• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //===-- MemorySanitizer.cpp - detector of uninitialized reads -------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 /// \file
10 /// This file is a part of MemorySanitizer, a detector of uninitialized
11 /// reads.
12 ///
13 /// The algorithm of the tool is similar to Memcheck
14 /// (http://goo.gl/QKbem). We associate a few shadow bits with every
15 /// byte of the application memory, poison the shadow of the malloc-ed
16 /// or alloca-ed memory, load the shadow bits on every memory read,
17 /// propagate the shadow bits through some of the arithmetic
18 /// instruction (including MOV), store the shadow bits on every memory
19 /// write, report a bug on some other instructions (e.g. JMP) if the
20 /// associated shadow is poisoned.
21 ///
22 /// But there are differences too. The first and the major one:
23 /// compiler instrumentation instead of binary instrumentation. This
24 /// gives us much better register allocation, possible compiler
25 /// optimizations and a fast start-up. But this brings the major issue
26 /// as well: msan needs to see all program events, including system
27 /// calls and reads/writes in system libraries, so we either need to
28 /// compile *everything* with msan or use a binary translation
29 /// component (e.g. DynamoRIO) to instrument pre-built libraries.
30 /// Another difference from Memcheck is that we use 8 shadow bits per
31 /// byte of application memory and use a direct shadow mapping. This
32 /// greatly simplifies the instrumentation code and avoids races on
33 /// shadow updates (Memcheck is single-threaded so races are not a
34 /// concern there. Memcheck uses 2 shadow bits per byte with a slow
35 /// path storage that uses 8 bits per byte).
36 ///
37 /// The default value of shadow is 0, which means "clean" (not poisoned).
38 ///
39 /// Every module initializer should call __msan_init to ensure that the
40 /// shadow memory is ready. On error, __msan_warning is called. Since
41 /// parameters and return values may be passed via registers, we have a
42 /// specialized thread-local shadow for return values
43 /// (__msan_retval_tls) and parameters (__msan_param_tls).
44 ///
45 ///                           Origin tracking.
46 ///
47 /// MemorySanitizer can track origins (allocation points) of all uninitialized
48 /// values. This behavior is controlled with a flag (msan-track-origins) and is
49 /// disabled by default.
50 ///
51 /// Origins are 4-byte values created and interpreted by the runtime library.
52 /// They are stored in a second shadow mapping, one 4-byte value for 4 bytes
53 /// of application memory. Propagation of origins is basically a bunch of
54 /// "select" instructions that pick the origin of a dirty argument, if an
55 /// instruction has one.
56 ///
57 /// Every 4 aligned, consecutive bytes of application memory have one origin
58 /// value associated with them. If these bytes contain uninitialized data
59 /// coming from 2 different allocations, the last store wins. Because of this,
60 /// MemorySanitizer reports can show unrelated origins, but this is unlikely in
61 /// practice.
62 ///
63 /// Origins are meaningless for fully initialized values, so MemorySanitizer
64 /// avoids storing origin to memory when a fully initialized value is stored.
65 /// This way it avoids needless overwritting origin of the 4-byte region on
66 /// a short (i.e. 1 byte) clean store, and it is also good for performance.
67 ///
68 ///                            Atomic handling.
69 ///
70 /// Ideally, every atomic store of application value should update the
71 /// corresponding shadow location in an atomic way. Unfortunately, atomic store
72 /// of two disjoint locations can not be done without severe slowdown.
73 ///
74 /// Therefore, we implement an approximation that may err on the safe side.
75 /// In this implementation, every atomically accessed location in the program
76 /// may only change from (partially) uninitialized to fully initialized, but
77 /// not the other way around. We load the shadow _after_ the application load,
78 /// and we store the shadow _before_ the app store. Also, we always store clean
79 /// shadow (if the application store is atomic). This way, if the store-load
80 /// pair constitutes a happens-before arc, shadow store and load are correctly
81 /// ordered such that the load will get either the value that was stored, or
82 /// some later value (which is always clean).
83 ///
84 /// This does not work very well with Compare-And-Swap (CAS) and
85 /// Read-Modify-Write (RMW) operations. To follow the above logic, CAS and RMW
86 /// must store the new shadow before the app operation, and load the shadow
87 /// after the app operation. Computers don't work this way. Current
88 /// implementation ignores the load aspect of CAS/RMW, always returning a clean
89 /// value. It implements the store part as a simple atomic store by storing a
90 /// clean shadow.
91 
92 //===----------------------------------------------------------------------===//
93 
94 #include "llvm/ADT/DepthFirstIterator.h"
95 #include "llvm/ADT/SmallString.h"
96 #include "llvm/ADT/SmallVector.h"
97 #include "llvm/ADT/StringExtras.h"
98 #include "llvm/ADT/Triple.h"
99 #include "llvm/IR/DataLayout.h"
100 #include "llvm/IR/Function.h"
101 #include "llvm/IR/IRBuilder.h"
102 #include "llvm/IR/InlineAsm.h"
103 #include "llvm/IR/InstVisitor.h"
104 #include "llvm/IR/IntrinsicInst.h"
105 #include "llvm/IR/LLVMContext.h"
106 #include "llvm/IR/MDBuilder.h"
107 #include "llvm/IR/Module.h"
108 #include "llvm/IR/Type.h"
109 #include "llvm/IR/ValueMap.h"
110 #include "llvm/Support/CommandLine.h"
111 #include "llvm/Support/Debug.h"
112 #include "llvm/Support/raw_ostream.h"
113 #include "llvm/Transforms/Instrumentation.h"
114 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
115 #include "llvm/Transforms/Utils/Local.h"
116 #include "llvm/Transforms/Utils/ModuleUtils.h"
117 
118 using namespace llvm;
119 
120 #define DEBUG_TYPE "msan"
121 
122 static const unsigned kOriginSize = 4;
123 static const unsigned kMinOriginAlignment = 4;
124 static const unsigned kShadowTLSAlignment = 8;
125 
126 // These constants must be kept in sync with the ones in msan.h.
127 static const unsigned kParamTLSSize = 800;
128 static const unsigned kRetvalTLSSize = 800;
129 
130 // Accesses sizes are powers of two: 1, 2, 4, 8.
131 static const size_t kNumberOfAccessSizes = 4;
132 
133 /// \brief Track origins of uninitialized values.
134 ///
135 /// Adds a section to MemorySanitizer report that points to the allocation
136 /// (stack or heap) the uninitialized bits came from originally.
137 static cl::opt<int> ClTrackOrigins("msan-track-origins",
138        cl::desc("Track origins (allocation sites) of poisoned memory"),
139        cl::Hidden, cl::init(0));
140 static cl::opt<bool> ClKeepGoing("msan-keep-going",
141        cl::desc("keep going after reporting a UMR"),
142        cl::Hidden, cl::init(false));
143 static cl::opt<bool> ClPoisonStack("msan-poison-stack",
144        cl::desc("poison uninitialized stack variables"),
145        cl::Hidden, cl::init(true));
146 static cl::opt<bool> ClPoisonStackWithCall("msan-poison-stack-with-call",
147        cl::desc("poison uninitialized stack variables with a call"),
148        cl::Hidden, cl::init(false));
149 static cl::opt<int> ClPoisonStackPattern("msan-poison-stack-pattern",
150        cl::desc("poison uninitialized stack variables with the given pattern"),
151        cl::Hidden, cl::init(0xff));
152 static cl::opt<bool> ClPoisonUndef("msan-poison-undef",
153        cl::desc("poison undef temps"),
154        cl::Hidden, cl::init(true));
155 
156 static cl::opt<bool> ClHandleICmp("msan-handle-icmp",
157        cl::desc("propagate shadow through ICmpEQ and ICmpNE"),
158        cl::Hidden, cl::init(true));
159 
160 static cl::opt<bool> ClHandleICmpExact("msan-handle-icmp-exact",
161        cl::desc("exact handling of relational integer ICmp"),
162        cl::Hidden, cl::init(false));
163 
164 // This flag controls whether we check the shadow of the address
165 // operand of load or store. Such bugs are very rare, since load from
166 // a garbage address typically results in SEGV, but still happen
167 // (e.g. only lower bits of address are garbage, or the access happens
168 // early at program startup where malloc-ed memory is more likely to
169 // be zeroed. As of 2012-08-28 this flag adds 20% slowdown.
170 static cl::opt<bool> ClCheckAccessAddress("msan-check-access-address",
171        cl::desc("report accesses through a pointer which has poisoned shadow"),
172        cl::Hidden, cl::init(true));
173 
174 static cl::opt<bool> ClDumpStrictInstructions("msan-dump-strict-instructions",
175        cl::desc("print out instructions with default strict semantics"),
176        cl::Hidden, cl::init(false));
177 
178 static cl::opt<int> ClInstrumentationWithCallThreshold(
179     "msan-instrumentation-with-call-threshold",
180     cl::desc(
181         "If the function being instrumented requires more than "
182         "this number of checks and origin stores, use callbacks instead of "
183         "inline checks (-1 means never use callbacks)."),
184     cl::Hidden, cl::init(3500));
185 
186 // This is an experiment to enable handling of cases where shadow is a non-zero
187 // compile-time constant. For some unexplainable reason they were silently
188 // ignored in the instrumentation.
189 static cl::opt<bool> ClCheckConstantShadow("msan-check-constant-shadow",
190        cl::desc("Insert checks for constant shadow values"),
191        cl::Hidden, cl::init(false));
192 
193 // This is off by default because of a bug in gold:
194 // https://sourceware.org/bugzilla/show_bug.cgi?id=19002
195 static cl::opt<bool> ClWithComdat("msan-with-comdat",
196        cl::desc("Place MSan constructors in comdat sections"),
197        cl::Hidden, cl::init(false));
198 
199 static const char *const kMsanModuleCtorName = "msan.module_ctor";
200 static const char *const kMsanInitName = "__msan_init";
201 
202 namespace {
203 
204 // Memory map parameters used in application-to-shadow address calculation.
205 // Offset = (Addr & ~AndMask) ^ XorMask
206 // Shadow = ShadowBase + Offset
207 // Origin = OriginBase + Offset
208 struct MemoryMapParams {
209   uint64_t AndMask;
210   uint64_t XorMask;
211   uint64_t ShadowBase;
212   uint64_t OriginBase;
213 };
214 
215 struct PlatformMemoryMapParams {
216   const MemoryMapParams *bits32;
217   const MemoryMapParams *bits64;
218 };
219 
220 // i386 Linux
221 static const MemoryMapParams Linux_I386_MemoryMapParams = {
222   0x000080000000,  // AndMask
223   0,               // XorMask (not used)
224   0,               // ShadowBase (not used)
225   0x000040000000,  // OriginBase
226 };
227 
228 // x86_64 Linux
229 static const MemoryMapParams Linux_X86_64_MemoryMapParams = {
230 #ifdef MSAN_LINUX_X86_64_OLD_MAPPING
231   0x400000000000,  // AndMask
232   0,               // XorMask (not used)
233   0,               // ShadowBase (not used)
234   0x200000000000,  // OriginBase
235 #else
236   0,               // AndMask (not used)
237   0x500000000000,  // XorMask
238   0,               // ShadowBase (not used)
239   0x100000000000,  // OriginBase
240 #endif
241 };
242 
243 // mips64 Linux
244 static const MemoryMapParams Linux_MIPS64_MemoryMapParams = {
245   0x004000000000,  // AndMask
246   0,               // XorMask (not used)
247   0,               // ShadowBase (not used)
248   0x002000000000,  // OriginBase
249 };
250 
251 // ppc64 Linux
252 static const MemoryMapParams Linux_PowerPC64_MemoryMapParams = {
253   0x200000000000,  // AndMask
254   0x100000000000,  // XorMask
255   0x080000000000,  // ShadowBase
256   0x1C0000000000,  // OriginBase
257 };
258 
259 // aarch64 Linux
260 static const MemoryMapParams Linux_AArch64_MemoryMapParams = {
261   0,               // AndMask (not used)
262   0x06000000000,   // XorMask
263   0,               // ShadowBase (not used)
264   0x01000000000,   // OriginBase
265 };
266 
267 // i386 FreeBSD
268 static const MemoryMapParams FreeBSD_I386_MemoryMapParams = {
269   0x000180000000,  // AndMask
270   0x000040000000,  // XorMask
271   0x000020000000,  // ShadowBase
272   0x000700000000,  // OriginBase
273 };
274 
275 // x86_64 FreeBSD
276 static const MemoryMapParams FreeBSD_X86_64_MemoryMapParams = {
277   0xc00000000000,  // AndMask
278   0x200000000000,  // XorMask
279   0x100000000000,  // ShadowBase
280   0x380000000000,  // OriginBase
281 };
282 
283 static const PlatformMemoryMapParams Linux_X86_MemoryMapParams = {
284   &Linux_I386_MemoryMapParams,
285   &Linux_X86_64_MemoryMapParams,
286 };
287 
288 static const PlatformMemoryMapParams Linux_MIPS_MemoryMapParams = {
289   nullptr,
290   &Linux_MIPS64_MemoryMapParams,
291 };
292 
293 static const PlatformMemoryMapParams Linux_PowerPC_MemoryMapParams = {
294   nullptr,
295   &Linux_PowerPC64_MemoryMapParams,
296 };
297 
298 static const PlatformMemoryMapParams Linux_ARM_MemoryMapParams = {
299   nullptr,
300   &Linux_AArch64_MemoryMapParams,
301 };
302 
303 static const PlatformMemoryMapParams FreeBSD_X86_MemoryMapParams = {
304   &FreeBSD_I386_MemoryMapParams,
305   &FreeBSD_X86_64_MemoryMapParams,
306 };
307 
308 /// \brief An instrumentation pass implementing detection of uninitialized
309 /// reads.
310 ///
311 /// MemorySanitizer: instrument the code in module to find
312 /// uninitialized reads.
313 class MemorySanitizer : public FunctionPass {
314  public:
MemorySanitizer(int TrackOrigins=0)315   MemorySanitizer(int TrackOrigins = 0)
316       : FunctionPass(ID),
317         TrackOrigins(std::max(TrackOrigins, (int)ClTrackOrigins)),
318         WarningFn(nullptr) {}
getPassName() const319   const char *getPassName() const override { return "MemorySanitizer"; }
getAnalysisUsage(AnalysisUsage & AU) const320   void getAnalysisUsage(AnalysisUsage &AU) const override {
321     AU.addRequired<TargetLibraryInfoWrapperPass>();
322   }
323   bool runOnFunction(Function &F) override;
324   bool doInitialization(Module &M) override;
325   static char ID;  // Pass identification, replacement for typeid.
326 
327  private:
328   void initializeCallbacks(Module &M);
329 
330   /// \brief Track origins (allocation points) of uninitialized values.
331   int TrackOrigins;
332 
333   LLVMContext *C;
334   Type *IntptrTy;
335   Type *OriginTy;
336   /// \brief Thread-local shadow storage for function parameters.
337   GlobalVariable *ParamTLS;
338   /// \brief Thread-local origin storage for function parameters.
339   GlobalVariable *ParamOriginTLS;
340   /// \brief Thread-local shadow storage for function return value.
341   GlobalVariable *RetvalTLS;
342   /// \brief Thread-local origin storage for function return value.
343   GlobalVariable *RetvalOriginTLS;
344   /// \brief Thread-local shadow storage for in-register va_arg function
345   /// parameters (x86_64-specific).
346   GlobalVariable *VAArgTLS;
347   /// \brief Thread-local shadow storage for va_arg overflow area
348   /// (x86_64-specific).
349   GlobalVariable *VAArgOverflowSizeTLS;
350   /// \brief Thread-local space used to pass origin value to the UMR reporting
351   /// function.
352   GlobalVariable *OriginTLS;
353 
354   /// \brief The run-time callback to print a warning.
355   Value *WarningFn;
356   // These arrays are indexed by log2(AccessSize).
357   Value *MaybeWarningFn[kNumberOfAccessSizes];
358   Value *MaybeStoreOriginFn[kNumberOfAccessSizes];
359 
360   /// \brief Run-time helper that generates a new origin value for a stack
361   /// allocation.
362   Value *MsanSetAllocaOrigin4Fn;
363   /// \brief Run-time helper that poisons stack on function entry.
364   Value *MsanPoisonStackFn;
365   /// \brief Run-time helper that records a store (or any event) of an
366   /// uninitialized value and returns an updated origin id encoding this info.
367   Value *MsanChainOriginFn;
368   /// \brief MSan runtime replacements for memmove, memcpy and memset.
369   Value *MemmoveFn, *MemcpyFn, *MemsetFn;
370 
371   /// \brief Memory map parameters used in application-to-shadow calculation.
372   const MemoryMapParams *MapParams;
373 
374   MDNode *ColdCallWeights;
375   /// \brief Branch weights for origin store.
376   MDNode *OriginStoreWeights;
377   /// \brief An empty volatile inline asm that prevents callback merge.
378   InlineAsm *EmptyAsm;
379   Function *MsanCtorFunction;
380 
381   friend struct MemorySanitizerVisitor;
382   friend struct VarArgAMD64Helper;
383   friend struct VarArgMIPS64Helper;
384   friend struct VarArgAArch64Helper;
385   friend struct VarArgPowerPC64Helper;
386 };
387 } // anonymous namespace
388 
389 char MemorySanitizer::ID = 0;
390 INITIALIZE_PASS_BEGIN(
391     MemorySanitizer, "msan",
392     "MemorySanitizer: detects uninitialized reads.", false, false)
INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)393 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
394 INITIALIZE_PASS_END(
395     MemorySanitizer, "msan",
396     "MemorySanitizer: detects uninitialized reads.", false, false)
397 
398 FunctionPass *llvm::createMemorySanitizerPass(int TrackOrigins) {
399   return new MemorySanitizer(TrackOrigins);
400 }
401 
402 /// \brief Create a non-const global initialized with the given string.
403 ///
404 /// Creates a writable global for Str so that we can pass it to the
405 /// run-time lib. Runtime uses first 4 bytes of the string to store the
406 /// frame ID, so the string needs to be mutable.
createPrivateNonConstGlobalForString(Module & M,StringRef Str)407 static GlobalVariable *createPrivateNonConstGlobalForString(Module &M,
408                                                             StringRef Str) {
409   Constant *StrConst = ConstantDataArray::getString(M.getContext(), Str);
410   return new GlobalVariable(M, StrConst->getType(), /*isConstant=*/false,
411                             GlobalValue::PrivateLinkage, StrConst, "");
412 }
413 
414 /// \brief Insert extern declaration of runtime-provided functions and globals.
initializeCallbacks(Module & M)415 void MemorySanitizer::initializeCallbacks(Module &M) {
416   // Only do this once.
417   if (WarningFn)
418     return;
419 
420   IRBuilder<> IRB(*C);
421   // Create the callback.
422   // FIXME: this function should have "Cold" calling conv,
423   // which is not yet implemented.
424   StringRef WarningFnName = ClKeepGoing ? "__msan_warning"
425                                         : "__msan_warning_noreturn";
426   WarningFn = M.getOrInsertFunction(WarningFnName, IRB.getVoidTy(), nullptr);
427 
428   for (size_t AccessSizeIndex = 0; AccessSizeIndex < kNumberOfAccessSizes;
429        AccessSizeIndex++) {
430     unsigned AccessSize = 1 << AccessSizeIndex;
431     std::string FunctionName = "__msan_maybe_warning_" + itostr(AccessSize);
432     MaybeWarningFn[AccessSizeIndex] = M.getOrInsertFunction(
433         FunctionName, IRB.getVoidTy(), IRB.getIntNTy(AccessSize * 8),
434         IRB.getInt32Ty(), nullptr);
435 
436     FunctionName = "__msan_maybe_store_origin_" + itostr(AccessSize);
437     MaybeStoreOriginFn[AccessSizeIndex] = M.getOrInsertFunction(
438         FunctionName, IRB.getVoidTy(), IRB.getIntNTy(AccessSize * 8),
439         IRB.getInt8PtrTy(), IRB.getInt32Ty(), nullptr);
440   }
441 
442   MsanSetAllocaOrigin4Fn = M.getOrInsertFunction(
443     "__msan_set_alloca_origin4", IRB.getVoidTy(), IRB.getInt8PtrTy(), IntptrTy,
444     IRB.getInt8PtrTy(), IntptrTy, nullptr);
445   MsanPoisonStackFn =
446       M.getOrInsertFunction("__msan_poison_stack", IRB.getVoidTy(),
447                             IRB.getInt8PtrTy(), IntptrTy, nullptr);
448   MsanChainOriginFn = M.getOrInsertFunction(
449     "__msan_chain_origin", IRB.getInt32Ty(), IRB.getInt32Ty(), nullptr);
450   MemmoveFn = M.getOrInsertFunction(
451     "__msan_memmove", IRB.getInt8PtrTy(), IRB.getInt8PtrTy(),
452     IRB.getInt8PtrTy(), IntptrTy, nullptr);
453   MemcpyFn = M.getOrInsertFunction(
454     "__msan_memcpy", IRB.getInt8PtrTy(), IRB.getInt8PtrTy(), IRB.getInt8PtrTy(),
455     IntptrTy, nullptr);
456   MemsetFn = M.getOrInsertFunction(
457     "__msan_memset", IRB.getInt8PtrTy(), IRB.getInt8PtrTy(), IRB.getInt32Ty(),
458     IntptrTy, nullptr);
459 
460   // Create globals.
461   RetvalTLS = new GlobalVariable(
462     M, ArrayType::get(IRB.getInt64Ty(), kRetvalTLSSize / 8), false,
463     GlobalVariable::ExternalLinkage, nullptr, "__msan_retval_tls", nullptr,
464     GlobalVariable::InitialExecTLSModel);
465   RetvalOriginTLS = new GlobalVariable(
466     M, OriginTy, false, GlobalVariable::ExternalLinkage, nullptr,
467     "__msan_retval_origin_tls", nullptr, GlobalVariable::InitialExecTLSModel);
468 
469   ParamTLS = new GlobalVariable(
470     M, ArrayType::get(IRB.getInt64Ty(), kParamTLSSize / 8), false,
471     GlobalVariable::ExternalLinkage, nullptr, "__msan_param_tls", nullptr,
472     GlobalVariable::InitialExecTLSModel);
473   ParamOriginTLS = new GlobalVariable(
474     M, ArrayType::get(OriginTy, kParamTLSSize / 4), false,
475     GlobalVariable::ExternalLinkage, nullptr, "__msan_param_origin_tls",
476     nullptr, GlobalVariable::InitialExecTLSModel);
477 
478   VAArgTLS = new GlobalVariable(
479     M, ArrayType::get(IRB.getInt64Ty(), kParamTLSSize / 8), false,
480     GlobalVariable::ExternalLinkage, nullptr, "__msan_va_arg_tls", nullptr,
481     GlobalVariable::InitialExecTLSModel);
482   VAArgOverflowSizeTLS = new GlobalVariable(
483     M, IRB.getInt64Ty(), false, GlobalVariable::ExternalLinkage, nullptr,
484     "__msan_va_arg_overflow_size_tls", nullptr,
485     GlobalVariable::InitialExecTLSModel);
486   OriginTLS = new GlobalVariable(
487     M, IRB.getInt32Ty(), false, GlobalVariable::ExternalLinkage, nullptr,
488     "__msan_origin_tls", nullptr, GlobalVariable::InitialExecTLSModel);
489 
490   // We insert an empty inline asm after __msan_report* to avoid callback merge.
491   EmptyAsm = InlineAsm::get(FunctionType::get(IRB.getVoidTy(), false),
492                             StringRef(""), StringRef(""),
493                             /*hasSideEffects=*/true);
494 }
495 
496 /// \brief Module-level initialization.
