1 //===- NeonEmitter.cpp - Generate arm_neon.h for use with clang -*- C++ -*-===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This tablegen backend is responsible for emitting arm_neon.h, which includes
11 // a declaration and definition of each function specified by the ARM NEON
12 // compiler interface. See ARM document DUI0348B.
13 //
14 // Each NEON instruction is implemented in terms of 1 or more functions which
15 // are suffixed with the element type of the input vectors. Functions may be
16 // implemented in terms of generic vector operations such as +, *, -, etc. or
17 // by calling a __builtin_-prefixed function which will be handled by clang's
18 // CodeGen library.
19 //
20 // Additional validation code can be generated by this file when runHeader() is
21 // called, rather than the normal run() entry point.
22 //
23 // See also the documentation in include/clang/Basic/arm_neon.td.
24 //
25 //===----------------------------------------------------------------------===//
26
27 #include "llvm/ADT/DenseMap.h"
28 #include "llvm/ADT/STLExtras.h"
29 #include "llvm/ADT/SmallString.h"
30 #include "llvm/ADT/SmallVector.h"
31 #include "llvm/ADT/StringExtras.h"
32 #include "llvm/ADT/StringMap.h"
33 #include "llvm/Support/ErrorHandling.h"
34 #include "llvm/TableGen/Error.h"
35 #include "llvm/TableGen/Record.h"
36 #include "llvm/TableGen/SetTheory.h"
37 #include "llvm/TableGen/TableGenBackend.h"
38 #include <algorithm>
39 #include <deque>
40 #include <map>
41 #include <sstream>
42 #include <string>
43 #include <utility>
44 #include <vector>
45 using namespace llvm;
46
47 namespace {
48
49 // While globals are generally bad, this one allows us to perform assertions
50 // liberally and somehow still trace them back to the def they indirectly
51 // came from.
52 static Record *CurrentRecord = nullptr;
assert_with_loc(bool Assertion,const std::string & Str)53 static void assert_with_loc(bool Assertion, const std::string &Str) {
54 if (!Assertion) {
55 if (CurrentRecord)
56 PrintFatalError(CurrentRecord->getLoc(), Str);
57 else
58 PrintFatalError(Str);
59 }
60 }
61
62 enum ClassKind {
63 ClassNone,
64 ClassI, // generic integer instruction, e.g., "i8" suffix
65 ClassS, // signed/unsigned/poly, e.g., "s8", "u8" or "p8" suffix
66 ClassW, // width-specific instruction, e.g., "8" suffix
67 ClassB, // bitcast arguments with enum argument to specify type
68 ClassL, // Logical instructions which are op instructions
69 // but we need to not emit any suffix for in our
70 // tests.
71 ClassNoTest // Instructions which we do not test since they are
72 // not TRUE instructions.
73 };
74
75 /// NeonTypeFlags - Flags to identify the types for overloaded Neon
76 /// builtins. These must be kept in sync with the flags in
77 /// include/clang/Basic/TargetBuiltins.h.
78 namespace NeonTypeFlags {
79 enum { EltTypeMask = 0xf, UnsignedFlag = 0x10, QuadFlag = 0x20 };
80
81 enum EltType {
82 Int8,
83 Int16,
84 Int32,
85 Int64,
86 Poly8,
87 Poly16,
88 Poly64,
89 Poly128,
90 Float16,
91 Float32,
92 Float64
93 };
94 }
95
96 class Intrinsic;
97 class NeonEmitter;
98 class Type;
99 class Variable;
100
101 //===----------------------------------------------------------------------===//
102 // TypeSpec
103 //===----------------------------------------------------------------------===//
104
105 /// A TypeSpec is just a simple wrapper around a string, but gets its own type
106 /// for strong typing purposes.
107 ///
108 /// A TypeSpec can be used to create a type.
109 class TypeSpec : public std::string {
110 public:
fromTypeSpecs(StringRef Str)111 static std::vector<TypeSpec> fromTypeSpecs(StringRef Str) {
112 std::vector<TypeSpec> Ret;
113 TypeSpec Acc;
114 for (char I : Str.str()) {
115 if (islower(I)) {
116 Acc.push_back(I);
117 Ret.push_back(TypeSpec(Acc));
118 Acc.clear();
119 } else {
120 Acc.push_back(I);
121 }
122 }
123 return Ret;
124 }
125 };
126
127 //===----------------------------------------------------------------------===//
128 // Type
129 //===----------------------------------------------------------------------===//
130
131 /// A Type. Not much more to say here.
132 class Type {
133 private:
134 TypeSpec TS;
135
136 bool Float, Signed, Immediate, Void, Poly, Constant, Pointer;
137 // ScalarForMangling and NoManglingQ are really not suited to live here as
138 // they are not related to the type. But they live in the TypeSpec (not the
139 // prototype), so this is really the only place to store them.
140 bool ScalarForMangling, NoManglingQ;
141 unsigned Bitwidth, ElementBitwidth, NumVectors;
142
143 public:
Type()144 Type()
145 : Float(false), Signed(false), Immediate(false), Void(true), Poly(false),
146 Constant(false), Pointer(false), ScalarForMangling(false),
147 NoManglingQ(false), Bitwidth(0), ElementBitwidth(0), NumVectors(0) {}
148
Type(TypeSpec TS,char CharMod)149 Type(TypeSpec TS, char CharMod)
150 : TS(std::move(TS)), Float(false), Signed(false), Immediate(false),
151 Void(false), Poly(false), Constant(false), Pointer(false),
152 ScalarForMangling(false), NoManglingQ(false), Bitwidth(0),
153 ElementBitwidth(0), NumVectors(0) {
154 applyModifier(CharMod);
155 }
156
157 /// Returns a type representing "void".
getVoid()158 static Type getVoid() { return Type(); }
159
operator ==(const Type & Other) const160 bool operator==(const Type &Other) const { return str() == Other.str(); }
operator !=(const Type & Other) const161 bool operator!=(const Type &Other) const { return !operator==(Other); }
162
163 //
164 // Query functions
165 //
isScalarForMangling() const166 bool isScalarForMangling() const { return ScalarForMangling; }
noManglingQ() const167 bool noManglingQ() const { return NoManglingQ; }
168
isPointer() const169 bool isPointer() const { return Pointer; }
isFloating() const170 bool isFloating() const { return Float; }
isInteger() const171 bool isInteger() const { return !Float && !Poly; }
isSigned() const172 bool isSigned() const { return Signed; }
isImmediate() const173 bool isImmediate() const { return Immediate; }
isScalar() const174 bool isScalar() const { return NumVectors == 0; }
isVector() const175 bool isVector() const { return NumVectors > 0; }
isFloat() const176 bool isFloat() const { return Float && ElementBitwidth == 32; }
isDouble() const177 bool isDouble() const { return Float && ElementBitwidth == 64; }
isHalf() const178 bool isHalf() const { return Float && ElementBitwidth == 16; }
isPoly() const179 bool isPoly() const { return Poly; }
isChar() const180 bool isChar() const { return ElementBitwidth == 8; }
isShort() const181 bool isShort() const { return !Float && ElementBitwidth == 16; }
isInt() const182 bool isInt() const { return !Float && ElementBitwidth == 32; }
isLong() const183 bool isLong() const { return !Float && ElementBitwidth == 64; }
isVoid() const184 bool isVoid() const { return Void; }
getNumElements() const185 unsigned getNumElements() const { return Bitwidth / ElementBitwidth; }
getSizeInBits() const186 unsigned getSizeInBits() const { return Bitwidth; }
getElementSizeInBits() const187 unsigned getElementSizeInBits() const { return ElementBitwidth; }
getNumVectors() const188 unsigned getNumVectors() const { return NumVectors; }
189
190 //
191 // Mutator functions
192 //
makeUnsigned()193 void makeUnsigned() { Signed = false; }
makeSigned()194 void makeSigned() { Signed = true; }
makeInteger(unsigned ElemWidth,bool Sign)195 void makeInteger(unsigned ElemWidth, bool Sign) {
196 Float = false;
197 Poly = false;
198 Signed = Sign;
199 Immediate = false;
200 ElementBitwidth = ElemWidth;
201 }
makeImmediate(unsigned ElemWidth)202 void makeImmediate(unsigned ElemWidth) {
203 Float = false;
204 Poly = false;
205 Signed = true;
206 Immediate = true;
207 ElementBitwidth = ElemWidth;
208 }
makeScalar()209 void makeScalar() {
210 Bitwidth = ElementBitwidth;
211 NumVectors = 0;
212 }
makeOneVector()213 void makeOneVector() {
214 assert(isVector());
215 NumVectors = 1;
216 }
doubleLanes()217 void doubleLanes() {
218 assert_with_loc(Bitwidth != 128, "Can't get bigger than 128!");
219 Bitwidth = 128;
220 }
halveLanes()221 void halveLanes() {
222 assert_with_loc(Bitwidth != 64, "Can't get smaller than 64!");
223 Bitwidth = 64;
224 }
225
226 /// Return the C string representation of a type, which is the typename
227 /// defined in stdint.h or arm_neon.h.
228 std::string str() const;
229
230 /// Return the string representation of a type, which is an encoded
231 /// string for passing to the BUILTIN() macro in Builtins.def.
232 std::string builtin_str() const;
233
234 /// Return the value in NeonTypeFlags for this type.
235 unsigned getNeonEnum() const;
236
237 /// Parse a type from a stdint.h or arm_neon.h typedef name,
238 /// for example uint32x2_t or int64_t.
239 static Type fromTypedefName(StringRef Name);
240
241 private:
242 /// Creates the type based on the typespec string in TS.
243 /// Sets "Quad" to true if the "Q" or "H" modifiers were
244 /// seen. This is needed by applyModifier as some modifiers
245 /// only take effect if the type size was changed by "Q" or "H".
246 void applyTypespec(bool &Quad);
247 /// Applies a prototype modifier to the type.
248 void applyModifier(char Mod);
249 };
250
251 //===----------------------------------------------------------------------===//
252 // Variable
253 //===----------------------------------------------------------------------===//
254
255 /// A variable is a simple class that just has a type and a name.
256 class Variable {
257 Type T;
258 std::string N;
259
260 public:
Variable()261 Variable() : T(Type::getVoid()), N("") {}
Variable(Type T,std::string N)262 Variable(Type T, std::string N) : T(std::move(T)), N(std::move(N)) {}
263
getType() const264 Type getType() const { return T; }
getName() const265 std::string getName() const { return "__" + N; }
266 };
267
268 //===----------------------------------------------------------------------===//
269 // Intrinsic
270 //===----------------------------------------------------------------------===//
271
272 /// The main grunt class. This represents an instantiation of an intrinsic with
273 /// a particular typespec and prototype.
274 class Intrinsic {
275 friend class DagEmitter;
276
277 /// The Record this intrinsic was created from.
278 Record *R;
279 /// The unmangled name and prototype.
280 std::string Name, Proto;
281 /// The input and output typespecs. InTS == OutTS except when
282 /// CartesianProductOfTypes is 1 - this is the case for vreinterpret.
283 TypeSpec OutTS, InTS;
284 /// The base class kind. Most intrinsics use ClassS, which has full type
285 /// info for integers (s32/u32). Some use ClassI, which doesn't care about
286 /// signedness (i32), while some (ClassB) have no type at all, only a width
287 /// (32).
288 ClassKind CK;
289 /// The list of DAGs for the body. May be empty, in which case we should
290 /// emit a builtin call.
291 ListInit *Body;
292 /// The architectural #ifdef guard.
293 std::string Guard;
294 /// Set if the Unvailable bit is 1. This means we don't generate a body,
295 /// just an "unavailable" attribute on a declaration.
296 bool IsUnavailable;
297 /// Is this intrinsic safe for big-endian? or does it need its arguments
298 /// reversing?
299 bool BigEndianSafe;
300
301 /// The types of return value [0] and parameters [1..].
302 std::vector<Type> Types;
303 /// The local variables defined.
