213 if (size) {
214 int err = madvise(start_ptr, size, MADV_REMOVE);
215 ALOGW_IF(err, "madvise(%p, %zu, MADV_REMOVE) returned %s",
216 start_ptr, size, err<0 ? strerror(errno) : "Ok");
217 }
218 #endif
219 }
220
221 // This should be done after madvise(MADV_REMOVE), otherwise madvise()
222 // might kick out the memory region that's allocated and/or written
223 // right after the deallocation.
224 mDealer->deallocate(freedOffset);
225 }
226 }
227
228 // ----------------------------------------------------------------------------
229
MemoryDealer(size_t size,const char * name,uint32_t flags)230 MemoryDealer::MemoryDealer(size_t size, const char* name, uint32_t flags)
231 : mHeap(new MemoryHeapBase(size, flags, name)),
232 mAllocator(new SimpleBestFitAllocator(size))
233 {
234 }
235
~MemoryDealer()236 MemoryDealer::~MemoryDealer()
237 {
238 delete mAllocator;
239 }
240
allocate(size_t size)241 sp<IMemory> MemoryDealer::allocate(size_t size)
242 {
243 sp<IMemory> memory;
244 const ssize_t offset = allocator()->allocate(size);
245 if (offset >= 0) {
246 memory = new Allocation(this, heap(), offset, size);
247 }
248 return memory;
249 }
250
deallocate(size_t offset)251 void MemoryDealer::deallocate(size_t offset)
252 {
253 allocator()->deallocate(offset);
254 }
255
dump(const char * what) const256 void MemoryDealer::dump(const char* what) const
257 {
258 allocator()->dump(what);
259 }
260
heap() const261 const sp<IMemoryHeap>& MemoryDealer::heap() const {
262 return mHeap;
263 }
264
allocator() const265 SimpleBestFitAllocator* MemoryDealer::allocator() const {
266 return mAllocator;
267 }
268
269 // static
getAllocationAlignment()270 size_t MemoryDealer::getAllocationAlignment()
271 {
272 return SimpleBestFitAllocator::getAllocationAlignment();
273 }
274
275 // ----------------------------------------------------------------------------
276
277 // align all the memory blocks on a cache-line boundary
278 const int SimpleBestFitAllocator::kMemoryAlign = 32;
279
SimpleBestFitAllocator(size_t size)280 SimpleBestFitAllocator::SimpleBestFitAllocator(size_t size)
281 {
282 size_t pagesize = getpagesize();
283 mHeapSize = ((size + pagesize-1) & ~(pagesize-1));
284
285 chunk_t* node = new chunk_t(0, mHeapSize / kMemoryAlign);
286 mList.insertHead(node);
287 }
288
~SimpleBestFitAllocator()289 SimpleBestFitAllocator::~SimpleBestFitAllocator()
290 {
291 while(!mList.isEmpty()) {
292 delete mList.remove(mList.head());
293 }
294 }
295
size() const296 size_t SimpleBestFitAllocator::size() const
297 {
298 return mHeapSize;
299 }
300
allocate(size_t size,uint32_t flags)301 size_t SimpleBestFitAllocator::allocate(size_t size, uint32_t flags)
302 {
303 Mutex::Autolock _l(mLock);
304 ssize_t offset = alloc(size, flags);
305 return offset;
306 }
307
deallocate(size_t offset)308 status_t SimpleBestFitAllocator::deallocate(size_t offset)
309 {
310 Mutex::Autolock _l(mLock);
311 chunk_t const * const freed = dealloc(offset);
312 if (freed) {
313 return NO_ERROR;
314 }
315 return NAME_NOT_FOUND;
316 }
317
alloc(size_t size,uint32_t flags)318 ssize_t SimpleBestFitAllocator::alloc(size_t size, uint32_t flags)
319 {
320 if (size == 0) {
321 return 0;
322 }
323 size = (size + kMemoryAlign-1) / kMemoryAlign;
324 chunk_t* free_chunk = 0;
325 chunk_t* cur = mList.head();
326
327 size_t pagesize = getpagesize();
328 while (cur) {
329 int extra = 0;
330 if (flags & PAGE_ALIGNED)
331 extra = ( -cur->start & ((pagesize/kMemoryAlign)-1) ) ;
332
333 // best fit
334 if (cur->free && (cur->size >= (size+extra))) {
335 if ((!free_chunk) || (cur->size < free_chunk->size)) {
336 free_chunk = cur;
337 }
338 if (cur->size == size) {
339 break;