497 ///
498 /// inserts a call to __msan_init to the module's constructor list.
doInitialization(Module & M)499 bool MemorySanitizer::doInitialization(Module &M) {
500   auto &DL = M.getDataLayout();
501 
502   Triple TargetTriple(M.getTargetTriple());
503   switch (TargetTriple.getOS()) {
504     case Triple::FreeBSD:
505       switch (TargetTriple.getArch()) {
506         case Triple::x86_64:
507           MapParams = FreeBSD_X86_MemoryMapParams.bits64;
508           break;
509         case Triple::x86:
510           MapParams = FreeBSD_X86_MemoryMapParams.bits32;
511           break;
512         default:
513           report_fatal_error("unsupported architecture");
514       }
515       break;
516     case Triple::Linux:
517       switch (TargetTriple.getArch()) {
518         case Triple::x86_64:
519           MapParams = Linux_X86_MemoryMapParams.bits64;
520           break;
521         case Triple::x86:
522           MapParams = Linux_X86_MemoryMapParams.bits32;
523           break;
524         case Triple::mips64:
525         case Triple::mips64el:
526           MapParams = Linux_MIPS_MemoryMapParams.bits64;
527           break;
528         case Triple::ppc64:
529         case Triple::ppc64le:
530           MapParams = Linux_PowerPC_MemoryMapParams.bits64;
531           break;
532         case Triple::aarch64:
533         case Triple::aarch64_be:
534           MapParams = Linux_ARM_MemoryMapParams.bits64;
535           break;
536         default:
537           report_fatal_error("unsupported architecture");
538       }
539       break;
540     default:
541       report_fatal_error("unsupported operating system");
542   }
543 
544   C = &(M.getContext());
545   IRBuilder<> IRB(*C);
546   IntptrTy = IRB.getIntPtrTy(DL);
547   OriginTy = IRB.getInt32Ty();
548 
549   ColdCallWeights = MDBuilder(*C).createBranchWeights(1, 1000);
550   OriginStoreWeights = MDBuilder(*C).createBranchWeights(1, 1000);
551 
552   std::tie(MsanCtorFunction, std::ignore) =
553       createSanitizerCtorAndInitFunctions(M, kMsanModuleCtorName, kMsanInitName,
554                                           /*InitArgTypes=*/{},
555                                           /*InitArgs=*/{});
556   if (ClWithComdat) {
557     Comdat *MsanCtorComdat = M.getOrInsertComdat(kMsanModuleCtorName);
558     MsanCtorFunction->setComdat(MsanCtorComdat);
559     appendToGlobalCtors(M, MsanCtorFunction, 0, MsanCtorFunction);
560   } else {
561     appendToGlobalCtors(M, MsanCtorFunction, 0);
562   }
563 
564 
565   if (TrackOrigins)
566     new GlobalVariable(M, IRB.getInt32Ty(), true, GlobalValue::WeakODRLinkage,
567                        IRB.getInt32(TrackOrigins), "__msan_track_origins");
568 
569   if (ClKeepGoing)
570     new GlobalVariable(M, IRB.getInt32Ty(), true, GlobalValue::WeakODRLinkage,
571                        IRB.getInt32(ClKeepGoing), "__msan_keep_going");
572 
573   return true;
574 }
575 
576 namespace {
577 
578 /// \brief A helper class that handles instrumentation of VarArg
579 /// functions on a particular platform.
580 ///
581 /// Implementations are expected to insert the instrumentation
582 /// necessary to propagate argument shadow through VarArg function
583 /// calls. Visit* methods are called during an InstVisitor pass over
584 /// the function, and should avoid creating new basic blocks. A new
585 /// instance of this class is created for each instrumented function.
586 struct VarArgHelper {
587   /// \brief Visit a CallSite.
588   virtual void visitCallSite(CallSite &CS, IRBuilder<> &IRB) = 0;
589 
590   /// \brief Visit a va_start call.
591   virtual void visitVAStartInst(VAStartInst &I) = 0;
592 
593   /// \brief Visit a va_copy call.
594   virtual void visitVACopyInst(VACopyInst &I) = 0;
595 
596   /// \brief Finalize function instrumentation.
597   ///
598   /// This method is called after visiting all interesting (see above)
599   /// instructions in a function.
600   virtual void finalizeInstrumentation() = 0;
601 
~VarArgHelper__anonaa4cb2a40211::VarArgHelper602   virtual ~VarArgHelper() {}
603 };
604 
605 struct MemorySanitizerVisitor;
606 
607 VarArgHelper*
608 CreateVarArgHelper(Function &Func, MemorySanitizer &Msan,
609                    MemorySanitizerVisitor &Visitor);
610 
TypeSizeToSizeIndex(unsigned TypeSize)611 unsigned TypeSizeToSizeIndex(unsigned TypeSize) {
612   if (TypeSize <= 8) return 0;
613   return Log2_32_Ceil((TypeSize + 7) / 8);
614 }
615 
616 /// This class does all the work for a given function. Store and Load
617 /// instructions store and load corresponding shadow and origin
618 /// values. Most instructions propagate shadow from arguments to their
619 /// return values. Certain instructions (most importantly, BranchInst)
620 /// test their argument shadow and print reports (with a runtime call) if it's
621 /// non-zero.
622 struct MemorySanitizerVisitor : public InstVisitor<MemorySanitizerVisitor> {
623   Function &F;
624   MemorySanitizer &MS;
625   SmallVector<PHINode *, 16> ShadowPHINodes, OriginPHINodes;
626   ValueMap<Value*, Value*> ShadowMap, OriginMap;
627   std::unique_ptr<VarArgHelper> VAHelper;
628   const TargetLibraryInfo *TLI;
629 
630   // The following flags disable parts of MSan instrumentation based on
631   // blacklist contents and command-line options.
632   bool InsertChecks;
633   bool PropagateShadow;
634   bool PoisonStack;
635   bool PoisonUndef;
636   bool CheckReturnValue;
637 
638   struct ShadowOriginAndInsertPoint {
639     Value *Shadow;
640     Value *Origin;
641     Instruction *OrigIns;
ShadowOriginAndInsertPoint__anonaa4cb2a40211::MemorySanitizerVisitor::ShadowOriginAndInsertPoint642     ShadowOriginAndInsertPoint(Value *S, Value *O, Instruction *I)
643       : Shadow(S), Origin(O), OrigIns(I) { }
644   };
645   SmallVector<ShadowOriginAndInsertPoint, 16> InstrumentationList;
646   SmallVector<StoreInst *, 16> StoreList;
647 
MemorySanitizerVisitor__anonaa4cb2a40211::MemorySanitizerVisitor648   MemorySanitizerVisitor(Function &F, MemorySanitizer &MS)
649       : F(F), MS(MS), VAHelper(CreateVarArgHelper(F, MS, *this)) {
650     bool SanitizeFunction = F.hasFnAttribute(Attribute::SanitizeMemory);
651     InsertChecks = SanitizeFunction;
652     PropagateShadow = SanitizeFunction;
653     PoisonStack = SanitizeFunction && ClPoisonStack;
654     PoisonUndef = SanitizeFunction && ClPoisonUndef;
655     // FIXME: Consider using SpecialCaseList to specify a list of functions that
656     // must always return fully initialized values. For now, we hardcode "main".
657     CheckReturnValue = SanitizeFunction && (F.getName() == "main");
658     TLI = &MS.getAnalysis<TargetLibraryInfoWrapperPass>().getTLI();
659 
660     DEBUG(if (!InsertChecks)
661           dbgs() << "MemorySanitizer is not inserting checks into '"
662                  << F.getName() << "'\n");
663   }
664 
updateOrigin__anonaa4cb2a40211::MemorySanitizerVisitor665   Value *updateOrigin(Value *V, IRBuilder<> &IRB) {
666     if (MS.TrackOrigins <= 1) return V;
667     return IRB.CreateCall(MS.MsanChainOriginFn, V);
668   }
669 
originToIntptr__anonaa4cb2a40211::MemorySanitizerVisitor670   Value *originToIntptr(IRBuilder<> &IRB, Value *Origin) {
671     const DataLayout &DL = F.getParent()->getDataLayout();
672     unsigned IntptrSize = DL.getTypeStoreSize(MS.IntptrTy);
673     if (IntptrSize == kOriginSize) return Origin;
674     assert(IntptrSize == kOriginSize * 2);
675     Origin = IRB.CreateIntCast(Origin, MS.IntptrTy, /* isSigned */ false);
676     return IRB.CreateOr(Origin, IRB.CreateShl(Origin, kOriginSize * 8));
677   }
678 
679   /// \brief Fill memory range with the given origin value.
paintOrigin__anonaa4cb2a40211::MemorySanitizerVisitor680   void paintOrigin(IRBuilder<> &IRB, Value *Origin, Value *OriginPtr,
681                    unsigned Size, unsigned Alignment) {
682     const DataLayout &DL = F.getParent()->getDataLayout();
683     unsigned IntptrAlignment = DL.getABITypeAlignment(MS.IntptrTy);
684     unsigned IntptrSize = DL.getTypeStoreSize(MS.IntptrTy);
685     assert(IntptrAlignment >= kMinOriginAlignment);
686     assert(IntptrSize >= kOriginSize);
687 
688     unsigned Ofs = 0;
689     unsigned CurrentAlignment = Alignment;
690     if (Alignment >= IntptrAlignment && IntptrSize > kOriginSize) {
691       Value *IntptrOrigin = originToIntptr(IRB, Origin);
692       Value *IntptrOriginPtr =
693           IRB.CreatePointerCast(OriginPtr, PointerType::get(MS.IntptrTy, 0));
694       for (unsigned i = 0; i < Size / IntptrSize; ++i) {
695         Value *Ptr = i ? IRB.CreateConstGEP1_32(MS.IntptrTy, IntptrOriginPtr, i)
696                        : IntptrOriginPtr;
697         IRB.CreateAlignedStore(IntptrOrigin, Ptr, CurrentAlignment);
698         Ofs += IntptrSize / kOriginSize;
699         CurrentAlignment = IntptrAlignment;
700       }
701     }
702 
703     for (unsigned i = Ofs; i < (Size + kOriginSize - 1) / kOriginSize; ++i) {
704       Value *GEP =
705           i ? IRB.CreateConstGEP1_32(nullptr, OriginPtr, i) : OriginPtr;
706       IRB.CreateAlignedStore(Origin, GEP, CurrentAlignment);
707       CurrentAlignment = kMinOriginAlignment;
708     }
709   }
710 
storeOrigin__anonaa4cb2a40211::MemorySanitizerVisitor711   void storeOrigin(IRBuilder<> &IRB, Value *Addr, Value *Shadow, Value *Origin,
712                    unsigned Alignment, bool AsCall) {
713     const DataLayout &DL = F.getParent()->getDataLayout();
714     unsigned OriginAlignment = std::max(kMinOriginAlignment, Alignment);
715     unsigned StoreSize = DL.getTypeStoreSize(Shadow->getType());
716     if (Shadow->getType()->isAggregateType()) {
717       paintOrigin(IRB, updateOrigin(Origin, IRB),
718                   getOriginPtr(Addr, IRB, Alignment), StoreSize,
719                   OriginAlignment);
720     } else {
721       Value *ConvertedShadow = convertToShadowTyNoVec(Shadow, IRB);
722       Constant *ConstantShadow = dyn_cast_or_null<Constant>(ConvertedShadow);
723       if (ConstantShadow) {
724         if (ClCheckConstantShadow && !ConstantShadow->isZeroValue())
725           paintOrigin(IRB, updateOrigin(Origin, IRB),
726                       getOriginPtr(Addr, IRB, Alignment), StoreSize,
727                       OriginAlignment);
728         return;
729       }
730 
731       unsigned TypeSizeInBits =
732           DL.getTypeSizeInBits(ConvertedShadow->getType());
733       unsigned SizeIndex = TypeSizeToSizeIndex(TypeSizeInBits);
734       if (AsCall && SizeIndex < kNumberOfAccessSizes) {
735         Value *Fn = MS.MaybeStoreOriginFn[SizeIndex];
736         Value *ConvertedShadow2 = IRB.CreateZExt(
737             ConvertedShadow, IRB.getIntNTy(8 * (1 << SizeIndex)));
738         IRB.CreateCall(Fn, {ConvertedShadow2,
739                             IRB.CreatePointerCast(Addr, IRB.getInt8PtrTy()),
740                             Origin});
741       } else {
742         Value *Cmp = IRB.CreateICmpNE(
743             ConvertedShadow, getCleanShadow(ConvertedShadow), "_mscmp");
744         Instruction *CheckTerm = SplitBlockAndInsertIfThen(
745             Cmp, &*IRB.GetInsertPoint(), false, MS.OriginStoreWeights);
746         IRBuilder<> IRBNew(CheckTerm);
747         paintOrigin(IRBNew, updateOrigin(Origin, IRBNew),
748                     getOriginPtr(Addr, IRBNew, Alignment), StoreSize,
749                     OriginAlignment);
750       }
751     }
752   }
753 
materializeStores__anonaa4cb2a40211::MemorySanitizerVisitor754   void materializeStores(bool InstrumentWithCalls) {
755     for (StoreInst *SI : StoreList) {
756       IRBuilder<> IRB(SI);
757       Value *Val = SI->getValueOperand();
758       Value *Addr = SI->getPointerOperand();
759       Value *Shadow = SI->isAtomic() ? getCleanShadow(Val) : getShadow(Val);
760       Value *ShadowPtr = getShadowPtr(Addr, Shadow->getType(), IRB);
761 
762       StoreInst *NewSI =
763           IRB.CreateAlignedStore(Shadow, ShadowPtr, SI->getAlignment());
764       DEBUG(dbgs() << "  STORE: " << *NewSI << "\n");
765       (void)NewSI;
766 
767       if (ClCheckAccessAddress)
768         insertShadowCheck(Addr, SI);
769 
770       if (SI->isAtomic())
771         SI->setOrdering(addReleaseOrdering(SI->getOrdering()));
772 
773       if (MS.TrackOrigins && !SI->isAtomic())
774         storeOrigin(IRB, Addr, Shadow, getOrigin(Val), SI->getAlignment(),
775                     InstrumentWithCalls);
776     }
777   }
778 
materializeOneCheck__anonaa4cb2a40211::MemorySanitizerVisitor779   void materializeOneCheck(Instruction *OrigIns, Value *Shadow, Value *Origin,
780                            bool AsCall) {
781     IRBuilder<> IRB(OrigIns);
782     DEBUG(dbgs() << "  SHAD0 : " << *Shadow << "\n");
783     Value *ConvertedShadow = convertToShadowTyNoVec(Shadow, IRB);
784     DEBUG(dbgs() << "  SHAD1 : " << *ConvertedShadow << "\n");
785 
786     Constant *ConstantShadow = dyn_cast_or_null<Constant>(ConvertedShadow);
787     if (ConstantShadow) {
788       if (ClCheckConstantShadow && !ConstantShadow->isZeroValue()) {
789         if (MS.TrackOrigins) {
790           IRB.CreateStore(Origin ? (Value *)Origin : (Value *)IRB.getInt32(0),
791                           MS.OriginTLS);
792         }
793         IRB.CreateCall(MS.WarningFn, {});
794         IRB.CreateCall(MS.EmptyAsm, {});
795         // FIXME: Insert UnreachableInst if !ClKeepGoing?
796         // This may invalidate some of the following checks and needs to be done
797         // at the very end.
798       }
799       return;
800     }
801 
802     const DataLayout &DL = OrigIns->getModule()->getDataLayout();
803 
804     unsigned TypeSizeInBits = DL.getTypeSizeInBits(ConvertedShadow->getType());
805     unsigned SizeIndex = TypeSizeToSizeIndex(TypeSizeInBits);
806     if (AsCall && SizeIndex < kNumberOfAccessSizes) {
807       Value *Fn = MS.MaybeWarningFn[SizeIndex];
808       Value *ConvertedShadow2 =
809           IRB.CreateZExt(ConvertedShadow, IRB.getIntNTy(8 * (1 << SizeIndex)));
810       IRB.CreateCall(Fn, {ConvertedShadow2, MS.TrackOrigins && Origin
811                                                 ? Origin
812                                                 : (Value *)IRB.getInt32(0)});
813     } else {
814       Value *Cmp = IRB.CreateICmpNE(ConvertedShadow,
815                                     getCleanShadow(ConvertedShadow), "_mscmp");
816       Instruction *CheckTerm = SplitBlockAndInsertIfThen(
817           Cmp, OrigIns,
818           /* Unreachable */ !ClKeepGoing, MS.ColdCallWeights);
819 
820       IRB.SetInsertPoint(CheckTerm);
821       if (MS.TrackOrigins) {
822         IRB.CreateStore(Origin ? (Value *)Origin : (Value *)IRB.getInt32(0),
823                         MS.OriginTLS);
824       }
825       IRB.CreateCall(MS.WarningFn, {});
826       IRB.CreateCall(MS.EmptyAsm, {});
827       DEBUG(dbgs() << "  CHECK: " << *Cmp << "\n");
828     }
829   }
830 
materializeChecks__anonaa4cb2a40211::MemorySanitizerVisitor831   void materializeChecks(bool InstrumentWithCalls) {
832     for (const auto &ShadowData : InstrumentationList) {
833       Instruction *OrigIns = ShadowData.OrigIns;
834       Value *Shadow = ShadowData.Shadow;
835       Value *Origin = ShadowData.Origin;
836       materializeOneCheck(OrigIns, Shadow, Origin, InstrumentWithCalls);
837     }
838     DEBUG(dbgs() << "DONE:\n" << F);
839   }
840 
841   /// \brief Add MemorySanitizer instrumentation to a function.
runOnFunction__anonaa4cb2a40211::MemorySanitizerVisitor842   bool runOnFunction() {
843     MS.initializeCallbacks(*F.getParent());
844 
845     // In the presence of unreachable blocks, we may see Phi nodes with
846     // incoming nodes from such blocks. Since InstVisitor skips unreachable
847     // blocks, such nodes will not have any shadow value associated with them.
848     // It's easier to remove unreachable blocks than deal with missing shadow.
849     removeUnreachableBlocks(F);
850 
851     // Iterate all BBs in depth-first order and create shadow instructions
852     // for all instructions (where applicable).
853     // For PHI nodes we create dummy shadow PHIs which will be finalized later.
854     for (BasicBlock *BB : depth_first(&F.getEntryBlock()))
855       visit(*BB);
856 
857 
858     // Finalize PHI nodes.
859     for (PHINode *PN : ShadowPHINodes) {
860       PHINode *PNS = cast<PHINode>(getShadow(PN));
861       PHINode *PNO = MS.TrackOrigins ? cast<PHINode>(getOrigin(PN)) : nullptr;
862       size_t NumValues = PN->getNumIncomingValues();
863       for (size_t v = 0; v < NumValues; v++) {
864         PNS->addIncoming(getShadow(PN, v), PN->getIncomingBlock(v));
865         if (PNO) PNO->addIncoming(getOrigin(PN, v), PN->getIncomingBlock(v));
866       }
867     }
868 
869     VAHelper->finalizeInstrumentation();
870 
871     bool InstrumentWithCalls = ClInstrumentationWithCallThreshold >= 0 &&
872                                InstrumentationList.size() + StoreList.size() >
873                                    (unsigned)ClInstrumentationWithCallThreshold;
874 
875     // Delayed instrumentation of StoreInst.
876     // This may add new checks to be inserted later.
877     materializeStores(InstrumentWithCalls);
878 
879     // Insert shadow value checks.
880     materializeChecks(InstrumentWithCalls);
881 
882     return true;
883   }
884 
885   /// \brief Compute the shadow type that corresponds to a given Value.
getShadowTy__anonaa4cb2a40211::MemorySanitizerVisitor886   Type *getShadowTy(Value *V) {
887     return getShadowTy(V->getType());
888   }
889 
890   /// \brief Compute the shadow type that corresponds to a given Type.
getShadowTy__anonaa4cb2a40211::MemorySanitizerVisitor891   Type *getShadowTy(Type *OrigTy) {
892     if (!OrigTy->isSized()) {
893       return nullptr;
894     }
895     // For integer type, shadow is the same as the original type.
896     // This may return weird-sized types like i1.
897     if (IntegerType *IT = dyn_cast<IntegerType>(OrigTy))
898       return IT;
899     const DataLayout &DL = F.getParent()->getDataLayout();
900     if (VectorType *VT = dyn_cast<VectorType>(OrigTy)) {
901       uint32_t EltSize = DL.getTypeSizeInBits(VT->getElementType());
902       return VectorType::get(IntegerType::get(*MS.C, EltSize),
903                              VT->getNumElements());
904     }
905     if (ArrayType *AT = dyn_cast<ArrayType>(OrigTy)) {
906       return ArrayType::get(getShadowTy(AT->getElementType()),
907                             AT->getNumElements());
908     }
909     if (StructType *ST = dyn_cast<StructType>(OrigTy)) {
910       SmallVector<Type*, 4> Elements;
911       for (unsigned i = 0, n = ST->getNumElements(); i < n; i++)
912         Elements.push_back(getShadowTy(ST->getElementType(i)));
913       StructType *Res = StructType::get(*MS.C, Elements, ST->isPacked());
914       DEBUG(dbgs() << "getShadowTy: " << *ST << " ===> " << *Res << "\n");
915       return Res;
916     }
917     uint32_t TypeSize = DL.getTypeSizeInBits(OrigTy);
918     return IntegerType::get(*MS.C, TypeSize);
919   }
920 
921   /// \brief Flatten a vector type.
getShadowTyNoVec__anonaa4cb2a40211::MemorySanitizerVisitor922   Type *getShadowTyNoVec(Type *ty) {
923     if (VectorType *vt = dyn_cast<VectorType>(ty))
924       return IntegerType::get(*MS.C, vt->getBitWidth());
925     return ty;
926   }
927 
928   /// \brief Convert a shadow value to it's flattened variant.
convertToShadowTyNoVec__anonaa4cb2a40211::MemorySanitizerVisitor929   Value *convertToShadowTyNoVec(Value *V, IRBuilder<> &IRB) {
930     Type *Ty = V->getType();
931     Type *NoVecTy = getShadowTyNoVec(Ty);
932     if (Ty == NoVecTy) return V;
933     return IRB.CreateBitCast(V, NoVecTy);
934   }
935 
936   /// \brief Compute the integer shadow offset that corresponds to a given
937   /// application address.
938   ///
939   /// Offset = (Addr & ~AndMask) ^ XorMask
getShadowPtrOffset__anonaa4cb2a40211::MemorySanitizerVisitor940   Value *getShadowPtrOffset(Value *Addr, IRBuilder<> &IRB) {
941     Value *OffsetLong = IRB.CreatePointerCast(Addr, MS.IntptrTy);
942 
943     uint64_t AndMask = MS.MapParams->AndMask;
944     if (AndMask)
945       OffsetLong =
946           IRB.CreateAnd(OffsetLong, ConstantInt::get(MS.IntptrTy, ~AndMask));
947 
948     uint64_t XorMask = MS.MapParams->XorMask;
949     if (XorMask)
950       OffsetLong =
951           IRB.CreateXor(OffsetLong, ConstantInt::get(MS.IntptrTy, XorMask));
952     return OffsetLong;
953   }
954 
955   /// \brief Compute the shadow address that corresponds to a given application
956   /// address.
957   ///
958   /// Shadow = ShadowBase + Offset
getShadowPtr__anonaa4cb2a40211::MemorySanitizerVisitor959   Value *getShadowPtr(Value *Addr, Type *ShadowTy,
960                       IRBuilder<> &IRB) {
961     Value *ShadowLong = getShadowPtrOffset(Addr, IRB);
962     uint64_t ShadowBase = MS.MapParams->ShadowBase;
963     if (ShadowBase != 0)
964       ShadowLong =
965         IRB.CreateAdd(ShadowLong,
966                       ConstantInt::get(MS.IntptrTy, ShadowBase));
967     return IRB.CreateIntToPtr(ShadowLong, PointerType::get(ShadowTy, 0));
968   }
969 
970   /// \brief Compute the origin address that corresponds to a given application
971   /// address.
972   ///
973   /// OriginAddr = (OriginBase + Offset) & ~3ULL
getOriginPtr__anonaa4cb2a40211::MemorySanitizerVisitor974   Value *getOriginPtr(Value *Addr, IRBuilder<> &IRB, unsigned Alignment) {
975     Value *OriginLong = getShadowPtrOffset(Addr, IRB);
976     uint64_t OriginBase = MS.MapParams->OriginBase;
977     if (OriginBase != 0)
978       OriginLong =
979         IRB.CreateAdd(OriginLong,
980                       ConstantInt::get(MS.IntptrTy, OriginBase));
981     if (Alignment < kMinOriginAlignment) {
982       uint64_t Mask = kMinOriginAlignment - 1;
983       OriginLong = IRB.CreateAnd(OriginLong,
984                                  ConstantInt::get(MS.IntptrTy, ~Mask));
985     }
986     return IRB.CreateIntToPtr(OriginLong,
987                               PointerType::get(IRB.getInt32Ty(), 0));
988   }
989 
990   /// \brief Compute the shadow address for a given function argument.
