• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
2                      "http://www.w3.org/TR/html4/strict.dtd">
3<html>
4<head>
5  <title>LLVM's Analysis and Transform Passes</title>
6  <link rel="stylesheet" href="llvm.css" type="text/css">
7  <meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
8</head>
9<body>
10
11<!--
12
13If Passes.html is up to date, the following "one-liner" should print
14an empty diff.
15
16egrep -e '^<tr><td><a href="#.*">-.*</a></td><td>.*</td></tr>$' \
17      -e '^  <a name=".*">.*</a>$' < Passes.html >html; \
18perl >help <<'EOT' && diff -u help html; rm -f help html
19open HTML, "<Passes.html" or die "open: Passes.html: $!\n";
20while (<HTML>) {
21  m:^<tr><td><a href="#(.*)">-.*</a></td><td>.*</td></tr>$: or next;
22  $order{$1} = sprintf("%03d", 1 + int %order);
23}
24open HELP, "../Release/bin/opt -help|" or die "open: opt -help: $!\n";
25while (<HELP>) {
26  m:^    -([^ ]+) +- (.*)$: or next;
27  my $o = $order{$1};
28  $o = "000" unless defined $o;
29  push @x, "$o<tr><td><a href=\"#$1\">-$1</a></td><td>$2</td></tr>\n";
30  push @y, "$o  <a name=\"$1\">-$1: $2</a>\n";
31}
32@x = map { s/^\d\d\d//; $_ } sort @x;
33@y = map { s/^\d\d\d//; $_ } sort @y;
34print @x, @y;
35EOT
36
37This (real) one-liner can also be helpful when converting comments to HTML:
38
39perl -e '$/ = undef; for (split(/\n/, <>)) { s:^ *///? ?::; print "  <p>\n" if !$on && $_ =~ /\S/; print "  </p>\n" if $on && $_ =~ /^\s*$/; print "  $_\n"; $on = ($_ =~ /\S/); } print "  </p>\n" if $on'
40
41  -->
42
43<h1>LLVM's Analysis and Transform Passes</h1>
44
45<ol>
46  <li><a href="#intro">Introduction</a></li>
47  <li><a href="#analyses">Analysis Passes</a>
48  <li><a href="#transforms">Transform Passes</a></li>
49  <li><a href="#utilities">Utility Passes</a></li>
50</ol>
51
52<div class="doc_author">
53  <p>Written by <a href="mailto:rspencer@x10sys.com">Reid Spencer</a>
54            and Gordon Henriksen</p>
55</div>
56
57<!-- ======================================================================= -->
58<h2><a name="intro">Introduction</a></h2>
59<div>
60  <p>This document serves as a high level summary of the optimization features
61  that LLVM provides. Optimizations are implemented as Passes that traverse some
62  portion of a program to either collect information or transform the program.
63  The table below divides the passes that LLVM provides into three categories.
64  Analysis passes compute information that other passes can use or for debugging
65  or program visualization purposes. Transform passes can use (or invalidate)
66  the analysis passes. Transform passes all mutate the program in some way.
67  Utility passes provides some utility but don't otherwise fit categorization.
68  For example passes to extract functions to bitcode or write a module to
69  bitcode are neither analysis nor transform passes.
70  <p>The table below provides a quick summary of each pass and links to the more
71  complete pass description later in the document.</p>
72
73<table>
74<tr><th colspan="2"><b>ANALYSIS PASSES</b></th></tr>
75<tr><th>Option</th><th>Name</th></tr>
76<tr><td><a href="#aa-eval">-aa-eval</a></td><td>Exhaustive Alias Analysis Precision Evaluator</td></tr>
77<tr><td><a href="#basicaa">-basicaa</a></td><td>Basic Alias Analysis (stateless AA impl)</td></tr>
78<tr><td><a href="#basiccg">-basiccg</a></td><td>Basic CallGraph Construction</td></tr>
79<tr><td><a href="#count-aa">-count-aa</a></td><td>Count Alias Analysis Query Responses</td></tr>
80<tr><td><a href="#debug-aa">-debug-aa</a></td><td>AA use debugger</td></tr>
81<tr><td><a href="#domfrontier">-domfrontier</a></td><td>Dominance Frontier Construction</td></tr>
82<tr><td><a href="#domtree">-domtree</a></td><td>Dominator Tree Construction</td></tr>
83<tr><td><a href="#dot-callgraph">-dot-callgraph</a></td><td>Print Call Graph to 'dot' file</td></tr>
84<tr><td><a href="#dot-cfg">-dot-cfg</a></td><td>Print CFG of function to 'dot' file</td></tr>
85<tr><td><a href="#dot-cfg-only">-dot-cfg-only</a></td><td>Print CFG of function to 'dot' file (with no function bodies)</td></tr>
86<tr><td><a href="#dot-dom">-dot-dom</a></td><td>Print dominance tree of function to 'dot' file</td></tr>
87<tr><td><a href="#dot-dom-only">-dot-dom-only</a></td><td>Print dominance tree of function to 'dot' file (with no function bodies)</td></tr>
88<tr><td><a href="#dot-postdom">-dot-postdom</a></td><td>Print postdominance tree of function to 'dot' file</td></tr>
89<tr><td><a href="#dot-postdom-only">-dot-postdom-only</a></td><td>Print postdominance tree of function to 'dot' file (with no function bodies)</td></tr>
90<tr><td><a href="#globalsmodref-aa">-globalsmodref-aa</a></td><td>Simple mod/ref analysis for globals</td></tr>
91<tr><td><a href="#instcount">-instcount</a></td><td>Counts the various types of Instructions</td></tr>
92<tr><td><a href="#intervals">-intervals</a></td><td>Interval Partition Construction</td></tr>
93<tr><td><a href="#iv-users">-iv-users</a></td><td>Induction Variable Users</td></tr>
94<tr><td><a href="#lazy-value-info">-lazy-value-info</a></td><td>Lazy Value Information Analysis</td></tr>
95<tr><td><a href="#lda">-lda</a></td><td>Loop Dependence Analysis</td></tr>
96<tr><td><a href="#libcall-aa">-libcall-aa</a></td><td>LibCall Alias Analysis</td></tr>
97<tr><td><a href="#lint">-lint</a></td><td>Statically lint-checks LLVM IR</td></tr>
98<tr><td><a href="#loops">-loops</a></td><td>Natural Loop Information</td></tr>
99<tr><td><a href="#memdep">-memdep</a></td><td>Memory Dependence Analysis</td></tr>
100<tr><td><a href="#module-debuginfo">-module-debuginfo</a></td><td>Decodes module-level debug info</td></tr>
101<tr><td><a href="#no-aa">-no-aa</a></td><td>No Alias Analysis (always returns 'may' alias)</td></tr>
102<tr><td><a href="#no-profile">-no-profile</a></td><td>No Profile Information</td></tr>
103<tr><td><a href="#postdomfrontier">-postdomfrontier</a></td><td>Post-Dominance Frontier Construction</td></tr>
104<tr><td><a href="#postdomtree">-postdomtree</a></td><td>Post-Dominator Tree Construction</td></tr>
105<tr><td><a href="#print-alias-sets">-print-alias-sets</a></td><td>Alias Set Printer</td></tr>
106<tr><td><a href="#print-callgraph">-print-callgraph</a></td><td>Print a call graph</td></tr>
107<tr><td><a href="#print-callgraph-sccs">-print-callgraph-sccs</a></td><td>Print SCCs of the Call Graph</td></tr>
108<tr><td><a href="#print-cfg-sccs">-print-cfg-sccs</a></td><td>Print SCCs of each function CFG</td></tr>
109<tr><td><a href="#print-dbginfo">-print-dbginfo</a></td><td>Print debug info in human readable form</td></tr>
110<tr><td><a href="#print-dom-info">-print-dom-info</a></td><td>Dominator Info Printer</td></tr>
111<tr><td><a href="#print-externalfnconstants">-print-externalfnconstants</a></td><td>Print external fn callsites passed constants</td></tr>
112<tr><td><a href="#print-function">-print-function</a></td><td>Print function to stderr</td></tr>
113<tr><td><a href="#print-module">-print-module</a></td><td>Print module to stderr</td></tr>
114<tr><td><a href="#print-used-types">-print-used-types</a></td><td>Find Used Types</td></tr>
115<tr><td><a href="#profile-estimator">-profile-estimator</a></td><td>Estimate profiling information</td></tr>
116<tr><td><a href="#profile-loader">-profile-loader</a></td><td>Load profile information from llvmprof.out</td></tr>
117<tr><td><a href="#profile-verifier">-profile-verifier</a></td><td>Verify profiling information</td></tr>
118<tr><td><a href="#regions">-regions</a></td><td>Detect single entry single exit regions</td></tr>
119<tr><td><a href="#scalar-evolution">-scalar-evolution</a></td><td>Scalar Evolution Analysis</td></tr>
120<tr><td><a href="#scev-aa">-scev-aa</a></td><td>ScalarEvolution-based Alias Analysis</td></tr>
121<tr><td><a href="#targetdata">-targetdata</a></td><td>Target Data Layout</td></tr>
122
123
124<tr><th colspan="2"><b>TRANSFORM PASSES</b></th></tr>
125<tr><th>Option</th><th>Name</th></tr>
126<tr><td><a href="#adce">-adce</a></td><td>Aggressive Dead Code Elimination</td></tr>
127<tr><td><a href="#always-inline">-always-inline</a></td><td>Inliner for always_inline functions</td></tr>
128<tr><td><a href="#argpromotion">-argpromotion</a></td><td>Promote 'by reference' arguments to scalars</td></tr>
129<tr><td><a href="#block-placement">-block-placement</a></td><td>Profile Guided Basic Block Placement</td></tr>
130<tr><td><a href="#break-crit-edges">-break-crit-edges</a></td><td>Break critical edges in CFG</td></tr>
131<tr><td><a href="#codegenprepare">-codegenprepare</a></td><td>Optimize for code generation</td></tr>
132<tr><td><a href="#constmerge">-constmerge</a></td><td>Merge Duplicate Global Constants</td></tr>
133<tr><td><a href="#constprop">-constprop</a></td><td>Simple constant propagation</td></tr>
134<tr><td><a href="#dce">-dce</a></td><td>Dead Code Elimination</td></tr>
135<tr><td><a href="#deadargelim">-deadargelim</a></td><td>Dead Argument Elimination</td></tr>
136<tr><td><a href="#deadtypeelim">-deadtypeelim</a></td><td>Dead Type Elimination</td></tr>