304 std::map<std::string, Variable> Variables;
305 /// NeededEarly - set if any other intrinsic depends on this intrinsic.
306 bool NeededEarly;
307 /// UseMacro - set if we should implement using a macro or unset for a
308 /// function.
309 bool UseMacro;
310 /// The set of intrinsics that this intrinsic uses/requires.
311 std::set<Intrinsic *> Dependencies;
312 /// The "base type", which is Type('d', OutTS). InBaseType is only
313 /// different if CartesianProductOfTypes = 1 (for vreinterpret).
314 Type BaseType, InBaseType;
315 /// The return variable.
316 Variable RetVar;
317 /// A postfix to apply to every variable. Defaults to "".
318 std::string VariablePostfix;
319
320 NeonEmitter &Emitter;
321 std::stringstream OS;
322
323 public:
Intrinsic(Record * R,StringRef Name,StringRef Proto,TypeSpec OutTS,TypeSpec InTS,ClassKind CK,ListInit * Body,NeonEmitter & Emitter,StringRef Guard,bool IsUnavailable,bool BigEndianSafe)324 Intrinsic(Record *R, StringRef Name, StringRef Proto, TypeSpec OutTS,
325 TypeSpec InTS, ClassKind CK, ListInit *Body, NeonEmitter &Emitter,
326 StringRef Guard, bool IsUnavailable, bool BigEndianSafe)
327 : R(R), Name(Name.str()), Proto(Proto.str()), OutTS(OutTS), InTS(InTS),
328 CK(CK), Body(Body), Guard(Guard.str()), IsUnavailable(IsUnavailable),
329 BigEndianSafe(BigEndianSafe), NeededEarly(false), UseMacro(false),
330 BaseType(OutTS, 'd'), InBaseType(InTS, 'd'), Emitter(Emitter) {
331 // If this builtin takes an immediate argument, we need to #define it rather
332 // than use a standard declaration, so that SemaChecking can range check
333 // the immediate passed by the user.
334 if (Proto.find('i') != std::string::npos)
335 UseMacro = true;
336
337 // Pointer arguments need to use macros to avoid hiding aligned attributes
338 // from the pointer type.
339 if (Proto.find('p') != std::string::npos ||
340 Proto.find('c') != std::string::npos)
341 UseMacro = true;
342
343 // It is not permitted to pass or return an __fp16 by value, so intrinsics
344 // taking a scalar float16_t must be implemented as macros.
345 if (OutTS.find('h') != std::string::npos &&
346 Proto.find('s') != std::string::npos)
347 UseMacro = true;
348
349 // Modify the TypeSpec per-argument to get a concrete Type, and create
350 // known variables for each.
351 // Types[0] is the return value.
352 Types.emplace_back(OutTS, Proto[0]);
353 for (unsigned I = 1; I < Proto.size(); ++I)
354 Types.emplace_back(InTS, Proto[I]);
355 }
356
357 /// Get the Record that this intrinsic is based off.
getRecord() const358 Record *getRecord() const { return R; }
359 /// Get the set of Intrinsics that this intrinsic calls.
360 /// this is the set of immediate dependencies, NOT the
361 /// transitive closure.
getDependencies() const362 const std::set<Intrinsic *> &getDependencies() const { return Dependencies; }
363 /// Get the architectural guard string (#ifdef).
getGuard() const364 std::string getGuard() const { return Guard; }
365 /// Get the non-mangled name.
getName() const366 std::string getName() const { return Name; }
367
368 /// Return true if the intrinsic takes an immediate operand.
hasImmediate() const369 bool hasImmediate() const {
370 return Proto.find('i') != std::string::npos;
371 }
372 /// Return the parameter index of the immediate operand.
getImmediateIdx() const373 unsigned getImmediateIdx() const {
374 assert(hasImmediate());
375 unsigned Idx = Proto.find('i');
376 assert(Idx > 0 && "Can't return an immediate!");
377 return Idx - 1;
378 }
379
380 /// Return true if the intrinsic takes an splat operand.
hasSplat() const381 bool hasSplat() const { return Proto.find('a') != std::string::npos; }
382 /// Return the parameter index of the splat operand.
getSplatIdx() const383 unsigned getSplatIdx() const {
384 assert(hasSplat());
385 unsigned Idx = Proto.find('a');
386 assert(Idx > 0 && "Can't return a splat!");
387 return Idx - 1;
388 }
389
getNumParams() const390 unsigned getNumParams() const { return Proto.size() - 1; }
getReturnType() const391 Type getReturnType() const { return Types[0]; }
getParamType(unsigned I) const392 Type getParamType(unsigned I) const { return Types[I + 1]; }
getBaseType() const393 Type getBaseType() const { return BaseType; }
394 /// Return the raw prototype string.
getProto() const395 std::string getProto() const { return Proto; }
396
397 /// Return true if the prototype has a scalar argument.
398 /// This does not return true for the "splat" code ('a').
399 bool protoHasScalar() const;
400
401 /// Return the index that parameter PIndex will sit at
402 /// in a generated function call. This is often just PIndex,
403 /// but may not be as things such as multiple-vector operands
404 /// and sret parameters need to be taken into accont.
getGeneratedParamIdx(unsigned PIndex)405 unsigned getGeneratedParamIdx(unsigned PIndex) {
406 unsigned Idx = 0;
407 if (getReturnType().getNumVectors() > 1)
408 // Multiple vectors are passed as sret.
409 ++Idx;
410
411 for (unsigned I = 0; I < PIndex; ++I)
412 Idx += std::max(1U, getParamType(I).getNumVectors());
413
414 return Idx;
415 }
416
hasBody() const417 bool hasBody() const { return Body && Body->getValues().size() > 0; }
418
setNeededEarly()419 void setNeededEarly() { NeededEarly = true; }
420
operator <(const Intrinsic & Other) const421 bool operator<(const Intrinsic &Other) const {
422 // Sort lexicographically on a two-tuple (Guard, Name)
423 if (Guard != Other.Guard)
424 return Guard < Other.Guard;
425 return Name < Other.Name;
426 }
427
getClassKind(bool UseClassBIfScalar=false)428 ClassKind getClassKind(bool UseClassBIfScalar = false) {
429 if (UseClassBIfScalar && !protoHasScalar())
430 return ClassB;
431 return CK;
432 }
433
434 /// Return the name, mangled with type information.
435 /// If ForceClassS is true, use ClassS (u32/s32) instead
436 /// of the intrinsic's own type class.
437 std::string getMangledName(bool ForceClassS = false) const;
438 /// Return the type code for a builtin function call.
439 std::string getInstTypeCode(Type T, ClassKind CK) const;
440 /// Return the type string for a BUILTIN() macro in Builtins.def.
441 std::string getBuiltinTypeStr();
442
443 /// Generate the intrinsic, returning code.
444 std::string generate();
445 /// Perform type checking and populate the dependency graph, but
446 /// don't generate code yet.
447 void indexBody();
448
449 private:
450 std::string mangleName(std::string Name, ClassKind CK) const;
451
452 void initVariables();
453 std::string replaceParamsIn(std::string S);
454
455 void emitBodyAsBuiltinCall();
456
457 void generateImpl(bool ReverseArguments,
458 StringRef NamePrefix, StringRef CallPrefix);
459 void emitReturn();
460 void emitBody(StringRef CallPrefix);
461 void emitShadowedArgs();
462 void emitArgumentReversal();
463 void emitReturnReversal();
464 void emitReverseVariable(Variable &Dest, Variable &Src);
465 void emitNewLine();
466 void emitClosingBrace();
467 void emitOpeningBrace();
468 void emitPrototype(StringRef NamePrefix);
469
470 class DagEmitter {
471 Intrinsic &Intr;
472 StringRef CallPrefix;
473
474 public:
DagEmitter(Intrinsic & Intr,StringRef CallPrefix)475 DagEmitter(Intrinsic &Intr, StringRef CallPrefix) :
476 Intr(Intr), CallPrefix(CallPrefix) {
477 }
478 std::pair<Type, std::string> emitDagArg(Init *Arg, std::string ArgName);
479 std::pair<Type, std::string> emitDagSaveTemp(DagInit *DI);
480 std::pair<Type, std::string> emitDagSplat(DagInit *DI);
481 std::pair<Type, std::string> emitDagDup(DagInit *DI);
482 std::pair<Type, std::string> emitDagShuffle(DagInit *DI);
483 std::pair<Type, std::string> emitDagCast(DagInit *DI, bool IsBitCast);
484 std::pair<Type, std::string> emitDagCall(DagInit *DI);
485 std::pair<Type, std::string> emitDagNameReplace(DagInit *DI);
486 std::pair<Type, std::string> emitDagLiteral(DagInit *DI);
487 std::pair<Type, std::string> emitDagOp(DagInit *DI);
488 std::pair<Type, std::string> emitDag(DagInit *DI);
489 };
490
491 };
492
493 //===----------------------------------------------------------------------===//
494 // NeonEmitter
495 //===----------------------------------------------------------------------===//
496
497 class NeonEmitter {
498 RecordKeeper &Records;
499 DenseMap<Record *, ClassKind> ClassMap;
500 std::map<std::string, std::deque<Intrinsic>> IntrinsicMap;
501 unsigned UniqueNumber;
502
503 void createIntrinsic(Record *R, SmallVectorImpl<Intrinsic *> &Out);
504 void genBuiltinsDef(raw_ostream &OS, SmallVectorImpl<Intrinsic *> &Defs);
505 void genOverloadTypeCheckCode(raw_ostream &OS,
506 SmallVectorImpl<Intrinsic *> &Defs);
507 void genIntrinsicRangeCheckCode(raw_ostream &OS,
508 SmallVectorImpl<Intrinsic *> &Defs);
509
510 public:
511 /// Called by Intrinsic - this attempts to get an intrinsic that takes
512 /// the given types as arguments.
513 Intrinsic &getIntrinsic(StringRef Name, ArrayRef<Type> Types);
514
515 /// Called by Intrinsic - returns a globally-unique number.
getUniqueNumber()516 unsigned getUniqueNumber() { return UniqueNumber++; }
517
NeonEmitter(RecordKeeper & R)518 NeonEmitter(RecordKeeper &R) : Records(R), UniqueNumber(0) {
519 Record *SI = R.getClass("SInst");
520 Record *II = R.getClass("IInst");
521 Record *WI = R.getClass("WInst");
522 Record *SOpI = R.getClass("SOpInst");
523 Record *IOpI = R.getClass("IOpInst");
524 Record *WOpI = R.getClass("WOpInst");
525 Record *LOpI = R.getClass("LOpInst");
526 Record *NoTestOpI = R.getClass("NoTestOpInst");
527
528 ClassMap[SI] = ClassS;
529 ClassMap[II] = ClassI;
530 ClassMap[WI] = ClassW;
531 ClassMap[SOpI] = ClassS;
532 ClassMap[IOpI] = ClassI;
533 ClassMap[WOpI] = ClassW;
534 ClassMap[LOpI] = ClassL;
535 ClassMap[NoTestOpI] = ClassNoTest;
536 }
537
538 // run - Emit arm_neon.h.inc
539 void run(raw_ostream &o);
540
541 // runHeader - Emit all the __builtin prototypes used in arm_neon.h
542 void runHeader(raw_ostream &o);
543
544 // runTests - Emit tests for all the Neon intrinsics.
545 void runTests(raw_ostream &o);
546 };
547
548 } // end anonymous namespace
549
550 //===----------------------------------------------------------------------===//
551 // Type implementation
552 //===----------------------------------------------------------------------===//
553
str() const554 std::string Type::str() const {
555 if (Void)
556 return "void";
557 std::string S;
558
559 if (!Signed && isInteger())
560 S += "u";
561
562 if (Poly)
563 S += "poly";
564 else if (Float)
565 S += "float";
566 else
567 S += "int";
568
569 S += utostr(ElementBitwidth);
570 if (isVector())
571 S += "x" + utostr(getNumElements());
572 if (NumVectors > 1)
573 S += "x" + utostr(NumVectors);
574 S += "_t";
575
576 if (Constant)
577 S += " const";
578 if (Pointer)
579 S += " *";
580
581 return S;
582 }
583
builtin_str() const584 std::string Type::builtin_str() const {
585 std::string S;
586 if (isVoid())
587 return "v";
588
589 if (Pointer)
590 // All pointers are void pointers.
