• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // This file is part of Eigen, a lightweight C++ template library
2 // for linear algebra.
3 //
4 // Copyright (C) 2006-2009 Benoit Jacob <jacob.benoit.1@gmail.com>
5 // Copyright (C) 2009 Gael Guennebaud <gael.guennebaud@inria.fr>
6 //
7 // This Source Code Form is subject to the terms of the Mozilla
8 // Public License v. 2.0. If a copy of the MPL was not distributed
9 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
10 
11 #ifndef EIGEN_PARTIALLU_H
12 #define EIGEN_PARTIALLU_H
13 
14 namespace Eigen {
15 
16 namespace internal {
17 template<typename _MatrixType> struct traits<PartialPivLU<_MatrixType> >
18  : traits<_MatrixType>
19 {
20   typedef MatrixXpr XprKind;
21   typedef SolverStorage StorageKind;
22   typedef traits<_MatrixType> BaseTraits;
23   enum {
24     Flags = BaseTraits::Flags & RowMajorBit,
25     CoeffReadCost = Dynamic
26   };
27 };
28 
29 template<typename T,typename Derived>
30 struct enable_if_ref;
31 // {
32 //   typedef Derived type;
33 // };
34 
35 template<typename T,typename Derived>
36 struct enable_if_ref<Ref<T>,Derived> {
37   typedef Derived type;
38 };
39 
40 } // end namespace internal
41 
42 /** \ingroup LU_Module
43   *
44   * \class PartialPivLU
45   *
46   * \brief LU decomposition of a matrix with partial pivoting, and related features
47   *
48   * \tparam _MatrixType the type of the matrix of which we are computing the LU decomposition
49   *
50   * This class represents a LU decomposition of a \b square \b invertible matrix, with partial pivoting: the matrix A
51   * is decomposed as A = PLU where L is unit-lower-triangular, U is upper-triangular, and P
52   * is a permutation matrix.
53   *
54   * Typically, partial pivoting LU decomposition is only considered numerically stable for square invertible
55   * matrices. Thus LAPACK's dgesv and dgesvx require the matrix to be square and invertible. The present class
56   * does the same. It will assert that the matrix is square, but it won't (actually it can't) check that the
57   * matrix is invertible: it is your task to check that you only use this decomposition on invertible matrices.
58   *
59   * The guaranteed safe alternative, working for all matrices, is the full pivoting LU decomposition, provided
60   * by class FullPivLU.
61   *
62   * This is \b not a rank-revealing LU decomposition. Many features are intentionally absent from this class,
63   * such as rank computation. If you need these features, use class FullPivLU.
64   *
65   * This LU decomposition is suitable to invert invertible matrices. It is what MatrixBase::inverse() uses
66   * in the general case.
67   * On the other hand, it is \b not suitable to determine whether a given matrix is invertible.
68   *
69   * The data of the LU decomposition can be directly accessed through the methods matrixLU(), permutationP().
70   *
71   * This class supports the \link InplaceDecomposition inplace decomposition \endlink mechanism.
72   *
73   * \sa MatrixBase::partialPivLu(), MatrixBase::determinant(), MatrixBase::inverse(), MatrixBase::computeInverse(), class FullPivLU
74   */
75 template<typename _MatrixType> class PartialPivLU
76   : public SolverBase<PartialPivLU<_MatrixType> >
77 {
78   public:
79 
80     typedef _MatrixType MatrixType;
81     typedef SolverBase<PartialPivLU> Base;
82     EIGEN_GENERIC_PUBLIC_INTERFACE(PartialPivLU)
83     // FIXME StorageIndex defined in EIGEN_GENERIC_PUBLIC_INTERFACE should be int
84     enum {
85       MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime,
86       MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime
87     };
88     typedef PermutationMatrix<RowsAtCompileTime, MaxRowsAtCompileTime> PermutationType;
89     typedef Transpositions<RowsAtCompileTime, MaxRowsAtCompileTime> TranspositionType;
90     typedef typename MatrixType::PlainObject PlainObject;
91 
92     /**
93       * \brief Default Constructor.
94       *
95       * The default constructor is useful in cases in which the user intends to
96       * perform decompositions via PartialPivLU::compute(const MatrixType&).