137<tr><td><a href="#die">-die</a></td><td>Dead Instruction Elimination</td></tr>
138<tr><td><a href="#dse">-dse</a></td><td>Dead Store Elimination</td></tr>
139<tr><td><a href="#functionattrs">-functionattrs</a></td><td>Deduce function attributes</td></tr>
140<tr><td><a href="#globaldce">-globaldce</a></td><td>Dead Global Elimination</td></tr>
141<tr><td><a href="#globalopt">-globalopt</a></td><td>Global Variable Optimizer</td></tr>
142<tr><td><a href="#gvn">-gvn</a></td><td>Global Value Numbering</td></tr>
143<tr><td><a href="#indvars">-indvars</a></td><td>Canonicalize Induction Variables</td></tr>
144<tr><td><a href="#inline">-inline</a></td><td>Function Integration/Inlining</td></tr>
145<tr><td><a href="#insert-edge-profiling">-insert-edge-profiling</a></td><td>Insert instrumentation for edge profiling</td></tr>
146<tr><td><a href="#insert-optimal-edge-profiling">-insert-optimal-edge-profiling</a></td><td>Insert optimal instrumentation for edge profiling</td></tr>
147<tr><td><a href="#instcombine">-instcombine</a></td><td>Combine redundant instructions</td></tr>
148<tr><td><a href="#internalize">-internalize</a></td><td>Internalize Global Symbols</td></tr>
149<tr><td><a href="#ipconstprop">-ipconstprop</a></td><td>Interprocedural constant propagation</td></tr>
150<tr><td><a href="#ipsccp">-ipsccp</a></td><td>Interprocedural Sparse Conditional Constant Propagation</td></tr>
151<tr><td><a href="#jump-threading">-jump-threading</a></td><td>Jump Threading</td></tr>
152<tr><td><a href="#lcssa">-lcssa</a></td><td>Loop-Closed SSA Form Pass</td></tr>
153<tr><td><a href="#licm">-licm</a></td><td>Loop Invariant Code Motion</td></tr>
154<tr><td><a href="#loop-deletion">-loop-deletion</a></td><td>Delete dead loops</td></tr>
155<tr><td><a href="#loop-extract">-loop-extract</a></td><td>Extract loops into new functions</td></tr>
156<tr><td><a href="#loop-extract-single">-loop-extract-single</a></td><td>Extract at most one loop into a new function</td></tr>
157<tr><td><a href="#loop-reduce">-loop-reduce</a></td><td>Loop Strength Reduction</td></tr>
158<tr><td><a href="#loop-rotate">-loop-rotate</a></td><td>Rotate Loops</td></tr>
159<tr><td><a href="#loop-simplify">-loop-simplify</a></td><td>Canonicalize natural loops</td></tr>
160<tr><td><a href="#loop-unroll">-loop-unroll</a></td><td>Unroll loops</td></tr>
161<tr><td><a href="#loop-unswitch">-loop-unswitch</a></td><td>Unswitch loops</td></tr>
162<tr><td><a href="#loweratomic">-loweratomic</a></td><td>Lower atomic intrinsics to non-atomic form</td></tr>
163<tr><td><a href="#lowerinvoke">-lowerinvoke</a></td><td>Lower invoke and unwind, for unwindless code generators</td></tr>
164<tr><td><a href="#lowerswitch">-lowerswitch</a></td><td>Lower SwitchInst's to branches</td></tr>
165<tr><td><a href="#mem2reg">-mem2reg</a></td><td>Promote Memory to Register</td></tr>
166<tr><td><a href="#memcpyopt">-memcpyopt</a></td><td>MemCpy Optimization</td></tr>
167<tr><td><a href="#mergefunc">-mergefunc</a></td><td>Merge Functions</td></tr>
168<tr><td><a href="#mergereturn">-mergereturn</a></td><td>Unify function exit nodes</td></tr>
169<tr><td><a href="#partial-inliner">-partial-inliner</a></td><td>Partial Inliner</td></tr>
170<tr><td><a href="#prune-eh">-prune-eh</a></td><td>Remove unused exception handling info</td></tr>
171<tr><td><a href="#reassociate">-reassociate</a></td><td>Reassociate expressions</td></tr>
172<tr><td><a href="#reg2mem">-reg2mem</a></td><td>Demote all values to stack slots</td></tr>
173<tr><td><a href="#scalarrepl">-scalarrepl</a></td><td>Scalar Replacement of Aggregates (DT)</td></tr>
174<tr><td><a href="#sccp">-sccp</a></td><td>Sparse Conditional Constant Propagation</td></tr>
175<tr><td><a href="#simplify-libcalls">-simplify-libcalls</a></td><td>Simplify well-known library calls</td></tr>
176<tr><td><a href="#simplifycfg">-simplifycfg</a></td><td>Simplify the CFG</td></tr>
177<tr><td><a href="#sink">-sink</a></td><td>Code sinking</td></tr>
178<tr><td><a href="#sretpromotion">-sretpromotion</a></td><td>Promote sret arguments to multiple ret values</td></tr>
179<tr><td><a href="#strip">-strip</a></td><td>Strip all symbols from a module</td></tr>
180<tr><td><a href="#strip-dead-debug-info">-strip-dead-debug-info</a></td><td>Strip debug info for unused symbols</td></tr>
181<tr><td><a href="#strip-dead-prototypes">-strip-dead-prototypes</a></td><td>Strip Unused Function Prototypes</td></tr>
182<tr><td><a href="#strip-debug-declare">-strip-debug-declare</a></td><td>Strip all llvm.dbg.declare intrinsics</td></tr>
183<tr><td><a href="#strip-nondebug">-strip-nondebug</a></td><td>Strip all symbols, except dbg symbols, from a module</td></tr>
184<tr><td><a href="#tailcallelim">-tailcallelim</a></td><td>Tail Call Elimination</td></tr>
185<tr><td><a href="#tailduplicate">-tailduplicate</a></td><td>Tail Duplication</td></tr>
186
187
188<tr><th colspan="2"><b>UTILITY PASSES</b></th></tr>
189<tr><th>Option</th><th>Name</th></tr>
190<tr><td><a href="#deadarghaX0r">-deadarghaX0r</a></td><td>Dead Argument Hacking (BUGPOINT USE ONLY; DO NOT USE)</td></tr>
191<tr><td><a href="#extract-blocks">-extract-blocks</a></td><td>Extract Basic Blocks From Module (for bugpoint use)</td></tr>
192<tr><td><a href="#instnamer">-instnamer</a></td><td>Assign names to anonymous instructions</td></tr>
193<tr><td><a href="#preverify">-preverify</a></td><td>Preliminary module verification</td></tr>
194<tr><td><a href="#verify">-verify</a></td><td>Module Verifier</td></tr>
195<tr><td><a href="#view-cfg">-view-cfg</a></td><td>View CFG of function</td></tr>
196<tr><td><a href="#view-cfg-only">-view-cfg-only</a></td><td>View CFG of function (with no function bodies)</td></tr>
197<tr><td><a href="#view-dom">-view-dom</a></td><td>View dominance tree of function</td></tr>
198<tr><td><a href="#view-dom-only">-view-dom-only</a></td><td>View dominance tree of function (with no function bodies)</td></tr>
199<tr><td><a href="#view-postdom">-view-postdom</a></td><td>View postdominance tree of function</td></tr>
200<tr><td><a href="#view-postdom-only">-view-postdom-only</a></td><td>View postdominance tree of function (with no function bodies)</td></tr>
201</table>
202
203</div>
204
205<!-- ======================================================================= -->
206<h2><a name="analyses">Analysis Passes</a></h2>
207<div>
208  <p>This section describes the LLVM Analysis Passes.</p>
209
210<!-------------------------------------------------------------------------- -->
211<h3>
212  <a name="aa-eval">-aa-eval: Exhaustive Alias Analysis Precision Evaluator</a>
213</h3>
214<div>
215  <p>This is a simple N^2 alias analysis accuracy evaluator.
216  Basically, for each function in the program, it simply queries to see how the
217  alias analysis implementation answers alias queries between each pair of
218  pointers in the function.</p>
219
220  <p>This is inspired and adapted from code by: Naveen Neelakantam, Francesco
221  Spadini, and Wojciech Stryjewski.</p>
222</div>
223
224<!-------------------------------------------------------------------------- -->
225<h3>
226  <a name="basicaa">-basicaa: Basic Alias Analysis (stateless AA impl)</a>
227</h3>
228<div>
229  <p>
230  This is the default implementation of the Alias Analysis interface
231  that simply implements a few identities (two different globals cannot alias,
232  etc), but otherwise does no analysis.
233  </p>
234</div>
235
236<!-------------------------------------------------------------------------- -->
237<h3>
238  <a name="basiccg">-basiccg: Basic CallGraph Construction</a>
239</h3>
240<div>
241  <p>Yet to be written.</p>
242</div>
243
244<!-------------------------------------------------------------------------- -->
245<h3>
246  <a name="count-aa">-count-aa: Count Alias Analysis Query Responses</a>
247</h3>
248<div>
249  <p>
250  A pass which can be used to count how many alias queries
251  are being made and how the alias analysis implementation being used responds.
252  </p>
253</div>
254
255<!-------------------------------------------------------------------------- -->
256<h3>
257  <a name="debug-aa">-debug-aa: AA use debugger</a>
258</h3>
259<div>
260  <p>
261  This simple pass checks alias analysis users to ensure that if they
262  create a new value, they do not query AA without informing it of the value.
263  It acts as a shim over any other AA pass you want.
264  </p>
265
266  <p>
267  Yes keeping track of every value in the program is expensive, but this is
268  a debugging pass.
269  </p>
270</div>
271
272<!-------------------------------------------------------------------------- -->
273<h3>
274  <a name="domfrontier">-domfrontier: Dominance Frontier Construction</a>
275</h3>
276<div>
277  <p>
278  This pass is a simple dominator construction algorithm for finding forward
279  dominator frontiers.
280  </p>
281</div>
282
283<!-------------------------------------------------------------------------- -->
284<h3>
285  <a name="domtree">-domtree: Dominator Tree Construction</a>
286</h3>
287<div>
288  <p>
289  This pass is a simple dominator construction algorithm for finding forward
290  dominators.