591 S += "v";
592 else if (isInteger())
593 switch (ElementBitwidth) {
594 case 8: S += "c"; break;
595 case 16: S += "s"; break;
596 case 32: S += "i"; break;
597 case 64: S += "Wi"; break;
598 case 128: S += "LLLi"; break;
599 default: llvm_unreachable("Unhandled case!");
600 }
601 else
602 switch (ElementBitwidth) {
603 case 16: S += "h"; break;
604 case 32: S += "f"; break;
605 case 64: S += "d"; break;
606 default: llvm_unreachable("Unhandled case!");
607 }
608
609 if (isChar() && !Pointer)
610 // Make chars explicitly signed.
611 S = "S" + S;
612 else if (isInteger() && !Pointer && !Signed)
613 S = "U" + S;
614
615 // Constant indices are "int", but have the "constant expression" modifier.
616 if (isImmediate()) {
617 assert(isInteger() && isSigned());
618 S = "I" + S;
619 }
620
621 if (isScalar()) {
622 if (Constant) S += "C";
623 if (Pointer) S += "*";
624 return S;
625 }
626
627 std::string Ret;
628 for (unsigned I = 0; I < NumVectors; ++I)
629 Ret += "V" + utostr(getNumElements()) + S;
630
631 return Ret;
632 }
633
getNeonEnum() const634 unsigned Type::getNeonEnum() const {
635 unsigned Addend;
636 switch (ElementBitwidth) {
637 case 8: Addend = 0; break;
638 case 16: Addend = 1; break;
639 case 32: Addend = 2; break;
640 case 64: Addend = 3; break;
641 case 128: Addend = 4; break;
642 default: llvm_unreachable("Unhandled element bitwidth!");
643 }
644
645 unsigned Base = (unsigned)NeonTypeFlags::Int8 + Addend;
646 if (Poly) {
647 // Adjustment needed because Poly32 doesn't exist.
648 if (Addend >= 2)
649 --Addend;
650 Base = (unsigned)NeonTypeFlags::Poly8 + Addend;
651 }
652 if (Float) {
653 assert(Addend != 0 && "Float8 doesn't exist!");
654 Base = (unsigned)NeonTypeFlags::Float16 + (Addend - 1);
655 }
656
657 if (Bitwidth == 128)
658 Base |= (unsigned)NeonTypeFlags::QuadFlag;
659 if (isInteger() && !Signed)
660 Base |= (unsigned)NeonTypeFlags::UnsignedFlag;
661
662 return Base;
663 }
664
fromTypedefName(StringRef Name)665 Type Type::fromTypedefName(StringRef Name) {
666 Type T;
667 T.Void = false;
668 T.Float = false;
669 T.Poly = false;
670
671 if (Name.front() == 'u') {
672 T.Signed = false;
673 Name = Name.drop_front();
674 } else {
675 T.Signed = true;
676 }
677
678 if (Name.startswith("float")) {
679 T.Float = true;
680 Name = Name.drop_front(5);
681 } else if (Name.startswith("poly")) {
682 T.Poly = true;
683 Name = Name.drop_front(4);
684 } else {
685 assert(Name.startswith("int"));
686 Name = Name.drop_front(3);
687 }
688
689 unsigned I = 0;
690 for (I = 0; I < Name.size(); ++I) {
691 if (!isdigit(Name[I]))
692 break;
693 }
694 Name.substr(0, I).getAsInteger(10, T.ElementBitwidth);
695 Name = Name.drop_front(I);
696
697 T.Bitwidth = T.ElementBitwidth;
698 T.NumVectors = 1;
699
700 if (Name.front() == 'x') {
701 Name = Name.drop_front();
702 unsigned I = 0;
703 for (I = 0; I < Name.size(); ++I) {
704 if (!isdigit(Name[I]))
705 break;
706 }
707 unsigned NumLanes;
708 Name.substr(0, I).getAsInteger(10, NumLanes);
709 Name = Name.drop_front(I);
710 T.Bitwidth = T.ElementBitwidth * NumLanes;
711 } else {
712 // Was scalar.
713 T.NumVectors = 0;
714 }
715 if (Name.front() == 'x') {
716 Name = Name.drop_front();
717 unsigned I = 0;
718 for (I = 0; I < Name.size(); ++I) {
719 if (!isdigit(Name[I]))
720 break;
721 }
722 Name.substr(0, I).getAsInteger(10, T.NumVectors);
723 Name = Name.drop_front(I);
724 }
725
726 assert(Name.startswith("_t") && "Malformed typedef!");
727 return T;
728 }
729
applyTypespec(bool & Quad)730 void Type::applyTypespec(bool &Quad) {
731 std::string S = TS;
732 ScalarForMangling = false;
733 Void = false;
734 Poly = Float = false;
735 ElementBitwidth = ~0U;
736 Signed = true;
737 NumVectors = 1;
738
739 for (char I : S) {
740 switch (I) {
741 case 'S':
742 ScalarForMangling = true;
743 break;
744 case 'H':
745 NoManglingQ = true;
746 Quad = true;
747 break;
748 case 'Q':
749 Quad = true;
750 break;
751 case 'P':
752 Poly = true;
753 break;
754 case 'U':
755 Signed = false;
756 break;
757 case 'c':
758 ElementBitwidth = 8;
759 break;
760 case 'h':
761 Float = true;
762 // Fall through
763 case 's':
764 ElementBitwidth = 16;
765 break;
766 case 'f':
767 Float = true;
768 // Fall through
769 case 'i':
770 ElementBitwidth = 32;
771 break;
772 case 'd':
773 Float = true;
774 // Fall through
775 case 'l':
776 ElementBitwidth = 64;
777 break;
778 case 'k':
779 ElementBitwidth = 128;
780 // Poly doesn't have a 128x1 type.
781 if (Poly)
782 NumVectors = 0;
783 break;
784 default:
785 llvm_unreachable("Unhandled type code!");
786 }
787 }
788 assert(ElementBitwidth != ~0U && "Bad element bitwidth!");
789
790 Bitwidth = Quad ? 128 : 64;
791 }
792
applyModifier(char Mod)793 void Type::applyModifier(char Mod) {
794 bool AppliedQuad = false;
795 applyTypespec(AppliedQuad);
796
797 switch (Mod) {
798 case 'v':
799 Void = true;
800 break;
801 case 't':
802 if (Poly) {
803 Poly = false;
804 Signed = false;
805 }
806 break;
807 case 'b':
808 Signed = false;
809 Float = false;
810 Poly = false;
811 NumVectors = 0;
812 Bitwidth = ElementBitwidth;
813 break;
814 case '$':
815 Signed = true;
816 Float = false;
817 Poly = false;
818 NumVectors = 0;
819 Bitwidth = ElementBitwidth;
820 break;
821 case 'u':
822 Signed = false;
823 Poly = false;
824 Float = false;
825 break;
826 case 'x':
827 Signed = true;
828 assert(!Poly && "'u' can't be used with poly types!");
829 Float = false;
830 break;
831 case 'o':
832 Bitwidth = ElementBitwidth = 64;
833 NumVectors = 0;
834 Float = true;
835 break;
836 case 'y':
837 Bitwidth = ElementBitwidth = 32;
838 NumVectors = 0;
839 Float = true;
840 break;
841 case 'f':
842 Float = true;
843 ElementBitwidth = 32;
844 break;
845 case 'F':
846 Float = true;
847 ElementBitwidth = 64;
848 break;
849 case 'g':
850 if (AppliedQuad)
851 Bitwidth /= 2;
852 break;
853 case 'j':
854 if (!AppliedQuad)
855 Bitwidth *= 2;
856 break;
857 case 'w':
858 ElementBitwidth *= 2;
859 Bitwidth *= 2;
860 break;
861 case 'n':
862 ElementBitwidth *= 2;
863 break;
864 case 'i':
865 Float = false;
866 Poly = false;
867 ElementBitwidth = Bitwidth = 32;
868 NumVectors = 0;
869 Signed = true;
870 Immediate = true;
871 break;
872 case 'l':
873 Float = false;
874 Poly = false;
875 ElementBitwidth = Bitwidth = 64;
876 NumVectors = 0;
877 Signed = false;
878 Immediate = true;
879 break;
880 case 'z':
881 ElementBitwidth /= 2;
882 Bitwidth = ElementBitwidth;
883 NumVectors = 0;
884 break;
885 case 'r':
886 ElementBitwidth *= 2;
887 Bitwidth = ElementBitwidth;
888 NumVectors = 0;
889 break;
890 case 's':
891 case 'a':
892 Bitwidth = ElementBitwidth;
893 NumVectors = 0;
894 break;
895 case 'k':
896 Bitwidth *= 2;
897 break;
898 case 'c':
899 Constant = true;
900 // Fall through
901 case 'p':
902 Pointer = true;
903 Bitwidth = ElementBitwidth;
904 NumVectors = 0;
905 break;
906 case 'h':
907 ElementBitwidth /= 2;
908 break;
909 case 'q':
910 ElementBitwidth /= 2;
911 Bitwidth *= 2;
912 break;
913 case 'e':
914 ElementBitwidth /= 2;
915 Signed = false;
916 break;
917 case 'm':
918 ElementBitwidth /= 2;
919 Bitwidth /= 2;
920 break;
921 case 'd':
922 break;
923 case '2':
924 NumVectors = 2;
925 break;
926 case '3':
927 NumVectors = 3;
928 break;
929 case '4':
930 NumVectors = 4;
931 break;
932 case 'B':
933 NumVectors = 2;
934 if (!AppliedQuad)
935 Bitwidth *= 2;
936 break;
937 case 'C':
938 NumVectors = 3;
939 if (!AppliedQuad)
940 Bitwidth *= 2;
941 break;
942 case 'D':
943 NumVectors = 4;
944 if (!AppliedQuad)
945 Bitwidth *= 2;
946 break;
947 default:
948 llvm_unreachable("Unhandled character!");
949 }
950 }
951
952 //===----------------------------------------------------------------------===//
953 // Intrinsic implementation
954 //===----------------------------------------------------------------------===//
955
getInstTypeCode(Type T,ClassKind CK) const956 std::string Intrinsic::getInstTypeCode(Type T, ClassKind CK) const {
957 char typeCode = '\0';
958 bool printNumber = true;
959
960 if (CK == ClassB)
961 return "";
962
963 if (T.isPoly())
964 typeCode = 'p';
965 else if (T.isInteger())
966 typeCode = T.isSigned() ? 's' : 'u';
967 else
968 typeCode = 'f';
969
970 if (CK == ClassI) {
971 switch (typeCode) {
972 default:
973 break;
974 case 's':
975 case 'u':
976 case 'p':
977 typeCode = 'i';
978 break;
979 }
980 }
981 if (CK == ClassB) {
982 typeCode = '\0';
983 }
984
985 std::string S;
986 if (typeCode != '\0')
987 S.push_back(typeCode);
988 if (printNumber)
989 S += utostr(T.getElementSizeInBits());
990
991 return S;
992 }
993
isFloatingPointProtoModifier(char Mod)994 static bool isFloatingPointProtoModifier(char Mod) {
995 return Mod == 'F' || Mod == 'f';
996 }
997
getBuiltinTypeStr()998 std::string Intrinsic::getBuiltinTypeStr() {
999 ClassKind LocalCK = getClassKind(true);
1000 std::string S;
1001
1002 Type RetT = getReturnType();
1003 if ((LocalCK == ClassI || LocalCK == ClassW) && RetT.isScalar() &&
1004 !RetT.isFloating())
1005 RetT.makeInteger(RetT.getElementSizeInBits(), false);
1006
1007 // Since the return value must be one type, return a vector type of the
1008 // appropriate width which we will bitcast. An exception is made for
1009 // returning structs of 2, 3, or 4 vectors which are returned in a sret-like
1010 // fashion, storing them to a pointer arg.