97       */
98     PartialPivLU();
99 
100     /** \brief Default Constructor with memory preallocation
101       *
102       * Like the default constructor but with preallocation of the internal data
103       * according to the specified problem \a size.
104       * \sa PartialPivLU()
105       */
106     explicit PartialPivLU(Index size);
107 
108     /** Constructor.
109       *
110       * \param matrix the matrix of which to compute the LU decomposition.
111       *
112       * \warning The matrix should have full rank (e.g. if it's square, it should be invertible).
113       * If you need to deal with non-full rank, use class FullPivLU instead.
114       */
115     template<typename InputType>
116     explicit PartialPivLU(const EigenBase<InputType>& matrix);
117 
118     /** Constructor for \link InplaceDecomposition inplace decomposition \endlink
119       *
120       * \param matrix the matrix of which to compute the LU decomposition.
121       *
122       * \warning The matrix should have full rank (e.g. if it's square, it should be invertible).
123       * If you need to deal with non-full rank, use class FullPivLU instead.
124       */
125     template<typename InputType>
126     explicit PartialPivLU(EigenBase<InputType>& matrix);
127 
128     template<typename InputType>
129     PartialPivLU& compute(const EigenBase<InputType>& matrix) {
130       m_lu = matrix.derived();
131       compute();
132       return *this;
133     }
134 
135     /** \returns the LU decomposition matrix: the upper-triangular part is U, the
136       * unit-lower-triangular part is L (at least for square matrices; in the non-square
137       * case, special care is needed, see the documentation of class FullPivLU).
138       *
139       * \sa matrixL(), matrixU()
140       */
141     inline const MatrixType& matrixLU() const
142     {
143       eigen_assert(m_isInitialized && "PartialPivLU is not initialized.");
144       return m_lu;
145     }
146 
147     /** \returns the permutation matrix P.
148       */
149     inline const PermutationType& permutationP() const
150     {
151       eigen_assert(m_isInitialized && "PartialPivLU is not initialized.");
152       return m_p;
153     }
154 
155     /** This method returns the solution x to the equation Ax=b, where A is the matrix of which
156       * *this is the LU decomposition.
157       *
158       * \param b the right-hand-side of the equation to solve. Can be a vector or a matrix,
159       *          the only requirement in order for the equation to make sense is that
160       *          b.rows()==A.rows(), where A is the matrix of which *this is the LU decomposition.
161       *
162       * \returns the solution.
163       *
164       * Example: \include PartialPivLU_solve.cpp
165       * Output: \verbinclude PartialPivLU_solve.out
166       *
167       * Since this PartialPivLU class assumes anyway that the matrix A is invertible, the solution
168       * theoretically exists and is unique regardless of b.
169       *
170       * \sa TriangularView::solve(), inverse(), computeInverse()
171       */
172     // FIXME this is a copy-paste of the base-class member to add the isInitialized assertion.
173     template<typename Rhs>
174     inline const Solve<PartialPivLU, Rhs>
175     solve(const MatrixBase<Rhs>& b) const
176     {
177       eigen_assert(m_isInitialized && "PartialPivLU is not initialized.");
178       return Solve<PartialPivLU, Rhs>(*this, b.derived());
179     }
180 
181     /** \returns an estimate of the reciprocal condition number of the matrix of which \c *this is
182         the LU decomposition.
183       */
184     inline RealScalar rcond() const
185     {
186       eigen_assert(m_isInitialized && "PartialPivLU is not initialized.");
187       return internal::rcond_estimate_helper(m_l1_norm, *this);
188     }
189 
190     /** \returns the inverse of the matrix of which *this is the LU decomposition.
191       *
192       * \warning The matrix being decomposed here is assumed to be invertible. If you need to check for
193       *          invertibility, use class FullPivLU instead.
194       *
195       * \sa MatrixBase::inverse(), LU::inverse()
196       */
197     inline const Inverse<PartialPivLU> inverse() const
198     {
199       eigen_assert(m_isInitialized && "PartialPivLU is not initialized.");
200       return Inverse<PartialPivLU>(*this);
201     }
202 
203     /** \returns the determinant of the matrix of which
204       * *this is the LU decomposition. It has only linear complexity
205       * (that is, O(n) where n is the dimension of the square matrix)
206       * as the LU decomposition has already been computed.