291  </p>
292</div>
293
294<!-------------------------------------------------------------------------- -->
295<h3>
296  <a name="dot-callgraph">-dot-callgraph: Print Call Graph to 'dot' file</a>
297</h3>
298<div>
299  <p>
300  This pass, only available in <code>opt</code>, prints the call graph into a
301  <code>.dot</code> graph.  This graph can then be processed with the "dot" tool
302  to convert it to postscript or some other suitable format.
303  </p>
304</div>
305
306<!-------------------------------------------------------------------------- -->
307<h3>
308  <a name="dot-cfg">-dot-cfg: Print CFG of function to 'dot' file</a>
309</h3>
310<div>
311  <p>
312  This pass, only available in <code>opt</code>, prints the control flow graph
313  into a <code>.dot</code> graph.  This graph can then be processed with the
314  "dot" tool to convert it to postscript or some other suitable format.
315  </p>
316</div>
317
318<!-------------------------------------------------------------------------- -->
319<h3>
320  <a name="dot-cfg-only">-dot-cfg-only: Print CFG of function to 'dot' file (with no function bodies)</a>
321</h3>
322<div>
323  <p>
324  This pass, only available in <code>opt</code>, prints the control flow graph
325  into a <code>.dot</code> graph, omitting the function bodies.  This graph can
326  then be processed with the "dot" tool to convert it to postscript or some
327  other suitable format.
328  </p>
329</div>
330
331<!-------------------------------------------------------------------------- -->
332<h3>
333  <a name="dot-dom">-dot-dom: Print dominance tree of function to 'dot' file</a>
334</h3>
335<div>
336  <p>
337  This pass, only available in <code>opt</code>, prints the dominator tree
338  into a <code>.dot</code> graph.  This graph can then be processed with the
339  "dot" tool to convert it to postscript or some other suitable format.
340  </p>
341</div>
342
343<!-------------------------------------------------------------------------- -->
344<h3>
345  <a name="dot-dom-only">-dot-dom-only: Print dominance tree of function to 'dot' file (with no function bodies)</a>
346</h3>
347<div>
348  <p>
349  This pass, only available in <code>opt</code>, prints the dominator tree
350  into a <code>.dot</code> graph, omitting the function bodies.  This graph can
351  then be processed with the "dot" tool to convert it to postscript or some
352  other suitable format.
353  </p>
354</div>
355
356<!-------------------------------------------------------------------------- -->
357<h3>
358  <a name="dot-postdom">-dot-postdom: Print postdominance tree of function to 'dot' file</a>
359</h3>
360<div>
361  <p>
362  This pass, only available in <code>opt</code>, prints the post dominator tree
363  into a <code>.dot</code> graph.  This graph can then be processed with the
364  "dot" tool to convert it to postscript or some other suitable format.
365  </p>
366</div>
367
368<!-------------------------------------------------------------------------- -->
369<h3>
370  <a name="dot-postdom-only">-dot-postdom-only: Print postdominance tree of function to 'dot' file (with no function bodies)</a>
371</h3>
372<div>
373  <p>
374  This pass, only available in <code>opt</code>, prints the post dominator tree
375  into a <code>.dot</code> graph, omitting the function bodies.  This graph can
376  then be processed with the "dot" tool to convert it to postscript or some
377  other suitable format.
378  </p>
379</div>
380
381<!-------------------------------------------------------------------------- -->
382<h3>
383  <a name="globalsmodref-aa">-globalsmodref-aa: Simple mod/ref analysis for globals</a>
384</h3>
385<div>
386  <p>
387  This simple pass provides alias and mod/ref information for global values
388  that do not have their address taken, and keeps track of whether functions
389  read or write memory (are "pure").  For this simple (but very common) case,
390  we can provide pretty accurate and useful information.
391  </p>
392</div>
393
394<!-------------------------------------------------------------------------- -->
395<h3>
396  <a name="instcount">-instcount: Counts the various types of Instructions</a>
397</h3>
398<div>
399  <p>
400  This pass collects the count of all instructions and reports them
401  </p>
402</div>
403
404<!-------------------------------------------------------------------------- -->
405<h3>
406  <a name="intervals">-intervals: Interval Partition Construction</a>
407</h3>
408<div>
409  <p>
410  This analysis calculates and represents the interval partition of a function,
411  or a preexisting interval partition.
412  </p>
413
414  <p>
415  In this way, the interval partition may be used to reduce a flow graph down
416  to its degenerate single node interval partition (unless it is irreducible).
417  </p>
418</div>
419
420<!-------------------------------------------------------------------------- -->
421<h3>
422  <a name="iv-users">-iv-users: Induction Variable Users</a>
423</h3>
424<div>
425  <p>Bookkeeping for "interesting" users of expressions computed from
426  induction variables.</p>
427</div>
428
429<!-------------------------------------------------------------------------- -->
430<h3>
431  <a name="lazy-value-info">-lazy-value-info: Lazy Value Information Analysis</a>
432</h3>
433<div>
434  <p>Interface for lazy computation of value constraint information.</p>
435</div>
436
437<!-------------------------------------------------------------------------- -->
438<h3>
439  <a name="lda">-lda: Loop Dependence Analysis</a>
440</h3>
441<div>
442  <p>Loop dependence analysis framework, which is used to detect dependences in
443  memory accesses in loops.</p>
444</div>
445
446<!-------------------------------------------------------------------------- -->
447<h3>
448  <a name="libcall-aa">-libcall-aa: LibCall Alias Analysis</a>
449</h3>
450<div>
451  <p>LibCall Alias Analysis.</p>
452</div>
453
454<!-------------------------------------------------------------------------- -->
455<h3>
456  <a name="lint">-lint: Statically lint-checks LLVM IR</a>
457</h3>
458<div>
459  <p>This pass statically checks for common and easily-identified constructs
460  which produce undefined or likely unintended behavior in LLVM IR.</p>
461
462  <p>It is not a guarantee of correctness, in two ways. First, it isn't
463  comprehensive. There are checks which could be done statically which are
464  not yet implemented. Some of these are indicated by TODO comments, but
465  those aren't comprehensive either. Second, many conditions cannot be
466  checked statically. This pass does no dynamic instrumentation, so it
467  can't check for all possible problems.</p>
468
469  <p>Another limitation is that it assumes all code will be executed. A store
470  through a null pointer in a basic block which is never reached is harmless,
471  but this pass will warn about it anyway.</p>
472
473  <p>Optimization passes may make conditions that this pass checks for more or
474  less obvious. If an optimization pass appears to be introducing a warning,
475  it may be that the optimization pass is merely exposing an existing
476  condition in the code.</p>
477
478  <p>This code may be run before instcombine. In many cases, instcombine checks
479  for the same kinds of things and turns instructions with undefined behavior
480  into unreachable (or equivalent). Because of this, this pass makes some
481  effort to look through bitcasts and so on.
482  </p>
483</div>
484
485<!-------------------------------------------------------------------------- -->
486<h3>
487  <a name="loops">-loops: Natural Loop Information</a>
488</h3>
489<div>
490  <p>
491  This analysis is used to identify natural loops and determine the loop depth
492  of various nodes of the CFG.  Note that the loops identified may actually be
493  several natural loops that share the same header node... not just a single
494  natural loop.
495  </p>
496</div>
497
498<!-------------------------------------------------------------------------- -->
499<h3>
500  <a name="memdep">-memdep: Memory Dependence Analysis</a>
501</h3>
502<div>
503  <p>
504  An analysis that determines, for a given memory operation, what preceding
505  memory operations it depends on.  It builds on alias analysis information, and
506  tries to provide a lazy, caching interface to a common kind of alias
507  information query.
508  </p>
509</div>
510
511<!-------------------------------------------------------------------------- -->
512<h3>
513  <a name="module-debuginfo">-module-debuginfo: Decodes module-level debug info</a>
514</h3>
515<div>
516  <p>This pass decodes the debug info metadata in a module and prints in a
517 (sufficiently-prepared-) human-readable form.
518
519 For example, run this pass from opt along with the -analyze option, and
520 it'll print to standard output.
521  </p>
522</div>
523
524<!-------------------------------------------------------------------------- -->
525<h3>
526  <a name="no-aa">-no-aa: No Alias Analysis (always returns 'may' alias)</a>
527</h3>
528<div>
529  <p>
530  Always returns "I don't know" for alias queries.  NoAA is unlike other alias
531  analysis implementations, in that it does not chain to a previous analysis. As
532  such it doesn't follow many of the rules that other alias analyses must.
533  </p>
534</div>
535
536<!-------------------------------------------------------------------------- -->
537<h3>
538  <a name="no-profile">-no-profile: No Profile Information</a>
539</h3>
540<div>
541  <p>
542  The default "no profile" implementation of the abstract
543  <code>ProfileInfo</code> interface.
544  </p>
545</div>
546
547<!-------------------------------------------------------------------------- -->
548<h3>
549  <a name="postdomfrontier">-postdomfrontier: Post-Dominance Frontier Construction</a>
550</h3>
551<div>
552  <p>
553  This pass is a simple post-dominator construction algorithm for finding
554  post-dominator frontiers.
555  </p>
556</div>
557
558<!-------------------------------------------------------------------------- -->
559<h3>
560  <a name="postdomtree">-postdomtree: Post-Dominator Tree Construction</a>
561</h3>
562<div>
563  <p>
564  This pass is a simple post-dominator construction algorithm for finding
565  post-dominators.
566  </p>
567</div>
568
569<!-------------------------------------------------------------------------- -->
570<h3>
571  <a name="print-alias-sets">-print-alias-sets: Alias Set Printer</a>
572</h3>
573<div>
574  <p>Yet to be written.</p>
575</div>
576
577<!-------------------------------------------------------------------------- -->
578<h3>
579  <a name="print-callgraph">-print-callgraph: Print a call graph</a>
580</h3>
581<div>
582  <p>
583  This pass, only available in <code>opt</code>, prints the call graph to
584  standard error in a human-readable form.
585  </p>
586</div>
587
588<!-------------------------------------------------------------------------- -->
589<h3>
590  <a name="print-callgraph-sccs">-print-callgraph-sccs: Print SCCs of the Call Graph</a>
591</h3>
592<div>
593  <p>
594  This pass, only available in <code>opt</code>, prints the SCCs of the call
595  graph to standard error in a human-readable form.
596  </p>
597</div>
598
599<!-------------------------------------------------------------------------- -->
600<h3>
601  <a name="print-cfg-sccs">-print-cfg-sccs: Print SCCs of each function CFG</a>
602</h3>
603<div>
604  <p>
605  This pass, only available in <code>opt</code>, prints the SCCs of each
606  function CFG to standard error in a human-readable form.