1011 if (RetT.getNumVectors() > 1) {
1012 S += "vv*"; // void result with void* first argument
1013 } else {
1014 if (RetT.isPoly())
1015 RetT.makeInteger(RetT.getElementSizeInBits(), false);
1016 if (!RetT.isScalar() && !RetT.isSigned())
1017 RetT.makeSigned();
1018
1019 bool ForcedVectorFloatingType = isFloatingPointProtoModifier(Proto[0]);
1020 if (LocalCK == ClassB && !RetT.isScalar() && !ForcedVectorFloatingType)
1021 // Cast to vector of 8-bit elements.
1022 RetT.makeInteger(8, true);
1023
1024 S += RetT.builtin_str();
1025 }
1026
1027 for (unsigned I = 0; I < getNumParams(); ++I) {
1028 Type T = getParamType(I);
1029 if (T.isPoly())
1030 T.makeInteger(T.getElementSizeInBits(), false);
1031
1032 bool ForcedFloatingType = isFloatingPointProtoModifier(Proto[I + 1]);
1033 if (LocalCK == ClassB && !T.isScalar() && !ForcedFloatingType)
1034 T.makeInteger(8, true);
1035 // Halves always get converted to 8-bit elements.
1036 if (T.isHalf() && T.isVector() && !T.isScalarForMangling())
1037 T.makeInteger(8, true);
1038
1039 if (LocalCK == ClassI)
1040 T.makeSigned();
1041
1042 if (hasImmediate() && getImmediateIdx() == I)
1043 T.makeImmediate(32);
1044
1045 S += T.builtin_str();
1046 }
1047
1048 // Extra constant integer to hold type class enum for this function, e.g. s8
1049 if (LocalCK == ClassB)
1050 S += "i";
1051
1052 return S;
1053 }
1054
getMangledName(bool ForceClassS) const1055 std::string Intrinsic::getMangledName(bool ForceClassS) const {
1056 // Check if the prototype has a scalar operand with the type of the vector
1057 // elements. If not, bitcasting the args will take care of arg checking.
1058 // The actual signedness etc. will be taken care of with special enums.
1059 ClassKind LocalCK = CK;
1060 if (!protoHasScalar())
1061 LocalCK = ClassB;
1062
1063 return mangleName(Name, ForceClassS ? ClassS : LocalCK);
1064 }
1065
mangleName(std::string Name,ClassKind LocalCK) const1066 std::string Intrinsic::mangleName(std::string Name, ClassKind LocalCK) const {
1067 std::string typeCode = getInstTypeCode(BaseType, LocalCK);
1068 std::string S = Name;
1069
1070 if (Name == "vcvt_f16_f32" || Name == "vcvt_f32_f16" ||
1071 Name == "vcvt_f32_f64" || Name == "vcvt_f64_f32")
1072 return Name;
1073
1074 if (typeCode.size() > 0) {
1075 // If the name ends with _xN (N = 2,3,4), insert the typeCode before _xN.
1076 if (Name.size() >= 3 && isdigit(Name.back()) &&
1077 Name[Name.length() - 2] == 'x' && Name[Name.length() - 3] == '_')
1078 S.insert(S.length() - 3, "_" + typeCode);
1079 else
1080 S += "_" + typeCode;
1081 }
1082
1083 if (BaseType != InBaseType) {
1084 // A reinterpret - out the input base type at the end.
1085 S += "_" + getInstTypeCode(InBaseType, LocalCK);
1086 }
1087
1088 if (LocalCK == ClassB)
1089 S += "_v";
1090
1091 // Insert a 'q' before the first '_' character so that it ends up before
1092 // _lane or _n on vector-scalar operations.
1093 if (BaseType.getSizeInBits() == 128 && !BaseType.noManglingQ()) {
1094 size_t Pos = S.find('_');
1095 S.insert(Pos, "q");
1096 }
1097
1098 char Suffix = '\0';
1099 if (BaseType.isScalarForMangling()) {
1100 switch (BaseType.getElementSizeInBits()) {
1101 case 8: Suffix = 'b'; break;
1102 case 16: Suffix = 'h'; break;
1103 case 32: Suffix = 's'; break;
1104 case 64: Suffix = 'd'; break;
1105 default: llvm_unreachable("Bad suffix!");
1106 }
1107 }
1108 if (Suffix != '\0') {
1109 size_t Pos = S.find('_');
1110 S.insert(Pos, &Suffix, 1);
1111 }
1112
1113 return S;
1114 }
1115
replaceParamsIn(std::string S)1116 std::string Intrinsic::replaceParamsIn(std::string S) {
1117 while (S.find('$') != std::string::npos) {
1118 size_t Pos = S.find('$');
1119 size_t End = Pos + 1;
1120 while (isalpha(S[End]))
1121 ++End;
1122
1123 std::string VarName = S.substr(Pos + 1, End - Pos - 1);
1124 assert_with_loc(Variables.find(VarName) != Variables.end(),
1125 "Variable not defined!");
1126 S.replace(Pos, End - Pos, Variables.find(VarName)->second.getName());
1127 }
1128
1129 return S;
1130 }
1131
initVariables()1132 void Intrinsic::initVariables() {
1133 Variables.clear();
1134
1135 // Modify the TypeSpec per-argument to get a concrete Type, and create
1136 // known variables for each.
1137 for (unsigned I = 1; I < Proto.size(); ++I) {
1138 char NameC = '0' + (I - 1);
1139 std::string Name = "p";
1140 Name.push_back(NameC);
1141
1142 Variables[Name] = Variable(Types[I], Name + VariablePostfix);
1143 }
1144 RetVar = Variable(Types[0], "ret" + VariablePostfix);
1145 }
1146
emitPrototype(StringRef NamePrefix)1147 void Intrinsic::emitPrototype(StringRef NamePrefix) {
1148 if (UseMacro)
1149 OS << "#define ";
1150 else
1151 OS << "__ai " << Types[0].str() << " ";
1152
1153 OS << NamePrefix.str() << mangleName(Name, ClassS) << "(";
1154
1155 for (unsigned I = 0; I < getNumParams(); ++I) {
1156 if (I != 0)
1157 OS << ", ";
1158
1159 char NameC = '0' + I;
1160 std::string Name = "p";
1161 Name.push_back(NameC);
1162 assert(Variables.find(Name) != Variables.end());
1163 Variable &V = Variables[Name];
1164
1165 if (!UseMacro)
1166 OS << V.getType().str() << " ";
1167 OS << V.getName();
1168 }
1169
1170 OS << ")";
1171 }
1172
emitOpeningBrace()1173 void Intrinsic::emitOpeningBrace() {
1174 if (UseMacro)
1175 OS << " __extension__ ({";
1176 else
1177 OS << " {";
1178 emitNewLine();
1179 }
1180
emitClosingBrace()1181 void Intrinsic::emitClosingBrace() {
1182 if (UseMacro)
1183 OS << "})";
1184 else
1185 OS << "}";
1186 }
1187
emitNewLine()1188 void Intrinsic::emitNewLine() {
1189 if (UseMacro)
1190 OS << " \\\n";
1191 else
1192 OS << "\n";
1193 }
1194
emitReverseVariable(Variable & Dest,Variable & Src)1195 void Intrinsic::emitReverseVariable(Variable &Dest, Variable &Src) {
1196 if (Dest.getType().getNumVectors() > 1) {
1197 emitNewLine();
1198
1199 for (unsigned K = 0; K < Dest.getType().getNumVectors(); ++K) {
1200 OS << " " << Dest.getName() << ".val[" << K << "] = "
1201 << "__builtin_shufflevector("
1202 << Src.getName() << ".val[" << K << "], "
1203 << Src.getName() << ".val[" << K << "]";
1204 for (int J = Dest.getType().getNumElements() - 1; J >= 0; --J)
1205 OS << ", " << J;
1206 OS << ");";
1207 emitNewLine();
1208 }
1209 } else {
1210 OS << " " << Dest.getName()
1211 << " = __builtin_shufflevector(" << Src.getName() << ", " << Src.getName();
1212 for (int J = Dest.getType().getNumElements() - 1; J >= 0; --J)
1213 OS << ", " << J;
1214 OS << ");";
1215 emitNewLine();
1216 }
1217 }
1218
emitArgumentReversal()1219 void Intrinsic::emitArgumentReversal() {
1220 if (BigEndianSafe)
1221 return;
1222
1223 // Reverse all vector arguments.
1224 for (unsigned I = 0; I < getNumParams(); ++I) {
1225 std::string Name = "p" + utostr(I);
1226 std::string NewName = "rev" + utostr(I);
1227
1228 Variable &V = Variables[Name];
1229 Variable NewV(V.getType(), NewName + VariablePostfix);
1230
1231 if (!NewV.getType().isVector() || NewV.getType().getNumElements() == 1)
1232 continue;
1233
1234 OS << " " << NewV.getType().str() << " " << NewV.getName() << ";";
1235 emitReverseVariable(NewV, V);
1236 V = NewV;
1237 }
1238 }
1239
emitReturnReversal()1240 void Intrinsic::emitReturnReversal() {
1241 if (BigEndianSafe)
1242 return;
1243 if (!getReturnType().isVector() || getReturnType().isVoid() ||
1244 getReturnType().getNumElements() == 1)
1245 return;
1246 emitReverseVariable(RetVar, RetVar);
1247 }
1248
1249
emitShadowedArgs()1250 void Intrinsic::emitShadowedArgs() {
1251 // Macro arguments are not type-checked like inline function arguments,
1252 // so assign them to local temporaries to get the right type checking.
1253 if (!UseMacro)
1254 return;
1255
1256 for (unsigned I = 0; I < getNumParams(); ++I) {
1257 // Do not create a temporary for an immediate argument.
1258 // That would defeat the whole point of using a macro!
1259 if (hasImmediate() && Proto[I+1] == 'i')
1260 continue;
1261 // Do not create a temporary for pointer arguments. The input
1262 // pointer may have an alignment hint.
1263 if (getParamType(I).isPointer())
1264 continue;
1265
1266 std::string Name = "p" + utostr(I);
1267
1268 assert(Variables.find(Name) != Variables.end());
1269 Variable &V = Variables[Name];
1270
1271 std::string NewName = "s" + utostr(I);
1272 Variable V2(V.getType(), NewName + VariablePostfix);
1273
1274 OS << " " << V2.getType().str() << " " << V2.getName() << " = "
1275 << V.getName() << ";";
1276 emitNewLine();
1277
1278 V = V2;
1279 }
1280 }
1281
1282 // We don't check 'a' in this function, because for builtin function the
1283 // argument matching to 'a' uses a vector type splatted from a scalar type.
protoHasScalar() const1284 bool Intrinsic::protoHasScalar() const {
1285 return (Proto.find('s') != std::string::npos ||
1286 Proto.find('z') != std::string::npos ||
1287 Proto.find('r') != std::string::npos ||
1288 Proto.find('b') != std::string::npos ||
1289 Proto.find('$') != std::string::npos ||
1290 Proto.find('y') != std::string::npos ||
1291 Proto.find('o') != std::string::npos);
1292 }
1293
emitBodyAsBuiltinCall()1294 void Intrinsic::emitBodyAsBuiltinCall() {
1295 std::string S;
1296
1297 // If this builtin returns a struct 2, 3, or 4 vectors, pass it as an implicit
1298 // sret-like argument.
1299 bool SRet = getReturnType().getNumVectors() >= 2;
1300
1301 StringRef N = Name;
1302 if (hasSplat()) {
1303 // Call the non-splat builtin: chop off the "_n" suffix from the name.