991   ///
992   /// Shadow = ParamTLS+ArgOffset.
getShadowPtrForArgument__anonaa4cb2a40211::MemorySanitizerVisitor993   Value *getShadowPtrForArgument(Value *A, IRBuilder<> &IRB,
994                                  int ArgOffset) {
995     Value *Base = IRB.CreatePointerCast(MS.ParamTLS, MS.IntptrTy);
996     Base = IRB.CreateAdd(Base, ConstantInt::get(MS.IntptrTy, ArgOffset));
997     return IRB.CreateIntToPtr(Base, PointerType::get(getShadowTy(A), 0),
998                               "_msarg");
999   }
1000 
1001   /// \brief Compute the origin address for a given function argument.
getOriginPtrForArgument__anonaa4cb2a40211::MemorySanitizerVisitor1002   Value *getOriginPtrForArgument(Value *A, IRBuilder<> &IRB,
1003                                  int ArgOffset) {
1004     if (!MS.TrackOrigins) return nullptr;
1005     Value *Base = IRB.CreatePointerCast(MS.ParamOriginTLS, MS.IntptrTy);
1006     Base = IRB.CreateAdd(Base, ConstantInt::get(MS.IntptrTy, ArgOffset));
1007     return IRB.CreateIntToPtr(Base, PointerType::get(MS.OriginTy, 0),
1008                               "_msarg_o");
1009   }
1010 
1011   /// \brief Compute the shadow address for a retval.
getShadowPtrForRetval__anonaa4cb2a40211::MemorySanitizerVisitor1012   Value *getShadowPtrForRetval(Value *A, IRBuilder<> &IRB) {
1013     Value *Base = IRB.CreatePointerCast(MS.RetvalTLS, MS.IntptrTy);
1014     return IRB.CreateIntToPtr(Base, PointerType::get(getShadowTy(A), 0),
1015                               "_msret");
1016   }
1017 
1018   /// \brief Compute the origin address for a retval.
getOriginPtrForRetval__anonaa4cb2a40211::MemorySanitizerVisitor1019   Value *getOriginPtrForRetval(IRBuilder<> &IRB) {
1020     // We keep a single origin for the entire retval. Might be too optimistic.
1021     return MS.RetvalOriginTLS;
1022   }
1023 
1024   /// \brief Set SV to be the shadow value for V.
setShadow__anonaa4cb2a40211::MemorySanitizerVisitor1025   void setShadow(Value *V, Value *SV) {
1026     assert(!ShadowMap.count(V) && "Values may only have one shadow");
1027     ShadowMap[V] = PropagateShadow ? SV : getCleanShadow(V);
1028   }
1029 
1030   /// \brief Set Origin to be the origin value for V.
setOrigin__anonaa4cb2a40211::MemorySanitizerVisitor1031   void setOrigin(Value *V, Value *Origin) {
1032     if (!MS.TrackOrigins) return;
1033     assert(!OriginMap.count(V) && "Values may only have one origin");
1034     DEBUG(dbgs() << "ORIGIN: " << *V << "  ==> " << *Origin << "\n");
1035     OriginMap[V] = Origin;
1036   }
1037 
1038   /// \brief Create a clean shadow value for a given value.
1039   ///
1040   /// Clean shadow (all zeroes) means all bits of the value are defined
1041   /// (initialized).
getCleanShadow__anonaa4cb2a40211::MemorySanitizerVisitor1042   Constant *getCleanShadow(Value *V) {
1043     Type *ShadowTy = getShadowTy(V);
1044     if (!ShadowTy)
1045       return nullptr;
1046     return Constant::getNullValue(ShadowTy);
1047   }
1048 
1049   /// \brief Create a dirty shadow of a given shadow type.
getPoisonedShadow__anonaa4cb2a40211::MemorySanitizerVisitor1050   Constant *getPoisonedShadow(Type *ShadowTy) {
1051     assert(ShadowTy);
1052     if (isa<IntegerType>(ShadowTy) || isa<VectorType>(ShadowTy))
1053       return Constant::getAllOnesValue(ShadowTy);
1054     if (ArrayType *AT = dyn_cast<ArrayType>(ShadowTy)) {
1055       SmallVector<Constant *, 4> Vals(AT->getNumElements(),
1056                                       getPoisonedShadow(AT->getElementType()));
1057       return ConstantArray::get(AT, Vals);
1058     }
1059     if (StructType *ST = dyn_cast<StructType>(ShadowTy)) {
1060       SmallVector<Constant *, 4> Vals;
1061       for (unsigned i = 0, n = ST->getNumElements(); i < n; i++)
1062         Vals.push_back(getPoisonedShadow(ST->getElementType(i)));
1063       return ConstantStruct::get(ST, Vals);
1064     }
1065     llvm_unreachable("Unexpected shadow type");
1066   }
1067 
1068   /// \brief Create a dirty shadow for a given value.
getPoisonedShadow__anonaa4cb2a40211::MemorySanitizerVisitor1069   Constant *getPoisonedShadow(Value *V) {
1070     Type *ShadowTy = getShadowTy(V);
1071     if (!ShadowTy)
1072       return nullptr;
1073     return getPoisonedShadow(ShadowTy);
1074   }
1075 
1076   /// \brief Create a clean (zero) origin.
getCleanOrigin__anonaa4cb2a40211::MemorySanitizerVisitor1077   Value *getCleanOrigin() {
1078     return Constant::getNullValue(MS.OriginTy);
1079   }
1080 
1081   /// \brief Get the shadow value for a given Value.
1082   ///
1083   /// This function either returns the value set earlier with setShadow,
1084   /// or extracts if from ParamTLS (for function arguments).
getShadow__anonaa4cb2a40211::MemorySanitizerVisitor1085   Value *getShadow(Value *V) {
1086     if (!PropagateShadow) return getCleanShadow(V);
1087     if (Instruction *I = dyn_cast<Instruction>(V)) {
1088       // For instructions the shadow is already stored in the map.
1089       Value *Shadow = ShadowMap[V];
1090       if (!Shadow) {
1091         DEBUG(dbgs() << "No shadow: " << *V << "\n" << *(I->getParent()));
1092         (void)I;
1093         assert(Shadow && "No shadow for a value");
1094       }
1095       return Shadow;
1096     }
1097     if (UndefValue *U = dyn_cast<UndefValue>(V)) {
1098       Value *AllOnes = PoisonUndef ? getPoisonedShadow(V) : getCleanShadow(V);
1099       DEBUG(dbgs() << "Undef: " << *U << " ==> " << *AllOnes << "\n");
1100       (void)U;
1101       return AllOnes;
1102     }
1103     if (Argument *A = dyn_cast<Argument>(V)) {
1104       // For arguments we compute the shadow on demand and store it in the map.
1105       Value **ShadowPtr = &ShadowMap[V];
1106       if (*ShadowPtr)
1107         return *ShadowPtr;
1108       Function *F = A->getParent();
1109       IRBuilder<> EntryIRB(F->getEntryBlock().getFirstNonPHI());
1110       unsigned ArgOffset = 0;
1111       const DataLayout &DL = F->getParent()->getDataLayout();
1112       for (auto &FArg : F->args()) {
1113         if (!FArg.getType()->isSized()) {
1114           DEBUG(dbgs() << "Arg is not sized\n");
1115           continue;
1116         }
1117         unsigned Size =
1118             FArg.hasByValAttr()
1119                 ? DL.getTypeAllocSize(FArg.getType()->getPointerElementType())
1120                 : DL.getTypeAllocSize(FArg.getType());
1121         if (A == &FArg) {
1122           bool Overflow = ArgOffset + Size > kParamTLSSize;
1123           Value *Base = getShadowPtrForArgument(&FArg, EntryIRB, ArgOffset);
1124           if (FArg.hasByValAttr()) {
1125             // ByVal pointer itself has clean shadow. We copy the actual
1126             // argument shadow to the underlying memory.
1127             // Figure out maximal valid memcpy alignment.
1128             unsigned ArgAlign = FArg.getParamAlignment();
1129             if (ArgAlign == 0) {
1130               Type *EltType = A->getType()->getPointerElementType();
1131               ArgAlign = DL.getABITypeAlignment(EltType);
1132             }
1133             if (Overflow) {
1134               // ParamTLS overflow.
1135               EntryIRB.CreateMemSet(
1136                   getShadowPtr(V, EntryIRB.getInt8Ty(), EntryIRB),
1137                   Constant::getNullValue(EntryIRB.getInt8Ty()), Size, ArgAlign);
1138             } else {
1139               unsigned CopyAlign = std::min(ArgAlign, kShadowTLSAlignment);
1140               Value *Cpy = EntryIRB.CreateMemCpy(
1141                   getShadowPtr(V, EntryIRB.getInt8Ty(), EntryIRB), Base, Size,
1142                   CopyAlign);
1143               DEBUG(dbgs() << "  ByValCpy: " << *Cpy << "\n");
1144               (void)Cpy;
1145             }
1146             *ShadowPtr = getCleanShadow(V);
1147           } else {
1148             if (Overflow) {
1149               // ParamTLS overflow.
1150               *ShadowPtr = getCleanShadow(V);
1151             } else {
1152               *ShadowPtr =
1153                   EntryIRB.CreateAlignedLoad(Base, kShadowTLSAlignment);
1154             }
1155           }
1156           DEBUG(dbgs() << "  ARG:    "  << FArg << " ==> " <<
1157                 **ShadowPtr << "\n");
1158           if (MS.TrackOrigins && !Overflow) {
1159             Value *OriginPtr =
1160                 getOriginPtrForArgument(&FArg, EntryIRB, ArgOffset);
1161             setOrigin(A, EntryIRB.CreateLoad(OriginPtr));
1162           } else {
1163             setOrigin(A, getCleanOrigin());
1164           }
1165         }
1166         ArgOffset += alignTo(Size, kShadowTLSAlignment);
1167       }
1168       assert(*ShadowPtr && "Could not find shadow for an argument");
1169       return *ShadowPtr;
1170     }
1171     // For everything else the shadow is zero.
1172     return getCleanShadow(V);
1173   }
1174 
1175   /// \brief Get the shadow for i-th argument of the instruction I.
getShadow__anonaa4cb2a40211::MemorySanitizerVisitor1176   Value *getShadow(Instruction *I, int i) {
1177     return getShadow(I->getOperand(i));
1178   }
1179 
1180   /// \brief Get the origin for a value.
getOrigin__anonaa4cb2a40211::MemorySanitizerVisitor1181   Value *getOrigin(Value *V) {
1182     if (!MS.TrackOrigins) return nullptr;
1183     if (!PropagateShadow) return getCleanOrigin();
1184     if (isa<Constant>(V)) return getCleanOrigin();
1185     assert((isa<Instruction>(V) || isa<Argument>(V)) &&
1186            "Unexpected value type in getOrigin()");
1187     Value *Origin = OriginMap[V];
1188     assert(Origin && "Missing origin");
1189     return Origin;
1190   }
1191 
1192   /// \brief Get the origin for i-th argument of the instruction I.
getOrigin__anonaa4cb2a40211::MemorySanitizerVisitor1193   Value *getOrigin(Instruction *I, int i) {
1194     return getOrigin(I->getOperand(i));
1195   }
1196 
1197   /// \brief Remember the place where a shadow check should be inserted.
1198   ///
1199   /// This location will be later instrumented with a check that will print a
1200   /// UMR warning in runtime if the shadow value is not 0.
insertShadowCheck__anonaa4cb2a40211::MemorySanitizerVisitor1201   void insertShadowCheck(Value *Shadow, Value *Origin, Instruction *OrigIns) {
1202     assert(Shadow);
1203     if (!InsertChecks) return;
1204 #ifndef NDEBUG
1205     Type *ShadowTy = Shadow->getType();
1206     assert((isa<IntegerType>(ShadowTy) || isa<VectorType>(ShadowTy)) &&
1207            "Can only insert checks for integer and vector shadow types");
1208 #endif
1209     InstrumentationList.push_back(
1210         ShadowOriginAndInsertPoint(Shadow, Origin, OrigIns));
1211   }
1212 
1213   /// \brief Remember the place where a shadow check should be inserted.
1214   ///
1215   /// This location will be later instrumented with a check that will print a
1216   /// UMR warning in runtime if the value is not fully defined.
insertShadowCheck__anonaa4cb2a40211::MemorySanitizerVisitor1217   void insertShadowCheck(Value *Val, Instruction *OrigIns) {
1218     assert(Val);
1219     Value *Shadow, *Origin;
1220     if (ClCheckConstantShadow) {
1221       Shadow = getShadow(Val);
1222       if (!Shadow) return;
1223       Origin = getOrigin(Val);
1224     } else {
1225       Shadow = dyn_cast_or_null<Instruction>(getShadow(Val));
1226       if (!Shadow) return;
1227       Origin = dyn_cast_or_null<Instruction>(getOrigin(Val));
1228     }
1229     insertShadowCheck(Shadow, Origin, OrigIns);
1230   }
1231 
addReleaseOrdering__anonaa4cb2a40211::MemorySanitizerVisitor1232   AtomicOrdering addReleaseOrdering(AtomicOrdering a) {
1233     switch (a) {
1234       case AtomicOrdering::NotAtomic:
1235         return AtomicOrdering::NotAtomic;
1236       case AtomicOrdering::Unordered:
1237       case AtomicOrdering::Monotonic:
1238       case AtomicOrdering::Release:
1239         return AtomicOrdering::Release;
1240       case AtomicOrdering::Acquire:
1241       case AtomicOrdering::AcquireRelease:
1242         return AtomicOrdering::AcquireRelease;
1243       case AtomicOrdering::SequentiallyConsistent:
1244         return AtomicOrdering::SequentiallyConsistent;
1245     }
1246     llvm_unreachable("Unknown ordering");
1247   }
1248 
addAcquireOrdering__anonaa4cb2a40211::MemorySanitizerVisitor1249   AtomicOrdering addAcquireOrdering(AtomicOrdering a) {
1250     switch (a) {
1251       case AtomicOrdering::NotAtomic:
1252         return AtomicOrdering::NotAtomic;
1253       case AtomicOrdering::Unordered:
1254       case AtomicOrdering::Monotonic:
1255       case AtomicOrdering::Acquire:
1256         return AtomicOrdering::Acquire;
1257       case AtomicOrdering::Release:
1258       case AtomicOrdering::AcquireRelease:
1259         return AtomicOrdering::AcquireRelease;
1260       case AtomicOrdering::SequentiallyConsistent:
1261         return AtomicOrdering::SequentiallyConsistent;
1262     }
1263     llvm_unreachable("Unknown ordering");
1264   }
1265 
1266   // ------------------- Visitors.
1267 
1268   /// \brief Instrument LoadInst
1269   ///
1270   /// Loads the corresponding shadow and (optionally) origin.
1271   /// Optionally, checks that the load address is fully defined.
visitLoadInst__anonaa4cb2a40211::MemorySanitizerVisitor1272   void visitLoadInst(LoadInst &I) {
1273     assert(I.getType()->isSized() && "Load type must have size");
1274     IRBuilder<> IRB(I.getNextNode());
1275     Type *ShadowTy = getShadowTy(&I);
1276     Value *Addr = I.getPointerOperand();
1277     if (PropagateShadow && !I.getMetadata("nosanitize")) {
1278       Value *ShadowPtr = getShadowPtr(Addr, ShadowTy, IRB);
1279       setShadow(&I,
1280                 IRB.CreateAlignedLoad(ShadowPtr, I.getAlignment(), "_msld"));
1281     } else {
1282       setShadow(&I, getCleanShadow(&I));
1283     }
1284 
1285     if (ClCheckAccessAddress)
1286       insertShadowCheck(I.getPointerOperand(), &I);
1287 
1288     if (I.isAtomic())
1289       I.setOrdering(addAcquireOrdering(I.getOrdering()));
1290 
1291     if (MS.TrackOrigins) {
1292       if (PropagateShadow) {
1293         unsigned Alignment = I.getAlignment();
1294         unsigned OriginAlignment = std::max(kMinOriginAlignment, Alignment);
1295         setOrigin(&I, IRB.CreateAlignedLoad(getOriginPtr(Addr, IRB, Alignment),
1296                                             OriginAlignment));
1297       } else {
1298         setOrigin(&I, getCleanOrigin());
1299       }
1300     }
1301   }
1302 
1303   /// \brief Instrument StoreInst
1304   ///
1305   /// Stores the corresponding shadow and (optionally) origin.
1306   /// Optionally, checks that the store address is fully defined.
visitStoreInst__anonaa4cb2a40211::MemorySanitizerVisitor1307   void visitStoreInst(StoreInst &I) {
1308     StoreList.push_back(&I);
1309   }
1310 
handleCASOrRMW__anonaa4cb2a40211::MemorySanitizerVisitor1311   void handleCASOrRMW(Instruction &I) {
1312     assert(isa<AtomicRMWInst>(I) || isa<AtomicCmpXchgInst>(I));
1313 
1314     IRBuilder<> IRB(&I);
1315     Value *Addr = I.getOperand(0);
1316     Value *ShadowPtr = getShadowPtr(Addr, I.getType(), IRB);
1317 
1318     if (ClCheckAccessAddress)
1319       insertShadowCheck(Addr, &I);
1320 
1321     // Only test the conditional argument of cmpxchg instruction.
1322     // The other argument can potentially be uninitialized, but we can not
1323     // detect this situation reliably without possible false positives.
1324     if (isa<AtomicCmpXchgInst>(I))
1325       insertShadowCheck(I.getOperand(1), &I);
1326 
1327     IRB.CreateStore(getCleanShadow(&I), ShadowPtr);
1328 
1329     setShadow(&I, getCleanShadow(&I));
1330     setOrigin(&I, getCleanOrigin());
1331   }
1332 
visitAtomicRMWInst__anonaa4cb2a40211::MemorySanitizerVisitor1333   void visitAtomicRMWInst(AtomicRMWInst &I) {
1334     handleCASOrRMW(I);
1335     I.setOrdering(addReleaseOrdering(I.getOrdering()));
1336   }
1337 
visitAtomicCmpXchgInst__anonaa4cb2a40211::MemorySanitizerVisitor1338   void visitAtomicCmpXchgInst(AtomicCmpXchgInst &I) {
1339     handleCASOrRMW(I);
1340     I.setSuccessOrdering(addReleaseOrdering(I.getSuccessOrdering()));
1341   }
1342 
1343   // Vector manipulation.
visitExtractElementInst__anonaa4cb2a40211::MemorySanitizerVisitor1344   void visitExtractElementInst(ExtractElementInst &I) {
1345     insertShadowCheck(I.getOperand(1), &I);
1346     IRBuilder<> IRB(&I);
1347     setShadow(&I, IRB.CreateExtractElement(getShadow(&I, 0), I.getOperand(1),
1348               "_msprop"));
1349     setOrigin(&I, getOrigin(&I, 0));
1350   }
1351 
visitInsertElementInst__anonaa4cb2a40211::MemorySanitizerVisitor1352   void visitInsertElementInst(InsertElementInst &I) {
1353     insertShadowCheck(I.getOperand(2), &I);
1354     IRBuilder<> IRB(&I);
1355     setShadow(&I, IRB.CreateInsertElement(getShadow(&I, 0), getShadow(&I, 1),
1356               I.getOperand(2), "_msprop"));
1357     setOriginForNaryOp(I);
1358   }
1359 
visitShuffleVectorInst__anonaa4cb2a40211::MemorySanitizerVisitor1360   void visitShuffleVectorInst(ShuffleVectorInst &I) {
1361     insertShadowCheck(I.getOperand(2), &I);
1362     IRBuilder<> IRB(&I);
1363     setShadow(&I, IRB.CreateShuffleVector(getShadow(&I, 0), getShadow(&I, 1),
1364               I.getOperand(2), "_msprop"));
1365     setOriginForNaryOp(I);
1366   }
1367 
1368   // Casts.
visitSExtInst__anonaa4cb2a40211::MemorySanitizerVisitor1369   void visitSExtInst(SExtInst &I) {
1370     IRBuilder<> IRB(&I);
1371     setShadow(&I, IRB.CreateSExt(getShadow(&I, 0), I.getType(), "_msprop"));
1372     setOrigin(&I, getOrigin(&I, 0));
1373   }
1374 
visitZExtInst__anonaa4cb2a40211::MemorySanitizerVisitor1375   void visitZExtInst(ZExtInst &I) {
1376     IRBuilder<> IRB(&I);
1377     setShadow(&I, IRB.CreateZExt(getShadow(&I, 0), I.getType(), "_msprop"));
1378     setOrigin(&I, getOrigin(&I, 0));
1379   }
1380 
visitTruncInst__anonaa4cb2a40211::MemorySanitizerVisitor1381   void visitTruncInst(TruncInst &I) {
1382     IRBuilder<> IRB(&I);
1383     setShadow(&I, IRB.CreateTrunc(getShadow(&I, 0), I.getType(), "_msprop"));
1384     setOrigin(&I, getOrigin(&I, 0));
1385   }
1386 
visitBitCastInst__anonaa4cb2a40211::MemorySanitizerVisitor1387   void visitBitCastInst(BitCastInst &I) {
1388     // Special case: if this is the bitcast (there is exactly 1 allowed) between
1389     // a musttail call and a ret, don't instrument. New instructions are not
1390     // allowed after a musttail call.
1391     if (auto *CI = dyn_cast<CallInst>(I.getOperand(0)))
1392       if (CI->isMustTailCall())
1393         return;
1394     IRBuilder<> IRB(&I);
1395     setShadow(&I, IRB.CreateBitCast(getShadow(&I, 0), getShadowTy(&I)));
1396     setOrigin(&I, getOrigin(&I, 0));
1397   }
1398 
visitPtrToIntInst__anonaa4cb2a40211::MemorySanitizerVisitor1399   void visitPtrToIntInst(PtrToIntInst &I) {
1400     IRBuilder<> IRB(&I);
1401     setShadow(&I, IRB.CreateIntCast(getShadow(&I, 0), getShadowTy(&I), false,
1402              "_msprop_ptrtoint"));
1403     setOrigin(&I, getOrigin(&I, 0));
1404   }
1405 
visitIntToPtrInst__anonaa4cb2a40211::MemorySanitizerVisitor1406   void visitIntToPtrInst(IntToPtrInst &I) {
1407     IRBuilder<> IRB(&I);
1408     setShadow(&I, IRB.CreateIntCast(getShadow(&I, 0), getShadowTy(&I), false,
1409              "_msprop_inttoptr"));
1410     setOrigin(&I, getOrigin(&I, 0));
1411   }
1412 
visitFPToSIInst__anonaa4cb2a40211::MemorySanitizerVisitor1413   void visitFPToSIInst(CastInst& I) { handleShadowOr(I); }
visitFPToUIInst__anonaa4cb2a40211::MemorySanitizerVisitor1414   void visitFPToUIInst(CastInst& I) { handleShadowOr(I); }
visitSIToFPInst__anonaa4cb2a40211::MemorySanitizerVisitor1415   void visitSIToFPInst(CastInst& I) { handleShadowOr(I); }
visitUIToFPInst__anonaa4cb2a40211::MemorySanitizerVisitor1416   void visitUIToFPInst(CastInst& I) { handleShadowOr(I); }
visitFPExtInst__anonaa4cb2a40211::MemorySanitizerVisitor1417   void visitFPExtInst(CastInst& I) { handleShadowOr(I); }
visitFPTruncInst__anonaa4cb2a40211::MemorySanitizerVisitor1418   void visitFPTruncInst(CastInst& I) { handleShadowOr(I); }
1419 
1420   /// \brief Propagate shadow for bitwise AND.
1421   ///
1422   /// This code is exact, i.e. if, for example, a bit in the left argument
1423   /// is defined and 0, then neither the value not definedness of the
1424   /// corresponding bit in B don't affect the resulting shadow.
visitAnd__anonaa4cb2a40211::MemorySanitizerVisitor1425   void visitAnd(BinaryOperator &I) {
1426     IRBuilder<> IRB(&I);
1427     //  "And" of 0 and a poisoned value results in unpoisoned value.
1428     //  1&1 => 1;     0&1 => 0;     p&1 => p;
1429     //  1&0 => 0;     0&0 => 0;     p&0 => 0;
1430     //  1&p => p;     0&p => 0;     p&p => p;
1431     //  S = (S1 & S2) | (V1 & S2) | (S1 & V2)
1432     Value *S1 = getShadow(&I, 0);
1433     Value *S2 = getShadow(&I, 1);
1434     Value *V1 = I.getOperand(0);
1435     Value *V2 = I.getOperand(1);
1436     if (V1->getType() != S1->getType()) {
1437       V1 = IRB.CreateIntCast(V1, S1->getType(), false);
1438       V2 = IRB.CreateIntCast(V2, S2->getType(), false);
1439     }
1440     Value *S1S2 = IRB.CreateAnd(S1, S2);
1441     Value *V1S2 = IRB.CreateAnd(V1, S2);
1442     Value *S1V2 = IRB.CreateAnd(S1, V2);
1443     setShadow(&I, IRB.CreateOr(S1S2, IRB.CreateOr(V1S2, S1V2)));
1444     setOriginForNaryOp(I);
1445   }
1446 
visitOr__anonaa4cb2a40211::MemorySanitizerVisitor1447   void visitOr(BinaryOperator &I) {
1448     IRBuilder<> IRB(&I);
1449     //  "Or" of 1 and a poisoned value results in unpoisoned value.