607  </p>
608</div>
609
610<!-------------------------------------------------------------------------- -->
611<h3>
612  <a name="print-dbginfo">-print-dbginfo: Print debug info in human readable form</a>
613</h3>
614<div>
615  <p>Pass that prints instructions, and associated debug info:</p>
616  <ul>
617
618  <li>source/line/col information</li>
619  <li>original variable name</li>
620  <li>original type name</li>
621  </ul>
622</div>
623
624<!-------------------------------------------------------------------------- -->
625<h3>
626  <a name="print-dom-info">-print-dom-info: Dominator Info Printer</a>
627</h3>
628<div>
629  <p>Dominator Info Printer.</p>
630</div>
631
632<!-------------------------------------------------------------------------- -->
633<h3>
634  <a name="print-externalfnconstants">-print-externalfnconstants: Print external fn callsites passed constants</a>
635</h3>
636<div>
637  <p>
638  This pass, only available in <code>opt</code>, prints out call sites to
639  external functions that are called with constant arguments.  This can be
640  useful when looking for standard library functions we should constant fold
641  or handle in alias analyses.
642  </p>
643</div>
644
645<!-------------------------------------------------------------------------- -->
646<h3>
647  <a name="print-function">-print-function: Print function to stderr</a>
648</h3>
649<div>
650  <p>
651  The <code>PrintFunctionPass</code> class is designed to be pipelined with
652  other <code>FunctionPass</code>es, and prints out the functions of the module
653  as they are processed.
654  </p>
655</div>
656
657<!-------------------------------------------------------------------------- -->
658<h3>
659  <a name="print-module">-print-module: Print module to stderr</a>
660</h3>
661<div>
662  <p>
663  This pass simply prints out the entire module when it is executed.
664  </p>
665</div>
666
667<!-------------------------------------------------------------------------- -->
668<h3>
669  <a name="print-used-types">-print-used-types: Find Used Types</a>
670</h3>
671<div>
672  <p>
673  This pass is used to seek out all of the types in use by the program.  Note
674  that this analysis explicitly does not include types only used by the symbol
675  table.
676</div>
677
678<!-------------------------------------------------------------------------- -->
679<h3>
680  <a name="profile-estimator">-profile-estimator: Estimate profiling information</a>
681</h3>
682<div>
683  <p>Profiling information that estimates the profiling information
684  in a very crude and unimaginative way.
685  </p>
686</div>
687
688<!-------------------------------------------------------------------------- -->
689<h3>
690  <a name="profile-loader">-profile-loader: Load profile information from llvmprof.out</a>
691</h3>
692<div>
693  <p>
694  A concrete implementation of profiling information that loads the information
695  from a profile dump file.
696  </p>
697</div>
698
699<!-------------------------------------------------------------------------- -->
700<h3>
701  <a name="profile-verifier">-profile-verifier: Verify profiling information</a>
702</h3>
703<div>
704  <p>Pass that checks profiling information for plausibility.</p>
705</div>
706<h3>
707  <a name="regions">-regions: Detect single entry single exit regions</a>
708</h3>
709<div>
710  <p>
711  The <code>RegionInfo</code> pass detects single entry single exit regions in a
712  function, where a region is defined as any subgraph that is connected to the
713  remaining graph at only two spots. Furthermore, an hierarchical region tree is
714  built.
715  </p>
716</div>
717
718<!-------------------------------------------------------------------------- -->
719<h3>
720  <a name="scalar-evolution">-scalar-evolution: Scalar Evolution Analysis</a>
721</h3>
722<div>
723  <p>
724  The <code>ScalarEvolution</code> analysis can be used to analyze and
725  catagorize scalar expressions in loops.  It specializes in recognizing general
726  induction variables, representing them with the abstract and opaque
727  <code>SCEV</code> class.  Given this analysis, trip counts of loops and other
728  important properties can be obtained.
729  </p>
730
731  <p>
732  This analysis is primarily useful for induction variable substitution and
733  strength reduction.
734  </p>
735</div>
736
737<!-------------------------------------------------------------------------- -->
738<h3>
739  <a name="scev-aa">-scev-aa: ScalarEvolution-based Alias Analysis</a>
740</h3>
741<div>
742  <p>Simple alias analysis implemented in terms of ScalarEvolution queries.
743
744  This differs from traditional loop dependence analysis in that it tests
745  for dependencies within a single iteration of a loop, rather than
746  dependencies between different iterations.
747
748  ScalarEvolution has a more complete understanding of pointer arithmetic
749  than BasicAliasAnalysis' collection of ad-hoc analyses.
750  </p>
751</div>
752
753<!-------------------------------------------------------------------------- -->
754<h3>
755  <a name="targetdata">-targetdata: Target Data Layout</a>
756</h3>
757<div>
758  <p>Provides other passes access to information on how the size and alignment
759  required by the the target ABI for various data types.</p>
760</div>
761
762</div>
763
764<!-- ======================================================================= -->
765<h2><a name="transforms">Transform Passes</a></h2>
766<div>
767  <p>This section describes the LLVM Transform Passes.</p>
768
769<!-------------------------------------------------------------------------- -->
770<h3>
771  <a name="adce">-adce: Aggressive Dead Code Elimination</a>
772</h3>
773<div>
774  <p>ADCE aggressively tries to eliminate code. This pass is similar to
775  <a href="#dce">DCE</a> but it assumes that values are dead until proven
776  otherwise. This is similar to <a href="#sccp">SCCP</a>, except applied to
777  the liveness of values.</p>
778</div>
779
780<!-------------------------------------------------------------------------- -->
781<h3>
782  <a name="always-inline">-always-inline: Inliner for always_inline functions</a>
783</h3>
784<div>
785  <p>A custom inliner that handles only functions that are marked as
786  "always inline".</p>
787</div>
788
789<!-------------------------------------------------------------------------- -->
790<h3>
791  <a name="argpromotion">-argpromotion: Promote 'by reference' arguments to scalars</a>
792</h3>
793<div>
794  <p>
795  This pass promotes "by reference" arguments to be "by value" arguments.  In
796  practice, this means looking for internal functions that have pointer
797  arguments.  If it can prove, through the use of alias analysis, that an
798  argument is *only* loaded, then it can pass the value into the function
799  instead of the address of the value.  This can cause recursive simplification
800  of code and lead to the elimination of allocas (especially in C++ template
801  code like the STL).
802  </p>
803
804  <p>
805  This pass also handles aggregate arguments that are passed into a function,
806  scalarizing them if the elements of the aggregate are only loaded.  Note that
807  it refuses to scalarize aggregates which would require passing in more than
808  three operands to the function, because passing thousands of operands for a
809  large array or structure is unprofitable!
810  </p>
811
812  <p>
813  Note that this transformation could also be done for arguments that are only
814  stored to (returning the value instead), but does not currently.  This case
815  would be best handled when and if LLVM starts supporting multiple return
816  values from functions.
817  </p>
818</div>
819
820<!-------------------------------------------------------------------------- -->
821<h3>
822  <a name="block-placement">-block-placement: Profile Guided Basic Block Placement</a>
823</h3>
824<div>
825  <p>This pass is a very simple profile guided basic block placement algorithm.
826  The idea is to put frequently executed blocks together at the start of the
827  function and hopefully increase the number of fall-through conditional
828  branches.  If there is no profile information for a particular function, this
829  pass basically orders blocks in depth-first order.</p>
830</div>
831
832<!-------------------------------------------------------------------------- -->
833<h3>
834  <a name="break-crit-edges">-break-crit-edges: Break critical edges in CFG</a>
835</h3>
836<div>
837  <p>
838  Break all of the critical edges in the CFG by inserting a dummy basic block.
839  It may be "required" by passes that cannot deal with critical edges. This
840  transformation obviously invalidates the CFG, but can update forward dominator
841  (set, immediate dominators, tree, and frontier) information.
842  </p>
843</div>
844
845<!-------------------------------------------------------------------------- -->
846<h3>
847  <a name="codegenprepare">-codegenprepare: Optimize for code generation</a>
848</h3>
849<div>
850  This pass munges the code in the input function to better prepare it for
851  SelectionDAG-based code generation. This works around limitations in it's
852  basic-block-at-a-time approach. It should eventually be removed.
853</div>
854
855<!-------------------------------------------------------------------------- -->
856<h3>
857  <a name="constmerge">-constmerge: Merge Duplicate Global Constants</a>
858</h3>
859<div>
860  <p>
861  Merges duplicate global constants together into a single constant that is
862  shared.  This is useful because some passes (ie TraceValues) insert a lot of
863  string constants into the program, regardless of whether or not an existing
864  string is available.
865  </p>
866</div>
867
868<!-------------------------------------------------------------------------- -->
869<h3>
870  <a name="constprop">-constprop: Simple constant propagation</a>
871</h3>
872<div>
873  <p>This file implements constant propagation and merging. It looks for
874  instructions involving only constant operands and replaces them with a
875  constant value instead of an instruction. For example:</p>
876  <blockquote><pre>add i32 1, 2</pre></blockquote>
877  <p>becomes</p>
878  <blockquote><pre>i32 3</pre></blockquote>
879  <p>NOTE: this pass has a habit of making definitions be dead.  It is a good
880  idea to to run a <a href="#die">DIE</a> (Dead Instruction Elimination) pass
881  sometime after running this pass.</p>
882</div>
883
884<!-------------------------------------------------------------------------- -->
885<h3>
886  <a name="dce">-dce: Dead Code Elimination</a>
887</h3>
888<div>
889  <p>
890  Dead code elimination is similar to <a href="#die">dead instruction
891  elimination</a>, but it rechecks instructions that were used by removed
892  instructions to see if they are newly dead.
893  </p>
894</div>
895
896<!-------------------------------------------------------------------------- -->
897<h3>
898  <a name="deadargelim">-deadargelim: Dead Argument Elimination</a>
899</h3>
900<div>
901  <p>
902  This pass deletes dead arguments from internal functions.  Dead argument
903  elimination removes arguments which are directly dead, as well as arguments
904  only passed into function calls as dead arguments of other functions.  This
905  pass also deletes dead arguments in a similar way.
906  </p>
907
908  <p>
909  This pass is often useful as a cleanup pass to run after aggressive
910  interprocedural passes, which add possibly-dead arguments.