207       *
208       * \note For fixed-size matrices of size up to 4, MatrixBase::determinant() offers
209       *       optimized paths.
210       *
211       * \warning a determinant can be very big or small, so for matrices
212       * of large enough dimension, there is a risk of overflow/underflow.
213       *
214       * \sa MatrixBase::determinant()
215       */
216     Scalar determinant() const;
217 
218     MatrixType reconstructedMatrix() const;
219 
220     inline Index rows() const { return m_lu.rows(); }
221     inline Index cols() const { return m_lu.cols(); }
222 
223     #ifndef EIGEN_PARSED_BY_DOXYGEN
224     template<typename RhsType, typename DstType>
225     EIGEN_DEVICE_FUNC
226     void _solve_impl(const RhsType &rhs, DstType &dst) const {
227      /* The decomposition PA = LU can be rewritten as A = P^{-1} L U.
228       * So we proceed as follows:
229       * Step 1: compute c = Pb.
230       * Step 2: replace c by the solution x to Lx = c.
231       * Step 3: replace c by the solution x to Ux = c.
232       */
233 
234       eigen_assert(rhs.rows() == m_lu.rows());
235 
236       // Step 1
237       dst = permutationP() * rhs;
238 
239       // Step 2
240       m_lu.template triangularView<UnitLower>().solveInPlace(dst);
241 
242       // Step 3
243       m_lu.template triangularView<Upper>().solveInPlace(dst);
244     }
245 
246     template<bool Conjugate, typename RhsType, typename DstType>
247     EIGEN_DEVICE_FUNC
248     void _solve_impl_transposed(const RhsType &rhs, DstType &dst) const {
249      /* The decomposition PA = LU can be rewritten as A = P^{-1} L U.
250       * So we proceed as follows:
251       * Step 1: compute c = Pb.
252       * Step 2: replace c by the solution x to Lx = c.
253       * Step 3: replace c by the solution x to Ux = c.
254       */
255 
256       eigen_assert(rhs.rows() == m_lu.cols());
257 
258       if (Conjugate) {
259         // Step 1
260         dst = m_lu.template triangularView<Upper>().adjoint().solve(rhs);
261         // Step 2
262         m_lu.template triangularView<UnitLower>().adjoint().solveInPlace(dst);
263       } else {
264         // Step 1
265         dst = m_lu.template triangularView<Upper>().transpose().solve(rhs);
266         // Step 2
267         m_lu.template triangularView<UnitLower>().transpose().solveInPlace(dst);
268       }
269       // Step 3
270       dst = permutationP().transpose() * dst;
271     }
272     #endif
273 
274   protected:
275 
276     static void check_template_parameters()
277     {
278       EIGEN_STATIC_ASSERT_NON_INTEGER(Scalar);
279     }
280 
281     void compute();
282 
283     MatrixType m_lu;
284     PermutationType m_p;
285     TranspositionType m_rowsTranspositions;
286     RealScalar m_l1_norm;
287     signed char m_det_p;
288     bool m_isInitialized;
289 };
290 
291 template<typename MatrixType>
292 PartialPivLU<MatrixType>::PartialPivLU()
293   : m_lu(),
294     m_p(),
295     m_rowsTranspositions(),
296     m_l1_norm(0),
297     m_det_p(0),
298     m_isInitialized(false)
299 {
300 }
301 
302 template<typename MatrixType>
303 PartialPivLU<MatrixType>::PartialPivLU(Index size)
304   : m_lu(size, size),
305     m_p(size),
306     m_rowsTranspositions(size),
307     m_l1_norm(0),
308     m_det_p(0),
309     m_isInitialized(false)
310 {
311 }
312 
313 template<typename MatrixType>
314 template<typename InputType>
315 PartialPivLU<MatrixType>::PartialPivLU(const EigenBase<InputType>& matrix)
316   : m_lu(matrix.rows(),matrix.cols()),
317     m_p(matrix.rows()),
318     m_rowsTranspositions(matrix.rows()),
319     m_l1_norm(0),
320     m_det_p(0),
321     m_isInitialized(false)
322 {
323   compute(matrix.derived());
324 }
325 
326 template<typename MatrixType>
327 template<typename InputType>
328 PartialPivLU<MatrixType>::PartialPivLU(EigenBase<InputType>& matrix)
329   : m_lu(matrix.derived()),
330     m_p(matrix.rows()),
331     m_rowsTranspositions(matrix.rows()),
332     m_l1_norm(0),
333     m_det_p(0),
334     m_isInitialized(false)
335 {
336   compute();
337 }
338 
339 namespace internal {
340 
341 /** \internal This is the blocked version of fullpivlu_unblocked() */
342 template<typename Scalar, int StorageOrder, typename PivIndex>
343 struct partial_lu_impl
344 {
345   // FIXME add a stride to Map, so that the following mapping becomes easier,
346   // another option would be to create an expression being able to automatically
347   // warp any Map, Matrix, and Block expressions as a unique type, but since that's exactly
348   // a Map + stride, why not adding a stride to Map, and convenient ctors from a Matrix,
349   // and Block.