1450     //  1|1 => 1;     0|1 => 1;     p|1 => 1;
1451     //  1|0 => 1;     0|0 => 0;     p|0 => p;
1452     //  1|p => 1;     0|p => p;     p|p => p;
1453     //  S = (S1 & S2) | (~V1 & S2) | (S1 & ~V2)
1454     Value *S1 = getShadow(&I, 0);
1455     Value *S2 = getShadow(&I, 1);
1456     Value *V1 = IRB.CreateNot(I.getOperand(0));
1457     Value *V2 = IRB.CreateNot(I.getOperand(1));
1458     if (V1->getType() != S1->getType()) {
1459       V1 = IRB.CreateIntCast(V1, S1->getType(), false);
1460       V2 = IRB.CreateIntCast(V2, S2->getType(), false);
1461     }
1462     Value *S1S2 = IRB.CreateAnd(S1, S2);
1463     Value *V1S2 = IRB.CreateAnd(V1, S2);
1464     Value *S1V2 = IRB.CreateAnd(S1, V2);
1465     setShadow(&I, IRB.CreateOr(S1S2, IRB.CreateOr(V1S2, S1V2)));
1466     setOriginForNaryOp(I);
1467   }
1468 
1469   /// \brief Default propagation of shadow and/or origin.
1470   ///
1471   /// This class implements the general case of shadow propagation, used in all
1472   /// cases where we don't know and/or don't care about what the operation
1473   /// actually does. It converts all input shadow values to a common type
1474   /// (extending or truncating as necessary), and bitwise OR's them.
1475   ///
1476   /// This is much cheaper than inserting checks (i.e. requiring inputs to be
1477   /// fully initialized), and less prone to false positives.
1478   ///
1479   /// This class also implements the general case of origin propagation. For a
1480   /// Nary operation, result origin is set to the origin of an argument that is
1481   /// not entirely initialized. If there is more than one such arguments, the
1482   /// rightmost of them is picked. It does not matter which one is picked if all
1483   /// arguments are initialized.
1484   template <bool CombineShadow>
1485   class Combiner {
1486     Value *Shadow;
1487     Value *Origin;
1488     IRBuilder<> &IRB;
1489     MemorySanitizerVisitor *MSV;
1490 
1491   public:
Combiner(MemorySanitizerVisitor * MSV,IRBuilder<> & IRB)1492     Combiner(MemorySanitizerVisitor *MSV, IRBuilder<> &IRB) :
1493       Shadow(nullptr), Origin(nullptr), IRB(IRB), MSV(MSV) {}
1494 
1495     /// \brief Add a pair of shadow and origin values to the mix.
Add(Value * OpShadow,Value * OpOrigin)1496     Combiner &Add(Value *OpShadow, Value *OpOrigin) {
1497       if (CombineShadow) {
1498         assert(OpShadow);
1499         if (!Shadow)
1500           Shadow = OpShadow;
1501         else {
1502           OpShadow = MSV->CreateShadowCast(IRB, OpShadow, Shadow->getType());
1503           Shadow = IRB.CreateOr(Shadow, OpShadow, "_msprop");
1504         }
1505       }
1506 
1507       if (MSV->MS.TrackOrigins) {
1508         assert(OpOrigin);
1509         if (!Origin) {
1510           Origin = OpOrigin;
1511         } else {
1512           Constant *ConstOrigin = dyn_cast<Constant>(OpOrigin);
1513           // No point in adding something that might result in 0 origin value.
1514           if (!ConstOrigin || !ConstOrigin->isNullValue()) {
1515             Value *FlatShadow = MSV->convertToShadowTyNoVec(OpShadow, IRB);
1516             Value *Cond =
1517                 IRB.CreateICmpNE(FlatShadow, MSV->getCleanShadow(FlatShadow));
1518             Origin = IRB.CreateSelect(Cond, OpOrigin, Origin);
1519           }
1520         }
1521       }
1522       return *this;
1523     }
1524 
1525     /// \brief Add an application value to the mix.
Add(Value * V)1526     Combiner &Add(Value *V) {
1527       Value *OpShadow = MSV->getShadow(V);
1528       Value *OpOrigin = MSV->MS.TrackOrigins ? MSV->getOrigin(V) : nullptr;
1529       return Add(OpShadow, OpOrigin);
1530     }
1531 
1532     /// \brief Set the current combined values as the given instruction's shadow
1533     /// and origin.
Done(Instruction * I)1534     void Done(Instruction *I) {
1535       if (CombineShadow) {
1536         assert(Shadow);
1537         Shadow = MSV->CreateShadowCast(IRB, Shadow, MSV->getShadowTy(I));
1538         MSV->setShadow(I, Shadow);
1539       }
1540       if (MSV->MS.TrackOrigins) {
1541         assert(Origin);
1542         MSV->setOrigin(I, Origin);
1543       }
1544     }
1545   };
1546 
1547   typedef Combiner<true> ShadowAndOriginCombiner;
1548   typedef Combiner<false> OriginCombiner;
1549 
1550   /// \brief Propagate origin for arbitrary operation.
setOriginForNaryOp__anonaa4cb2a40211::MemorySanitizerVisitor1551   void setOriginForNaryOp(Instruction &I) {
1552     if (!MS.TrackOrigins) return;
1553     IRBuilder<> IRB(&I);
1554     OriginCombiner OC(this, IRB);
1555     for (Instruction::op_iterator OI = I.op_begin(); OI != I.op_end(); ++OI)
1556       OC.Add(OI->get());
1557     OC.Done(&I);
1558   }
1559 
VectorOrPrimitiveTypeSizeInBits__anonaa4cb2a40211::MemorySanitizerVisitor1560   size_t VectorOrPrimitiveTypeSizeInBits(Type *Ty) {
1561     assert(!(Ty->isVectorTy() && Ty->getScalarType()->isPointerTy()) &&
1562            "Vector of pointers is not a valid shadow type");
1563     return Ty->isVectorTy() ?
1564       Ty->getVectorNumElements() * Ty->getScalarSizeInBits() :
1565       Ty->getPrimitiveSizeInBits();
1566   }
1567 
1568   /// \brief Cast between two shadow types, extending or truncating as
1569   /// necessary.
CreateShadowCast__anonaa4cb2a40211::MemorySanitizerVisitor1570   Value *CreateShadowCast(IRBuilder<> &IRB, Value *V, Type *dstTy,
1571                           bool Signed = false) {
1572     Type *srcTy = V->getType();
1573     if (dstTy->isIntegerTy() && srcTy->isIntegerTy())
1574       return IRB.CreateIntCast(V, dstTy, Signed);
1575     if (dstTy->isVectorTy() && srcTy->isVectorTy() &&
1576         dstTy->getVectorNumElements() == srcTy->getVectorNumElements())
1577       return IRB.CreateIntCast(V, dstTy, Signed);
1578     size_t srcSizeInBits = VectorOrPrimitiveTypeSizeInBits(srcTy);
1579     size_t dstSizeInBits = VectorOrPrimitiveTypeSizeInBits(dstTy);
1580     Value *V1 = IRB.CreateBitCast(V, Type::getIntNTy(*MS.C, srcSizeInBits));
1581     Value *V2 =
1582       IRB.CreateIntCast(V1, Type::getIntNTy(*MS.C, dstSizeInBits), Signed);
1583     return IRB.CreateBitCast(V2, dstTy);
1584     // TODO: handle struct types.
1585   }
1586 
1587   /// \brief Cast an application value to the type of its own shadow.
CreateAppToShadowCast__anonaa4cb2a40211::MemorySanitizerVisitor1588   Value *CreateAppToShadowCast(IRBuilder<> &IRB, Value *V) {
1589     Type *ShadowTy = getShadowTy(V);
1590     if (V->getType() == ShadowTy)
1591       return V;
1592     if (V->getType()->isPtrOrPtrVectorTy())
1593       return IRB.CreatePtrToInt(V, ShadowTy);
1594     else
1595       return IRB.CreateBitCast(V, ShadowTy);
1596   }
1597 
1598   /// \brief Propagate shadow for arbitrary operation.
handleShadowOr__anonaa4cb2a40211::MemorySanitizerVisitor1599   void handleShadowOr(Instruction &I) {
1600     IRBuilder<> IRB(&I);
1601     ShadowAndOriginCombiner SC(this, IRB);
1602     for (Instruction::op_iterator OI = I.op_begin(); OI != I.op_end(); ++OI)
1603       SC.Add(OI->get());
1604     SC.Done(&I);
1605   }
1606 
1607   // \brief Handle multiplication by constant.
1608   //
1609   // Handle a special case of multiplication by constant that may have one or
1610   // more zeros in the lower bits. This makes corresponding number of lower bits
1611   // of the result zero as well. We model it by shifting the other operand
1612   // shadow left by the required number of bits. Effectively, we transform
1613   // (X * (A * 2**B)) to ((X << B) * A) and instrument (X << B) as (Sx << B).
1614   // We use multiplication by 2**N instead of shift to cover the case of
1615   // multiplication by 0, which may occur in some elements of a vector operand.
handleMulByConstant__anonaa4cb2a40211::MemorySanitizerVisitor1616   void handleMulByConstant(BinaryOperator &I, Constant *ConstArg,
1617                            Value *OtherArg) {
1618     Constant *ShadowMul;
1619     Type *Ty = ConstArg->getType();
1620     if (Ty->isVectorTy()) {
1621       unsigned NumElements = Ty->getVectorNumElements();
1622       Type *EltTy = Ty->getSequentialElementType();
1623       SmallVector<Constant *, 16> Elements;
1624       for (unsigned Idx = 0; Idx < NumElements; ++Idx) {
1625         if (ConstantInt *Elt =
1626                 dyn_cast<ConstantInt>(ConstArg->getAggregateElement(Idx))) {
1627           const APInt &V = Elt->getValue();
1628           APInt V2 = APInt(V.getBitWidth(), 1) << V.countTrailingZeros();
1629           Elements.push_back(ConstantInt::get(EltTy, V2));
1630         } else {
1631           Elements.push_back(ConstantInt::get(EltTy, 1));
1632         }
1633       }
1634       ShadowMul = ConstantVector::get(Elements);
1635     } else {
1636       if (ConstantInt *Elt = dyn_cast<ConstantInt>(ConstArg)) {
1637         const APInt &V = Elt->getValue();
1638         APInt V2 = APInt(V.getBitWidth(), 1) << V.countTrailingZeros();
1639         ShadowMul = ConstantInt::get(Ty, V2);
1640       } else {
1641         ShadowMul = ConstantInt::get(Ty, 1);
1642       }
1643     }
1644 
1645     IRBuilder<> IRB(&I);
1646     setShadow(&I,
1647               IRB.CreateMul(getShadow(OtherArg), ShadowMul, "msprop_mul_cst"));
1648     setOrigin(&I, getOrigin(OtherArg));
1649   }
1650 
visitMul__anonaa4cb2a40211::MemorySanitizerVisitor1651   void visitMul(BinaryOperator &I) {
1652     Constant *constOp0 = dyn_cast<Constant>(I.getOperand(0));
1653     Constant *constOp1 = dyn_cast<Constant>(I.getOperand(1));
1654     if (constOp0 && !constOp1)
1655       handleMulByConstant(I, constOp0, I.getOperand(1));
1656     else if (constOp1 && !constOp0)
1657       handleMulByConstant(I, constOp1, I.getOperand(0));
1658     else
1659       handleShadowOr(I);
1660   }
1661 
visitFAdd__anonaa4cb2a40211::MemorySanitizerVisitor1662   void visitFAdd(BinaryOperator &I) { handleShadowOr(I); }
visitFSub__anonaa4cb2a40211::MemorySanitizerVisitor1663   void visitFSub(BinaryOperator &I) { handleShadowOr(I); }
visitFMul__anonaa4cb2a40211::MemorySanitizerVisitor1664   void visitFMul(BinaryOperator &I) { handleShadowOr(I); }
visitAdd__anonaa4cb2a40211::MemorySanitizerVisitor1665   void visitAdd(BinaryOperator &I) { handleShadowOr(I); }
visitSub__anonaa4cb2a40211::MemorySanitizerVisitor1666   void visitSub(BinaryOperator &I) { handleShadowOr(I); }
visitXor__anonaa4cb2a40211::MemorySanitizerVisitor1667   void visitXor(BinaryOperator &I) { handleShadowOr(I); }
1668 
handleDiv__anonaa4cb2a40211::MemorySanitizerVisitor1669   void handleDiv(Instruction &I) {
1670     IRBuilder<> IRB(&I);
1671     // Strict on the second argument.
1672     insertShadowCheck(I.getOperand(1), &I);
1673     setShadow(&I, getShadow(&I, 0));
1674     setOrigin(&I, getOrigin(&I, 0));
1675   }
1676 
visitUDiv__anonaa4cb2a40211::MemorySanitizerVisitor1677   void visitUDiv(BinaryOperator &I) { handleDiv(I); }
visitSDiv__anonaa4cb2a40211::MemorySanitizerVisitor1678   void visitSDiv(BinaryOperator &I) { handleDiv(I); }
visitFDiv__anonaa4cb2a40211::MemorySanitizerVisitor1679   void visitFDiv(BinaryOperator &I) { handleDiv(I); }
visitURem__anonaa4cb2a40211::MemorySanitizerVisitor1680   void visitURem(BinaryOperator &I) { handleDiv(I); }
visitSRem__anonaa4cb2a40211::MemorySanitizerVisitor1681   void visitSRem(BinaryOperator &I) { handleDiv(I); }
visitFRem__anonaa4cb2a40211::MemorySanitizerVisitor1682   void visitFRem(BinaryOperator &I) { handleDiv(I); }
1683 
1684   /// \brief Instrument == and != comparisons.
1685   ///
1686   /// Sometimes the comparison result is known even if some of the bits of the
1687   /// arguments are not.
handleEqualityComparison__anonaa4cb2a40211::MemorySanitizerVisitor1688   void handleEqualityComparison(ICmpInst &I) {
1689     IRBuilder<> IRB(&I);
1690     Value *A = I.getOperand(0);
1691     Value *B = I.getOperand(1);
1692     Value *Sa = getShadow(A);
1693     Value *Sb = getShadow(B);
1694 
1695     // Get rid of pointers and vectors of pointers.
1696     // For ints (and vectors of ints), types of A and Sa match,
1697     // and this is a no-op.
1698     A = IRB.CreatePointerCast(A, Sa->getType());
1699     B = IRB.CreatePointerCast(B, Sb->getType());
1700 
1701     // A == B  <==>  (C = A^B) == 0
1702     // A != B  <==>  (C = A^B) != 0
1703     // Sc = Sa | Sb
1704     Value *C = IRB.CreateXor(A, B);
1705     Value *Sc = IRB.CreateOr(Sa, Sb);
1706     // Now dealing with i = (C == 0) comparison (or C != 0, does not matter now)
1707     // Result is defined if one of the following is true
1708     // * there is a defined 1 bit in C
1709     // * C is fully defined
1710     // Si = !(C & ~Sc) && Sc
1711     Value *Zero = Constant::getNullValue(Sc->getType());
1712     Value *MinusOne = Constant::getAllOnesValue(Sc->getType());
1713     Value *Si =
1714       IRB.CreateAnd(IRB.CreateICmpNE(Sc, Zero),
1715                     IRB.CreateICmpEQ(
1716                       IRB.CreateAnd(IRB.CreateXor(Sc, MinusOne), C), Zero));
1717     Si->setName("_msprop_icmp");
1718     setShadow(&I, Si);
1719     setOriginForNaryOp(I);
1720   }
1721 
1722   /// \brief Build the lowest possible value of V, taking into account V's
1723   ///        uninitialized bits.
getLowestPossibleValue__anonaa4cb2a40211::MemorySanitizerVisitor1724   Value *getLowestPossibleValue(IRBuilder<> &IRB, Value *A, Value *Sa,
1725                                 bool isSigned) {
1726     if (isSigned) {
1727       // Split shadow into sign bit and other bits.
1728       Value *SaOtherBits = IRB.CreateLShr(IRB.CreateShl(Sa, 1), 1);
1729       Value *SaSignBit = IRB.CreateXor(Sa, SaOtherBits);
1730       // Maximise the undefined shadow bit, minimize other undefined bits.
1731       return
1732         IRB.CreateOr(IRB.CreateAnd(A, IRB.CreateNot(SaOtherBits)), SaSignBit);
1733     } else {
1734       // Minimize undefined bits.
1735       return IRB.CreateAnd(A, IRB.CreateNot(Sa));
1736     }
1737   }
1738 
1739   /// \brief Build the highest possible value of V, taking into account V's
1740   ///        uninitialized bits.
getHighestPossibleValue__anonaa4cb2a40211::MemorySanitizerVisitor1741   Value *getHighestPossibleValue(IRBuilder<> &IRB, Value *A, Value *Sa,
1742                                 bool isSigned) {
1743     if (isSigned) {
1744       // Split shadow into sign bit and other bits.
1745       Value *SaOtherBits = IRB.CreateLShr(IRB.CreateShl(Sa, 1), 1);
1746       Value *SaSignBit = IRB.CreateXor(Sa, SaOtherBits);
1747       // Minimise the undefined shadow bit, maximise other undefined bits.
1748       return
1749         IRB.CreateOr(IRB.CreateAnd(A, IRB.CreateNot(SaSignBit)), SaOtherBits);
1750     } else {
1751       // Maximize undefined bits.
1752       return IRB.CreateOr(A, Sa);
1753     }
1754   }
1755 
1756   /// \brief Instrument relational comparisons.
1757   ///
1758   /// This function does exact shadow propagation for all relational
1759   /// comparisons of integers, pointers and vectors of those.
1760   /// FIXME: output seems suboptimal when one of the operands is a constant
handleRelationalComparisonExact__anonaa4cb2a40211::MemorySanitizerVisitor1761   void handleRelationalComparisonExact(ICmpInst &I) {
1762     IRBuilder<> IRB(&I);
1763     Value *A = I.getOperand(0);
1764     Value *B = I.getOperand(1);
1765     Value *Sa = getShadow(A);
1766     Value *Sb = getShadow(B);
1767 
1768     // Get rid of pointers and vectors of pointers.
1769     // For ints (and vectors of ints), types of A and Sa match,
1770     // and this is a no-op.
1771     A = IRB.CreatePointerCast(A, Sa->getType());
1772     B = IRB.CreatePointerCast(B, Sb->getType());
1773 
1774     // Let [a0, a1] be the interval of possible values of A, taking into account
1775     // its undefined bits. Let [b0, b1] be the interval of possible values of B.
1776     // Then (A cmp B) is defined iff (a0 cmp b1) == (a1 cmp b0).
1777     bool IsSigned = I.isSigned();
1778     Value *S1 = IRB.CreateICmp(I.getPredicate(),
1779                                getLowestPossibleValue(IRB, A, Sa, IsSigned),
1780                                getHighestPossibleValue(IRB, B, Sb, IsSigned));
1781     Value *S2 = IRB.CreateICmp(I.getPredicate(),
1782                                getHighestPossibleValue(IRB, A, Sa, IsSigned),
1783                                getLowestPossibleValue(IRB, B, Sb, IsSigned));
1784     Value *Si = IRB.CreateXor(S1, S2);
1785     setShadow(&I, Si);
1786     setOriginForNaryOp(I);
1787   }
1788 
1789   /// \brief Instrument signed relational comparisons.
1790   ///
1791   /// Handle sign bit tests: x<0, x>=0, x<=-1, x>-1 by propagating the highest
1792   /// bit of the shadow. Everything else is delegated to handleShadowOr().
handleSignedRelationalComparison__anonaa4cb2a40211::MemorySanitizerVisitor1793   void handleSignedRelationalComparison(ICmpInst &I) {
1794     Constant *constOp;
1795     Value *op = nullptr;
1796     CmpInst::Predicate pre;
1797     if ((constOp = dyn_cast<Constant>(I.getOperand(1)))) {
1798       op = I.getOperand(0);
1799       pre = I.getPredicate();
1800     } else if ((constOp = dyn_cast<Constant>(I.getOperand(0)))) {
1801       op = I.getOperand(1);
1802       pre = I.getSwappedPredicate();
1803     } else {
1804       handleShadowOr(I);
1805       return;
1806     }
1807 
1808     if ((constOp->isNullValue() &&
1809          (pre == CmpInst::ICMP_SLT || pre == CmpInst::ICMP_SGE)) ||
1810         (constOp->isAllOnesValue() &&
1811          (pre == CmpInst::ICMP_SGT || pre == CmpInst::ICMP_SLE))) {
1812       IRBuilder<> IRB(&I);
1813       Value *Shadow = IRB.CreateICmpSLT(getShadow(op), getCleanShadow(op),
1814                                         "_msprop_icmp_s");
1815       setShadow(&I, Shadow);
1816       setOrigin(&I, getOrigin(op));
1817     } else {
1818       handleShadowOr(I);
1819     }
1820   }
1821 
visitICmpInst__anonaa4cb2a40211::MemorySanitizerVisitor1822   void visitICmpInst(ICmpInst &I) {
1823     if (!ClHandleICmp) {
1824       handleShadowOr(I);
1825       return;
1826     }
1827     if (I.isEquality()) {
1828       handleEqualityComparison(I);
1829       return;
1830     }
1831 
1832     assert(I.isRelational());
1833     if (ClHandleICmpExact) {
1834       handleRelationalComparisonExact(I);
1835       return;
1836     }
1837     if (I.isSigned()) {
1838       handleSignedRelationalComparison(I);
1839       return;
1840     }
1841 
1842     assert(I.isUnsigned());
1843     if ((isa<Constant>(I.getOperand(0)) || isa<Constant>(I.getOperand(1)))) {
1844       handleRelationalComparisonExact(I);
1845       return;
1846     }
1847 
1848     handleShadowOr(I);
1849   }
1850 
visitFCmpInst__anonaa4cb2a40211::MemorySanitizerVisitor1851   void visitFCmpInst(FCmpInst &I) {
1852     handleShadowOr(I);
1853   }
1854 
handleShift__anonaa4cb2a40211::MemorySanitizerVisitor1855   void handleShift(BinaryOperator &I) {
1856     IRBuilder<> IRB(&I);
1857     // If any of the S2 bits are poisoned, the whole thing is poisoned.
1858     // Otherwise perform the same shift on S1.
1859     Value *S1 = getShadow(&I, 0);
1860     Value *S2 = getShadow(&I, 1);
1861     Value *S2Conv = IRB.CreateSExt(IRB.CreateICmpNE(S2, getCleanShadow(S2)),
1862                                    S2->getType());
1863     Value *V2 = I.getOperand(1);
1864     Value *Shift = IRB.CreateBinOp(I.getOpcode(), S1, V2);
1865     setShadow(&I, IRB.CreateOr(Shift, S2Conv));
1866     setOriginForNaryOp(I);
1867   }
1868 
visitShl__anonaa4cb2a40211::MemorySanitizerVisitor1869   void visitShl(BinaryOperator &I) { handleShift(I); }
visitAShr__anonaa4cb2a40211::MemorySanitizerVisitor1870   void visitAShr(BinaryOperator &I) { handleShift(I); }
visitLShr__anonaa4cb2a40211::MemorySanitizerVisitor1871   void visitLShr(BinaryOperator &I) { handleShift(I); }
1872 
1873   /// \brief Instrument llvm.memmove
1874   ///
1875   /// At this point we don't know if llvm.memmove will be inlined or not.
1876   /// If we don't instrument it and it gets inlined,
1877   /// our interceptor will not kick in and we will lose the memmove.
1878   /// If we instrument the call here, but it does not get inlined,
1879   /// we will memove the shadow twice: which is bad in case
1880   /// of overlapping regions. So, we simply lower the intrinsic to a call.
1881   ///
1882   /// Similar situation exists for memcpy and memset.
visitMemMoveInst__anonaa4cb2a40211::MemorySanitizerVisitor1883   void visitMemMoveInst(MemMoveInst &I) {
1884     IRBuilder<> IRB(&I);
1885     IRB.CreateCall(
1886         MS.MemmoveFn,
1887         {IRB.CreatePointerCast(I.getArgOperand(0), IRB.getInt8PtrTy()),
1888          IRB.CreatePointerCast(I.getArgOperand(1), IRB.getInt8PtrTy()),
1889          IRB.CreateIntCast(I.getArgOperand(2), MS.IntptrTy, false)});
1890     I.eraseFromParent();
1891   }
1892 
1893   // Similar to memmove: avoid copying shadow twice.
1894   // This is somewhat unfortunate as it may slowdown small constant memcpys.