911  </p>
912</div>
913
914<!-------------------------------------------------------------------------- -->
915<h3>
916  <a name="deadtypeelim">-deadtypeelim: Dead Type Elimination</a>
917</h3>
918<div>
919  <p>
920  This pass is used to cleanup the output of GCC.  It eliminate names for types
921  that are unused in the entire translation unit, using the <a
922  href="#findusedtypes">find used types</a> pass.
923  </p>
924</div>
925
926<!-------------------------------------------------------------------------- -->
927<h3>
928  <a name="die">-die: Dead Instruction Elimination</a>
929</h3>
930<div>
931  <p>
932  Dead instruction elimination performs a single pass over the function,
933  removing instructions that are obviously dead.
934  </p>
935</div>
936
937<!-------------------------------------------------------------------------- -->
938<h3>
939  <a name="dse">-dse: Dead Store Elimination</a>
940</h3>
941<div>
942  <p>
943  A trivial dead store elimination that only considers basic-block local
944  redundant stores.
945  </p>
946</div>
947
948<!-------------------------------------------------------------------------- -->
949<h3>
950  <a name="functionattrs">-functionattrs: Deduce function attributes</a>
951</h3>
952<div>
953  <p>A simple interprocedural pass which walks the call-graph, looking for
954  functions which do not access or only read non-local memory, and marking them
955  readnone/readonly.  In addition, it marks function arguments (of pointer type)
956  'nocapture' if a call to the function does not create any copies of the pointer
957  value that outlive the call. This more or less means that the pointer is only
958  dereferenced, and not returned from the function or stored in a global.
959  This pass is implemented as a bottom-up traversal of the call-graph.
960  </p>
961</div>
962
963<!-------------------------------------------------------------------------- -->
964<h3>
965  <a name="globaldce">-globaldce: Dead Global Elimination</a>
966</h3>
967<div>
968  <p>
969  This transform is designed to eliminate unreachable internal globals from the
970  program.  It uses an aggressive algorithm, searching out globals that are
971  known to be alive.  After it finds all of the globals which are needed, it
972  deletes whatever is left over.  This allows it to delete recursive chunks of
973  the program which are unreachable.
974  </p>
975</div>
976
977<!-------------------------------------------------------------------------- -->
978<h3>
979  <a name="globalopt">-globalopt: Global Variable Optimizer</a>
980</h3>
981<div>
982  <p>
983  This pass transforms simple global variables that never have their address
984  taken.  If obviously true, it marks read/write globals as constant, deletes
985  variables only stored to, etc.
986  </p>
987</div>
988
989<!-------------------------------------------------------------------------- -->
990<h3>
991  <a name="gvn">-gvn: Global Value Numbering</a>
992</h3>
993<div>
994  <p>
995  This pass performs global value numbering to eliminate fully and partially
996  redundant instructions.  It also performs redundant load elimination.
997  </p>
998</div>
999
1000<!-------------------------------------------------------------------------- -->
1001<h3>
1002  <a name="indvars">-indvars: Canonicalize Induction Variables</a>
1003</h3>
1004<div>
1005  <p>
1006  This transformation analyzes and transforms the induction variables (and
1007  computations derived from them) into simpler forms suitable for subsequent
1008  analysis and transformation.
1009  </p>
1010
1011  <p>
1012  This transformation makes the following changes to each loop with an
1013  identifiable induction variable:
1014  </p>
1015
1016  <ol>
1017    <li>All loops are transformed to have a <em>single</em> canonical
1018        induction variable which starts at zero and steps by one.</li>
1019    <li>The canonical induction variable is guaranteed to be the first PHI node
1020        in the loop header block.</li>
1021    <li>Any pointer arithmetic recurrences are raised to use array
1022        subscripts.</li>
1023  </ol>
1024
1025  <p>
1026  If the trip count of a loop is computable, this pass also makes the following
1027  changes:
1028  </p>
1029
1030  <ol>
1031    <li>The exit condition for the loop is canonicalized to compare the
1032        induction value against the exit value.  This turns loops like:
1033        <blockquote><pre>for (i = 7; i*i < 1000; ++i)</pre></blockquote>
1034        into
1035        <blockquote><pre>for (i = 0; i != 25; ++i)</pre></blockquote></li>
1036    <li>Any use outside of the loop of an expression derived from the indvar
1037        is changed to compute the derived value outside of the loop, eliminating
1038        the dependence on the exit value of the induction variable.  If the only
1039        purpose of the loop is to compute the exit value of some derived
1040        expression, this transformation will make the loop dead.</li>
1041  </ol>
1042
1043  <p>
1044  This transformation should be followed by strength reduction after all of the
1045  desired loop transformations have been performed.  Additionally, on targets
1046  where it is profitable, the loop could be transformed to count down to zero
1047  (the "do loop" optimization).
1048  </p>
1049</div>
1050
1051<!-------------------------------------------------------------------------- -->
1052<h3>
1053  <a name="inline">-inline: Function Integration/Inlining</a>
1054</h3>
1055<div>
1056  <p>
1057  Bottom-up inlining of functions into callees.
1058  </p>
1059</div>
1060
1061<!-------------------------------------------------------------------------- -->
1062<h3>
1063  <a name="insert-edge-profiling">-insert-edge-profiling: Insert instrumentation for edge profiling</a>
1064</h3>
1065<div>
1066  <p>
1067  This pass instruments the specified program with counters for edge profiling.
1068  Edge profiling can give a reasonable approximation of the hot paths through a
1069  program, and is used for a wide variety of program transformations.
1070  </p>
1071
1072  <p>
1073  Note that this implementation is very naïve.  It inserts a counter for
1074  <em>every</em> edge in the program, instead of using control flow information
1075  to prune the number of counters inserted.
1076  </p>
1077</div>
1078
1079<!-------------------------------------------------------------------------- -->
1080<h3>
1081  <a name="insert-optimal-edge-profiling">-insert-optimal-edge-profiling: Insert optimal instrumentation for edge profiling</a>
1082</h3>
1083<div>
1084  <p>This pass instruments the specified program with counters for edge profiling.
1085  Edge profiling can give a reasonable approximation of the hot paths through a
1086  program, and is used for a wide variety of program transformations.
1087  </p>
1088</div>
1089
1090<!-------------------------------------------------------------------------- -->
1091<h3>
1092  <a name="instcombine">-instcombine: Combine redundant instructions</a>
1093</h3>
1094<div>
1095  <p>
1096  Combine instructions to form fewer, simple
1097  instructions.  This pass does not modify the CFG This pass is where algebraic
1098  simplification happens.
1099  </p>
1100
1101  <p>
1102  This pass combines things like:
1103  </p>
1104
1105<blockquote><pre
1106>%Y = add i32 %X, 1
1107%Z = add i32 %Y, 1</pre></blockquote>
1108
1109  <p>
1110  into:
1111  </p>
1112
1113<blockquote><pre
1114>%Z = add i32 %X, 2</pre></blockquote>
1115
1116  <p>
1117  This is a simple worklist driven algorithm.
1118  </p>
1119
1120  <p>
1121  This pass guarantees that the following canonicalizations are performed on
1122  the program:
1123  </p>
1124
1125  <ul>
1126    <li>If a binary operator has a constant operand, it is moved to the right-
1127        hand side.</li>
1128    <li>Bitwise operators with constant operands are always grouped so that
1129        shifts are performed first, then <code>or</code>s, then
1130        <code>and</code>s, then <code>xor</code>s.</li>
1131    <li>Compare instructions are converted from <code>&lt;</code>,
1132        <code>&gt;</code>, <code>≤</code>, or <code>≥</code> to
1133        <code>=</code> or <code>≠</code> if possible.</li>
1134    <li>All <code>cmp</code> instructions on boolean values are replaced with
1135        logical operations.</li>
1136    <li><code>add <var>X</var>, <var>X</var></code> is represented as
1137        <code>mul <var>X</var>, 2</code> ⇒ <code>shl <var>X</var>, 1</code></li>
1138    <li>Multiplies with a constant power-of-two argument are transformed into
1139        shifts.</li>
1140    <li>… etc.</li>
1141  </ul>
1142</div>
1143
1144<!-------------------------------------------------------------------------- -->
1145<h3>
1146  <a name="internalize">-internalize: Internalize Global Symbols</a>
1147</h3>
1148<div>
1149  <p>
1150  This pass loops over all of the functions in the input module, looking for a
1151  main function.  If a main function is found, all other functions and all
1152  global variables with initializers are marked as internal.
1153  </p>
1154</div>
1155
1156<!-------------------------------------------------------------------------- -->
1157<h3>
1158  <a name="ipconstprop">-ipconstprop: Interprocedural constant propagation</a>
1159</h3>
1160<div>
1161  <p>
1162  This pass implements an <em>extremely</em> simple interprocedural constant
1163  propagation pass.  It could certainly be improved in many different ways,
1164  like using a worklist.  This pass makes arguments dead, but does not remove
1165  them.  The existing dead argument elimination pass should be run after this
1166  to clean up the mess.
1167  </p>
1168</div>
1169
1170<!-------------------------------------------------------------------------- -->
1171<h3>
1172  <a name="ipsccp">-ipsccp: Interprocedural Sparse Conditional Constant Propagation</a>
1173</h3>
1174<div>
1175  <p>
1176  An interprocedural variant of <a href="#sccp">Sparse Conditional Constant
1177  Propagation</a>.
1178  </p>
1179</div>
1180
1181<!-------------------------------------------------------------------------- -->
1182<h3>
1183  <a name="jump-threading">-jump-threading: Jump Threading</a>
1184</h3>
1185<div>
1186  <p>
1187  Jump threading tries to find distinct threads of control flow running through
1188  a basic block. This pass looks at blocks that have multiple predecessors and
1189  multiple successors.  If one or more of the predecessors of the block can be
1190  proven to always cause a jump to one of the successors, we forward the edge
1191  from the predecessor to the successor by duplicating the contents of this
1192  block.
1193  </p>
1194  <p>
1195  An example of when this can occur is code like this:
1196  </p>
1197
1198  <pre
1199>if () { ...
1200  X = 4;
1201}
1202if (X &lt; 3) {</pre>
1203
1204  <p>
1205  In this case, the unconditional branch at the end of the first if can be
1206  revectored to the false side of the second if.