1304 assert(N.endswith("_n"));
1305 N = N.drop_back(2);
1306 }
1307
1308 ClassKind LocalCK = CK;
1309 if (!protoHasScalar())
1310 LocalCK = ClassB;
1311
1312 if (!getReturnType().isVoid() && !SRet)
1313 S += "(" + RetVar.getType().str() + ") ";
1314
1315 S += "__builtin_neon_" + mangleName(N, LocalCK) + "(";
1316
1317 if (SRet)
1318 S += "&" + RetVar.getName() + ", ";
1319
1320 for (unsigned I = 0; I < getNumParams(); ++I) {
1321 Variable &V = Variables["p" + utostr(I)];
1322 Type T = V.getType();
1323
1324 // Handle multiple-vector values specially, emitting each subvector as an
1325 // argument to the builtin.
1326 if (T.getNumVectors() > 1) {
1327 // Check if an explicit cast is needed.
1328 std::string Cast;
1329 if (T.isChar() || T.isPoly() || !T.isSigned()) {
1330 Type T2 = T;
1331 T2.makeOneVector();
1332 T2.makeInteger(8, /*Signed=*/true);
1333 Cast = "(" + T2.str() + ")";
1334 }
1335
1336 for (unsigned J = 0; J < T.getNumVectors(); ++J)
1337 S += Cast + V.getName() + ".val[" + utostr(J) + "], ";
1338 continue;
1339 }
1340
1341 std::string Arg;
1342 Type CastToType = T;
1343 if (hasSplat() && I == getSplatIdx()) {
1344 Arg = "(" + BaseType.str() + ") {";
1345 for (unsigned J = 0; J < BaseType.getNumElements(); ++J) {
1346 if (J != 0)
1347 Arg += ", ";
1348 Arg += V.getName();
1349 }
1350 Arg += "}";
1351
1352 CastToType = BaseType;
1353 } else {
1354 Arg = V.getName();
1355 }
1356
1357 // Check if an explicit cast is needed.
1358 if (CastToType.isVector()) {
1359 CastToType.makeInteger(8, true);
1360 Arg = "(" + CastToType.str() + ")" + Arg;
1361 }
1362
1363 S += Arg + ", ";
1364 }
1365
1366 // Extra constant integer to hold type class enum for this function, e.g. s8
1367 if (getClassKind(true) == ClassB) {
1368 Type ThisTy = getReturnType();
1369 if (Proto[0] == 'v' || isFloatingPointProtoModifier(Proto[0]))
1370 ThisTy = getParamType(0);
1371 if (ThisTy.isPointer())
1372 ThisTy = getParamType(1);
1373
1374 S += utostr(ThisTy.getNeonEnum());
1375 } else {
1376 // Remove extraneous ", ".
1377 S.pop_back();
1378 S.pop_back();
1379 }
1380 S += ");";
1381
1382 std::string RetExpr;
1383 if (!SRet && !RetVar.getType().isVoid())
1384 RetExpr = RetVar.getName() + " = ";
1385
1386 OS << " " << RetExpr << S;
1387 emitNewLine();
1388 }
1389
emitBody(StringRef CallPrefix)1390 void Intrinsic::emitBody(StringRef CallPrefix) {
1391 std::vector<std::string> Lines;
1392
1393 assert(RetVar.getType() == Types[0]);
1394 // Create a return variable, if we're not void.
1395 if (!RetVar.getType().isVoid()) {
1396 OS << " " << RetVar.getType().str() << " " << RetVar.getName() << ";";
1397 emitNewLine();
1398 }
1399
1400 if (!Body || Body->getValues().size() == 0) {
1401 // Nothing specific to output - must output a builtin.
1402 emitBodyAsBuiltinCall();
1403 return;
1404 }
1405
1406 // We have a list of "things to output". The last should be returned.
1407 for (auto *I : Body->getValues()) {
1408 if (StringInit *SI = dyn_cast<StringInit>(I)) {
1409 Lines.push_back(replaceParamsIn(SI->getAsString()));
1410 } else if (DagInit *DI = dyn_cast<DagInit>(I)) {
1411 DagEmitter DE(*this, CallPrefix);
1412 Lines.push_back(DE.emitDag(DI).second + ";");
1413 }
1414 }
1415
1416 assert(!Lines.empty() && "Empty def?");
1417 if (!RetVar.getType().isVoid())
1418 Lines.back().insert(0, RetVar.getName() + " = ");
1419
1420 for (auto &L : Lines) {
1421 OS << " " << L;
1422 emitNewLine();
1423 }
1424 }
1425
emitReturn()1426 void Intrinsic::emitReturn() {
1427 if (RetVar.getType().isVoid())
1428 return;
1429 if (UseMacro)
1430 OS << " " << RetVar.getName() << ";";
1431 else
1432 OS << " return " << RetVar.getName() << ";";
1433 emitNewLine();
1434 }
1435
emitDag(DagInit * DI)1436 std::pair<Type, std::string> Intrinsic::DagEmitter::emitDag(DagInit *DI) {
1437 // At this point we should only be seeing a def.
1438 DefInit *DefI = cast<DefInit>(DI->getOperator());
1439 std::string Op = DefI->getAsString();
1440
1441 if (Op == "cast" || Op == "bitcast")
1442 return emitDagCast(DI, Op == "bitcast");
1443 if (Op == "shuffle")
1444 return emitDagShuffle(DI);
1445 if (Op == "dup")
1446 return emitDagDup(DI);
1447 if (Op == "splat")
1448 return emitDagSplat(DI);
1449 if (Op == "save_temp")
1450 return emitDagSaveTemp(DI);
1451 if (Op == "op")
1452 return emitDagOp(DI);
1453 if (Op == "call")
1454 return emitDagCall(DI);
1455 if (Op == "name_replace")
1456 return emitDagNameReplace(DI);
1457 if (Op == "literal")
1458 return emitDagLiteral(DI);
1459 assert_with_loc(false, "Unknown operation!");
1460 return std::make_pair(Type::getVoid(), "");
1461 }
1462
emitDagOp(DagInit * DI)1463 std::pair<Type, std::string> Intrinsic::DagEmitter::emitDagOp(DagInit *DI) {
1464 std::string Op = cast<StringInit>(DI->getArg(0))->getAsUnquotedString();
1465 if (DI->getNumArgs() == 2) {
1466 // Unary op.
1467 std::pair<Type, std::string> R =
1468 emitDagArg(DI->getArg(1), DI->getArgName(1));
1469 return std::make_pair(R.first, Op + R.second);
1470 } else {
1471 assert(DI->getNumArgs() == 3 && "Can only handle unary and binary ops!");
1472 std::pair<Type, std::string> R1 =
1473 emitDagArg(DI->getArg(1), DI->getArgName(1));
1474 std::pair<Type, std::string> R2 =
1475 emitDagArg(DI->getArg(2), DI->getArgName(2));
1476 assert_with_loc(R1.first == R2.first, "Argument type mismatch!");
1477 return std::make_pair(R1.first, R1.second + " " + Op + " " + R2.second);
1478 }
1479 }
1480
emitDagCall(DagInit * DI)1481 std::pair<Type, std::string> Intrinsic::DagEmitter::emitDagCall(DagInit *DI) {
1482 std::vector<Type> Types;
1483 std::vector<std::string> Values;
1484 for (unsigned I = 0; I < DI->getNumArgs() - 1; ++I) {
1485 std::pair<Type, std::string> R =
1486 emitDagArg(DI->getArg(I + 1), DI->getArgName(I + 1));
1487 Types.push_back(R.first);
1488 Values.push_back(R.second);
1489 }
1490
1491 // Look up the called intrinsic.
1492 std::string N;
1493 if (StringInit *SI = dyn_cast<StringInit>(DI->getArg(0)))
1494 N = SI->getAsUnquotedString();
1495 else
1496 N = emitDagArg(DI->getArg(0), "").second;
1497 Intrinsic &Callee = Intr.Emitter.getIntrinsic(N, Types);
1498
1499 // Make sure the callee is known as an early def.
1500 Callee.setNeededEarly();
1501 Intr.Dependencies.insert(&Callee);
1502
1503 // Now create the call itself.
1504 std::string S = CallPrefix.str() + Callee.getMangledName(true) + "(";
1505 for (unsigned I = 0; I < DI->getNumArgs() - 1; ++I) {
1506 if (I != 0)
1507 S += ", ";
1508 S += Values[I];
1509 }
1510 S += ")";
1511
1512 return std::make_pair(Callee.getReturnType(), S);
1513 }
1514
emitDagCast(DagInit * DI,bool IsBitCast)1515 std::pair<Type, std::string> Intrinsic::DagEmitter::emitDagCast(DagInit *DI,
1516 bool IsBitCast){
1517 // (cast MOD* VAL) -> cast VAL to type given by MOD.
1518 std::pair<Type, std::string> R = emitDagArg(
1519 DI->getArg(DI->getNumArgs() - 1), DI->getArgName(DI->getNumArgs() - 1));
1520 Type castToType = R.first;
1521 for (unsigned ArgIdx = 0; ArgIdx < DI->getNumArgs() - 1; ++ArgIdx) {
1522
1523 // MOD can take several forms:
1524 // 1. $X - take the type of parameter / variable X.
1525 // 2. The value "R" - take the type of the return type.
1526 // 3. a type string
1527 // 4. The value "U" or "S" to switch the signedness.
1528 // 5. The value "H" or "D" to half or double the bitwidth.
1529 // 6. The value "8" to convert to 8-bit (signed) integer lanes.
1530 if (DI->getArgName(ArgIdx).size()) {
1531 assert_with_loc(Intr.Variables.find(DI->getArgName(ArgIdx)) !=
1532 Intr.Variables.end(),
1533 "Variable not found");
1534 castToType = Intr.Variables[DI->getArgName(ArgIdx)].getType();
1535 } else {
1536 StringInit *SI = dyn_cast<StringInit>(DI->getArg(ArgIdx));
1537 assert_with_loc(SI, "Expected string type or $Name for cast type");
1538
1539 if (SI->getAsUnquotedString() == "R") {
1540 castToType = Intr.getReturnType();
1541 } else if (SI->getAsUnquotedString() == "U") {
1542 castToType.makeUnsigned();
1543 } else if (SI->getAsUnquotedString() == "S") {
1544 castToType.makeSigned();
1545 } else if (SI->getAsUnquotedString() == "H") {
1546 castToType.halveLanes();
1547 } else if (SI->getAsUnquotedString() == "D") {
1548 castToType.doubleLanes();
1549 } else if (SI->getAsUnquotedString() == "8") {
1550 castToType.makeInteger(8, true);
1551 } else {
1552 castToType = Type::fromTypedefName(SI->getAsUnquotedString());
1553 assert_with_loc(!castToType.isVoid(), "Unknown typedef");
1554 }
1555 }
1556 }
1557
1558 std::string S;
1559 if (IsBitCast) {
1560 // Emit a reinterpret cast. The second operand must be an lvalue, so create
1561 // a temporary.
1562 std::string N = "reint";
1563 unsigned I = 0;
1564 while (Intr.Variables.find(N) != Intr.Variables.end())
1565 N = "reint" + utostr(++I);
1566 Intr.Variables[N] = Variable(R.first, N + Intr.VariablePostfix);
1567
1568 Intr.OS << R.first.str() << " " << Intr.Variables[N].getName() << " = "
1569 << R.second << ";";
1570 Intr.emitNewLine();
1571
1572 S = "*(" + castToType.str() + " *) &" + Intr.Variables[N].getName() + "";
1573 } else {
1574 // Emit a normal (static) cast.
1575 S = "(" + castToType.str() + ")(" + R.second + ")";
1576 }
1577
1578 return std::make_pair(castToType, S);
1579 }
1580
emitDagShuffle(DagInit * DI)1581 std::pair<Type, std::string> Intrinsic::DagEmitter::emitDagShuffle(DagInit *DI){
1582 // See the documentation in arm_neon.td for a description of these operators.