340 }
341 }
342 cur = cur->next;
343 }
344
345 if (free_chunk) {
346 const size_t free_size = free_chunk->size;
347 free_chunk->free = 0;
348 free_chunk->size = size;
349 if (free_size > size) {
350 int extra = 0;
351 if (flags & PAGE_ALIGNED)
352 extra = ( -free_chunk->start & ((pagesize/kMemoryAlign)-1) ) ;
353 if (extra) {
354 chunk_t* split = new chunk_t(free_chunk->start, extra);
355 free_chunk->start += extra;
356 mList.insertBefore(free_chunk, split);
357 }
358
359 ALOGE_IF((flags&PAGE_ALIGNED) &&
360 ((free_chunk->start*kMemoryAlign)&(pagesize-1)),
361 "PAGE_ALIGNED requested, but page is not aligned!!!");
362
363 const ssize_t tail_free = free_size - (size+extra);
364 if (tail_free > 0) {
365 chunk_t* split = new chunk_t(
366 free_chunk->start + free_chunk->size, tail_free);
367 mList.insertAfter(free_chunk, split);
368 }
369 }
370 return (free_chunk->start)*kMemoryAlign;
371 }
372 return NO_MEMORY;
373 }
374
dealloc(size_t start)375 SimpleBestFitAllocator::chunk_t* SimpleBestFitAllocator::dealloc(size_t start)
376 {
377 start = start / kMemoryAlign;
378 chunk_t* cur = mList.head();
379 while (cur) {
380 if (cur->start == start) {
381 LOG_FATAL_IF(cur->free,
382 "block at offset 0x%08lX of size 0x%08lX already freed",
383 cur->start*kMemoryAlign, cur->size*kMemoryAlign);
384
385 // merge freed blocks together
386 chunk_t* freed = cur;
387 cur->free = 1;
388 do {
389 chunk_t* const p = cur->prev;
390 chunk_t* const n = cur->next;
391 if (p && (p->free || !cur->size)) {
392 freed = p;
393 p->size += cur->size;
394 mList.remove(cur);
395 delete cur;
396 }
397 cur = n;
398 } while (cur && cur->free);
399
400 #ifndef NDEBUG
401 if (!freed->free) {
402 dump_l("dealloc (!freed->free)");
403 }
404 #endif
405 LOG_FATAL_IF(!freed->free,
406 "freed block at offset 0x%08lX of size 0x%08lX is not free!",
407 freed->start * kMemoryAlign, freed->size * kMemoryAlign);
408
409 return freed;
410 }
411 cur = cur->next;
412 }
413 return 0;
414 }
415
dump(const char * what) const416 void SimpleBestFitAllocator::dump(const char* what) const
417 {
418 Mutex::Autolock _l(mLock);
419 dump_l(what);
420 }
421
dump_l(const char * what) const422 void SimpleBestFitAllocator::dump_l(const char* what) const
423 {
424 String8 result;
425 dump_l(result, what);
426 ALOGD("%s", result.string());
427 }
428
dump(String8 & result,const char * what) const429 void SimpleBestFitAllocator::dump(String8& result,
430 const char* what) const
431 {
432 Mutex::Autolock _l(mLock);
433 dump_l(result, what);
434 }
435
dump_l(String8 & result,const char * what) const436 void SimpleBestFitAllocator::dump_l(String8& result,
437 const char* what) const
438 {
439 size_t size = 0;
440 int32_t i = 0;
441 chunk_t const* cur = mList.head();
442
443 const size_t SIZE = 256;
444 char buffer[SIZE];
445 snprintf(buffer, SIZE, " %s (%p, size=%u)\n",
446 what, this, (unsigned int)mHeapSize);
447
448 result.append(buffer);
449
450 while (cur) {
451 const char* errs[] = {"", "| link bogus NP",
452 "| link bogus PN", "| link bogus NP+PN" };
453 int np = ((cur->next) && cur->next->prev != cur) ? 1 : 0;
454 int pn = ((cur->prev) && cur->prev->next != cur) ? 2 : 0;
455
456 snprintf(buffer, SIZE, " %3u: %p | 0x%08X | 0x%08X | %s %s\n",
457 i, cur, int(cur->start*kMemoryAlign),
458 int(cur->size*kMemoryAlign),
459 int(cur->free) ? "F" : "A",
460 errs[np|pn]);
461
462 result.append(buffer);
463
464 if (!cur->free)
465 size += cur->size*kMemoryAlign;
466
467 i++;
468 cur = cur->next;
469 }
470 snprintf(buffer, SIZE,
471 " size allocated: %u (%u KB)\n", int(size), int(size/1024));
472 result.append(buffer);
473 }
474
475
476 }; // namespace android
477