350   typedef Map<Matrix<Scalar, Dynamic, Dynamic, StorageOrder> > MapLU;
351   typedef Block<MapLU, Dynamic, Dynamic> MatrixType;
352   typedef Block<MatrixType,Dynamic,Dynamic> BlockType;
353   typedef typename MatrixType::RealScalar RealScalar;
354 
355   /** \internal performs the LU decomposition in-place of the matrix \a lu
356     * using an unblocked algorithm.
357     *
358     * In addition, this function returns the row transpositions in the
359     * vector \a row_transpositions which must have a size equal to the number
360     * of columns of the matrix \a lu, and an integer \a nb_transpositions
361     * which returns the actual number of transpositions.
362     *
363     * \returns The index of the first pivot which is exactly zero if any, or a negative number otherwise.
364     */
365   static Index unblocked_lu(MatrixType& lu, PivIndex* row_transpositions, PivIndex& nb_transpositions)
366   {
367     typedef scalar_score_coeff_op<Scalar> Scoring;
368     typedef typename Scoring::result_type Score;
369     const Index rows = lu.rows();
370     const Index cols = lu.cols();
371     const Index size = (std::min)(rows,cols);
372     nb_transpositions = 0;
373     Index first_zero_pivot = -1;
374     for(Index k = 0; k < size; ++k)
375     {
376       Index rrows = rows-k-1;
377       Index rcols = cols-k-1;
378 
379       Index row_of_biggest_in_col;
380       Score biggest_in_corner
381         = lu.col(k).tail(rows-k).unaryExpr(Scoring()).maxCoeff(&row_of_biggest_in_col);
382       row_of_biggest_in_col += k;
383 
384       row_transpositions[k] = PivIndex(row_of_biggest_in_col);
385 
386       if(biggest_in_corner != Score(0))
387       {
388         if(k != row_of_biggest_in_col)
389         {
390           lu.row(k).swap(lu.row(row_of_biggest_in_col));
391           ++nb_transpositions;
392         }
393 
394         // FIXME shall we introduce a safe quotient expression in cas 1/lu.coeff(k,k)
395         // overflow but not the actual quotient?
396         lu.col(k).tail(rrows) /= lu.coeff(k,k);
397       }
398       else if(first_zero_pivot==-1)
399       {
400         // the pivot is exactly zero, we record the index of the first pivot which is exactly 0,
401         // and continue the factorization such we still have A = PLU
402         first_zero_pivot = k;
403       }
404 
405       if(k<rows-1)
406         lu.bottomRightCorner(rrows,rcols).noalias() -= lu.col(k).tail(rrows) * lu.row(k).tail(rcols);
407     }
408     return first_zero_pivot;
409   }
410 
411   /** \internal performs the LU decomposition in-place of the matrix represented
412     * by the variables \a rows, \a cols, \a lu_data, and \a lu_stride using a
413     * recursive, blocked algorithm.
414     *
415     * In addition, this function returns the row transpositions in the
416     * vector \a row_transpositions which must have a size equal to the number
417     * of columns of the matrix \a lu, and an integer \a nb_transpositions
418     * which returns the actual number of transpositions.