1583 class LowHalf : public SetTheory::Operator {
1584 public:
1585 void apply(SetTheory &ST, DagInit *Expr, SetTheory::RecSet &Elts,
1586 ArrayRef<SMLoc> Loc) override {
1587 SetTheory::RecSet Elts2;
1588 ST.evaluate(Expr->arg_begin(), Expr->arg_end(), Elts2, Loc);
1589 Elts.insert(Elts2.begin(), Elts2.begin() + (Elts2.size() / 2));
1590 }
1591 };
1592 class HighHalf : public SetTheory::Operator {
1593 public:
1594 void apply(SetTheory &ST, DagInit *Expr, SetTheory::RecSet &Elts,
1595 ArrayRef<SMLoc> Loc) override {
1596 SetTheory::RecSet Elts2;
1597 ST.evaluate(Expr->arg_begin(), Expr->arg_end(), Elts2, Loc);
1598 Elts.insert(Elts2.begin() + (Elts2.size() / 2), Elts2.end());
1599 }
1600 };
1601 class Rev : public SetTheory::Operator {
1602 unsigned ElementSize;
1603
1604 public:
1605 Rev(unsigned ElementSize) : ElementSize(ElementSize) {}
1606 void apply(SetTheory &ST, DagInit *Expr, SetTheory::RecSet &Elts,
1607 ArrayRef<SMLoc> Loc) override {
1608 SetTheory::RecSet Elts2;
1609 ST.evaluate(Expr->arg_begin() + 1, Expr->arg_end(), Elts2, Loc);
1610
1611 int64_t VectorSize = cast<IntInit>(Expr->getArg(0))->getValue();
1612 VectorSize /= ElementSize;
1613
1614 std::vector<Record *> Revved;
1615 for (unsigned VI = 0; VI < Elts2.size(); VI += VectorSize) {
1616 for (int LI = VectorSize - 1; LI >= 0; --LI) {
1617 Revved.push_back(Elts2[VI + LI]);
1618 }
1619 }
1620
1621 Elts.insert(Revved.begin(), Revved.end());
1622 }
1623 };
1624 class MaskExpander : public SetTheory::Expander {
1625 unsigned N;
1626
1627 public:
1628 MaskExpander(unsigned N) : N(N) {}
1629 void expand(SetTheory &ST, Record *R, SetTheory::RecSet &Elts) override {
1630 unsigned Addend = 0;
1631 if (R->getName() == "mask0")
1632 Addend = 0;
1633 else if (R->getName() == "mask1")
1634 Addend = N;
1635 else
1636 return;
1637 for (unsigned I = 0; I < N; ++I)
1638 Elts.insert(R->getRecords().getDef("sv" + utostr(I + Addend)));
1639 }
1640 };
1641
1642 // (shuffle arg1, arg2, sequence)
1643 std::pair<Type, std::string> Arg1 =
1644 emitDagArg(DI->getArg(0), DI->getArgName(0));
1645 std::pair<Type, std::string> Arg2 =
1646 emitDagArg(DI->getArg(1), DI->getArgName(1));
1647 assert_with_loc(Arg1.first == Arg2.first,
1648 "Different types in arguments to shuffle!");
1649
1650 SetTheory ST;
1651 SetTheory::RecSet Elts;
1652 ST.addOperator("lowhalf", llvm::make_unique<LowHalf>());
1653 ST.addOperator("highhalf", llvm::make_unique<HighHalf>());
1654 ST.addOperator("rev",
1655 llvm::make_unique<Rev>(Arg1.first.getElementSizeInBits()));
1656 ST.addExpander("MaskExpand",
1657 llvm::make_unique<MaskExpander>(Arg1.first.getNumElements()));
1658 ST.evaluate(DI->getArg(2), Elts, None);
1659
1660 std::string S = "__builtin_shufflevector(" + Arg1.second + ", " + Arg2.second;
1661 for (auto &E : Elts) {
1662 StringRef Name = E->getName();
1663 assert_with_loc(Name.startswith("sv"),
1664 "Incorrect element kind in shuffle mask!");
1665 S += ", " + Name.drop_front(2).str();
1666 }
1667 S += ")";
1668
1669 // Recalculate the return type - the shuffle may have halved or doubled it.
1670 Type T(Arg1.first);
1671 if (Elts.size() > T.getNumElements()) {
1672 assert_with_loc(
1673 Elts.size() == T.getNumElements() * 2,
1674 "Can only double or half the number of elements in a shuffle!");
1675 T.doubleLanes();
1676 } else if (Elts.size() < T.getNumElements()) {
1677 assert_with_loc(
1678 Elts.size() == T.getNumElements() / 2,
1679 "Can only double or half the number of elements in a shuffle!");
1680 T.halveLanes();
1681 }
1682
1683 return std::make_pair(T, S);
1684 }
1685
emitDagDup(DagInit * DI)1686 std::pair<Type, std::string> Intrinsic::DagEmitter::emitDagDup(DagInit *DI) {
1687 assert_with_loc(DI->getNumArgs() == 1, "dup() expects one argument");
1688 std::pair<Type, std::string> A = emitDagArg(DI->getArg(0), DI->getArgName(0));
1689 assert_with_loc(A.first.isScalar(), "dup() expects a scalar argument");
1690
1691 Type T = Intr.getBaseType();
1692 assert_with_loc(T.isVector(), "dup() used but default type is scalar!");
1693 std::string S = "(" + T.str() + ") {";
1694 for (unsigned I = 0; I < T.getNumElements(); ++I) {
1695 if (I != 0)
1696 S += ", ";
1697 S += A.second;
1698 }
1699 S += "}";
1700
1701 return std::make_pair(T, S);
1702 }
1703
emitDagSplat(DagInit * DI)1704 std::pair<Type, std::string> Intrinsic::DagEmitter::emitDagSplat(DagInit *DI) {
1705 assert_with_loc(DI->getNumArgs() == 2, "splat() expects two arguments");
1706 std::pair<Type, std::string> A = emitDagArg(DI->getArg(0), DI->getArgName(0));
1707 std::pair<Type, std::string> B = emitDagArg(DI->getArg(1), DI->getArgName(1));
1708
1709 assert_with_loc(B.first.isScalar(),
1710 "splat() requires a scalar int as the second argument");
1711
1712 std::string S = "__builtin_shufflevector(" + A.second + ", " + A.second;
1713 for (unsigned I = 0; I < Intr.getBaseType().getNumElements(); ++I) {
1714 S += ", " + B.second;
1715 }
1716 S += ")";
1717
1718 return std::make_pair(Intr.getBaseType(), S);
1719 }
1720
emitDagSaveTemp(DagInit * DI)1721 std::pair<Type, std::string> Intrinsic::DagEmitter::emitDagSaveTemp(DagInit *DI) {
1722 assert_with_loc(DI->getNumArgs() == 2, "save_temp() expects two arguments");
1723 std::pair<Type, std::string> A = emitDagArg(DI->getArg(1), DI->getArgName(1));
1724
1725 assert_with_loc(!A.first.isVoid(),
1726 "Argument to save_temp() must have non-void type!");
1727
1728 std::string N = DI->getArgName(0);
1729 assert_with_loc(N.size(), "save_temp() expects a name as the first argument");
1730
1731 assert_with_loc(Intr.Variables.find(N) == Intr.Variables.end(),
1732 "Variable already defined!");
1733 Intr.Variables[N] = Variable(A.first, N + Intr.VariablePostfix);
1734
1735 std::string S =
1736 A.first.str() + " " + Intr.Variables[N].getName() + " = " + A.second;
1737
1738 return std::make_pair(Type::getVoid(), S);
1739 }
1740
1741 std::pair<Type, std::string>
emitDagNameReplace(DagInit * DI)1742 Intrinsic::DagEmitter::emitDagNameReplace(DagInit *DI) {
1743 std::string S = Intr.Name;
1744
1745 assert_with_loc(DI->getNumArgs() == 2, "name_replace requires 2 arguments!");
1746 std::string ToReplace = cast<StringInit>(DI->getArg(0))->getAsUnquotedString();
1747 std::string ReplaceWith = cast<StringInit>(DI->getArg(1))->getAsUnquotedString();
1748
1749 size_t Idx = S.find(ToReplace);
1750
1751 assert_with_loc(Idx != std::string::npos, "name should contain '" + ToReplace + "'!");
1752 S.replace(Idx, ToReplace.size(), ReplaceWith);
1753
1754 return std::make_pair(Type::getVoid(), S);
1755 }
1756
emitDagLiteral(DagInit * DI)1757 std::pair<Type, std::string> Intrinsic::DagEmitter::emitDagLiteral(DagInit *DI){
1758 std::string Ty = cast<StringInit>(DI->getArg(0))->getAsUnquotedString();
1759 std::string Value = cast<StringInit>(DI->getArg(1))->getAsUnquotedString();
1760 return std::make_pair(Type::fromTypedefName(Ty), Value);
1761 }
1762
1763 std::pair<Type, std::string>
emitDagArg(Init * Arg,std::string ArgName)1764 Intrinsic::DagEmitter::emitDagArg(Init *Arg, std::string ArgName) {
1765 if (ArgName.size()) {
1766 assert_with_loc(!Arg->isComplete(),
1767 "Arguments must either be DAGs or names, not both!");
1768 assert_with_loc(Intr.Variables.find(ArgName) != Intr.Variables.end(),
1769 "Variable not defined!");
1770 Variable &V = Intr.Variables[ArgName];
1771 return std::make_pair(V.getType(), V.getName());
1772 }
1773
1774 assert(Arg && "Neither ArgName nor Arg?!");
1775 DagInit *DI = dyn_cast<DagInit>(Arg);
1776 assert_with_loc(DI, "Arguments must either be DAGs or names!");
1777
1778 return emitDag(DI);
1779 }
1780
generate()1781 std::string Intrinsic::generate() {
1782 // Little endian intrinsics are simple and don't require any argument
1783 // swapping.
1784 OS << "#ifdef __LITTLE_ENDIAN__\n";
1785
1786 generateImpl(false, "", "");
1787
1788 OS << "#else\n";
1789
1790 // Big endian intrinsics are more complex. The user intended these
1791 // intrinsics to operate on a vector "as-if" loaded by (V)LDR,
1792 // but we load as-if (V)LD1. So we should swap all arguments and
1793 // swap the return value too.
1794 //
1795 // If we call sub-intrinsics, we should call a version that does
1796 // not re-swap the arguments!
1797 generateImpl(true, "", "__noswap_");
1798
1799 // If we're needed early, create a non-swapping variant for
1800 // big-endian.
1801 if (NeededEarly) {
1802 generateImpl(false, "__noswap_", "__noswap_");
1803 }
1804 OS << "#endif\n\n";
1805
1806 return OS.str();
1807 }
1808
generateImpl(bool ReverseArguments,StringRef NamePrefix,StringRef CallPrefix)1809 void Intrinsic::generateImpl(bool ReverseArguments,
1810 StringRef NamePrefix, StringRef CallPrefix) {
1811 CurrentRecord = R;
1812
1813 // If we call a macro, our local variables may be corrupted due to
1814 // lack of proper lexical scoping. So, add a globally unique postfix
1815 // to every variable.
1816 //
1817 // indexBody() should have set up the Dependencies set by now.
1818 for (auto *I : Dependencies)
1819 if (I->UseMacro) {
1820 VariablePostfix = "_" + utostr(Emitter.getUniqueNumber());
1821 break;
1822 }
1823
1824 initVariables();
1825
1826 emitPrototype(NamePrefix);
1827
1828 if (IsUnavailable) {
1829 OS << " __attribute__((unavailable));";
1830 } else {
1831 emitOpeningBrace();
1832 emitShadowedArgs();
1833 if (ReverseArguments)
1834 emitArgumentReversal();
1835 emitBody(CallPrefix);
1836 if (ReverseArguments)
1837 emitReturnReversal();
1838 emitReturn();
1839 emitClosingBrace();
1840 }
1841 OS << "\n";
1842
1843 CurrentRecord = nullptr;
1844 }
1845
indexBody()1846 void Intrinsic::indexBody() {
1847 CurrentRecord = R;
1848
1849 initVariables();
1850 emitBody("");
1851 OS.str("");
1852
1853 CurrentRecord = nullptr;
1854 }
1855
1856 //===----------------------------------------------------------------------===//
1857 // NeonEmitter implementation
1858 //===----------------------------------------------------------------------===//
1859
getIntrinsic(StringRef Name,ArrayRef<Type> Types)1860 Intrinsic &NeonEmitter::getIntrinsic(StringRef Name, ArrayRef<Type> Types) {
1861 // First, look up the name in the intrinsic map.