1207  </p>
1208</div>
1209
1210<!-------------------------------------------------------------------------- -->
1211<h3>
1212  <a name="lcssa">-lcssa: Loop-Closed SSA Form Pass</a>
1213</h3>
1214<div>
1215  <p>
1216  This pass transforms loops by placing phi nodes at the end of the loops for
1217  all values that are live across the loop boundary.  For example, it turns
1218  the left into the right code:
1219  </p>
1220
1221  <pre
1222>for (...)                for (...)
1223  if (c)                   if (c)
1224    X1 = ...                 X1 = ...
1225  else                     else
1226    X2 = ...                 X2 = ...
1227  X3 = phi(X1, X2)         X3 = phi(X1, X2)
1228... = X3 + 4              X4 = phi(X3)
1229                          ... = X4 + 4</pre>
1230
1231  <p>
1232  This is still valid LLVM; the extra phi nodes are purely redundant, and will
1233  be trivially eliminated by <code>InstCombine</code>.  The major benefit of
1234  this transformation is that it makes many other loop optimizations, such as
1235  LoopUnswitching, simpler.
1236  </p>
1237</div>
1238
1239<!-------------------------------------------------------------------------- -->
1240<h3>
1241  <a name="licm">-licm: Loop Invariant Code Motion</a>
1242</h3>
1243<div>
1244  <p>
1245  This pass performs loop invariant code motion, attempting to remove as much
1246  code from the body of a loop as possible.  It does this by either hoisting
1247  code into the preheader block, or by sinking code to the exit blocks if it is
1248  safe.  This pass also promotes must-aliased memory locations in the loop to
1249  live in registers, thus hoisting and sinking "invariant" loads and stores.
1250  </p>
1251
1252  <p>
1253  This pass uses alias analysis for two purposes:
1254  </p>
1255
1256  <ul>
1257    <li>Moving loop invariant loads and calls out of loops.  If we can determine
1258        that a load or call inside of a loop never aliases anything stored to,
1259        we can hoist it or sink it like any other instruction.</li>
1260    <li>Scalar Promotion of Memory - If there is a store instruction inside of
1261        the loop, we try to move the store to happen AFTER the loop instead of
1262        inside of the loop.  This can only happen if a few conditions are true:
1263        <ul>
1264          <li>The pointer stored through is loop invariant.</li>
1265          <li>There are no stores or loads in the loop which <em>may</em> alias
1266              the pointer.  There are no calls in the loop which mod/ref the
1267              pointer.</li>
1268        </ul>
1269        If these conditions are true, we can promote the loads and stores in the
1270        loop of the pointer to use a temporary alloca'd variable.  We then use
1271        the mem2reg functionality to construct the appropriate SSA form for the
1272        variable.</li>
1273  </ul>
1274</div>
1275
1276<!-------------------------------------------------------------------------- -->
1277<h3>
1278  <a name="loop-deletion">-loop-deletion: Delete dead loops</a>
1279</h3>
1280<div>
1281  <p>
1282  This file implements the Dead Loop Deletion Pass.  This pass is responsible
1283  for eliminating loops with non-infinite computable trip counts that have no
1284  side effects or volatile instructions, and do not contribute to the
1285  computation of the function's return value.
1286  </p>
1287</div>
1288
1289<!-------------------------------------------------------------------------- -->
1290<h3>
1291  <a name="loop-extract">-loop-extract: Extract loops into new functions</a>
1292</h3>
1293<div>
1294  <p>
1295  A pass wrapper around the <code>ExtractLoop()</code> scalar transformation to
1296  extract each top-level loop into its own new function. If the loop is the
1297  <em>only</em> loop in a given function, it is not touched. This is a pass most
1298  useful for debugging via bugpoint.
1299  </p>
1300</div>
1301
1302<!-------------------------------------------------------------------------- -->
1303<h3>
1304  <a name="loop-extract-single">-loop-extract-single: Extract at most one loop into a new function</a>
1305</h3>
1306<div>
1307  <p>
1308  Similar to <a href="#loop-extract">Extract loops into new functions</a>,
1309  this pass extracts one natural loop from the program into a function if it
1310  can. This is used by bugpoint.
1311  </p>
1312</div>
1313
1314<!-------------------------------------------------------------------------- -->
1315<h3>
1316  <a name="loop-reduce">-loop-reduce: Loop Strength Reduction</a>
1317</h3>
1318<div>
1319  <p>
1320  This pass performs a strength reduction on array references inside loops that
1321  have as one or more of their components the loop induction variable.  This is
1322  accomplished by creating a new value to hold the initial value of the array
1323  access for the first iteration, and then creating a new GEP instruction in
1324  the loop to increment the value by the appropriate amount.
1325  </p>
1326</div>
1327
1328<!-------------------------------------------------------------------------- -->
1329<h3>
1330  <a name="loop-rotate">-loop-rotate: Rotate Loops</a>
1331</h3>
1332<div>
1333  <p>A simple loop rotation transformation.</p>
1334</div>
1335
1336<!-------------------------------------------------------------------------- -->
1337<h3>
1338  <a name="loop-simplify">-loop-simplify: Canonicalize natural loops</a>
1339</h3>
1340<div>
1341  <p>
1342  This pass performs several transformations to transform natural loops into a
1343  simpler form, which makes subsequent analyses and transformations simpler and
1344  more effective.
1345  </p>
1346
1347  <p>
1348  Loop pre-header insertion guarantees that there is a single, non-critical
1349  entry edge from outside of the loop to the loop header.  This simplifies a
1350  number of analyses and transformations, such as LICM.
1351  </p>
1352
1353  <p>
1354  Loop exit-block insertion guarantees that all exit blocks from the loop
1355  (blocks which are outside of the loop that have predecessors inside of the
1356  loop) only have predecessors from inside of the loop (and are thus dominated
1357  by the loop header).  This simplifies transformations such as store-sinking
1358  that are built into LICM.
1359  </p>
1360
1361  <p>
1362  This pass also guarantees that loops will have exactly one backedge.
1363  </p>
1364
1365  <p>
1366  Note that the simplifycfg pass will clean up blocks which are split out but
1367  end up being unnecessary, so usage of this pass should not pessimize
1368  generated code.
1369  </p>
1370
1371  <p>
1372  This pass obviously modifies the CFG, but updates loop information and
1373  dominator information.
1374  </p>
1375</div>
1376
1377<!-------------------------------------------------------------------------- -->
1378<h3>
1379  <a name="loop-unroll">-loop-unroll: Unroll loops</a>
1380</h3>
1381<div>
1382  <p>
1383  This pass implements a simple loop unroller.  It works best when loops have
1384  been canonicalized by the <a href="#indvars"><tt>-indvars</tt></a> pass,
1385  allowing it to determine the trip counts of loops easily.
1386  </p>
1387</div>
1388
1389<!-------------------------------------------------------------------------- -->
1390<h3>
1391  <a name="loop-unswitch">-loop-unswitch: Unswitch loops</a>
1392</h3>
1393<div>
1394  <p>
1395  This pass transforms loops that contain branches on loop-invariant conditions
1396  to have multiple loops.  For example, it turns the left into the right code:
1397  </p>
1398
1399  <pre
1400>for (...)                  if (lic)
1401  A                          for (...)
1402  if (lic)                     A; B; C
1403    B                      else
1404  C                          for (...)
1405                               A; C</pre>
1406
1407  <p>
1408  This can increase the size of the code exponentially (doubling it every time
1409  a loop is unswitched) so we only unswitch if the resultant code will be
1410  smaller than a threshold.
1411  </p>
1412
1413  <p>
1414  This pass expects LICM to be run before it to hoist invariant conditions out
1415  of the loop, to make the unswitching opportunity obvious.
1416  </p>
1417</div>
1418
1419<!-------------------------------------------------------------------------- -->
1420<h3>
1421  <a name="loweratomic">-loweratomic: Lower atomic intrinsics to non-atomic form</a>
1422</h3>
1423<div>
1424  <p>
1425  This pass lowers atomic intrinsics to non-atomic form for use in a known
1426  non-preemptible environment.
1427  </p>
1428
1429  <p>
1430  The pass does not verify that the environment is non-preemptible (in
1431  general this would require knowledge of the entire call graph of the
1432  program including any libraries which may not be available in bitcode form);
1433  it simply lowers every atomic intrinsic.
1434  </p>
1435</div>
1436
1437<!-------------------------------------------------------------------------- -->
1438<h3>
1439  <a name="lowerinvoke">-lowerinvoke: Lower invoke and unwind, for unwindless code generators</a>
1440</h3>
1441<div>
1442  <p>
1443  This transformation is designed for use by code generators which do not yet
1444  support stack unwinding.  This pass supports two models of exception handling
1445  lowering, the 'cheap' support and the 'expensive' support.
1446  </p>
1447
1448  <p>
1449  'Cheap' exception handling support gives the program the ability to execute
1450  any program which does not "throw an exception", by turning 'invoke'
1451  instructions into calls and by turning 'unwind' instructions into calls to
1452  abort().  If the program does dynamically use the unwind instruction, the
1453  program will print a message then abort.
1454  </p>
1455
1456  <p>
1457  'Expensive' exception handling support gives the full exception handling
1458  support to the program at the cost of making the 'invoke' instruction
1459  really expensive.  It basically inserts setjmp/longjmp calls to emulate the
1460  exception handling as necessary.
1461  </p>
1462
1463  <p>
1464  Because the 'expensive' support slows down programs a lot, and EH is only
1465  used for a subset of the programs, it must be specifically enabled by the
1466  <tt>-enable-correct-eh-support</tt> option.
1467  </p>
1468
1469  <p>
1470  Note that after this pass runs the CFG is not entirely accurate (exceptional
1471  control flow edges are not correct anymore) so only very simple things should
1472  be done after the lowerinvoke pass has run (like generation of native code).
1473  This should not be used as a general purpose "my LLVM-to-LLVM pass doesn't
1474  support the invoke instruction yet" lowering pass.
1475  </p>
1476</div>
1477
1478<!-------------------------------------------------------------------------- -->
1479<h3>
1480  <a name="lowerswitch">-lowerswitch: Lower SwitchInst's to branches</a>
1481</h3>
1482<div>
1483  <p>
1484  Rewrites <tt>switch</tt> instructions with a sequence of branches, which
1485  allows targets to get away with not implementing the switch instruction until
1486  it is convenient.