1895   // FIXME: consider doing manual inline for small constant sizes and proper
1896   // alignment.
visitMemCpyInst__anonaa4cb2a40211::MemorySanitizerVisitor1897   void visitMemCpyInst(MemCpyInst &I) {
1898     IRBuilder<> IRB(&I);
1899     IRB.CreateCall(
1900         MS.MemcpyFn,
1901         {IRB.CreatePointerCast(I.getArgOperand(0), IRB.getInt8PtrTy()),
1902          IRB.CreatePointerCast(I.getArgOperand(1), IRB.getInt8PtrTy()),
1903          IRB.CreateIntCast(I.getArgOperand(2), MS.IntptrTy, false)});
1904     I.eraseFromParent();
1905   }
1906 
1907   // Same as memcpy.
visitMemSetInst__anonaa4cb2a40211::MemorySanitizerVisitor1908   void visitMemSetInst(MemSetInst &I) {
1909     IRBuilder<> IRB(&I);
1910     IRB.CreateCall(
1911         MS.MemsetFn,
1912         {IRB.CreatePointerCast(I.getArgOperand(0), IRB.getInt8PtrTy()),
1913          IRB.CreateIntCast(I.getArgOperand(1), IRB.getInt32Ty(), false),
1914          IRB.CreateIntCast(I.getArgOperand(2), MS.IntptrTy, false)});
1915     I.eraseFromParent();
1916   }
1917 
visitVAStartInst__anonaa4cb2a40211::MemorySanitizerVisitor1918   void visitVAStartInst(VAStartInst &I) {
1919     VAHelper->visitVAStartInst(I);
1920   }
1921 
visitVACopyInst__anonaa4cb2a40211::MemorySanitizerVisitor1922   void visitVACopyInst(VACopyInst &I) {
1923     VAHelper->visitVACopyInst(I);
1924   }
1925 
1926   /// \brief Handle vector store-like intrinsics.
1927   ///
1928   /// Instrument intrinsics that look like a simple SIMD store: writes memory,
1929   /// has 1 pointer argument and 1 vector argument, returns void.
handleVectorStoreIntrinsic__anonaa4cb2a40211::MemorySanitizerVisitor1930   bool handleVectorStoreIntrinsic(IntrinsicInst &I) {
1931     IRBuilder<> IRB(&I);
1932     Value* Addr = I.getArgOperand(0);
1933     Value *Shadow = getShadow(&I, 1);
1934     Value *ShadowPtr = getShadowPtr(Addr, Shadow->getType(), IRB);
1935 
1936     // We don't know the pointer alignment (could be unaligned SSE store!).
1937     // Have to assume to worst case.
1938     IRB.CreateAlignedStore(Shadow, ShadowPtr, 1);
1939 
1940     if (ClCheckAccessAddress)
1941       insertShadowCheck(Addr, &I);
1942 
1943     // FIXME: use ClStoreCleanOrigin
1944     // FIXME: factor out common code from materializeStores
1945     if (MS.TrackOrigins)
1946       IRB.CreateStore(getOrigin(&I, 1), getOriginPtr(Addr, IRB, 1));
1947     return true;
1948   }
1949 
1950   /// \brief Handle vector load-like intrinsics.
1951   ///
1952   /// Instrument intrinsics that look like a simple SIMD load: reads memory,
1953   /// has 1 pointer argument, returns a vector.
handleVectorLoadIntrinsic__anonaa4cb2a40211::MemorySanitizerVisitor1954   bool handleVectorLoadIntrinsic(IntrinsicInst &I) {
1955     IRBuilder<> IRB(&I);
1956     Value *Addr = I.getArgOperand(0);
1957 
1958     Type *ShadowTy = getShadowTy(&I);
1959     if (PropagateShadow) {
1960       Value *ShadowPtr = getShadowPtr(Addr, ShadowTy, IRB);
1961       // We don't know the pointer alignment (could be unaligned SSE load!).
1962       // Have to assume to worst case.
1963       setShadow(&I, IRB.CreateAlignedLoad(ShadowPtr, 1, "_msld"));
1964     } else {
1965       setShadow(&I, getCleanShadow(&I));
1966     }
1967 
1968     if (ClCheckAccessAddress)
1969       insertShadowCheck(Addr, &I);
1970 
1971     if (MS.TrackOrigins) {
1972       if (PropagateShadow)
1973         setOrigin(&I, IRB.CreateLoad(getOriginPtr(Addr, IRB, 1)));
1974       else
1975         setOrigin(&I, getCleanOrigin());
1976     }
1977     return true;
1978   }
1979 
1980   /// \brief Handle (SIMD arithmetic)-like intrinsics.
1981   ///
1982   /// Instrument intrinsics with any number of arguments of the same type,
1983   /// equal to the return type. The type should be simple (no aggregates or
1984   /// pointers; vectors are fine).
1985   /// Caller guarantees that this intrinsic does not access memory.
maybeHandleSimpleNomemIntrinsic__anonaa4cb2a40211::MemorySanitizerVisitor1986   bool maybeHandleSimpleNomemIntrinsic(IntrinsicInst &I) {
1987     Type *RetTy = I.getType();
1988     if (!(RetTy->isIntOrIntVectorTy() ||
1989           RetTy->isFPOrFPVectorTy() ||
1990           RetTy->isX86_MMXTy()))
1991       return false;
1992 
1993     unsigned NumArgOperands = I.getNumArgOperands();
1994 
1995     for (unsigned i = 0; i < NumArgOperands; ++i) {
1996       Type *Ty = I.getArgOperand(i)->getType();
1997       if (Ty != RetTy)
1998         return false;
1999     }
2000 
2001     IRBuilder<> IRB(&I);
2002     ShadowAndOriginCombiner SC(this, IRB);
2003     for (unsigned i = 0; i < NumArgOperands; ++i)
2004       SC.Add(I.getArgOperand(i));
2005     SC.Done(&I);
2006 
2007     return true;
2008   }
2009 
2010   /// \brief Heuristically instrument unknown intrinsics.
2011   ///
2012   /// The main purpose of this code is to do something reasonable with all
2013   /// random intrinsics we might encounter, most importantly - SIMD intrinsics.
2014   /// We recognize several classes of intrinsics by their argument types and
2015   /// ModRefBehaviour and apply special intrumentation when we are reasonably
2016   /// sure that we know what the intrinsic does.
2017   ///
2018   /// We special-case intrinsics where this approach fails. See llvm.bswap
2019   /// handling as an example of that.
handleUnknownIntrinsic__anonaa4cb2a40211::MemorySanitizerVisitor2020   bool handleUnknownIntrinsic(IntrinsicInst &I) {
2021     unsigned NumArgOperands = I.getNumArgOperands();
2022     if (NumArgOperands == 0)
2023       return false;
2024 
2025     if (NumArgOperands == 2 &&
2026         I.getArgOperand(0)->getType()->isPointerTy() &&
2027         I.getArgOperand(1)->getType()->isVectorTy() &&
2028         I.getType()->isVoidTy() &&
2029         !I.onlyReadsMemory()) {
2030       // This looks like a vector store.
2031       return handleVectorStoreIntrinsic(I);
2032     }
2033 
2034     if (NumArgOperands == 1 &&
2035         I.getArgOperand(0)->getType()->isPointerTy() &&
2036         I.getType()->isVectorTy() &&
2037         I.onlyReadsMemory()) {
2038       // This looks like a vector load.
2039       return handleVectorLoadIntrinsic(I);
2040     }
2041 
2042     if (I.doesNotAccessMemory())
2043       if (maybeHandleSimpleNomemIntrinsic(I))
2044         return true;
2045 
2046     // FIXME: detect and handle SSE maskstore/maskload
2047     return false;
2048   }
2049 
handleBswap__anonaa4cb2a40211::MemorySanitizerVisitor2050   void handleBswap(IntrinsicInst &I) {
2051     IRBuilder<> IRB(&I);
2052     Value *Op = I.getArgOperand(0);
2053     Type *OpType = Op->getType();
2054     Function *BswapFunc = Intrinsic::getDeclaration(
2055       F.getParent(), Intrinsic::bswap, makeArrayRef(&OpType, 1));
2056     setShadow(&I, IRB.CreateCall(BswapFunc, getShadow(Op)));
2057     setOrigin(&I, getOrigin(Op));
2058   }
2059 
2060   // \brief Instrument vector convert instrinsic.
2061   //
2062   // This function instruments intrinsics like cvtsi2ss:
2063   // %Out = int_xxx_cvtyyy(%ConvertOp)
2064   // or
2065   // %Out = int_xxx_cvtyyy(%CopyOp, %ConvertOp)
2066   // Intrinsic converts \p NumUsedElements elements of \p ConvertOp to the same
2067   // number \p Out elements, and (if has 2 arguments) copies the rest of the
2068   // elements from \p CopyOp.
2069   // In most cases conversion involves floating-point value which may trigger a
2070   // hardware exception when not fully initialized. For this reason we require
2071   // \p ConvertOp[0:NumUsedElements] to be fully initialized and trap otherwise.
2072   // We copy the shadow of \p CopyOp[NumUsedElements:] to \p
2073   // Out[NumUsedElements:]. This means that intrinsics without \p CopyOp always
2074   // return a fully initialized value.
handleVectorConvertIntrinsic__anonaa4cb2a40211::MemorySanitizerVisitor2075   void handleVectorConvertIntrinsic(IntrinsicInst &I, int NumUsedElements) {
2076     IRBuilder<> IRB(&I);
2077     Value *CopyOp, *ConvertOp;
2078 
2079     switch (I.getNumArgOperands()) {
2080     case 3:
2081       assert(isa<ConstantInt>(I.getArgOperand(2)) && "Invalid rounding mode");
2082     case 2:
2083       CopyOp = I.getArgOperand(0);
2084       ConvertOp = I.getArgOperand(1);
2085       break;
2086     case 1:
2087       ConvertOp = I.getArgOperand(0);
2088       CopyOp = nullptr;
2089       break;
2090     default:
2091       llvm_unreachable("Cvt intrinsic with unsupported number of arguments.");
2092     }
2093 
2094     // The first *NumUsedElements* elements of ConvertOp are converted to the
2095     // same number of output elements. The rest of the output is copied from
2096     // CopyOp, or (if not available) filled with zeroes.
2097     // Combine shadow for elements of ConvertOp that are used in this operation,
2098     // and insert a check.
2099     // FIXME: consider propagating shadow of ConvertOp, at least in the case of
2100     // int->any conversion.
2101     Value *ConvertShadow = getShadow(ConvertOp);
2102     Value *AggShadow = nullptr;
2103     if (ConvertOp->getType()->isVectorTy()) {
2104       AggShadow = IRB.CreateExtractElement(
2105           ConvertShadow, ConstantInt::get(IRB.getInt32Ty(), 0));
2106       for (int i = 1; i < NumUsedElements; ++i) {
2107         Value *MoreShadow = IRB.CreateExtractElement(
2108             ConvertShadow, ConstantInt::get(IRB.getInt32Ty(), i));
2109         AggShadow = IRB.CreateOr(AggShadow, MoreShadow);
2110       }
2111     } else {
2112       AggShadow = ConvertShadow;
2113     }
2114     assert(AggShadow->getType()->isIntegerTy());
2115     insertShadowCheck(AggShadow, getOrigin(ConvertOp), &I);
2116 
2117     // Build result shadow by zero-filling parts of CopyOp shadow that come from
2118     // ConvertOp.
2119     if (CopyOp) {
2120       assert(CopyOp->getType() == I.getType());
2121       assert(CopyOp->getType()->isVectorTy());
2122       Value *ResultShadow = getShadow(CopyOp);
2123       Type *EltTy = ResultShadow->getType()->getVectorElementType();
2124       for (int i = 0; i < NumUsedElements; ++i) {
2125         ResultShadow = IRB.CreateInsertElement(
2126             ResultShadow, ConstantInt::getNullValue(EltTy),
2127             ConstantInt::get(IRB.getInt32Ty(), i));
2128       }
2129       setShadow(&I, ResultShadow);
2130       setOrigin(&I, getOrigin(CopyOp));
2131     } else {
2132       setShadow(&I, getCleanShadow(&I));
2133       setOrigin(&I, getCleanOrigin());
2134     }
2135   }
2136 
2137   // Given a scalar or vector, extract lower 64 bits (or less), and return all
2138   // zeroes if it is zero, and all ones otherwise.
Lower64ShadowExtend__anonaa4cb2a40211::MemorySanitizerVisitor2139   Value *Lower64ShadowExtend(IRBuilder<> &IRB, Value *S, Type *T) {
2140     if (S->getType()->isVectorTy())
2141       S = CreateShadowCast(IRB, S, IRB.getInt64Ty(), /* Signed */ true);
2142     assert(S->getType()->getPrimitiveSizeInBits() <= 64);
2143     Value *S2 = IRB.CreateICmpNE(S, getCleanShadow(S));
2144     return CreateShadowCast(IRB, S2, T, /* Signed */ true);
2145   }
2146 
2147   // Given a vector, extract its first element, and return all
2148   // zeroes if it is zero, and all ones otherwise.
LowerElementShadowExtend__anonaa4cb2a40211::MemorySanitizerVisitor2149   Value *LowerElementShadowExtend(IRBuilder<> &IRB, Value *S, Type *T) {
2150     Value *S1 = IRB.CreateExtractElement(S, (uint64_t)0);
2151     Value *S2 = IRB.CreateICmpNE(S1, getCleanShadow(S1));
2152     return CreateShadowCast(IRB, S2, T, /* Signed */ true);
2153   }
2154 
VariableShadowExtend__anonaa4cb2a40211::MemorySanitizerVisitor2155   Value *VariableShadowExtend(IRBuilder<> &IRB, Value *S) {
2156     Type *T = S->getType();
2157     assert(T->isVectorTy());
2158     Value *S2 = IRB.CreateICmpNE(S, getCleanShadow(S));
2159     return IRB.CreateSExt(S2, T);
2160   }
2161 
2162   // \brief Instrument vector shift instrinsic.
2163   //
2164   // This function instruments intrinsics like int_x86_avx2_psll_w.
2165   // Intrinsic shifts %In by %ShiftSize bits.
2166   // %ShiftSize may be a vector. In that case the lower 64 bits determine shift
2167   // size, and the rest is ignored. Behavior is defined even if shift size is
2168   // greater than register (or field) width.
handleVectorShiftIntrinsic__anonaa4cb2a40211::MemorySanitizerVisitor2169   void handleVectorShiftIntrinsic(IntrinsicInst &I, bool Variable) {
2170     assert(I.getNumArgOperands() == 2);
2171     IRBuilder<> IRB(&I);
2172     // If any of the S2 bits are poisoned, the whole thing is poisoned.
2173     // Otherwise perform the same shift on S1.
2174     Value *S1 = getShadow(&I, 0);
2175     Value *S2 = getShadow(&I, 1);
2176     Value *S2Conv = Variable ? VariableShadowExtend(IRB, S2)
2177                              : Lower64ShadowExtend(IRB, S2, getShadowTy(&I));
2178     Value *V1 = I.getOperand(0);
2179     Value *V2 = I.getOperand(1);
2180     Value *Shift = IRB.CreateCall(I.getCalledValue(),
2181                                   {IRB.CreateBitCast(S1, V1->getType()), V2});
2182     Shift = IRB.CreateBitCast(Shift, getShadowTy(&I));
2183     setShadow(&I, IRB.CreateOr(Shift, S2Conv));
2184     setOriginForNaryOp(I);
2185   }
2186 
2187   // \brief Get an X86_MMX-sized vector type.
getMMXVectorTy__anonaa4cb2a40211::MemorySanitizerVisitor2188   Type *getMMXVectorTy(unsigned EltSizeInBits) {
2189     const unsigned X86_MMXSizeInBits = 64;
2190     return VectorType::get(IntegerType::get(*MS.C, EltSizeInBits),
2191                            X86_MMXSizeInBits / EltSizeInBits);
2192   }
2193 
2194   // \brief Returns a signed counterpart for an (un)signed-saturate-and-pack
2195   // intrinsic.
getSignedPackIntrinsic__anonaa4cb2a40211::MemorySanitizerVisitor2196   Intrinsic::ID getSignedPackIntrinsic(Intrinsic::ID id) {
2197     switch (id) {
2198       case llvm::Intrinsic::x86_sse2_packsswb_128:
2199       case llvm::Intrinsic::x86_sse2_packuswb_128:
2200         return llvm::Intrinsic::x86_sse2_packsswb_128;
2201 
2202       case llvm::Intrinsic::x86_sse2_packssdw_128:
2203       case llvm::Intrinsic::x86_sse41_packusdw:
2204         return llvm::Intrinsic::x86_sse2_packssdw_128;
2205 
2206       case llvm::Intrinsic::x86_avx2_packsswb:
2207       case llvm::Intrinsic::x86_avx2_packuswb:
2208         return llvm::Intrinsic::x86_avx2_packsswb;
2209 
2210       case llvm::Intrinsic::x86_avx2_packssdw:
2211       case llvm::Intrinsic::x86_avx2_packusdw:
2212         return llvm::Intrinsic::x86_avx2_packssdw;
2213 
2214       case llvm::Intrinsic::x86_mmx_packsswb:
2215       case llvm::Intrinsic::x86_mmx_packuswb:
2216         return llvm::Intrinsic::x86_mmx_packsswb;
2217 
2218       case llvm::Intrinsic::x86_mmx_packssdw:
2219         return llvm::Intrinsic::x86_mmx_packssdw;
2220       default:
2221         llvm_unreachable("unexpected intrinsic id");
2222     }
2223   }
2224 
2225   // \brief Instrument vector pack instrinsic.
2226   //
2227   // This function instruments intrinsics like x86_mmx_packsswb, that
2228   // packs elements of 2 input vectors into half as many bits with saturation.
2229   // Shadow is propagated with the signed variant of the same intrinsic applied
2230   // to sext(Sa != zeroinitializer), sext(Sb != zeroinitializer).
2231   // EltSizeInBits is used only for x86mmx arguments.
handleVectorPackIntrinsic__anonaa4cb2a40211::MemorySanitizerVisitor2232   void handleVectorPackIntrinsic(IntrinsicInst &I, unsigned EltSizeInBits = 0) {
2233     assert(I.getNumArgOperands() == 2);
2234     bool isX86_MMX = I.getOperand(0)->getType()->isX86_MMXTy();
2235     IRBuilder<> IRB(&I);
2236     Value *S1 = getShadow(&I, 0);
2237     Value *S2 = getShadow(&I, 1);
2238     assert(isX86_MMX || S1->getType()->isVectorTy());
2239 
2240     // SExt and ICmpNE below must apply to individual elements of input vectors.
2241     // In case of x86mmx arguments, cast them to appropriate vector types and
2242     // back.
2243     Type *T = isX86_MMX ? getMMXVectorTy(EltSizeInBits) : S1->getType();
2244     if (isX86_MMX) {
2245       S1 = IRB.CreateBitCast(S1, T);
2246       S2 = IRB.CreateBitCast(S2, T);
2247     }
2248     Value *S1_ext = IRB.CreateSExt(
2249         IRB.CreateICmpNE(S1, llvm::Constant::getNullValue(T)), T);
2250     Value *S2_ext = IRB.CreateSExt(
2251         IRB.CreateICmpNE(S2, llvm::Constant::getNullValue(T)), T);
2252     if (isX86_MMX) {
2253       Type *X86_MMXTy = Type::getX86_MMXTy(*MS.C);
2254       S1_ext = IRB.CreateBitCast(S1_ext, X86_MMXTy);
2255       S2_ext = IRB.CreateBitCast(S2_ext, X86_MMXTy);
2256     }
2257 
2258     Function *ShadowFn = Intrinsic::getDeclaration(
2259         F.getParent(), getSignedPackIntrinsic(I.getIntrinsicID()));
2260 
2261     Value *S =
2262         IRB.CreateCall(ShadowFn, {S1_ext, S2_ext}, "_msprop_vector_pack");
2263     if (isX86_MMX) S = IRB.CreateBitCast(S, getShadowTy(&I));
2264     setShadow(&I, S);
2265     setOriginForNaryOp(I);
2266   }
2267 
2268   // \brief Instrument sum-of-absolute-differencies intrinsic.
handleVectorSadIntrinsic__anonaa4cb2a40211::MemorySanitizerVisitor2269   void handleVectorSadIntrinsic(IntrinsicInst &I) {
2270     const unsigned SignificantBitsPerResultElement = 16;
2271     bool isX86_MMX = I.getOperand(0)->getType()->isX86_MMXTy();
2272     Type *ResTy = isX86_MMX ? IntegerType::get(*MS.C, 64) : I.getType();
2273     unsigned ZeroBitsPerResultElement =
2274         ResTy->getScalarSizeInBits() - SignificantBitsPerResultElement;
2275 
2276     IRBuilder<> IRB(&I);
2277     Value *S = IRB.CreateOr(getShadow(&I, 0), getShadow(&I, 1));
2278     S = IRB.CreateBitCast(S, ResTy);
2279     S = IRB.CreateSExt(IRB.CreateICmpNE(S, Constant::getNullValue(ResTy)),
2280                        ResTy);
2281     S = IRB.CreateLShr(S, ZeroBitsPerResultElement);
2282     S = IRB.CreateBitCast(S, getShadowTy(&I));
2283     setShadow(&I, S);
2284     setOriginForNaryOp(I);
2285   }
2286 
2287   // \brief Instrument multiply-add intrinsic.
handleVectorPmaddIntrinsic__anonaa4cb2a40211::MemorySanitizerVisitor2288   void handleVectorPmaddIntrinsic(IntrinsicInst &I,
2289                                   unsigned EltSizeInBits = 0) {
2290     bool isX86_MMX = I.getOperand(0)->getType()->isX86_MMXTy();
2291     Type *ResTy = isX86_MMX ? getMMXVectorTy(EltSizeInBits * 2) : I.getType();
2292     IRBuilder<> IRB(&I);
2293     Value *S = IRB.CreateOr(getShadow(&I, 0), getShadow(&I, 1));
2294     S = IRB.CreateBitCast(S, ResTy);
2295     S = IRB.CreateSExt(IRB.CreateICmpNE(S, Constant::getNullValue(ResTy)),
2296                        ResTy);
2297     S = IRB.CreateBitCast(S, getShadowTy(&I));
2298     setShadow(&I, S);
2299     setOriginForNaryOp(I);
2300   }
2301 
2302   // \brief Instrument compare-packed intrinsic.
2303   // Basically, an or followed by sext(icmp ne 0) to end up with all-zeros or
2304   // all-ones shadow.
handleVectorComparePackedIntrinsic__anonaa4cb2a40211::MemorySanitizerVisitor2305   void handleVectorComparePackedIntrinsic(IntrinsicInst &I) {
2306     IRBuilder<> IRB(&I);
2307     Type *ResTy = getShadowTy(&I);
2308     Value *S0 = IRB.CreateOr(getShadow(&I, 0), getShadow(&I, 1));
2309     Value *S = IRB.CreateSExt(
2310         IRB.CreateICmpNE(S0, Constant::getNullValue(ResTy)), ResTy);
2311     setShadow(&I, S);
2312     setOriginForNaryOp(I);
2313   }
2314 
2315   // \brief Instrument compare-scalar intrinsic.