1862 assert_with_loc(IntrinsicMap.find(Name.str()) != IntrinsicMap.end(),
1863 ("Intrinsic '" + Name + "' not found!").str());
1864 auto &V = IntrinsicMap.find(Name.str())->second;
1865 std::vector<Intrinsic *> GoodVec;
1866
1867 // Create a string to print if we end up failing.
1868 std::string ErrMsg = "looking up intrinsic '" + Name.str() + "(";
1869 for (unsigned I = 0; I < Types.size(); ++I) {
1870 if (I != 0)
1871 ErrMsg += ", ";
1872 ErrMsg += Types[I].str();
1873 }
1874 ErrMsg += ")'\n";
1875 ErrMsg += "Available overloads:\n";
1876
1877 // Now, look through each intrinsic implementation and see if the types are
1878 // compatible.
1879 for (auto &I : V) {
1880 ErrMsg += " - " + I.getReturnType().str() + " " + I.getMangledName();
1881 ErrMsg += "(";
1882 for (unsigned A = 0; A < I.getNumParams(); ++A) {
1883 if (A != 0)
1884 ErrMsg += ", ";
1885 ErrMsg += I.getParamType(A).str();
1886 }
1887 ErrMsg += ")\n";
1888
1889 if (I.getNumParams() != Types.size())
1890 continue;
1891
1892 bool Good = true;
1893 for (unsigned Arg = 0; Arg < Types.size(); ++Arg) {
1894 if (I.getParamType(Arg) != Types[Arg]) {
1895 Good = false;
1896 break;
1897 }
1898 }
1899 if (Good)
1900 GoodVec.push_back(&I);
1901 }
1902
1903 assert_with_loc(GoodVec.size() > 0,
1904 "No compatible intrinsic found - " + ErrMsg);
1905 assert_with_loc(GoodVec.size() == 1, "Multiple overloads found - " + ErrMsg);
1906
1907 return *GoodVec.front();
1908 }
1909
createIntrinsic(Record * R,SmallVectorImpl<Intrinsic * > & Out)1910 void NeonEmitter::createIntrinsic(Record *R,
1911 SmallVectorImpl<Intrinsic *> &Out) {
1912 std::string Name = R->getValueAsString("Name");
1913 std::string Proto = R->getValueAsString("Prototype");
1914 std::string Types = R->getValueAsString("Types");
1915 Record *OperationRec = R->getValueAsDef("Operation");
1916 bool CartesianProductOfTypes = R->getValueAsBit("CartesianProductOfTypes");
1917 bool BigEndianSafe = R->getValueAsBit("BigEndianSafe");
1918 std::string Guard = R->getValueAsString("ArchGuard");
1919 bool IsUnavailable = OperationRec->getValueAsBit("Unavailable");
1920
1921 // Set the global current record. This allows assert_with_loc to produce
1922 // decent location information even when highly nested.
1923 CurrentRecord = R;
1924
1925 ListInit *Body = OperationRec->getValueAsListInit("Ops");
1926
1927 std::vector<TypeSpec> TypeSpecs = TypeSpec::fromTypeSpecs(Types);
1928
1929 ClassKind CK = ClassNone;
1930 if (R->getSuperClasses().size() >= 2)
1931 CK = ClassMap[R->getSuperClasses()[1].first];
1932
1933 std::vector<std::pair<TypeSpec, TypeSpec>> NewTypeSpecs;
1934 for (auto TS : TypeSpecs) {
1935 if (CartesianProductOfTypes) {
1936 Type DefaultT(TS, 'd');
1937 for (auto SrcTS : TypeSpecs) {
1938 Type DefaultSrcT(SrcTS, 'd');
1939 if (TS == SrcTS ||
1940 DefaultSrcT.getSizeInBits() != DefaultT.getSizeInBits())
1941 continue;
1942 NewTypeSpecs.push_back(std::make_pair(TS, SrcTS));
1943 }
1944 } else {
1945 NewTypeSpecs.push_back(std::make_pair(TS, TS));
1946 }
1947 }
1948
1949 std::sort(NewTypeSpecs.begin(), NewTypeSpecs.end());
1950 NewTypeSpecs.erase(std::unique(NewTypeSpecs.begin(), NewTypeSpecs.end()),
1951 NewTypeSpecs.end());
1952 auto &Entry = IntrinsicMap[Name];
1953
1954 for (auto &I : NewTypeSpecs) {
1955 Entry.emplace_back(R, Name, Proto, I.first, I.second, CK, Body, *this,
1956 Guard, IsUnavailable, BigEndianSafe);
1957 Out.push_back(&Entry.back());
1958 }
1959
1960 CurrentRecord = nullptr;
1961 }
1962
1963 /// genBuiltinsDef: Generate the BuiltinsARM.def and BuiltinsAArch64.def
1964 /// declaration of builtins, checking for unique builtin declarations.
genBuiltinsDef(raw_ostream & OS,SmallVectorImpl<Intrinsic * > & Defs)1965 void NeonEmitter::genBuiltinsDef(raw_ostream &OS,
1966 SmallVectorImpl<Intrinsic *> &Defs) {
1967 OS << "#ifdef GET_NEON_BUILTINS\n";
1968
1969 // We only want to emit a builtin once, and we want to emit them in
1970 // alphabetical order, so use a std::set.
1971 std::set<std::string> Builtins;
1972
1973 for (auto *Def : Defs) {
1974 if (Def->hasBody())
1975 continue;
1976 // Functions with 'a' (the splat code) in the type prototype should not get
1977 // their own builtin as they use the non-splat variant.
1978 if (Def->hasSplat())
1979 continue;
1980
1981 std::string S = "BUILTIN(__builtin_neon_" + Def->getMangledName() + ", \"";
1982
1983 S += Def->getBuiltinTypeStr();
1984 S += "\", \"n\")";
1985
1986 Builtins.insert(S);
1987 }
1988
1989 for (auto &S : Builtins)
1990 OS << S << "\n";
1991 OS << "#endif\n\n";
1992 }
1993
1994 /// Generate the ARM and AArch64 overloaded type checking code for
1995 /// SemaChecking.cpp, checking for unique builtin declarations.
genOverloadTypeCheckCode(raw_ostream & OS,SmallVectorImpl<Intrinsic * > & Defs)1996 void NeonEmitter::genOverloadTypeCheckCode(raw_ostream &OS,
1997 SmallVectorImpl<Intrinsic *> &Defs) {
1998 OS << "#ifdef GET_NEON_OVERLOAD_CHECK\n";
1999
2000 // We record each overload check line before emitting because subsequent Inst
2001 // definitions may extend the number of permitted types (i.e. augment the
2002 // Mask). Use std::map to avoid sorting the table by hash number.
2003 struct OverloadInfo {
2004 uint64_t Mask;
2005 int PtrArgNum;
2006 bool HasConstPtr;
2007 OverloadInfo() : Mask(0ULL), PtrArgNum(0), HasConstPtr(false) {}
2008 };
2009 std::map<std::string, OverloadInfo> OverloadMap;
2010
2011 for (auto *Def : Defs) {
2012 // If the def has a body (that is, it has Operation DAGs), it won't call
2013 // __builtin_neon_* so we don't need to generate a definition for it.
2014 if (Def->hasBody())
2015 continue;
2016 // Functions with 'a' (the splat code) in the type prototype should not get
2017 // their own builtin as they use the non-splat variant.
2018 if (Def->hasSplat())
2019 continue;
2020 // Functions which have a scalar argument cannot be overloaded, no need to
2021 // check them if we are emitting the type checking code.
2022 if (Def->protoHasScalar())
2023 continue;
2024
2025 uint64_t Mask = 0ULL;
2026 Type Ty = Def->getReturnType();
2027 if (Def->getProto()[0] == 'v' ||
2028 isFloatingPointProtoModifier(Def->getProto()[0]))
2029 Ty = Def->getParamType(0);
2030 if (Ty.isPointer())
2031 Ty = Def->getParamType(1);
2032
2033 Mask |= 1ULL << Ty.getNeonEnum();
2034
2035 // Check if the function has a pointer or const pointer argument.
2036 std::string Proto = Def->getProto();
2037 int PtrArgNum = -1;
2038 bool HasConstPtr = false;
2039 for (unsigned I = 0; I < Def->getNumParams(); ++I) {
2040 char ArgType = Proto[I + 1];
2041 if (ArgType == 'c') {
2042 HasConstPtr = true;
2043 PtrArgNum = I;
2044 break;
2045 }
2046 if (ArgType == 'p') {
2047 PtrArgNum = I;
2048 break;
2049 }
2050 }
2051 // For sret builtins, adjust the pointer argument index.
2052 if (PtrArgNum >= 0 && Def->getReturnType().getNumVectors() > 1)
2053 PtrArgNum += 1;
2054
2055 std::string Name = Def->getName();
2056 // Omit type checking for the pointer arguments of vld1_lane, vld1_dup,
2057 // and vst1_lane intrinsics. Using a pointer to the vector element
2058 // type with one of those operations causes codegen to select an aligned
2059 // load/store instruction. If you want an unaligned operation,
2060 // the pointer argument needs to have less alignment than element type,
2061 // so just accept any pointer type.
2062 if (Name == "vld1_lane" || Name == "vld1_dup" || Name == "vst1_lane") {
2063 PtrArgNum = -1;
2064 HasConstPtr = false;
2065 }
2066
2067 if (Mask) {
2068 std::string Name = Def->getMangledName();
2069 OverloadMap.insert(std::make_pair(Name, OverloadInfo()));
2070 OverloadInfo &OI = OverloadMap[Name];
2071 OI.Mask |= Mask;
2072 OI.PtrArgNum |= PtrArgNum;
2073 OI.HasConstPtr = HasConstPtr;
2074 }
2075 }
2076
2077 for (auto &I : OverloadMap) {
2078 OverloadInfo &OI = I.second;
2079
2080 OS << "case NEON::BI__builtin_neon_" << I.first << ": ";
2081 OS << "mask = 0x" << utohexstr(OI.Mask) << "ULL";
2082 if (OI.PtrArgNum >= 0)
2083 OS << "; PtrArgNum = " << OI.PtrArgNum;
2084 if (OI.HasConstPtr)
2085 OS << "; HasConstPtr = true";
2086 OS << "; break;\n";
2087 }
2088 OS << "#endif\n\n";
2089 }
2090
2091 void
genIntrinsicRangeCheckCode(raw_ostream & OS,SmallVectorImpl<Intrinsic * > & Defs)2092 NeonEmitter::genIntrinsicRangeCheckCode(raw_ostream &OS,
2093 SmallVectorImpl<Intrinsic *> &Defs) {
2094 OS << "#ifdef GET_NEON_IMMEDIATE_CHECK\n";
2095
2096 std::set<std::string> Emitted;
2097
2098 for (auto *Def : Defs) {
2099 if (Def->hasBody())
2100 continue;
2101 // Functions with 'a' (the splat code) in the type prototype should not get
2102 // their own builtin as they use the non-splat variant.
2103 if (Def->hasSplat())
2104 continue;
2105 // Functions which do not have an immediate do not need to have range
2106 // checking code emitted.
2107 if (!Def->hasImmediate())
2108 continue;
2109 if (Emitted.find(Def->getMangledName()) != Emitted.end())
2110 continue;
2111
2112 std::string LowerBound, UpperBound;
2113
2114 Record *R = Def->getRecord();
2115 if (R->getValueAsBit("isVCVT_N")) {
2116 // VCVT between floating- and fixed-point values takes an immediate
2117 // in the range [1, 32) for f32 or [1, 64) for f64.