1487  </p>
1488</div>
1489
1490<!-------------------------------------------------------------------------- -->
1491<h3>
1492  <a name="mem2reg">-mem2reg: Promote Memory to Register</a>
1493</h3>
1494<div>
1495  <p>
1496  This file promotes memory references to be register references.  It promotes
1497  <tt>alloca</tt> instructions which only have <tt>load</tt>s and
1498  <tt>store</tt>s as uses.  An <tt>alloca</tt> is transformed by using dominator
1499  frontiers to place <tt>phi</tt> nodes, then traversing the function in
1500  depth-first order to rewrite <tt>load</tt>s and <tt>store</tt>s as
1501  appropriate. This is just the standard SSA construction algorithm to construct
1502  "pruned" SSA form.
1503  </p>
1504</div>
1505
1506<!-------------------------------------------------------------------------- -->
1507<h3>
1508  <a name="memcpyopt">-memcpyopt: MemCpy Optimization</a>
1509</h3>
1510<div>
1511  <p>
1512  This pass performs various transformations related to eliminating memcpy
1513  calls, or transforming sets of stores into memset's.
1514  </p>
1515</div>
1516
1517<!-------------------------------------------------------------------------- -->
1518<h3>
1519  <a name="mergefunc">-mergefunc: Merge Functions</a>
1520</h3>
1521<div>
1522  <p>This pass looks for equivalent functions that are mergable and folds them.
1523
1524  A hash is computed from the function, based on its type and number of
1525  basic blocks.
1526
1527  Once all hashes are computed, we perform an expensive equality comparison
1528  on each function pair. This takes n^2/2 comparisons per bucket, so it's
1529  important that the hash function be high quality. The equality comparison
1530  iterates through each instruction in each basic block.
1531
1532  When a match is found the functions are folded. If both functions are
1533  overridable, we move the functionality into a new internal function and
1534  leave two overridable thunks to it.
1535  </p>
1536</div>
1537
1538<!-------------------------------------------------------------------------- -->
1539<h3>
1540  <a name="mergereturn">-mergereturn: Unify function exit nodes</a>
1541</h3>
1542<div>
1543  <p>
1544  Ensure that functions have at most one <tt>ret</tt> instruction in them.
1545  Additionally, it keeps track of which node is the new exit node of the CFG.
1546  </p>
1547</div>
1548
1549<!-------------------------------------------------------------------------- -->
1550<h3>
1551  <a name="partial-inliner">-partial-inliner: Partial Inliner</a>
1552</h3>
1553<div>
1554  <p>This pass performs partial inlining, typically by inlining an if
1555  statement that surrounds the body of the function.
1556  </p>
1557</div>
1558
1559<!-------------------------------------------------------------------------- -->
1560<h3>
1561  <a name="prune-eh">-prune-eh: Remove unused exception handling info</a>
1562</h3>
1563<div>
1564  <p>
1565  This file implements a simple interprocedural pass which walks the call-graph,
1566  turning <tt>invoke</tt> instructions into <tt>call</tt> instructions if and
1567  only if the callee cannot throw an exception. It implements this as a
1568  bottom-up traversal of the call-graph.
1569  </p>
1570</div>
1571
1572<!-------------------------------------------------------------------------- -->
1573<h3>
1574  <a name="reassociate">-reassociate: Reassociate expressions</a>
1575</h3>
1576<div>
1577  <p>
1578  This pass reassociates commutative expressions in an order that is designed
1579  to promote better constant propagation, GCSE, LICM, PRE, etc.
1580  </p>
1581
1582  <p>
1583  For example: 4 + (<var>x</var> + 5) ⇒ <var>x</var> + (4 + 5)
1584  </p>
1585
1586  <p>
1587  In the implementation of this algorithm, constants are assigned rank = 0,
1588  function arguments are rank = 1, and other values are assigned ranks
1589  corresponding to the reverse post order traversal of current function
1590  (starting at 2), which effectively gives values in deep loops higher rank
1591  than values not in loops.
1592  </p>
1593</div>
1594
1595<!-------------------------------------------------------------------------- -->
1596<h3>
1597  <a name="reg2mem">-reg2mem: Demote all values to stack slots</a>
1598</h3>
1599<div>
1600  <p>
1601  This file demotes all registers to memory references.  It is intented to be
1602  the inverse of <a href="#mem2reg"><tt>-mem2reg</tt></a>.  By converting to
1603  <tt>load</tt> instructions, the only values live across basic blocks are
1604  <tt>alloca</tt> instructions and <tt>load</tt> instructions before
1605  <tt>phi</tt> nodes. It is intended that this should make CFG hacking much
1606  easier. To make later hacking easier, the entry block is split into two, such
1607  that all introduced <tt>alloca</tt> instructions (and nothing else) are in the
1608  entry block.
1609  </p>
1610</div>
1611
1612<!-------------------------------------------------------------------------- -->
1613<h3>
1614  <a name="scalarrepl">-scalarrepl: Scalar Replacement of Aggregates (DT)</a>
1615</h3>
1616<div>
1617  <p>
1618  The well-known scalar replacement of aggregates transformation.  This
1619  transform breaks up <tt>alloca</tt> instructions of aggregate type (structure
1620  or array) into individual <tt>alloca</tt> instructions for each member if
1621  possible.  Then, if possible, it transforms the individual <tt>alloca</tt>
1622  instructions into nice clean scalar SSA form.
1623  </p>
1624
1625  <p>
1626  This combines a simple scalar replacement of aggregates algorithm with the <a
1627  href="#mem2reg"><tt>mem2reg</tt></a> algorithm because often interact,
1628  especially for C++ programs.  As such, iterating between <tt>scalarrepl</tt>,
1629  then <a href="#mem2reg"><tt>mem2reg</tt></a> until we run out of things to
1630  promote works well.
1631  </p>
1632</div>
1633
1634<!-------------------------------------------------------------------------- -->
1635<h3>
1636  <a name="sccp">-sccp: Sparse Conditional Constant Propagation</a>
1637</h3>
1638<div>
1639  <p>
1640  Sparse conditional constant propagation and merging, which can be summarized
1641  as:
1642  </p>
1643
1644  <ol>
1645    <li>Assumes values are constant unless proven otherwise</li>
1646    <li>Assumes BasicBlocks are dead unless proven otherwise</li>
1647    <li>Proves values to be constant, and replaces them with constants</li>
1648    <li>Proves conditional branches to be unconditional</li>
1649  </ol>
1650
1651  <p>
1652  Note that this pass has a habit of making definitions be dead.  It is a good
1653  idea to to run a DCE pass sometime after running this pass.
1654  </p>
1655</div>
1656
1657<!-------------------------------------------------------------------------- -->
1658<h3>
1659  <a name="simplify-libcalls">-simplify-libcalls: Simplify well-known library calls</a>
1660</h3>
1661<div>
1662  <p>
1663  Applies a variety of small optimizations for calls to specific well-known
1664  function calls (e.g. runtime library functions). For example, a call
1665   <tt>exit(3)</tt> that occurs within the <tt>main()</tt> function can be
1666   transformed into simply <tt>return 3</tt>.
1667  </p>
1668</div>
1669
1670<!-------------------------------------------------------------------------- -->
1671<h3>
1672  <a name="simplifycfg">-simplifycfg: Simplify the CFG</a>
1673</h3>
1674<div>
1675  <p>
1676  Performs dead code elimination and basic block merging. Specifically:
1677  </p>
1678
1679  <ol>
1680    <li>Removes basic blocks with no predecessors.</li>
1681    <li>Merges a basic block into its predecessor if there is only one and the
1682        predecessor only has one successor.</li>
1683    <li>Eliminates PHI nodes for basic blocks with a single predecessor.</li>
1684    <li>Eliminates a basic block that only contains an unconditional
1685        branch.</li>
1686  </ol>
1687</div>
1688
1689<!-------------------------------------------------------------------------- -->
1690<h3>
1691  <a name="sink">-sink: Code sinking</a>
1692</h3>
1693<div>
1694  <p>This pass moves instructions into successor blocks, when possible, so that
1695 they aren't executed on paths where their results aren't needed.
1696  </p>
1697</div>
1698
1699<!-------------------------------------------------------------------------- -->
1700<h3>
1701  <a name="sretpromotion">-sretpromotion: Promote sret arguments to multiple ret values</a>
1702</h3>
1703<div>
1704  <p>
1705  This pass finds functions that return a struct (using a pointer to the struct
1706  as the first argument of the function, marked with the '<tt>sret</tt>' attribute) and
1707  replaces them with a new function that simply returns each of the elements of
1708  that struct (using multiple return values).
1709  </p>
1710
1711  <p>
1712  This pass works under a number of conditions:
1713  </p>
1714
1715  <ul>
1716  <li>The returned struct must not contain other structs</li>
1717  <li>The returned struct must only be used to load values from</li>
1718  <li>The placeholder struct passed in is the result of an <tt>alloca</tt></li>
1719  </ul>
1720</div>
1721
1722<!-------------------------------------------------------------------------- -->
1723<h3>
1724  <a name="strip">-strip: Strip all symbols from a module</a>
1725</h3>
1726<div>
1727  <p>
1728  performs code stripping. this transformation can delete:
1729  </p>
1730
1731  <ol>
1732    <li>names for virtual registers</li>
1733    <li>symbols for internal globals and functions</li>
1734    <li>debug information</li>
1735  </ol>
1736
1737  <p>
1738  note that this transformation makes code much less readable, so it should
1739  only be used in situations where the <tt>strip</tt> utility would be used,
1740  such as reducing code size or making it harder to reverse engineer code.
1741  </p>
1742</div>
1743
1744<!-------------------------------------------------------------------------- -->
1745<h3>
1746  <a name="strip-dead-debug-info">-strip-dead-debug-info: Strip debug info for unused symbols</a>
1747</h3>
1748<div>
1749  <p>
1750  performs code stripping. this transformation can delete:
1751  </p>
1752
1753  <ol>
1754    <li>names for virtual registers</li>
1755    <li>symbols for internal globals and functions</li>
1756    <li>debug information</li>
1757  </ol>
1758
1759  <p>
1760  note that this transformation makes code much less readable, so it should
1761  only be used in situations where the <tt>strip</tt> utility would be used,
1762  such as reducing code size or making it harder to reverse engineer code.
1763  </p>
1764</div>
1765
1766<!-------------------------------------------------------------------------- -->
1767<h3>
1768  <a name="strip-dead-prototypes">-strip-dead-prototypes: Strip Unused Function Prototypes</a>
1769</h3>
1770<div>
1771  <p>
1772  This pass loops over all of the functions in the input module, looking for
1773  dead declarations and removes them. Dead declarations are declarations of
1774  functions for which no implementation is available (i.e., declarations for
1775  unused library functions).