2316   // This handles both cmp* intrinsics which return the result in the first
2317   // element of a vector, and comi* which return the result as i32.
handleVectorCompareScalarIntrinsic__anonaa4cb2a40211::MemorySanitizerVisitor2318   void handleVectorCompareScalarIntrinsic(IntrinsicInst &I) {
2319     IRBuilder<> IRB(&I);
2320     Value *S0 = IRB.CreateOr(getShadow(&I, 0), getShadow(&I, 1));
2321     Value *S = LowerElementShadowExtend(IRB, S0, getShadowTy(&I));
2322     setShadow(&I, S);
2323     setOriginForNaryOp(I);
2324   }
2325 
visitIntrinsicInst__anonaa4cb2a40211::MemorySanitizerVisitor2326   void visitIntrinsicInst(IntrinsicInst &I) {
2327     switch (I.getIntrinsicID()) {
2328     case llvm::Intrinsic::bswap:
2329       handleBswap(I);
2330       break;
2331     case llvm::Intrinsic::x86_avx512_vcvtsd2usi64:
2332     case llvm::Intrinsic::x86_avx512_vcvtsd2usi32:
2333     case llvm::Intrinsic::x86_avx512_vcvtss2usi64:
2334     case llvm::Intrinsic::x86_avx512_vcvtss2usi32:
2335     case llvm::Intrinsic::x86_avx512_cvttss2usi64:
2336     case llvm::Intrinsic::x86_avx512_cvttss2usi:
2337     case llvm::Intrinsic::x86_avx512_cvttsd2usi64:
2338     case llvm::Intrinsic::x86_avx512_cvttsd2usi:
2339     case llvm::Intrinsic::x86_avx512_cvtusi2sd:
2340     case llvm::Intrinsic::x86_avx512_cvtusi2ss:
2341     case llvm::Intrinsic::x86_avx512_cvtusi642sd:
2342     case llvm::Intrinsic::x86_avx512_cvtusi642ss:
2343     case llvm::Intrinsic::x86_sse2_cvtsd2si64:
2344     case llvm::Intrinsic::x86_sse2_cvtsd2si:
2345     case llvm::Intrinsic::x86_sse2_cvtsd2ss:
2346     case llvm::Intrinsic::x86_sse2_cvtsi2sd:
2347     case llvm::Intrinsic::x86_sse2_cvtsi642sd:
2348     case llvm::Intrinsic::x86_sse2_cvtss2sd:
2349     case llvm::Intrinsic::x86_sse2_cvttsd2si64:
2350     case llvm::Intrinsic::x86_sse2_cvttsd2si:
2351     case llvm::Intrinsic::x86_sse_cvtsi2ss:
2352     case llvm::Intrinsic::x86_sse_cvtsi642ss:
2353     case llvm::Intrinsic::x86_sse_cvtss2si64:
2354     case llvm::Intrinsic::x86_sse_cvtss2si:
2355     case llvm::Intrinsic::x86_sse_cvttss2si64:
2356     case llvm::Intrinsic::x86_sse_cvttss2si:
2357       handleVectorConvertIntrinsic(I, 1);
2358       break;
2359     case llvm::Intrinsic::x86_sse_cvtps2pi:
2360     case llvm::Intrinsic::x86_sse_cvttps2pi:
2361       handleVectorConvertIntrinsic(I, 2);
2362       break;
2363     case llvm::Intrinsic::x86_avx2_psll_w:
2364     case llvm::Intrinsic::x86_avx2_psll_d:
2365     case llvm::Intrinsic::x86_avx2_psll_q:
2366     case llvm::Intrinsic::x86_avx2_pslli_w:
2367     case llvm::Intrinsic::x86_avx2_pslli_d:
2368     case llvm::Intrinsic::x86_avx2_pslli_q:
2369     case llvm::Intrinsic::x86_avx2_psrl_w:
2370     case llvm::Intrinsic::x86_avx2_psrl_d:
2371     case llvm::Intrinsic::x86_avx2_psrl_q:
2372     case llvm::Intrinsic::x86_avx2_psra_w:
2373     case llvm::Intrinsic::x86_avx2_psra_d:
2374     case llvm::Intrinsic::x86_avx2_psrli_w:
2375     case llvm::Intrinsic::x86_avx2_psrli_d:
2376     case llvm::Intrinsic::x86_avx2_psrli_q:
2377     case llvm::Intrinsic::x86_avx2_psrai_w:
2378     case llvm::Intrinsic::x86_avx2_psrai_d:
2379     case llvm::Intrinsic::x86_sse2_psll_w:
2380     case llvm::Intrinsic::x86_sse2_psll_d:
2381     case llvm::Intrinsic::x86_sse2_psll_q:
2382     case llvm::Intrinsic::x86_sse2_pslli_w:
2383     case llvm::Intrinsic::x86_sse2_pslli_d:
2384     case llvm::Intrinsic::x86_sse2_pslli_q:
2385     case llvm::Intrinsic::x86_sse2_psrl_w:
2386     case llvm::Intrinsic::x86_sse2_psrl_d:
2387     case llvm::Intrinsic::x86_sse2_psrl_q:
2388     case llvm::Intrinsic::x86_sse2_psra_w:
2389     case llvm::Intrinsic::x86_sse2_psra_d:
2390     case llvm::Intrinsic::x86_sse2_psrli_w:
2391     case llvm::Intrinsic::x86_sse2_psrli_d:
2392     case llvm::Intrinsic::x86_sse2_psrli_q:
2393     case llvm::Intrinsic::x86_sse2_psrai_w:
2394     case llvm::Intrinsic::x86_sse2_psrai_d:
2395     case llvm::Intrinsic::x86_mmx_psll_w:
2396     case llvm::Intrinsic::x86_mmx_psll_d:
2397     case llvm::Intrinsic::x86_mmx_psll_q:
2398     case llvm::Intrinsic::x86_mmx_pslli_w:
2399     case llvm::Intrinsic::x86_mmx_pslli_d:
2400     case llvm::Intrinsic::x86_mmx_pslli_q:
2401     case llvm::Intrinsic::x86_mmx_psrl_w:
2402     case llvm::Intrinsic::x86_mmx_psrl_d:
2403     case llvm::Intrinsic::x86_mmx_psrl_q:
2404     case llvm::Intrinsic::x86_mmx_psra_w:
2405     case llvm::Intrinsic::x86_mmx_psra_d:
2406     case llvm::Intrinsic::x86_mmx_psrli_w:
2407     case llvm::Intrinsic::x86_mmx_psrli_d:
2408     case llvm::Intrinsic::x86_mmx_psrli_q:
2409     case llvm::Intrinsic::x86_mmx_psrai_w:
2410     case llvm::Intrinsic::x86_mmx_psrai_d:
2411       handleVectorShiftIntrinsic(I, /* Variable */ false);
2412       break;
2413     case llvm::Intrinsic::x86_avx2_psllv_d:
2414     case llvm::Intrinsic::x86_avx2_psllv_d_256:
2415     case llvm::Intrinsic::x86_avx2_psllv_q:
2416     case llvm::Intrinsic::x86_avx2_psllv_q_256:
2417     case llvm::Intrinsic::x86_avx2_psrlv_d:
2418     case llvm::Intrinsic::x86_avx2_psrlv_d_256:
2419     case llvm::Intrinsic::x86_avx2_psrlv_q:
2420     case llvm::Intrinsic::x86_avx2_psrlv_q_256:
2421     case llvm::Intrinsic::x86_avx2_psrav_d:
2422     case llvm::Intrinsic::x86_avx2_psrav_d_256:
2423       handleVectorShiftIntrinsic(I, /* Variable */ true);
2424       break;
2425 
2426     case llvm::Intrinsic::x86_sse2_packsswb_128:
2427     case llvm::Intrinsic::x86_sse2_packssdw_128:
2428     case llvm::Intrinsic::x86_sse2_packuswb_128:
2429     case llvm::Intrinsic::x86_sse41_packusdw:
2430     case llvm::Intrinsic::x86_avx2_packsswb:
2431     case llvm::Intrinsic::x86_avx2_packssdw:
2432     case llvm::Intrinsic::x86_avx2_packuswb:
2433     case llvm::Intrinsic::x86_avx2_packusdw:
2434       handleVectorPackIntrinsic(I);
2435       break;
2436 
2437     case llvm::Intrinsic::x86_mmx_packsswb:
2438     case llvm::Intrinsic::x86_mmx_packuswb:
2439       handleVectorPackIntrinsic(I, 16);
2440       break;
2441 
2442     case llvm::Intrinsic::x86_mmx_packssdw:
2443       handleVectorPackIntrinsic(I, 32);
2444       break;
2445 
2446     case llvm::Intrinsic::x86_mmx_psad_bw:
2447     case llvm::Intrinsic::x86_sse2_psad_bw:
2448     case llvm::Intrinsic::x86_avx2_psad_bw:
2449       handleVectorSadIntrinsic(I);
2450       break;
2451 
2452     case llvm::Intrinsic::x86_sse2_pmadd_wd:
2453     case llvm::Intrinsic::x86_avx2_pmadd_wd:
2454     case llvm::Intrinsic::x86_ssse3_pmadd_ub_sw_128:
2455     case llvm::Intrinsic::x86_avx2_pmadd_ub_sw:
2456       handleVectorPmaddIntrinsic(I);
2457       break;
2458 
2459     case llvm::Intrinsic::x86_ssse3_pmadd_ub_sw:
2460       handleVectorPmaddIntrinsic(I, 8);
2461       break;
2462 
2463     case llvm::Intrinsic::x86_mmx_pmadd_wd:
2464       handleVectorPmaddIntrinsic(I, 16);
2465       break;
2466 
2467     case llvm::Intrinsic::x86_sse_cmp_ss:
2468     case llvm::Intrinsic::x86_sse2_cmp_sd:
2469     case llvm::Intrinsic::x86_sse_comieq_ss:
2470     case llvm::Intrinsic::x86_sse_comilt_ss:
2471     case llvm::Intrinsic::x86_sse_comile_ss:
2472     case llvm::Intrinsic::x86_sse_comigt_ss:
2473     case llvm::Intrinsic::x86_sse_comige_ss:
2474     case llvm::Intrinsic::x86_sse_comineq_ss:
2475     case llvm::Intrinsic::x86_sse_ucomieq_ss:
2476     case llvm::Intrinsic::x86_sse_ucomilt_ss:
2477     case llvm::Intrinsic::x86_sse_ucomile_ss:
2478     case llvm::Intrinsic::x86_sse_ucomigt_ss:
2479     case llvm::Intrinsic::x86_sse_ucomige_ss:
2480     case llvm::Intrinsic::x86_sse_ucomineq_ss:
2481     case llvm::Intrinsic::x86_sse2_comieq_sd:
2482     case llvm::Intrinsic::x86_sse2_comilt_sd:
2483     case llvm::Intrinsic::x86_sse2_comile_sd:
2484     case llvm::Intrinsic::x86_sse2_comigt_sd:
2485     case llvm::Intrinsic::x86_sse2_comige_sd:
2486     case llvm::Intrinsic::x86_sse2_comineq_sd:
2487     case llvm::Intrinsic::x86_sse2_ucomieq_sd:
2488     case llvm::Intrinsic::x86_sse2_ucomilt_sd:
2489     case llvm::Intrinsic::x86_sse2_ucomile_sd:
2490     case llvm::Intrinsic::x86_sse2_ucomigt_sd:
2491     case llvm::Intrinsic::x86_sse2_ucomige_sd:
2492     case llvm::Intrinsic::x86_sse2_ucomineq_sd:
2493       handleVectorCompareScalarIntrinsic(I);
2494       break;
2495 
2496     case llvm::Intrinsic::x86_sse_cmp_ps:
2497     case llvm::Intrinsic::x86_sse2_cmp_pd:
2498       // FIXME: For x86_avx_cmp_pd_256 and x86_avx_cmp_ps_256 this function
2499       // generates reasonably looking IR that fails in the backend with "Do not
2500       // know how to split the result of this operator!".
2501       handleVectorComparePackedIntrinsic(I);
2502       break;
2503 
2504     default:
2505       if (!handleUnknownIntrinsic(I))
2506         visitInstruction(I);
2507       break;
2508     }
2509   }
2510 
visitCallSite__anonaa4cb2a40211::MemorySanitizerVisitor2511   void visitCallSite(CallSite CS) {
2512     Instruction &I = *CS.getInstruction();
2513     assert((CS.isCall() || CS.isInvoke()) && "Unknown type of CallSite");
2514     if (CS.isCall()) {
2515       CallInst *Call = cast<CallInst>(&I);
2516 
2517       // For inline asm, do the usual thing: check argument shadow and mark all
2518       // outputs as clean. Note that any side effects of the inline asm that are
2519       // not immediately visible in its constraints are not handled.
2520       if (Call->isInlineAsm()) {
2521         visitInstruction(I);
2522         return;
2523       }
2524 
2525       assert(!isa<IntrinsicInst>(&I) && "intrinsics are handled elsewhere");
2526 
2527       // We are going to insert code that relies on the fact that the callee
2528       // will become a non-readonly function after it is instrumented by us. To
2529       // prevent this code from being optimized out, mark that function
2530       // non-readonly in advance.
2531       if (Function *Func = Call->getCalledFunction()) {
2532         // Clear out readonly/readnone attributes.
2533         AttrBuilder B;
2534         B.addAttribute(Attribute::ReadOnly)
2535           .addAttribute(Attribute::ReadNone);
2536         Func->removeAttributes(AttributeSet::FunctionIndex,
2537                                AttributeSet::get(Func->getContext(),
2538                                                  AttributeSet::FunctionIndex,
2539                                                  B));
2540       }
2541 
2542       maybeMarkSanitizerLibraryCallNoBuiltin(Call, TLI);
2543     }
2544     IRBuilder<> IRB(&I);
2545 
2546     unsigned ArgOffset = 0;
2547     DEBUG(dbgs() << "  CallSite: " << I << "\n");
2548     for (CallSite::arg_iterator ArgIt = CS.arg_begin(), End = CS.arg_end();
2549          ArgIt != End; ++ArgIt) {
2550       Value *A = *ArgIt;
2551       unsigned i = ArgIt - CS.arg_begin();
2552       if (!A->getType()->isSized()) {
2553         DEBUG(dbgs() << "Arg " << i << " is not sized: " << I << "\n");
2554         continue;
2555       }
2556       unsigned Size = 0;
2557       Value *Store = nullptr;
2558       // Compute the Shadow for arg even if it is ByVal, because
2559       // in that case getShadow() will copy the actual arg shadow to
2560       // __msan_param_tls.
2561       Value *ArgShadow = getShadow(A);
2562       Value *ArgShadowBase = getShadowPtrForArgument(A, IRB, ArgOffset);
2563       DEBUG(dbgs() << "  Arg#" << i << ": " << *A <<
2564             " Shadow: " << *ArgShadow << "\n");
2565       bool ArgIsInitialized = false;
2566       const DataLayout &DL = F.getParent()->getDataLayout();
2567       if (CS.paramHasAttr(i + 1, Attribute::ByVal)) {
2568         assert(A->getType()->isPointerTy() &&
2569                "ByVal argument is not a pointer!");
2570         Size = DL.getTypeAllocSize(A->getType()->getPointerElementType());
2571         if (ArgOffset + Size > kParamTLSSize) break;
2572         unsigned ParamAlignment = CS.getParamAlignment(i + 1);
2573         unsigned Alignment = std::min(ParamAlignment, kShadowTLSAlignment);
2574         Store = IRB.CreateMemCpy(ArgShadowBase,
2575                                  getShadowPtr(A, Type::getInt8Ty(*MS.C), IRB),
2576                                  Size, Alignment);
2577       } else {
2578         Size = DL.getTypeAllocSize(A->getType());
2579         if (ArgOffset + Size > kParamTLSSize) break;
2580         Store = IRB.CreateAlignedStore(ArgShadow, ArgShadowBase,
2581                                        kShadowTLSAlignment);
2582         Constant *Cst = dyn_cast<Constant>(ArgShadow);
2583         if (Cst && Cst->isNullValue()) ArgIsInitialized = true;
2584       }
2585       if (MS.TrackOrigins && !ArgIsInitialized)
2586         IRB.CreateStore(getOrigin(A),
2587                         getOriginPtrForArgument(A, IRB, ArgOffset));
2588       (void)Store;
2589       assert(Size != 0 && Store != nullptr);
2590       DEBUG(dbgs() << "  Param:" << *Store << "\n");
2591       ArgOffset += alignTo(Size, 8);
2592     }
2593     DEBUG(dbgs() << "  done with call args\n");
2594 
2595     FunctionType *FT =
2596       cast<FunctionType>(CS.getCalledValue()->getType()->getContainedType(0));
2597     if (FT->isVarArg()) {
2598       VAHelper->visitCallSite(CS, IRB);
2599     }
2600 
2601     // Now, get the shadow for the RetVal.
2602     if (!I.getType()->isSized()) return;
2603     // Don't emit the epilogue for musttail call returns.
2604     if (CS.isCall() && cast<CallInst>(&I)->isMustTailCall()) return;
2605     IRBuilder<> IRBBefore(&I);
2606     // Until we have full dynamic coverage, make sure the retval shadow is 0.
2607     Value *Base = getShadowPtrForRetval(&I, IRBBefore);
2608     IRBBefore.CreateAlignedStore(getCleanShadow(&I), Base, kShadowTLSAlignment);
2609     BasicBlock::iterator NextInsn;
2610     if (CS.isCall()) {
2611       NextInsn = ++I.getIterator();
2612       assert(NextInsn != I.getParent()->end());
2613     } else {
2614       BasicBlock *NormalDest = cast<InvokeInst>(&I)->getNormalDest();
2615       if (!NormalDest->getSinglePredecessor()) {
2616         // FIXME: this case is tricky, so we are just conservative here.
2617         // Perhaps we need to split the edge between this BB and NormalDest,
2618         // but a naive attempt to use SplitEdge leads to a crash.
2619         setShadow(&I, getCleanShadow(&I));
2620         setOrigin(&I, getCleanOrigin());
2621         return;
2622       }
2623       NextInsn = NormalDest->getFirstInsertionPt();
2624       assert(NextInsn != NormalDest->end() &&
2625              "Could not find insertion point for retval shadow load");
2626     }
2627     IRBuilder<> IRBAfter(&*NextInsn);
2628     Value *RetvalShadow =
2629       IRBAfter.CreateAlignedLoad(getShadowPtrForRetval(&I, IRBAfter),
2630                                  kShadowTLSAlignment, "_msret");
2631     setShadow(&I, RetvalShadow);
2632     if (MS.TrackOrigins)
2633       setOrigin(&I, IRBAfter.CreateLoad(getOriginPtrForRetval(IRBAfter)));
2634   }
2635 
isAMustTailRetVal__anonaa4cb2a40211::MemorySanitizerVisitor2636   bool isAMustTailRetVal(Value *RetVal) {
2637     if (auto *I = dyn_cast<BitCastInst>(RetVal)) {
2638       RetVal = I->getOperand(0);
2639     }
2640     if (auto *I = dyn_cast<CallInst>(RetVal)) {
2641       return I->isMustTailCall();
2642     }
2643     return false;
2644   }
2645 
visitReturnInst__anonaa4cb2a40211::MemorySanitizerVisitor2646   void visitReturnInst(ReturnInst &I) {
2647     IRBuilder<> IRB(&I);
2648     Value *RetVal = I.getReturnValue();
2649     if (!RetVal) return;
2650     // Don't emit the epilogue for musttail call returns.
2651     if (isAMustTailRetVal(RetVal)) return;
2652     Value *ShadowPtr = getShadowPtrForRetval(RetVal, IRB);
2653     if (CheckReturnValue) {
2654       insertShadowCheck(RetVal, &I);
2655       Value *Shadow = getCleanShadow(RetVal);
2656       IRB.CreateAlignedStore(Shadow, ShadowPtr, kShadowTLSAlignment);
2657     } else {
2658       Value *Shadow = getShadow(RetVal);
2659       IRB.CreateAlignedStore(Shadow, ShadowPtr, kShadowTLSAlignment);
2660       // FIXME: make it conditional if ClStoreCleanOrigin==0
2661       if (MS.TrackOrigins)
2662         IRB.CreateStore(getOrigin(RetVal), getOriginPtrForRetval(IRB));
2663     }
2664   }
2665 
visitPHINode__anonaa4cb2a40211::MemorySanitizerVisitor2666   void visitPHINode(PHINode &I) {
2667     IRBuilder<> IRB(&I);
2668     if (!PropagateShadow) {
2669       setShadow(&I, getCleanShadow(&I));
2670       setOrigin(&I, getCleanOrigin());
2671       return;
2672     }
2673 
2674     ShadowPHINodes.push_back(&I);
2675     setShadow(&I, IRB.CreatePHI(getShadowTy(&I), I.getNumIncomingValues(),
2676                                 "_msphi_s"));
2677     if (MS.TrackOrigins)
2678       setOrigin(&I, IRB.CreatePHI(MS.OriginTy, I.getNumIncomingValues(),
2679                                   "_msphi_o"));
2680   }
2681 
visitAllocaInst__anonaa4cb2a40211::MemorySanitizerVisitor2682   void visitAllocaInst(AllocaInst &I) {
2683     setShadow(&I, getCleanShadow(&I));
2684     setOrigin(&I, getCleanOrigin());
2685     IRBuilder<> IRB(I.getNextNode());
2686     const DataLayout &DL = F.getParent()->getDataLayout();
2687     uint64_t Size = DL.getTypeAllocSize(I.getAllocatedType());
2688     if (PoisonStack && ClPoisonStackWithCall) {
2689       IRB.CreateCall(MS.MsanPoisonStackFn,
2690                      {IRB.CreatePointerCast(&I, IRB.getInt8PtrTy()),
2691                       ConstantInt::get(MS.IntptrTy, Size)});
2692     } else {
2693       Value *ShadowBase = getShadowPtr(&I, Type::getInt8PtrTy(*MS.C), IRB);
2694       Value *PoisonValue = IRB.getInt8(PoisonStack ? ClPoisonStackPattern : 0);
2695       IRB.CreateMemSet(ShadowBase, PoisonValue, Size, I.getAlignment());
2696     }
2697 
2698     if (PoisonStack && MS.TrackOrigins) {
2699       SmallString<2048> StackDescriptionStorage;
2700       raw_svector_ostream StackDescription(StackDescriptionStorage);
2701       // We create a string with a description of the stack allocation and
2702       // pass it into __msan_set_alloca_origin.
2703       // It will be printed by the run-time if stack-originated UMR is found.
2704       // The first 4 bytes of the string are set to '----' and will be replaced
2705       // by __msan_va_arg_overflow_size_tls at the first call.
2706       StackDescription << "----" << I.getName() << "@" << F.getName();
2707       Value *Descr =
2708           createPrivateNonConstGlobalForString(*F.getParent(),
2709                                                StackDescription.str());
2710 
2711       IRB.CreateCall(MS.MsanSetAllocaOrigin4Fn,
2712                      {IRB.CreatePointerCast(&I, IRB.getInt8PtrTy()),
2713                       ConstantInt::get(MS.IntptrTy, Size),
2714                       IRB.CreatePointerCast(Descr, IRB.getInt8PtrTy()),
2715                       IRB.CreatePointerCast(&F, MS.IntptrTy)});
2716     }
2717   }
2718 
visitSelectInst__anonaa4cb2a40211::MemorySanitizerVisitor2719   void visitSelectInst(SelectInst& I) {
2720     IRBuilder<> IRB(&I);
2721     // a = select b, c, d
2722     Value *B = I.getCondition();
2723     Value *C = I.getTrueValue();
2724     Value *D = I.getFalseValue();
2725     Value *Sb = getShadow(B);
2726     Value *Sc = getShadow(C);
2727     Value *Sd = getShadow(D);
2728 
2729     // Result shadow if condition shadow is 0.
2730     Value *Sa0 = IRB.CreateSelect(B, Sc, Sd);
2731     Value *Sa1;
2732     if (I.getType()->isAggregateType()) {
2733       // To avoid "sign extending" i1 to an arbitrary aggregate type, we just do
2734       // an extra "select". This results in much more compact IR.
2735       // Sa = select Sb, poisoned, (select b, Sc, Sd)
2736       Sa1 = getPoisonedShadow(getShadowTy(I.getType()));
2737     } else {
2738       // Sa = select Sb, [ (c^d) | Sc | Sd ], [ b ? Sc : Sd ]
2739       // If Sb (condition is poisoned), look for bits in c and d that are equal
2740       // and both unpoisoned.
2741       // If !Sb (condition is unpoisoned), simply pick one of Sc and Sd.
2742 
2743       // Cast arguments to shadow-compatible type.
2744       C = CreateAppToShadowCast(IRB, C);
2745       D = CreateAppToShadowCast(IRB, D);
2746 
2747       // Result shadow if condition shadow is 1.
2748       Sa1 = IRB.CreateOr(IRB.CreateXor(C, D), IRB.CreateOr(Sc, Sd));
2749     }
2750     Value *Sa = IRB.CreateSelect(Sb, Sa1, Sa0, "_msprop_select");
2751     setShadow(&I, Sa);
2752     if (MS.TrackOrigins) {
2753       // Origins are always i32, so any vector conditions must be flattened.
2754       // FIXME: consider tracking vector origins for app vectors?
2755       if (B->getType()->isVectorTy()) {
2756         Type *FlatTy = getShadowTyNoVec(B->getType());
2757         B = IRB.CreateICmpNE(IRB.CreateBitCast(B, FlatTy),
2758                                 ConstantInt::getNullValue(FlatTy));
2759         Sb = IRB.CreateICmpNE(IRB.CreateBitCast(Sb, FlatTy),
2760                                       ConstantInt::getNullValue(FlatTy));
2761       }
2762       // a = select b, c, d
2763       // Oa = Sb ? Ob : (b ? Oc : Od)
2764       setOrigin(
2765           &I, IRB.CreateSelect(Sb, getOrigin(I.getCondition()),
2766                                IRB.CreateSelect(B, getOrigin(I.getTrueValue()),
2767                                                 getOrigin(I.getFalseValue()))));
2768     }
2769   }
2770 
visitLandingPadInst__anonaa4cb2a40211::MemorySanitizerVisitor2771   void visitLandingPadInst(LandingPadInst &I) {
2772     // Do nothing.