419     *
420     * \returns The index of the first pivot which is exactly zero if any, or a negative number otherwise.
421     *
422     * \note This very low level interface using pointers, etc. is to:
423     *   1 - reduce the number of instanciations to the strict minimum
424     *   2 - avoid infinite recursion of the instanciations with Block<Block<Block<...> > >
425     */
426   static Index blocked_lu(Index rows, Index cols, Scalar* lu_data, Index luStride, PivIndex* row_transpositions, PivIndex& nb_transpositions, Index maxBlockSize=256)
427   {
428     MapLU lu1(lu_data,StorageOrder==RowMajor?rows:luStride,StorageOrder==RowMajor?luStride:cols);
429     MatrixType lu(lu1,0,0,rows,cols);
430 
431     const Index size = (std::min)(rows,cols);
432 
433     // if the matrix is too small, no blocking:
434     if(size<=16)
435     {
436       return unblocked_lu(lu, row_transpositions, nb_transpositions);
437     }
438 
439     // automatically adjust the number of subdivisions to the size
440     // of the matrix so that there is enough sub blocks:
441     Index blockSize;
442     {
443       blockSize = size/8;
444       blockSize = (blockSize/16)*16;
445       blockSize = (std::min)((std::max)(blockSize,Index(8)), maxBlockSize);
446     }
447 
448     nb_transpositions = 0;
449     Index first_zero_pivot = -1;
450     for(Index k = 0; k < size; k+=blockSize)
451     {
452       Index bs = (std::min)(size-k,blockSize); // actual size of the block
453       Index trows = rows - k - bs; // trailing rows
454       Index tsize = size - k - bs; // trailing size
455 
456       // partition the matrix:
457       //                          A00 | A01 | A02
458       // lu  = A_0 | A_1 | A_2 =  A10 | A11 | A12
459       //                          A20 | A21 | A22
460       BlockType A_0(lu,0,0,rows,k);
461       BlockType A_2(lu,0,k+bs,rows,tsize);
462       BlockType A11(lu,k,k,bs,bs);
463       BlockType A12(lu,k,k+bs,bs,tsize);
464       BlockType A21(lu,k+bs,k,trows,bs);
465       BlockType A22(lu,k+bs,k+bs,trows,tsize);
466 
467       PivIndex nb_transpositions_in_panel;
468       // recursively call the blocked LU algorithm on [A11^T A21^T]^T
469       // with a very small blocking size:
470       Index ret = blocked_lu(trows+bs, bs, &lu.coeffRef(k,k), luStride,
471                    row_transpositions+k, nb_transpositions_in_panel, 16);
472       if(ret>=0 && first_zero_pivot==-1)
473         first_zero_pivot = k+ret;
474 
475       nb_transpositions += nb_transpositions_in_panel;
476       // update permutations and apply them to A_0
477       for(Index i=k; i<k+bs; ++i)
478       {
479         Index piv = (row_transpositions[i] += internal::convert_index<PivIndex>(k));
480         A_0.row(i).swap(A_0.row(piv));
481       }
482 
483       if(trows)
484       {
485         // apply permutations to A_2
486         for(Index i=k;i<k+bs; ++i)
487           A_2.row(i).swap(A_2.row(row_transpositions[i]));
488 
489         // A12 = A11^-1 A12
490         A11.template triangularView<UnitLower>().solveInPlace(A12);
491 
492         A22.noalias() -= A21 * A12;
493       }
494     }
495     return first_zero_pivot;
496   }
497 };
498 
499 /** \internal performs the LU decomposition with partial pivoting in-place.