2118 LowerBound = "1";
2119 if (Def->getBaseType().getElementSizeInBits() == 32)
2120 UpperBound = "31";
2121 else
2122 UpperBound = "63";
2123 } else if (R->getValueAsBit("isScalarShift")) {
2124 // Right shifts have an 'r' in the name, left shifts do not. Convert
2125 // instructions have the same bounds and right shifts.
2126 if (Def->getName().find('r') != std::string::npos ||
2127 Def->getName().find("cvt") != std::string::npos)
2128 LowerBound = "1";
2129
2130 UpperBound = utostr(Def->getReturnType().getElementSizeInBits() - 1);
2131 } else if (R->getValueAsBit("isShift")) {
2132 // Builtins which are overloaded by type will need to have their upper
2133 // bound computed at Sema time based on the type constant.
2134
2135 // Right shifts have an 'r' in the name, left shifts do not.
2136 if (Def->getName().find('r') != std::string::npos)
2137 LowerBound = "1";
2138 UpperBound = "RFT(TV, true)";
2139 } else if (Def->getClassKind(true) == ClassB) {
2140 // ClassB intrinsics have a type (and hence lane number) that is only
2141 // known at runtime.
2142 if (R->getValueAsBit("isLaneQ"))
2143 UpperBound = "RFT(TV, false, true)";
2144 else
2145 UpperBound = "RFT(TV, false, false)";
2146 } else {
2147 // The immediate generally refers to a lane in the preceding argument.
2148 assert(Def->getImmediateIdx() > 0);
2149 Type T = Def->getParamType(Def->getImmediateIdx() - 1);
2150 UpperBound = utostr(T.getNumElements() - 1);
2151 }
2152
2153 // Calculate the index of the immediate that should be range checked.
2154 unsigned Idx = Def->getNumParams();
2155 if (Def->hasImmediate())
2156 Idx = Def->getGeneratedParamIdx(Def->getImmediateIdx());
2157
2158 OS << "case NEON::BI__builtin_neon_" << Def->getMangledName() << ": "
2159 << "i = " << Idx << ";";
2160 if (LowerBound.size())
2161 OS << " l = " << LowerBound << ";";
2162 if (UpperBound.size())
2163 OS << " u = " << UpperBound << ";";
2164 OS << " break;\n";
2165
2166 Emitted.insert(Def->getMangledName());
2167 }
2168
2169 OS << "#endif\n\n";
2170 }
2171
2172 /// runHeader - Emit a file with sections defining:
2173 /// 1. the NEON section of BuiltinsARM.def and BuiltinsAArch64.def.
2174 /// 2. the SemaChecking code for the type overload checking.
2175 /// 3. the SemaChecking code for validation of intrinsic immediate arguments.
runHeader(raw_ostream & OS)2176 void NeonEmitter::runHeader(raw_ostream &OS) {
2177 std::vector<Record *> RV = Records.getAllDerivedDefinitions("Inst");
2178
2179 SmallVector<Intrinsic *, 128> Defs;
2180 for (auto *R : RV)
2181 createIntrinsic(R, Defs);
2182
2183 // Generate shared BuiltinsXXX.def
2184 genBuiltinsDef(OS, Defs);
2185
2186 // Generate ARM overloaded type checking code for SemaChecking.cpp
2187 genOverloadTypeCheckCode(OS, Defs);
2188
2189 // Generate ARM range checking code for shift/lane immediates.
2190 genIntrinsicRangeCheckCode(OS, Defs);
2191 }
2192
2193 /// run - Read the records in arm_neon.td and output arm_neon.h. arm_neon.h
2194 /// is comprised of type definitions and function declarations.
run(raw_ostream & OS)2195 void NeonEmitter::run(raw_ostream &OS) {
2196 OS << "/*===---- arm_neon.h - ARM Neon intrinsics "
2197 "------------------------------"
2198 "---===\n"
2199 " *\n"
2200 " * Permission is hereby granted, free of charge, to any person "
2201 "obtaining "
2202 "a copy\n"
2203 " * of this software and associated documentation files (the "
2204 "\"Software\"),"
2205 " to deal\n"
2206 " * in the Software without restriction, including without limitation "
2207 "the "
2208 "rights\n"
2209 " * to use, copy, modify, merge, publish, distribute, sublicense, "
2210 "and/or sell\n"
2211 " * copies of the Software, and to permit persons to whom the Software "
2212 "is\n"
2213 " * furnished to do so, subject to the following conditions:\n"
2214 " *\n"
2215 " * The above copyright notice and this permission notice shall be "
2216 "included in\n"
2217 " * all copies or substantial portions of the Software.\n"
2218 " *\n"
2219 " * THE SOFTWARE IS PROVIDED \"AS IS\", WITHOUT WARRANTY OF ANY KIND, "
2220 "EXPRESS OR\n"
2221 " * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF "
2222 "MERCHANTABILITY,\n"
2223 " * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT "
2224 "SHALL THE\n"
2225 " * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR "
2226 "OTHER\n"
2227 " * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, "
2228 "ARISING FROM,\n"
2229 " * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER "
2230 "DEALINGS IN\n"
2231 " * THE SOFTWARE.\n"
2232 " *\n"
2233 " *===-----------------------------------------------------------------"
2234 "---"
2235 "---===\n"
2236 " */\n\n";
2237
2238 OS << "#ifndef __ARM_NEON_H\n";
2239 OS << "#define __ARM_NEON_H\n\n";
2240
2241 OS << "#if !defined(__ARM_NEON)\n";
2242 OS << "#error \"NEON support not enabled\"\n";
2243 OS << "#endif\n\n";
2244
2245 OS << "#include <stdint.h>\n\n";
2246
2247 // Emit NEON-specific scalar typedefs.
2248 OS << "typedef float float32_t;\n";
2249 OS << "typedef __fp16 float16_t;\n";
2250
2251 OS << "#ifdef __aarch64__\n";
2252 OS << "typedef double float64_t;\n";
2253 OS << "#endif\n\n";
2254
2255 // For now, signedness of polynomial types depends on target
2256 OS << "#ifdef __aarch64__\n";
2257 OS << "typedef uint8_t poly8_t;\n";
2258 OS << "typedef uint16_t poly16_t;\n";
2259 OS << "typedef uint64_t poly64_t;\n";
2260 OS << "typedef __uint128_t poly128_t;\n";
2261 OS << "#else\n";
2262 OS << "typedef int8_t poly8_t;\n";
2263 OS << "typedef int16_t poly16_t;\n";
2264 OS << "#endif\n";
2265
2266 // Emit Neon vector typedefs.
2267 std::string TypedefTypes(
2268 "cQcsQsiQilQlUcQUcUsQUsUiQUiUlQUlhQhfQfdQdPcQPcPsQPsPlQPl");
2269 std::vector<TypeSpec> TDTypeVec = TypeSpec::fromTypeSpecs(TypedefTypes);
2270
2271 // Emit vector typedefs.
2272 bool InIfdef = false;
2273 for (auto &TS : TDTypeVec) {
2274 bool IsA64 = false;
2275 Type T(TS, 'd');
2276 if (T.isDouble() || (T.isPoly() && T.isLong()))
2277 IsA64 = true;
2278
2279 if (InIfdef && !IsA64) {
2280 OS << "#endif\n";
2281 InIfdef = false;
2282 }
2283 if (!InIfdef && IsA64) {
2284 OS << "#ifdef __aarch64__\n";
2285 InIfdef = true;
2286 }
2287
2288 if (T.isPoly())
2289 OS << "typedef __attribute__((neon_polyvector_type(";
2290 else
2291 OS << "typedef __attribute__((neon_vector_type(";
2292
2293 Type T2 = T;
2294 T2.makeScalar();
2295 OS << utostr(T.getNumElements()) << "))) ";
2296 OS << T2.str();
2297 OS << " " << T.str() << ";\n";
2298 }
2299 if (InIfdef)
2300 OS << "#endif\n";
2301 OS << "\n";
2302
2303 // Emit struct typedefs.
2304 InIfdef = false;
2305 for (unsigned NumMembers = 2; NumMembers <= 4; ++NumMembers) {
2306 for (auto &TS : TDTypeVec) {
2307 bool IsA64 = false;
2308 Type T(TS, 'd');
2309 if (T.isDouble() || (T.isPoly() && T.isLong()))
2310 IsA64 = true;
2311
2312 if (InIfdef && !IsA64) {
2313 OS << "#endif\n";
2314 InIfdef = false;
2315 }
2316 if (!InIfdef && IsA64) {
2317 OS << "#ifdef __aarch64__\n";
2318 InIfdef = true;
2319 }
2320
2321 char M = '2' + (NumMembers - 2);
2322 Type VT(TS, M);
2323 OS << "typedef struct " << VT.str() << " {\n";
2324 OS << " " << T.str() << " val";
2325 OS << "[" << utostr(NumMembers) << "]";
2326 OS << ";\n} ";
2327 OS << VT.str() << ";\n";
2328 OS << "\n";
2329 }
2330 }
2331 if (InIfdef)
2332 OS << "#endif\n";
2333 OS << "\n";
2334
2335 OS << "#define __ai static inline __attribute__((__always_inline__, "
2336 "__nodebug__))\n\n";
2337
2338 SmallVector<Intrinsic *, 128> Defs;
2339 std::vector<Record *> RV = Records.getAllDerivedDefinitions("Inst");
2340 for (auto *R : RV)
2341 createIntrinsic(R, Defs);
2342
2343 for (auto *I : Defs)
2344 I->indexBody();
2345
2346 std::stable_sort(
2347 Defs.begin(), Defs.end(),
2348 [](const Intrinsic *A, const Intrinsic *B) { return *A < *B; });
2349
2350 // Only emit a def when its requirements have been met.
2351 // FIXME: This loop could be made faster, but it's fast enough for now.
2352 bool MadeProgress = true;
2353 std::string InGuard = "";
2354 while (!Defs.empty() && MadeProgress) {
2355 MadeProgress = false;
2356
2357 for (SmallVector<Intrinsic *, 128>::iterator I = Defs.begin();
2358 I != Defs.end(); /*No step*/) {
2359 bool DependenciesSatisfied = true;
2360 for (auto *II : (*I)->getDependencies()) {
2361 if (std::find(Defs.begin(), Defs.end(), II) != Defs.end())
2362 DependenciesSatisfied = false;
2363 }
2364 if (!DependenciesSatisfied) {
2365 // Try the next one.
2366 ++I;
2367 continue;
2368 }
2369
2370 // Emit #endif/#if pair if needed.
2371 if ((*I)->getGuard() != InGuard) {
2372 if (!InGuard.empty())
2373 OS << "#endif\n";
2374 InGuard = (*I)->getGuard();
2375 if (!InGuard.empty())
2376 OS << "#if " << InGuard << "\n";
2377 }
2378
2379 // Actually generate the intrinsic code.
2380 OS << (*I)->generate();
2381
2382 MadeProgress = true;
2383 I = Defs.erase(I);
2384 }
2385 }
2386 assert(Defs.empty() && "Some requirements were not satisfied!");
2387 if (!InGuard.empty())
2388 OS << "#endif\n";
2389
2390 OS << "\n";
2391 OS << "#undef __ai\n\n";
2392 OS << "#endif /* __ARM_NEON_H */\n";
2393 }
2394
2395 namespace clang {
EmitNeon(RecordKeeper & Records,raw_ostream & OS)2396 void EmitNeon(RecordKeeper &Records, raw_ostream &OS) {
2397 NeonEmitter(Records).run(OS);
2398 }
EmitNeonSema(RecordKeeper & Records,raw_ostream & OS)2399 void EmitNeonSema(RecordKeeper &Records, raw_ostream &OS) {
2400 NeonEmitter(Records).runHeader(OS);
2401 }
EmitNeonTest(RecordKeeper & Records,raw_ostream & OS)2402 void EmitNeonTest(RecordKeeper &Records, raw_ostream &OS) {
2403 llvm_unreachable("Neon test generation no longer implemented!");
2404 }
2405 } // End namespace clang
2406