2773     // See http://code.google.com/p/memory-sanitizer/issues/detail?id=1
2774     setShadow(&I, getCleanShadow(&I));
2775     setOrigin(&I, getCleanOrigin());
2776   }
2777 
visitCatchSwitchInst__anonaa4cb2a40211::MemorySanitizerVisitor2778   void visitCatchSwitchInst(CatchSwitchInst &I) {
2779     setShadow(&I, getCleanShadow(&I));
2780     setOrigin(&I, getCleanOrigin());
2781   }
2782 
visitFuncletPadInst__anonaa4cb2a40211::MemorySanitizerVisitor2783   void visitFuncletPadInst(FuncletPadInst &I) {
2784     setShadow(&I, getCleanShadow(&I));
2785     setOrigin(&I, getCleanOrigin());
2786   }
2787 
visitGetElementPtrInst__anonaa4cb2a40211::MemorySanitizerVisitor2788   void visitGetElementPtrInst(GetElementPtrInst &I) {
2789     handleShadowOr(I);
2790   }
2791 
visitExtractValueInst__anonaa4cb2a40211::MemorySanitizerVisitor2792   void visitExtractValueInst(ExtractValueInst &I) {
2793     IRBuilder<> IRB(&I);
2794     Value *Agg = I.getAggregateOperand();
2795     DEBUG(dbgs() << "ExtractValue:  " << I << "\n");
2796     Value *AggShadow = getShadow(Agg);
2797     DEBUG(dbgs() << "   AggShadow:  " << *AggShadow << "\n");
2798     Value *ResShadow = IRB.CreateExtractValue(AggShadow, I.getIndices());
2799     DEBUG(dbgs() << "   ResShadow:  " << *ResShadow << "\n");
2800     setShadow(&I, ResShadow);
2801     setOriginForNaryOp(I);
2802   }
2803 
visitInsertValueInst__anonaa4cb2a40211::MemorySanitizerVisitor2804   void visitInsertValueInst(InsertValueInst &I) {
2805     IRBuilder<> IRB(&I);
2806     DEBUG(dbgs() << "InsertValue:  " << I << "\n");
2807     Value *AggShadow = getShadow(I.getAggregateOperand());
2808     Value *InsShadow = getShadow(I.getInsertedValueOperand());
2809     DEBUG(dbgs() << "   AggShadow:  " << *AggShadow << "\n");
2810     DEBUG(dbgs() << "   InsShadow:  " << *InsShadow << "\n");
2811     Value *Res = IRB.CreateInsertValue(AggShadow, InsShadow, I.getIndices());
2812     DEBUG(dbgs() << "   Res:        " << *Res << "\n");
2813     setShadow(&I, Res);
2814     setOriginForNaryOp(I);
2815   }
2816 
dumpInst__anonaa4cb2a40211::MemorySanitizerVisitor2817   void dumpInst(Instruction &I) {
2818     if (CallInst *CI = dyn_cast<CallInst>(&I)) {
2819       errs() << "ZZZ call " << CI->getCalledFunction()->getName() << "\n";
2820     } else {
2821       errs() << "ZZZ " << I.getOpcodeName() << "\n";
2822     }
2823     errs() << "QQQ " << I << "\n";
2824   }
2825 
visitResumeInst__anonaa4cb2a40211::MemorySanitizerVisitor2826   void visitResumeInst(ResumeInst &I) {
2827     DEBUG(dbgs() << "Resume: " << I << "\n");
2828     // Nothing to do here.
2829   }
2830 
visitCleanupReturnInst__anonaa4cb2a40211::MemorySanitizerVisitor2831   void visitCleanupReturnInst(CleanupReturnInst &CRI) {
2832     DEBUG(dbgs() << "CleanupReturn: " << CRI << "\n");
2833     // Nothing to do here.
2834   }
2835 
visitCatchReturnInst__anonaa4cb2a40211::MemorySanitizerVisitor2836   void visitCatchReturnInst(CatchReturnInst &CRI) {
2837     DEBUG(dbgs() << "CatchReturn: " << CRI << "\n");
2838     // Nothing to do here.
2839   }
2840 
visitInstruction__anonaa4cb2a40211::MemorySanitizerVisitor2841   void visitInstruction(Instruction &I) {
2842     // Everything else: stop propagating and check for poisoned shadow.
2843     if (ClDumpStrictInstructions)
2844       dumpInst(I);
2845     DEBUG(dbgs() << "DEFAULT: " << I << "\n");
2846     for (size_t i = 0, n = I.getNumOperands(); i < n; i++)
2847       insertShadowCheck(I.getOperand(i), &I);
2848     setShadow(&I, getCleanShadow(&I));
2849     setOrigin(&I, getCleanOrigin());
2850   }
2851 };
2852 
2853 /// \brief AMD64-specific implementation of VarArgHelper.
2854 struct VarArgAMD64Helper : public VarArgHelper {
2855   // An unfortunate workaround for asymmetric lowering of va_arg stuff.
2856   // See a comment in visitCallSite for more details.
2857   static const unsigned AMD64GpEndOffset = 48;  // AMD64 ABI Draft 0.99.6 p3.5.7
2858   static const unsigned AMD64FpEndOffset = 176;
2859 
2860   Function &F;
2861   MemorySanitizer &MS;
2862   MemorySanitizerVisitor &MSV;
2863   Value *VAArgTLSCopy;
2864   Value *VAArgOverflowSize;
2865 
2866   SmallVector<CallInst*, 16> VAStartInstrumentationList;
2867 
VarArgAMD64Helper__anonaa4cb2a40211::VarArgAMD64Helper2868   VarArgAMD64Helper(Function &F, MemorySanitizer &MS,
2869                     MemorySanitizerVisitor &MSV)
2870     : F(F), MS(MS), MSV(MSV), VAArgTLSCopy(nullptr),
2871       VAArgOverflowSize(nullptr) {}
2872 
2873   enum ArgKind { AK_GeneralPurpose, AK_FloatingPoint, AK_Memory };
2874 
classifyArgument__anonaa4cb2a40211::VarArgAMD64Helper2875   ArgKind classifyArgument(Value* arg) {
2876     // A very rough approximation of X86_64 argument classification rules.
2877     Type *T = arg->getType();
2878     if (T->isFPOrFPVectorTy() || T->isX86_MMXTy())
2879       return AK_FloatingPoint;
2880     if (T->isIntegerTy() && T->getPrimitiveSizeInBits() <= 64)
2881       return AK_GeneralPurpose;
2882     if (T->isPointerTy())
2883       return AK_GeneralPurpose;
2884     return AK_Memory;
2885   }
2886 
2887   // For VarArg functions, store the argument shadow in an ABI-specific format
2888   // that corresponds to va_list layout.
2889   // We do this because Clang lowers va_arg in the frontend, and this pass
2890   // only sees the low level code that deals with va_list internals.
2891   // A much easier alternative (provided that Clang emits va_arg instructions)
2892   // would have been to associate each live instance of va_list with a copy of
2893   // MSanParamTLS, and extract shadow on va_arg() call in the argument list
2894   // order.
visitCallSite__anonaa4cb2a40211::VarArgAMD64Helper2895   void visitCallSite(CallSite &CS, IRBuilder<> &IRB) override {
2896     unsigned GpOffset = 0;
2897     unsigned FpOffset = AMD64GpEndOffset;
2898     unsigned OverflowOffset = AMD64FpEndOffset;
2899     const DataLayout &DL = F.getParent()->getDataLayout();
2900     for (CallSite::arg_iterator ArgIt = CS.arg_begin(), End = CS.arg_end();
2901          ArgIt != End; ++ArgIt) {
2902       Value *A = *ArgIt;
2903       unsigned ArgNo = CS.getArgumentNo(ArgIt);
2904       bool IsFixed = ArgNo < CS.getFunctionType()->getNumParams();
2905       bool IsByVal = CS.paramHasAttr(ArgNo + 1, Attribute::ByVal);
2906       if (IsByVal) {
2907         // ByVal arguments always go to the overflow area.
2908         // Fixed arguments passed through the overflow area will be stepped
2909         // over by va_start, so don't count them towards the offset.
2910         if (IsFixed)
2911           continue;
2912         assert(A->getType()->isPointerTy());
2913         Type *RealTy = A->getType()->getPointerElementType();
2914         uint64_t ArgSize = DL.getTypeAllocSize(RealTy);
2915         Value *Base = getShadowPtrForVAArgument(RealTy, IRB, OverflowOffset);
2916         OverflowOffset += alignTo(ArgSize, 8);
2917         IRB.CreateMemCpy(Base, MSV.getShadowPtr(A, IRB.getInt8Ty(), IRB),
2918                          ArgSize, kShadowTLSAlignment);
2919       } else {
2920         ArgKind AK = classifyArgument(A);
2921         if (AK == AK_GeneralPurpose && GpOffset >= AMD64GpEndOffset)
2922           AK = AK_Memory;
2923         if (AK == AK_FloatingPoint && FpOffset >= AMD64FpEndOffset)
2924           AK = AK_Memory;
2925         Value *Base;
2926         switch (AK) {
2927           case AK_GeneralPurpose:
2928             Base = getShadowPtrForVAArgument(A->getType(), IRB, GpOffset);
2929             GpOffset += 8;
2930             break;
2931           case AK_FloatingPoint:
2932             Base = getShadowPtrForVAArgument(A->getType(), IRB, FpOffset);
2933             FpOffset += 16;
2934             break;
2935           case AK_Memory:
2936             if (IsFixed)
2937               continue;
2938             uint64_t ArgSize = DL.getTypeAllocSize(A->getType());
2939             Base = getShadowPtrForVAArgument(A->getType(), IRB, OverflowOffset);
2940             OverflowOffset += alignTo(ArgSize, 8);
2941         }
2942         // Take fixed arguments into account for GpOffset and FpOffset,
2943         // but don't actually store shadows for them.
2944         if (IsFixed)
2945           continue;
2946         IRB.CreateAlignedStore(MSV.getShadow(A), Base, kShadowTLSAlignment);
2947       }
2948     }
2949     Constant *OverflowSize =
2950       ConstantInt::get(IRB.getInt64Ty(), OverflowOffset - AMD64FpEndOffset);
2951     IRB.CreateStore(OverflowSize, MS.VAArgOverflowSizeTLS);
2952   }
2953 
2954   /// \brief Compute the shadow address for a given va_arg.
getShadowPtrForVAArgument__anonaa4cb2a40211::VarArgAMD64Helper2955   Value *getShadowPtrForVAArgument(Type *Ty, IRBuilder<> &IRB,
2956                                    int ArgOffset) {
2957     Value *Base = IRB.CreatePointerCast(MS.VAArgTLS, MS.IntptrTy);
2958     Base = IRB.CreateAdd(Base, ConstantInt::get(MS.IntptrTy, ArgOffset));
2959     return IRB.CreateIntToPtr(Base, PointerType::get(MSV.getShadowTy(Ty), 0),
2960                               "_msarg");
2961   }
2962 
visitVAStartInst__anonaa4cb2a40211::VarArgAMD64Helper2963   void visitVAStartInst(VAStartInst &I) override {
2964     if (F.getCallingConv() == CallingConv::X86_64_Win64)
2965       return;
2966     IRBuilder<> IRB(&I);
2967     VAStartInstrumentationList.push_back(&I);
2968     Value *VAListTag = I.getArgOperand(0);
2969     Value *ShadowPtr = MSV.getShadowPtr(VAListTag, IRB.getInt8Ty(), IRB);
2970 
2971     // Unpoison the whole __va_list_tag.
2972     // FIXME: magic ABI constants.
2973     IRB.CreateMemSet(ShadowPtr, Constant::getNullValue(IRB.getInt8Ty()),
2974                      /* size */24, /* alignment */8, false);
2975   }
2976 
visitVACopyInst__anonaa4cb2a40211::VarArgAMD64Helper2977   void visitVACopyInst(VACopyInst &I) override {
2978     if (F.getCallingConv() == CallingConv::X86_64_Win64)
2979       return;
2980     IRBuilder<> IRB(&I);
2981     Value *VAListTag = I.getArgOperand(0);
2982     Value *ShadowPtr = MSV.getShadowPtr(VAListTag, IRB.getInt8Ty(), IRB);
2983 
2984     // Unpoison the whole __va_list_tag.
2985     // FIXME: magic ABI constants.
2986     IRB.CreateMemSet(ShadowPtr, Constant::getNullValue(IRB.getInt8Ty()),
2987                      /* size */24, /* alignment */8, false);
2988   }
2989 
finalizeInstrumentation__anonaa4cb2a40211::VarArgAMD64Helper2990   void finalizeInstrumentation() override {
2991     assert(!VAArgOverflowSize && !VAArgTLSCopy &&
2992            "finalizeInstrumentation called twice");
2993     if (!VAStartInstrumentationList.empty()) {
2994       // If there is a va_start in this function, make a backup copy of
2995       // va_arg_tls somewhere in the function entry block.
2996       IRBuilder<> IRB(F.getEntryBlock().getFirstNonPHI());
2997       VAArgOverflowSize = IRB.CreateLoad(MS.VAArgOverflowSizeTLS);
2998       Value *CopySize =
2999         IRB.CreateAdd(ConstantInt::get(MS.IntptrTy, AMD64FpEndOffset),
3000                       VAArgOverflowSize);
3001       VAArgTLSCopy = IRB.CreateAlloca(Type::getInt8Ty(*MS.C), CopySize);
3002       IRB.CreateMemCpy(VAArgTLSCopy, MS.VAArgTLS, CopySize, 8);
3003     }
3004 
3005     // Instrument va_start.
3006     // Copy va_list shadow from the backup copy of the TLS contents.
3007     for (size_t i = 0, n = VAStartInstrumentationList.size(); i < n; i++) {
3008       CallInst *OrigInst = VAStartInstrumentationList[i];
3009       IRBuilder<> IRB(OrigInst->getNextNode());
3010       Value *VAListTag = OrigInst->getArgOperand(0);
3011 
3012       Value *RegSaveAreaPtrPtr =
3013         IRB.CreateIntToPtr(
3014           IRB.CreateAdd(IRB.CreatePtrToInt(VAListTag, MS.IntptrTy),
3015                         ConstantInt::get(MS.IntptrTy, 16)),
3016           Type::getInt64PtrTy(*MS.C));
3017       Value *RegSaveAreaPtr = IRB.CreateLoad(RegSaveAreaPtrPtr);
3018       Value *RegSaveAreaShadowPtr =
3019         MSV.getShadowPtr(RegSaveAreaPtr, IRB.getInt8Ty(), IRB);
3020       IRB.CreateMemCpy(RegSaveAreaShadowPtr, VAArgTLSCopy,
3021                        AMD64FpEndOffset, 16);
3022 
3023       Value *OverflowArgAreaPtrPtr =
3024         IRB.CreateIntToPtr(
3025           IRB.CreateAdd(IRB.CreatePtrToInt(VAListTag, MS.IntptrTy),
3026                         ConstantInt::get(MS.IntptrTy, 8)),
3027           Type::getInt64PtrTy(*MS.C));
3028       Value *OverflowArgAreaPtr = IRB.CreateLoad(OverflowArgAreaPtrPtr);
3029       Value *OverflowArgAreaShadowPtr =
3030         MSV.getShadowPtr(OverflowArgAreaPtr, IRB.getInt8Ty(), IRB);
3031       Value *SrcPtr = IRB.CreateConstGEP1_32(IRB.getInt8Ty(), VAArgTLSCopy,
3032                                              AMD64FpEndOffset);
3033       IRB.CreateMemCpy(OverflowArgAreaShadowPtr, SrcPtr, VAArgOverflowSize, 16);
3034     }
3035   }
3036 };
3037 
3038 /// \brief MIPS64-specific implementation of VarArgHelper.
3039 struct VarArgMIPS64Helper : public VarArgHelper {
3040   Function &F;
3041   MemorySanitizer &MS;
3042   MemorySanitizerVisitor &MSV;
3043   Value *VAArgTLSCopy;
3044   Value *VAArgSize;
3045 
3046   SmallVector<CallInst*, 16> VAStartInstrumentationList;
3047 
VarArgMIPS64Helper__anonaa4cb2a40211::VarArgMIPS64Helper3048   VarArgMIPS64Helper(Function &F, MemorySanitizer &MS,
3049                     MemorySanitizerVisitor &MSV)
3050     : F(F), MS(MS), MSV(MSV), VAArgTLSCopy(nullptr),
3051       VAArgSize(nullptr) {}
3052 
visitCallSite__anonaa4cb2a40211::VarArgMIPS64Helper3053   void visitCallSite(CallSite &CS, IRBuilder<> &IRB) override {
3054     unsigned VAArgOffset = 0;
3055     const DataLayout &DL = F.getParent()->getDataLayout();
3056     for (CallSite::arg_iterator ArgIt = CS.arg_begin() +
3057          CS.getFunctionType()->getNumParams(), End = CS.arg_end();
3058          ArgIt != End; ++ArgIt) {
3059       llvm::Triple TargetTriple(F.getParent()->getTargetTriple());
3060       Value *A = *ArgIt;
3061       Value *Base;
3062       uint64_t ArgSize = DL.getTypeAllocSize(A->getType());
3063       if (TargetTriple.getArch() == llvm::Triple::mips64) {
3064         // Adjusting the shadow for argument with size < 8 to match the placement
3065         // of bits in big endian system
3066         if (ArgSize < 8)
3067           VAArgOffset += (8 - ArgSize);
3068       }
3069       Base = getShadowPtrForVAArgument(A->getType(), IRB, VAArgOffset);
3070       VAArgOffset += ArgSize;
3071       VAArgOffset = alignTo(VAArgOffset, 8);
3072       IRB.CreateAlignedStore(MSV.getShadow(A), Base, kShadowTLSAlignment);
3073     }
3074 
3075     Constant *TotalVAArgSize = ConstantInt::get(IRB.getInt64Ty(), VAArgOffset);
3076     // Here using VAArgOverflowSizeTLS as VAArgSizeTLS to avoid creation of
3077     // a new class member i.e. it is the total size of all VarArgs.
3078     IRB.CreateStore(TotalVAArgSize, MS.VAArgOverflowSizeTLS);
3079   }
3080 
3081   /// \brief Compute the shadow address for a given va_arg.
getShadowPtrForVAArgument__anonaa4cb2a40211::VarArgMIPS64Helper3082   Value *getShadowPtrForVAArgument(Type *Ty, IRBuilder<> &IRB,
3083                                    int ArgOffset) {
3084     Value *Base = IRB.CreatePointerCast(MS.VAArgTLS, MS.IntptrTy);
3085     Base = IRB.CreateAdd(Base, ConstantInt::get(MS.IntptrTy, ArgOffset));
3086     return IRB.CreateIntToPtr(Base, PointerType::get(MSV.getShadowTy(Ty), 0),
3087                               "_msarg");
3088   }
3089 
visitVAStartInst__anonaa4cb2a40211::VarArgMIPS64Helper3090   void visitVAStartInst(VAStartInst &I) override {
3091     IRBuilder<> IRB(&I);
3092     VAStartInstrumentationList.push_back(&I);
3093     Value *VAListTag = I.getArgOperand(0);
3094     Value *ShadowPtr = MSV.getShadowPtr(VAListTag, IRB.getInt8Ty(), IRB);
3095     IRB.CreateMemSet(ShadowPtr, Constant::getNullValue(IRB.getInt8Ty()),
3096                      /* size */8, /* alignment */8, false);
3097   }
3098 
visitVACopyInst__anonaa4cb2a40211::VarArgMIPS64Helper3099   void visitVACopyInst(VACopyInst &I) override {
3100     IRBuilder<> IRB(&I);
3101     Value *VAListTag = I.getArgOperand(0);
3102     Value *ShadowPtr = MSV.getShadowPtr(VAListTag, IRB.getInt8Ty(), IRB);
3103     // Unpoison the whole __va_list_tag.
3104     // FIXME: magic ABI constants.
3105     IRB.CreateMemSet(ShadowPtr, Constant::getNullValue(IRB.getInt8Ty()),
3106                      /* size */8, /* alignment */8, false);
3107   }
3108 
finalizeInstrumentation__anonaa4cb2a40211::VarArgMIPS64Helper3109   void finalizeInstrumentation() override {
3110     assert(!VAArgSize && !VAArgTLSCopy &&
3111            "finalizeInstrumentation called twice");
3112     IRBuilder<> IRB(F.getEntryBlock().getFirstNonPHI());
3113     VAArgSize = IRB.CreateLoad(MS.VAArgOverflowSizeTLS);
3114     Value *CopySize = IRB.CreateAdd(ConstantInt::get(MS.IntptrTy, 0),
3115                                     VAArgSize);
3116 
3117     if (!VAStartInstrumentationList.empty()) {
3118       // If there is a va_start in this function, make a backup copy of
3119       // va_arg_tls somewhere in the function entry block.
3120       VAArgTLSCopy = IRB.CreateAlloca(Type::getInt8Ty(*MS.C), CopySize);
3121       IRB.CreateMemCpy(VAArgTLSCopy, MS.VAArgTLS, CopySize, 8);
3122     }
3123 
3124     // Instrument va_start.
3125     // Copy va_list shadow from the backup copy of the TLS contents.
3126     for (size_t i = 0, n = VAStartInstrumentationList.size(); i < n; i++) {
3127       CallInst *OrigInst = VAStartInstrumentationList[i];
3128       IRBuilder<> IRB(OrigInst->getNextNode());
3129       Value *VAListTag = OrigInst->getArgOperand(0);
3130       Value *RegSaveAreaPtrPtr =
3131         IRB.CreateIntToPtr(IRB.CreatePtrToInt(VAListTag, MS.IntptrTy),
3132                         Type::getInt64PtrTy(*MS.C));
3133       Value *RegSaveAreaPtr = IRB.CreateLoad(RegSaveAreaPtrPtr);
3134       Value *RegSaveAreaShadowPtr =
3135       MSV.getShadowPtr(RegSaveAreaPtr, IRB.getInt8Ty(), IRB);
3136       IRB.CreateMemCpy(RegSaveAreaShadowPtr, VAArgTLSCopy, CopySize, 8);
3137     }
3138   }
3139 };
3140 
3141 
3142 /// \brief AArch64-specific implementation of VarArgHelper.
3143 struct VarArgAArch64Helper : public VarArgHelper {
3144   static const unsigned kAArch64GrArgSize = 64;
3145   static const unsigned kAArch64VrArgSize = 128;
3146 
3147   static const unsigned AArch64GrBegOffset = 0;
3148   static const unsigned AArch64GrEndOffset = kAArch64GrArgSize;
3149   // Make VR space aligned to 16 bytes.
3150   static const unsigned AArch64VrBegOffset = AArch64GrEndOffset;
3151   static const unsigned AArch64VrEndOffset = AArch64VrBegOffset
3152                                              + kAArch64VrArgSize;
3153   static const unsigned AArch64VAEndOffset = AArch64VrEndOffset;
3154 
3155   Function &F;
3156   MemorySanitizer &MS;
3157   MemorySanitizerVisitor &MSV;
3158   Value *VAArgTLSCopy;
3159   Value *VAArgOverflowSize;
3160 
3161   SmallVector<CallInst*, 16> VAStartInstrumentationList;
3162 
VarArgAArch64Helper__anonaa4cb2a40211::VarArgAArch64Helper3163   VarArgAArch64Helper(Function &F, MemorySanitizer &MS,
3164                     MemorySanitizerVisitor &MSV)
3165     : F(F), MS(MS), MSV(MSV), VAArgTLSCopy(nullptr),
3166       VAArgOverflowSize(nullptr) {}
3167 
3168   enum ArgKind { AK_GeneralPurpose, AK_FloatingPoint, AK_Memory };
3169 
classifyArgument__anonaa4cb2a40211::VarArgAArch64Helper3170   ArgKind classifyArgument(Value* arg) {
3171     Type *T = arg->getType();
3172     if (T->isFPOrFPVectorTy())
3173       return AK_FloatingPoint;
3174     if ((T->isIntegerTy() && T->getPrimitiveSizeInBits() <= 64)
3175         || (T->isPointerTy()))
3176       return AK_GeneralPurpose;
3177     return AK_Memory;
3178   }
3179 
3180   // The instrumentation stores the argument shadow in a non ABI-specific
3181   // format because it does not know which argument is named (since Clang,
3182   // like x86_64 case, lowers the va_args in the frontend and this pass only
3183   // sees the low level code that deals with va_list internals).
3184   // The first seven GR registers are saved in the first 56 bytes of the
3185   // va_arg tls arra, followers by the first 8 FP/SIMD registers, and then
3186   // the remaining arguments.