500   */
501 template<typename MatrixType, typename TranspositionType>
502 void partial_lu_inplace(MatrixType& lu, TranspositionType& row_transpositions, typename TranspositionType::StorageIndex& nb_transpositions)
503 {
504   eigen_assert(lu.cols() == row_transpositions.size());
505   eigen_assert((&row_transpositions.coeffRef(1)-&row_transpositions.coeffRef(0)) == 1);
506 
507   partial_lu_impl
508     <typename MatrixType::Scalar, MatrixType::Flags&RowMajorBit?RowMajor:ColMajor, typename TranspositionType::StorageIndex>
509     ::blocked_lu(lu.rows(), lu.cols(), &lu.coeffRef(0,0), lu.outerStride(), &row_transpositions.coeffRef(0), nb_transpositions);
510 }
511 
512 } // end namespace internal
513 
514 template<typename MatrixType>
515 void PartialPivLU<MatrixType>::compute()
516 {
517   check_template_parameters();
518 
519   // the row permutation is stored as int indices, so just to be sure:
520   eigen_assert(m_lu.rows()<NumTraits<int>::highest());
521 
522   m_l1_norm = m_lu.cwiseAbs().colwise().sum().maxCoeff();
523 
524   eigen_assert(m_lu.rows() == m_lu.cols() && "PartialPivLU is only for square (and moreover invertible) matrices");
525   const Index size = m_lu.rows();
526 
527   m_rowsTranspositions.resize(size);
528 
529   typename TranspositionType::StorageIndex nb_transpositions;
530   internal::partial_lu_inplace(m_lu, m_rowsTranspositions, nb_transpositions);
531   m_det_p = (nb_transpositions%2) ? -1 : 1;
532 
533   m_p = m_rowsTranspositions;
534 
535   m_isInitialized = true;
536 }
537 
538 template<typename MatrixType>
539 typename PartialPivLU<MatrixType>::Scalar PartialPivLU<MatrixType>::determinant() const
540 {
541   eigen_assert(m_isInitialized && "PartialPivLU is not initialized.");
542   return Scalar(m_det_p) * m_lu.diagonal().prod();
543 }
544 
545 /** \returns the matrix represented by the decomposition,
546  * i.e., it returns the product: P^{-1} L U.
547  * This function is provided for debug purpose. */
548 template<typename MatrixType>
549 MatrixType PartialPivLU<MatrixType>::reconstructedMatrix() const
550 {
551   eigen_assert(m_isInitialized && "LU is not initialized.");
552   // LU
553   MatrixType res = m_lu.template triangularView<UnitLower>().toDenseMatrix()
554                  * m_lu.template triangularView<Upper>();
555 
556   // P^{-1}(LU)
557   res = m_p.inverse() * res;
558 
559   return res;
560 }
561 
562 /***** Implementation details *****************************************************/
563 
564 namespace internal {
565 
566 /***** Implementation of inverse() *****************************************************/
567 template<typename DstXprType, typename MatrixType>
568 struct Assignment<DstXprType, Inverse<PartialPivLU<MatrixType> >, internal::assign_op<typename DstXprType::Scalar,typename PartialPivLU<MatrixType>::Scalar>, Dense2Dense>
569 {
570   typedef PartialPivLU<MatrixType> LuType;
571   typedef Inverse<LuType> SrcXprType;
572   static void run(DstXprType &dst, const SrcXprType &src, const internal::assign_op<typename DstXprType::Scalar,typename LuType::Scalar> &)
573   {
574     dst = src.nestedExpression().solve(MatrixType::Identity(src.rows(), src.cols()));
575   }
576 };
577 } // end namespace internal
578 
579 /******** MatrixBase methods *******/
580 
581 /** \lu_module
582   *
583   * \return the partial-pivoting LU decomposition of \c *this.
584   *
585   * \sa class PartialPivLU
586   */
587 template<typename Derived>
588 inline const PartialPivLU<typename MatrixBase<Derived>::PlainObject>
589 MatrixBase<Derived>::partialPivLu() const
590 {
591   return PartialPivLU<PlainObject>(eval());
592 }
593 
594 /** \lu_module
595   *
596   * Synonym of partialPivLu().
597   *
598   * \return the partial-pivoting LU decomposition of \c *this.
599   *
600   * \sa class PartialPivLU
601   */
602 template<typename Derived>
603 inline const PartialPivLU<typename MatrixBase<Derived>::PlainObject>
604 MatrixBase<Derived>::lu() const
605 {
606   return PartialPivLU<PlainObject>(eval());
607 }
608 
609 } // end namespace Eigen
610 
611 #endif // EIGEN_PARTIALLU_H
612