1776  </p>
1777</div>
1778
1779<!-------------------------------------------------------------------------- -->
1780<h3>
1781  <a name="strip-debug-declare">-strip-debug-declare: Strip all llvm.dbg.declare intrinsics</a>
1782</h3>
1783<div>
1784  <p>This pass implements code stripping. Specifically, it can delete:</p>
1785  <ul>
1786  <li>names for virtual registers</li>
1787  <li>symbols for internal globals and functions</li>
1788  <li>debug information</li>
1789  </ul>
1790  <p>
1791  Note that this transformation makes code much less readable, so it should
1792  only be used in situations where the 'strip' utility would be used, such as
1793  reducing code size or making it harder to reverse engineer code.
1794  </p>
1795</div>
1796
1797<!-------------------------------------------------------------------------- -->
1798<h3>
1799  <a name="strip-nondebug">-strip-nondebug: Strip all symbols, except dbg symbols, from a module</a>
1800</h3>
1801<div>
1802  <p>This pass implements code stripping. Specifically, it can delete:</p>
1803  <ul>
1804  <li>names for virtual registers</li>
1805  <li>symbols for internal globals and functions</li>
1806  <li>debug information</li>
1807  </ul>
1808  <p>
1809  Note that this transformation makes code much less readable, so it should
1810  only be used in situations where the 'strip' utility would be used, such as
1811  reducing code size or making it harder to reverse engineer code.
1812  </p>
1813</div>
1814
1815<!-------------------------------------------------------------------------- -->
1816<h3>
1817  <a name="tailcallelim">-tailcallelim: Tail Call Elimination</a>
1818</h3>
1819<div>
1820  <p>
1821  This file transforms calls of the current function (self recursion) followed
1822  by a return instruction with a branch to the entry of the function, creating
1823  a loop.  This pass also implements the following extensions to the basic
1824  algorithm:
1825  </p>
1826
1827  <ul>
1828  <li>Trivial instructions between the call and return do not prevent the
1829      transformation from taking place, though currently the analysis cannot
1830      support moving any really useful instructions (only dead ones).
1831  <li>This pass transforms functions that are prevented from being tail
1832      recursive by an associative expression to use an accumulator variable,
1833      thus compiling the typical naive factorial or <tt>fib</tt> implementation
1834      into efficient code.
1835  <li>TRE is performed if the function returns void, if the return
1836      returns the result returned by the call, or if the function returns a
1837      run-time constant on all exits from the function.  It is possible, though
1838      unlikely, that the return returns something else (like constant 0), and
1839      can still be TRE'd.  It can be TRE'd if <em>all other</em> return
1840      instructions in the function return the exact same value.
1841  <li>If it can prove that callees do not access theier caller stack frame,
1842      they are marked as eligible for tail call elimination (by the code
1843      generator).
1844  </ul>
1845</div>
1846
1847<!-------------------------------------------------------------------------- -->
1848<h3>
1849  <a name="tailduplicate">-tailduplicate: Tail Duplication</a>
1850</h3>
1851<div>
1852  <p>
1853  This pass performs a limited form of tail duplication, intended to simplify
1854  CFGs by removing some unconditional branches.  This pass is necessary to
1855  straighten out loops created by the C front-end, but also is capable of
1856  making other code nicer.  After this pass is run, the CFG simplify pass
1857  should be run to clean up the mess.
1858  </p>
1859</div>
1860
1861</div>
1862
1863<!-- ======================================================================= -->
1864<h2><a name="utilities">Utility Passes</a></h2>
1865<div>
1866  <p>This section describes the LLVM Utility Passes.</p>
1867
1868<!-------------------------------------------------------------------------- -->
1869<h3>
1870  <a name="deadarghaX0r">-deadarghaX0r: Dead Argument Hacking (BUGPOINT USE ONLY; DO NOT USE)</a>
1871</h3>
1872<div>
1873  <p>
1874  Same as dead argument elimination, but deletes arguments to functions which
1875  are external.  This is only for use by <a
1876  href="Bugpoint.html">bugpoint</a>.</p>
1877</div>
1878
1879<!-------------------------------------------------------------------------- -->
1880<h3>
1881  <a name="extract-blocks">-extract-blocks: Extract Basic Blocks From Module (for bugpoint use)</a>
1882</h3>
1883<div>
1884  <p>
1885  This pass is used by bugpoint to extract all blocks from the module into their
1886  own functions.</p>
1887</div>
1888
1889<!-------------------------------------------------------------------------- -->
1890<h3>
1891  <a name="instnamer">-instnamer: Assign names to anonymous instructions</a>
1892</h3>
1893<div>
1894  <p>This is a little utility pass that gives instructions names, this is mostly
1895 useful when diffing the effect of an optimization because deleting an
1896 unnamed instruction can change all other instruction numbering, making the
1897 diff very noisy.
1898  </p>
1899</div>
1900
1901<!-------------------------------------------------------------------------- -->
1902<h3>
1903  <a name="preverify">-preverify: Preliminary module verification</a>
1904</h3>
1905<div>
1906  <p>
1907  Ensures that the module is in the form required by the <a
1908  href="#verifier">Module Verifier</a> pass.
1909  </p>
1910
1911  <p>
1912  Running the verifier runs this pass automatically, so there should be no need
1913  to use it directly.
1914  </p>
1915</div>
1916
1917<!-------------------------------------------------------------------------- -->
1918<h3>
1919  <a name="verify">-verify: Module Verifier</a>
1920</h3>
1921<div>
1922  <p>
1923  Verifies an LLVM IR code. This is useful to run after an optimization which is
1924  undergoing testing. Note that <tt>llvm-as</tt> verifies its input before
1925  emitting bitcode, and also that malformed bitcode is likely to make LLVM
1926  crash. All language front-ends are therefore encouraged to verify their output
1927  before performing optimizing transformations.
1928  </p>
1929
1930  <ul>
1931    <li>Both of a binary operator's parameters are of the same type.</li>
1932    <li>Verify that the indices of mem access instructions match other
1933        operands.</li>
1934    <li>Verify that arithmetic and other things are only performed on
1935        first-class types.  Verify that shifts and logicals only happen on
1936        integrals f.e.</li>
1937    <li>All of the constants in a switch statement are of the correct type.</li>
1938    <li>The code is in valid SSA form.</li>
1939    <li>It is illegal to put a label into any other type (like a structure) or
1940        to return one.</li>
1941    <li>Only phi nodes can be self referential: <tt>%x = add i32 %x, %x</tt> is
1942        invalid.</li>
1943    <li>PHI nodes must have an entry for each predecessor, with no extras.</li>
1944    <li>PHI nodes must be the first thing in a basic block, all grouped
1945        together.</li>
1946    <li>PHI nodes must have at least one entry.</li>
1947    <li>All basic blocks should only end with terminator insts, not contain
1948        them.</li>
1949    <li>The entry node to a function must not have predecessors.</li>
1950    <li>All Instructions must be embedded into a basic block.</li>
1951    <li>Functions cannot take a void-typed parameter.</li>
1952    <li>Verify that a function's argument list agrees with its declared
1953        type.</li>
1954    <li>It is illegal to specify a name for a void value.</li>
1955    <li>It is illegal to have a internal global value with no initializer.</li>
1956    <li>It is illegal to have a ret instruction that returns a value that does
1957        not agree with the function return value type.</li>
1958    <li>Function call argument types match the function prototype.</li>
1959    <li>All other things that are tested by asserts spread about the code.</li>
1960  </ul>
1961
1962  <p>
1963  Note that this does not provide full security verification (like Java), but
1964  instead just tries to ensure that code is well-formed.
1965  </p>
1966</div>
1967
1968<!-------------------------------------------------------------------------- -->
1969<h3>
1970  <a name="view-cfg">-view-cfg: View CFG of function</a>
1971</h3>
1972<div>
1973  <p>
1974  Displays the control flow graph using the GraphViz tool.
1975  </p>
1976</div>
1977
1978<!-------------------------------------------------------------------------- -->
1979<h3>
1980  <a name="view-cfg-only">-view-cfg-only: View CFG of function (with no function bodies)</a>
1981</h3>
1982<div>
1983  <p>
1984  Displays the control flow graph using the GraphViz tool, but omitting function
1985  bodies.
1986  </p>
1987</div>
1988
1989<!-------------------------------------------------------------------------- -->
1990<h3>
1991  <a name="view-dom">-view-dom: View dominance tree of function</a>
1992</h3>
1993<div>
1994  <p>
1995  Displays the dominator tree using the GraphViz tool.
1996  </p>
1997</div>
1998
1999<!-------------------------------------------------------------------------- -->
2000<h3>
2001  <a name="view-dom-only">-view-dom-only: View dominance tree of function (with no function bodies)</a>
2002</h3>
2003<div>
2004  <p>
2005  Displays the dominator tree using the GraphViz tool, but omitting function
2006  bodies.
2007  </p>
2008</div>
2009
2010<!-------------------------------------------------------------------------- -->
2011<h3>
2012  <a name="view-postdom">-view-postdom: View postdominance tree of function</a>
2013</h3>
2014<div>
2015  <p>
2016  Displays the post dominator tree using the GraphViz tool.
2017  </p>
2018</div>
2019
2020<!-------------------------------------------------------------------------- -->
2021<h3>
2022  <a name="view-postdom-only">-view-postdom-only: View postdominance tree of function (with no function bodies)</a>
2023</h3>
2024<div>
2025  <p>
2026  Displays the post dominator tree using the GraphViz tool, but omitting
2027  function bodies.
2028  </p>
2029</div>
2030
2031</div>
2032
2033<!-- *********************************************************************** -->
2034
2035<hr>
2036<address>
2037  <a href="http://jigsaw.w3.org/css-validator/check/referer"><img
2038  src="http://jigsaw.w3.org/css-validator/images/vcss-blue" alt="Valid CSS"></a>
2039  <a href="http://validator.w3.org/check/referer"><img
2040  src="http://www.w3.org/Icons/valid-html401-blue" alt="Valid HTML 4.01"></a>
2041
2042  <a href="mailto:rspencer@x10sys.com">Reid Spencer</a><br>
2043  <a href="http://llvm.org/">LLVM Compiler Infrastructure</a><br>
2044  Last modified: $Date: 2011-08-03 18:18:20 -0400 (Wed, 03 Aug 2011) $
2045</address>
2046
2047</body>
2048</html>
2049