3187   // Using constant offset within the va_arg TLS array allows fast copy
3188   // in the finalize instrumentation.
visitCallSite__anonaa4cb2a40211::VarArgAArch64Helper3189   void visitCallSite(CallSite &CS, IRBuilder<> &IRB) override {
3190     unsigned GrOffset = AArch64GrBegOffset;
3191     unsigned VrOffset = AArch64VrBegOffset;
3192     unsigned OverflowOffset = AArch64VAEndOffset;
3193 
3194     const DataLayout &DL = F.getParent()->getDataLayout();
3195     for (CallSite::arg_iterator ArgIt = CS.arg_begin(), End = CS.arg_end();
3196          ArgIt != End; ++ArgIt) {
3197       Value *A = *ArgIt;
3198       unsigned ArgNo = CS.getArgumentNo(ArgIt);
3199       bool IsFixed = ArgNo < CS.getFunctionType()->getNumParams();
3200       ArgKind AK = classifyArgument(A);
3201       if (AK == AK_GeneralPurpose && GrOffset >= AArch64GrEndOffset)
3202         AK = AK_Memory;
3203       if (AK == AK_FloatingPoint && VrOffset >= AArch64VrEndOffset)
3204         AK = AK_Memory;
3205       Value *Base;
3206       switch (AK) {
3207         case AK_GeneralPurpose:
3208           Base = getShadowPtrForVAArgument(A->getType(), IRB, GrOffset);
3209           GrOffset += 8;
3210           break;
3211         case AK_FloatingPoint:
3212           Base = getShadowPtrForVAArgument(A->getType(), IRB, VrOffset);
3213           VrOffset += 16;
3214           break;
3215         case AK_Memory:
3216           // Don't count fixed arguments in the overflow area - va_start will
3217           // skip right over them.
3218           if (IsFixed)
3219             continue;
3220           uint64_t ArgSize = DL.getTypeAllocSize(A->getType());
3221           Base = getShadowPtrForVAArgument(A->getType(), IRB, OverflowOffset);
3222           OverflowOffset += alignTo(ArgSize, 8);
3223           break;
3224       }
3225       // Count Gp/Vr fixed arguments to their respective offsets, but don't
3226       // bother to actually store a shadow.
3227       if (IsFixed)
3228         continue;
3229       IRB.CreateAlignedStore(MSV.getShadow(A), Base, kShadowTLSAlignment);
3230     }
3231     Constant *OverflowSize =
3232       ConstantInt::get(IRB.getInt64Ty(), OverflowOffset - AArch64VAEndOffset);
3233     IRB.CreateStore(OverflowSize, MS.VAArgOverflowSizeTLS);
3234   }
3235 
3236   /// Compute the shadow address for a given va_arg.
getShadowPtrForVAArgument__anonaa4cb2a40211::VarArgAArch64Helper3237   Value *getShadowPtrForVAArgument(Type *Ty, IRBuilder<> &IRB,
3238                                    int ArgOffset) {
3239     Value *Base = IRB.CreatePointerCast(MS.VAArgTLS, MS.IntptrTy);
3240     Base = IRB.CreateAdd(Base, ConstantInt::get(MS.IntptrTy, ArgOffset));
3241     return IRB.CreateIntToPtr(Base, PointerType::get(MSV.getShadowTy(Ty), 0),
3242                               "_msarg");
3243   }
3244 
visitVAStartInst__anonaa4cb2a40211::VarArgAArch64Helper3245   void visitVAStartInst(VAStartInst &I) override {
3246     IRBuilder<> IRB(&I);
3247     VAStartInstrumentationList.push_back(&I);
3248     Value *VAListTag = I.getArgOperand(0);
3249     Value *ShadowPtr = MSV.getShadowPtr(VAListTag, IRB.getInt8Ty(), IRB);
3250     // Unpoison the whole __va_list_tag.
3251     // FIXME: magic ABI constants (size of va_list).
3252     IRB.CreateMemSet(ShadowPtr, Constant::getNullValue(IRB.getInt8Ty()),
3253                      /* size */32, /* alignment */8, false);
3254   }
3255 
visitVACopyInst__anonaa4cb2a40211::VarArgAArch64Helper3256   void visitVACopyInst(VACopyInst &I) override {
3257     IRBuilder<> IRB(&I);
3258     Value *VAListTag = I.getArgOperand(0);
3259     Value *ShadowPtr = MSV.getShadowPtr(VAListTag, IRB.getInt8Ty(), IRB);
3260     // Unpoison the whole __va_list_tag.
3261     // FIXME: magic ABI constants (size of va_list).
3262     IRB.CreateMemSet(ShadowPtr, Constant::getNullValue(IRB.getInt8Ty()),
3263                      /* size */32, /* alignment */8, false);
3264   }
3265 
3266   // Retrieve a va_list field of 'void*' size.
getVAField64__anonaa4cb2a40211::VarArgAArch64Helper3267   Value* getVAField64(IRBuilder<> &IRB, Value *VAListTag, int offset) {
3268     Value *SaveAreaPtrPtr =
3269       IRB.CreateIntToPtr(
3270         IRB.CreateAdd(IRB.CreatePtrToInt(VAListTag, MS.IntptrTy),
3271                       ConstantInt::get(MS.IntptrTy, offset)),
3272         Type::getInt64PtrTy(*MS.C));
3273     return IRB.CreateLoad(SaveAreaPtrPtr);
3274   }
3275 
3276   // Retrieve a va_list field of 'int' size.
getVAField32__anonaa4cb2a40211::VarArgAArch64Helper3277   Value* getVAField32(IRBuilder<> &IRB, Value *VAListTag, int offset) {
3278     Value *SaveAreaPtr =
3279       IRB.CreateIntToPtr(
3280         IRB.CreateAdd(IRB.CreatePtrToInt(VAListTag, MS.IntptrTy),
3281                       ConstantInt::get(MS.IntptrTy, offset)),
3282         Type::getInt32PtrTy(*MS.C));
3283     Value *SaveArea32 = IRB.CreateLoad(SaveAreaPtr);
3284     return IRB.CreateSExt(SaveArea32, MS.IntptrTy);
3285   }
3286 
finalizeInstrumentation__anonaa4cb2a40211::VarArgAArch64Helper3287   void finalizeInstrumentation() override {
3288     assert(!VAArgOverflowSize && !VAArgTLSCopy &&
3289            "finalizeInstrumentation called twice");
3290     if (!VAStartInstrumentationList.empty()) {
3291       // If there is a va_start in this function, make a backup copy of
3292       // va_arg_tls somewhere in the function entry block.
3293       IRBuilder<> IRB(F.getEntryBlock().getFirstNonPHI());
3294       VAArgOverflowSize = IRB.CreateLoad(MS.VAArgOverflowSizeTLS);
3295       Value *CopySize =
3296         IRB.CreateAdd(ConstantInt::get(MS.IntptrTy, AArch64VAEndOffset),
3297                       VAArgOverflowSize);
3298       VAArgTLSCopy = IRB.CreateAlloca(Type::getInt8Ty(*MS.C), CopySize);
3299       IRB.CreateMemCpy(VAArgTLSCopy, MS.VAArgTLS, CopySize, 8);
3300     }
3301 
3302     Value *GrArgSize = ConstantInt::get(MS.IntptrTy, kAArch64GrArgSize);
3303     Value *VrArgSize = ConstantInt::get(MS.IntptrTy, kAArch64VrArgSize);
3304 
3305     // Instrument va_start, copy va_list shadow from the backup copy of
3306     // the TLS contents.
3307     for (size_t i = 0, n = VAStartInstrumentationList.size(); i < n; i++) {
3308       CallInst *OrigInst = VAStartInstrumentationList[i];
3309       IRBuilder<> IRB(OrigInst->getNextNode());
3310 
3311       Value *VAListTag = OrigInst->getArgOperand(0);
3312 
3313       // The variadic ABI for AArch64 creates two areas to save the incoming
3314       // argument registers (one for 64-bit general register xn-x7 and another
3315       // for 128-bit FP/SIMD vn-v7).
3316       // We need then to propagate the shadow arguments on both regions
3317       // 'va::__gr_top + va::__gr_offs' and 'va::__vr_top + va::__vr_offs'.
3318       // The remaning arguments are saved on shadow for 'va::stack'.
3319       // One caveat is it requires only to propagate the non-named arguments,
3320       // however on the call site instrumentation 'all' the arguments are
3321       // saved. So to copy the shadow values from the va_arg TLS array
3322       // we need to adjust the offset for both GR and VR fields based on
3323       // the __{gr,vr}_offs value (since they are stores based on incoming
3324       // named arguments).
3325 
3326       // Read the stack pointer from the va_list.
3327       Value *StackSaveAreaPtr = getVAField64(IRB, VAListTag, 0);
3328 
3329       // Read both the __gr_top and __gr_off and add them up.
3330       Value *GrTopSaveAreaPtr = getVAField64(IRB, VAListTag, 8);
3331       Value *GrOffSaveArea = getVAField32(IRB, VAListTag, 24);
3332 
3333       Value *GrRegSaveAreaPtr = IRB.CreateAdd(GrTopSaveAreaPtr, GrOffSaveArea);
3334 
3335       // Read both the __vr_top and __vr_off and add them up.
3336       Value *VrTopSaveAreaPtr = getVAField64(IRB, VAListTag, 16);
3337       Value *VrOffSaveArea = getVAField32(IRB, VAListTag, 28);
3338 
3339       Value *VrRegSaveAreaPtr = IRB.CreateAdd(VrTopSaveAreaPtr, VrOffSaveArea);
3340 
3341       // It does not know how many named arguments is being used and, on the
3342       // callsite all the arguments were saved.  Since __gr_off is defined as
3343       // '0 - ((8 - named_gr) * 8)', the idea is to just propagate the variadic
3344       // argument by ignoring the bytes of shadow from named arguments.
3345       Value *GrRegSaveAreaShadowPtrOff =
3346         IRB.CreateAdd(GrArgSize, GrOffSaveArea);
3347 
3348       Value *GrRegSaveAreaShadowPtr =
3349         MSV.getShadowPtr(GrRegSaveAreaPtr, IRB.getInt8Ty(), IRB);
3350 
3351       Value *GrSrcPtr = IRB.CreateInBoundsGEP(IRB.getInt8Ty(), VAArgTLSCopy,
3352                                               GrRegSaveAreaShadowPtrOff);
3353       Value *GrCopySize = IRB.CreateSub(GrArgSize, GrRegSaveAreaShadowPtrOff);
3354 
3355       IRB.CreateMemCpy(GrRegSaveAreaShadowPtr, GrSrcPtr, GrCopySize, 8);
3356 
3357       // Again, but for FP/SIMD values.
3358       Value *VrRegSaveAreaShadowPtrOff =
3359           IRB.CreateAdd(VrArgSize, VrOffSaveArea);
3360 
3361       Value *VrRegSaveAreaShadowPtr =
3362         MSV.getShadowPtr(VrRegSaveAreaPtr, IRB.getInt8Ty(), IRB);
3363 
3364       Value *VrSrcPtr = IRB.CreateInBoundsGEP(
3365         IRB.getInt8Ty(),
3366         IRB.CreateInBoundsGEP(IRB.getInt8Ty(), VAArgTLSCopy,
3367                               IRB.getInt32(AArch64VrBegOffset)),
3368         VrRegSaveAreaShadowPtrOff);
3369       Value *VrCopySize = IRB.CreateSub(VrArgSize, VrRegSaveAreaShadowPtrOff);
3370 
3371       IRB.CreateMemCpy(VrRegSaveAreaShadowPtr, VrSrcPtr, VrCopySize, 8);
3372 
3373       // And finally for remaining arguments.
3374       Value *StackSaveAreaShadowPtr =
3375         MSV.getShadowPtr(StackSaveAreaPtr, IRB.getInt8Ty(), IRB);
3376 
3377       Value *StackSrcPtr =
3378         IRB.CreateInBoundsGEP(IRB.getInt8Ty(), VAArgTLSCopy,
3379                               IRB.getInt32(AArch64VAEndOffset));
3380 
3381       IRB.CreateMemCpy(StackSaveAreaShadowPtr, StackSrcPtr,
3382                        VAArgOverflowSize, 16);
3383     }
3384   }
3385 };
3386 
3387 /// \brief PowerPC64-specific implementation of VarArgHelper.
3388 struct VarArgPowerPC64Helper : public VarArgHelper {
3389   Function &F;
3390   MemorySanitizer &MS;
3391   MemorySanitizerVisitor &MSV;
3392   Value *VAArgTLSCopy;
3393   Value *VAArgSize;
3394 
3395   SmallVector<CallInst*, 16> VAStartInstrumentationList;
3396 
VarArgPowerPC64Helper__anonaa4cb2a40211::VarArgPowerPC64Helper3397   VarArgPowerPC64Helper(Function &F, MemorySanitizer &MS,
3398                     MemorySanitizerVisitor &MSV)
3399     : F(F), MS(MS), MSV(MSV), VAArgTLSCopy(nullptr),
3400       VAArgSize(nullptr) {}
3401 
visitCallSite__anonaa4cb2a40211::VarArgPowerPC64Helper3402   void visitCallSite(CallSite &CS, IRBuilder<> &IRB) override {
3403     // For PowerPC, we need to deal with alignment of stack arguments -
3404     // they are mostly aligned to 8 bytes, but vectors and i128 arrays
3405     // are aligned to 16 bytes, byvals can be aligned to 8 or 16 bytes,
3406     // and QPX vectors are aligned to 32 bytes.  For that reason, we
3407     // compute current offset from stack pointer (which is always properly
3408     // aligned), and offset for the first vararg, then subtract them.
3409     unsigned VAArgBase;
3410     llvm::Triple TargetTriple(F.getParent()->getTargetTriple());
3411     // Parameter save area starts at 48 bytes from frame pointer for ABIv1,
3412     // and 32 bytes for ABIv2.  This is usually determined by target
3413     // endianness, but in theory could be overriden by function attribute.
3414     // For simplicity, we ignore it here (it'd only matter for QPX vectors).
3415     if (TargetTriple.getArch() == llvm::Triple::ppc64)
3416       VAArgBase = 48;
3417     else
3418       VAArgBase = 32;
3419     unsigned VAArgOffset = VAArgBase;
3420     const DataLayout &DL = F.getParent()->getDataLayout();
3421     for (CallSite::arg_iterator ArgIt = CS.arg_begin(), End = CS.arg_end();
3422          ArgIt != End; ++ArgIt) {
3423       Value *A = *ArgIt;
3424       unsigned ArgNo = CS.getArgumentNo(ArgIt);
3425       bool IsFixed = ArgNo < CS.getFunctionType()->getNumParams();
3426       bool IsByVal = CS.paramHasAttr(ArgNo + 1, Attribute::ByVal);
3427       if (IsByVal) {
3428         assert(A->getType()->isPointerTy());
3429         Type *RealTy = A->getType()->getPointerElementType();
3430         uint64_t ArgSize = DL.getTypeAllocSize(RealTy);
3431         uint64_t ArgAlign = CS.getParamAlignment(ArgNo + 1);
3432         if (ArgAlign < 8)
3433           ArgAlign = 8;
3434         VAArgOffset = alignTo(VAArgOffset, ArgAlign);
3435         if (!IsFixed) {
3436           Value *Base = getShadowPtrForVAArgument(RealTy, IRB,
3437                                                   VAArgOffset - VAArgBase);
3438           IRB.CreateMemCpy(Base, MSV.getShadowPtr(A, IRB.getInt8Ty(), IRB),
3439                            ArgSize, kShadowTLSAlignment);
3440         }
3441         VAArgOffset += alignTo(ArgSize, 8);
3442       } else {
3443         Value *Base;
3444         uint64_t ArgSize = DL.getTypeAllocSize(A->getType());
3445         uint64_t ArgAlign = 8;
3446         if (A->getType()->isArrayTy()) {
3447           // Arrays are aligned to element size, except for long double
3448           // arrays, which are aligned to 8 bytes.
3449           Type *ElementTy = A->getType()->getArrayElementType();
3450           if (!ElementTy->isPPC_FP128Ty())
3451             ArgAlign = DL.getTypeAllocSize(ElementTy);
3452         } else if (A->getType()->isVectorTy()) {
3453           // Vectors are naturally aligned.
3454           ArgAlign = DL.getTypeAllocSize(A->getType());
3455         }
3456         if (ArgAlign < 8)
3457           ArgAlign = 8;
3458         VAArgOffset = alignTo(VAArgOffset, ArgAlign);
3459         if (DL.isBigEndian()) {
3460           // Adjusting the shadow for argument with size < 8 to match the placement
3461           // of bits in big endian system
3462           if (ArgSize < 8)
3463             VAArgOffset += (8 - ArgSize);
3464         }
3465         if (!IsFixed) {
3466           Base = getShadowPtrForVAArgument(A->getType(), IRB,
3467                                            VAArgOffset - VAArgBase);
3468           IRB.CreateAlignedStore(MSV.getShadow(A), Base, kShadowTLSAlignment);
3469         }
3470         VAArgOffset += ArgSize;
3471         VAArgOffset = alignTo(VAArgOffset, 8);
3472       }
3473       if (IsFixed)
3474         VAArgBase = VAArgOffset;
3475     }
3476 
3477     Constant *TotalVAArgSize = ConstantInt::get(IRB.getInt64Ty(),
3478                                                 VAArgOffset - VAArgBase);
3479     // Here using VAArgOverflowSizeTLS as VAArgSizeTLS to avoid creation of
3480     // a new class member i.e. it is the total size of all VarArgs.
3481     IRB.CreateStore(TotalVAArgSize, MS.VAArgOverflowSizeTLS);
3482   }
3483 
3484   /// \brief Compute the shadow address for a given va_arg.
getShadowPtrForVAArgument__anonaa4cb2a40211::VarArgPowerPC64Helper3485   Value *getShadowPtrForVAArgument(Type *Ty, IRBuilder<> &IRB,
3486                                    int ArgOffset) {
3487     Value *Base = IRB.CreatePointerCast(MS.VAArgTLS, MS.IntptrTy);
3488     Base = IRB.CreateAdd(Base, ConstantInt::get(MS.IntptrTy, ArgOffset));
3489     return IRB.CreateIntToPtr(Base, PointerType::get(MSV.getShadowTy(Ty), 0),
3490                               "_msarg");
3491   }
3492 
visitVAStartInst__anonaa4cb2a40211::VarArgPowerPC64Helper3493   void visitVAStartInst(VAStartInst &I) override {
3494     IRBuilder<> IRB(&I);
3495     VAStartInstrumentationList.push_back(&I);
3496     Value *VAListTag = I.getArgOperand(0);
3497     Value *ShadowPtr = MSV.getShadowPtr(VAListTag, IRB.getInt8Ty(), IRB);
3498     IRB.CreateMemSet(ShadowPtr, Constant::getNullValue(IRB.getInt8Ty()),
3499                      /* size */8, /* alignment */8, false);
3500   }
3501 
visitVACopyInst__anonaa4cb2a40211::VarArgPowerPC64Helper3502   void visitVACopyInst(VACopyInst &I) override {
3503     IRBuilder<> IRB(&I);
3504     Value *VAListTag = I.getArgOperand(0);
3505     Value *ShadowPtr = MSV.getShadowPtr(VAListTag, IRB.getInt8Ty(), IRB);
3506     // Unpoison the whole __va_list_tag.
3507     // FIXME: magic ABI constants.
3508     IRB.CreateMemSet(ShadowPtr, Constant::getNullValue(IRB.getInt8Ty()),
3509                      /* size */8, /* alignment */8, false);
3510   }
3511 
finalizeInstrumentation__anonaa4cb2a40211::VarArgPowerPC64Helper3512   void finalizeInstrumentation() override {
3513     assert(!VAArgSize && !VAArgTLSCopy &&
3514            "finalizeInstrumentation called twice");
3515     IRBuilder<> IRB(F.getEntryBlock().getFirstNonPHI());
3516     VAArgSize = IRB.CreateLoad(MS.VAArgOverflowSizeTLS);
3517     Value *CopySize = IRB.CreateAdd(ConstantInt::get(MS.IntptrTy, 0),
3518                                     VAArgSize);
3519 
3520     if (!VAStartInstrumentationList.empty()) {
3521       // If there is a va_start in this function, make a backup copy of
3522       // va_arg_tls somewhere in the function entry block.
3523       VAArgTLSCopy = IRB.CreateAlloca(Type::getInt8Ty(*MS.C), CopySize);
3524       IRB.CreateMemCpy(VAArgTLSCopy, MS.VAArgTLS, CopySize, 8);
3525     }
3526 
3527     // Instrument va_start.
3528     // Copy va_list shadow from the backup copy of the TLS contents.
3529     for (size_t i = 0, n = VAStartInstrumentationList.size(); i < n; i++) {
3530       CallInst *OrigInst = VAStartInstrumentationList[i];
3531       IRBuilder<> IRB(OrigInst->getNextNode());
3532       Value *VAListTag = OrigInst->getArgOperand(0);
3533       Value *RegSaveAreaPtrPtr =
3534         IRB.CreateIntToPtr(IRB.CreatePtrToInt(VAListTag, MS.IntptrTy),
3535                         Type::getInt64PtrTy(*MS.C));
3536       Value *RegSaveAreaPtr = IRB.CreateLoad(RegSaveAreaPtrPtr);
3537       Value *RegSaveAreaShadowPtr =
3538       MSV.getShadowPtr(RegSaveAreaPtr, IRB.getInt8Ty(), IRB);
3539       IRB.CreateMemCpy(RegSaveAreaShadowPtr, VAArgTLSCopy, CopySize, 8);
3540     }
3541   }
3542 };
3543 
3544 /// \brief A no-op implementation of VarArgHelper.
3545 struct VarArgNoOpHelper : public VarArgHelper {
VarArgNoOpHelper__anonaa4cb2a40211::VarArgNoOpHelper3546   VarArgNoOpHelper(Function &F, MemorySanitizer &MS,
3547                    MemorySanitizerVisitor &MSV) {}
3548 
visitCallSite__anonaa4cb2a40211::VarArgNoOpHelper3549   void visitCallSite(CallSite &CS, IRBuilder<> &IRB) override {}
3550 
visitVAStartInst__anonaa4cb2a40211::VarArgNoOpHelper3551   void visitVAStartInst(VAStartInst &I) override {}
3552 
visitVACopyInst__anonaa4cb2a40211::VarArgNoOpHelper3553   void visitVACopyInst(VACopyInst &I) override {}
3554 
finalizeInstrumentation__anonaa4cb2a40211::VarArgNoOpHelper3555   void finalizeInstrumentation() override {}
3556 };
3557 
CreateVarArgHelper(Function & Func,MemorySanitizer & Msan,MemorySanitizerVisitor & Visitor)3558 VarArgHelper *CreateVarArgHelper(Function &Func, MemorySanitizer &Msan,
3559                                  MemorySanitizerVisitor &Visitor) {
3560   // VarArg handling is only implemented on AMD64. False positives are possible
3561   // on other platforms.
3562   llvm::Triple TargetTriple(Func.getParent()->getTargetTriple());
3563   if (TargetTriple.getArch() == llvm::Triple::x86_64)
3564     return new VarArgAMD64Helper(Func, Msan, Visitor);
3565   else if (TargetTriple.getArch() == llvm::Triple::mips64 ||
3566            TargetTriple.getArch() == llvm::Triple::mips64el)
3567     return new VarArgMIPS64Helper(Func, Msan, Visitor);
3568   else if (TargetTriple.getArch() == llvm::Triple::aarch64)
3569     return new VarArgAArch64Helper(Func, Msan, Visitor);
3570   else if (TargetTriple.getArch() == llvm::Triple::ppc64 ||
3571            TargetTriple.getArch() == llvm::Triple::ppc64le)
3572     return new VarArgPowerPC64Helper(Func, Msan, Visitor);
3573   else
3574     return new VarArgNoOpHelper(Func, Msan, Visitor);
3575 }
3576 
3577 } // anonymous namespace
3578 
runOnFunction(Function & F)3579 bool MemorySanitizer::runOnFunction(Function &F) {
3580   if (&F == MsanCtorFunction)
3581     return false;
3582   MemorySanitizerVisitor Visitor(F, *this);
3583 
3584   // Clear out readonly/readnone attributes.
3585   AttrBuilder B;
3586   B.addAttribute(Attribute::ReadOnly)
3587     .addAttribute(Attribute::ReadNone);
3588   F.removeAttributes(AttributeSet::FunctionIndex,
3589                      AttributeSet::get(F.getContext(),
3590                                        AttributeSet::FunctionIndex, B));
3591 
3592   return Visitor.runOnFunction();
3593 }
3594