• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1//===-- R600Instructions.td - R600 Instruction defs  -------*- tablegen -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// TableGen definitions for instructions which are available on R600 family
11// GPUs.
12//
13//===----------------------------------------------------------------------===//
14
15include "R600Intrinsics.td"
16include "R600InstrFormats.td"
17
18class InstR600ISA <dag outs, dag ins, string asm, list<dag> pattern = []> :
19    InstR600 <outs, ins, asm, pattern, NullALU> {
20
21  let Namespace = "AMDGPU";
22}
23
24def MEMxi : Operand<iPTR> {
25  let MIOperandInfo = (ops R600_TReg32_X:$ptr, i32imm:$index);
26  let PrintMethod = "printMemOperand";
27}
28
29def MEMrr : Operand<iPTR> {
30  let MIOperandInfo = (ops R600_Reg32:$ptr, R600_Reg32:$index);
31}
32
33// Operands for non-registers
34
35class InstFlag<string PM = "printOperand", int Default = 0>
36    : OperandWithDefaultOps <i32, (ops (i32 Default))> {
37  let PrintMethod = PM;
38}
39
40// src_sel for ALU src operands, see also ALU_CONST, ALU_PARAM registers
41def SEL : OperandWithDefaultOps <i32, (ops (i32 -1))> {
42  let PrintMethod = "printSel";
43}
44def BANK_SWIZZLE : OperandWithDefaultOps <i32, (ops (i32 0))> {
45  let PrintMethod = "printBankSwizzle";
46}
47
48def LITERAL : InstFlag<"printLiteral">;
49
50def WRITE : InstFlag <"printWrite", 1>;
51def OMOD : InstFlag <"printOMOD">;
52def REL : InstFlag <"printRel">;
53def CLAMP : InstFlag <"printClamp">;
54def NEG : InstFlag <"printNeg">;
55def ABS : InstFlag <"printAbs">;
56def UEM : InstFlag <"printUpdateExecMask">;
57def UP : InstFlag <"printUpdatePred">;
58
59// XXX: The r600g finalizer in Mesa expects last to be one in most cases.
60// Once we start using the packetizer in this backend we should have this
61// default to 0.
62def LAST : InstFlag<"printLast", 1>;
63def RSel : Operand<i32> {
64  let PrintMethod = "printRSel";
65}
66def CT: Operand<i32> {
67  let PrintMethod = "printCT";
68}
69
70def FRAMEri : Operand<iPTR> {
71  let MIOperandInfo = (ops R600_Reg32:$ptr, i32imm:$index);
72}
73
74def ADDRParam : ComplexPattern<i32, 2, "SelectADDRParam", [], []>;
75def ADDRDWord : ComplexPattern<i32, 1, "SelectADDRDWord", [], []>;
76def ADDRVTX_READ : ComplexPattern<i32, 2, "SelectADDRVTX_READ", [], []>;
77def ADDRGA_CONST_OFFSET : ComplexPattern<i32, 1, "SelectGlobalValueConstantOffset", [], []>;
78def ADDRGA_VAR_OFFSET : ComplexPattern<i32, 2, "SelectGlobalValueVariableOffset", [], []>;
79
80
81def R600_Pred : PredicateOperand<i32, (ops R600_Predicate),
82                                     (ops PRED_SEL_OFF)>;
83
84
85let mayLoad = 0, mayStore = 0, hasSideEffects = 0 in {
86
87// Class for instructions with only one source register.
88// If you add new ins to this instruction, make sure they are listed before
89// $literal, because the backend currently assumes that the last operand is
90// a literal.  Also be sure to update the enum R600Op1OperandIndex::ROI in
91// R600Defines.h, R600InstrInfo::buildDefaultInstruction(),
92// and R600InstrInfo::getOperandIdx().
93class R600_1OP <bits<11> inst, string opName, list<dag> pattern,
94                InstrItinClass itin = AnyALU> :
95    InstR600 <(outs R600_Reg32:$dst),
96              (ins WRITE:$write, OMOD:$omod, REL:$dst_rel, CLAMP:$clamp,
97                   R600_Reg32:$src0, NEG:$src0_neg, REL:$src0_rel, ABS:$src0_abs, SEL:$src0_sel,
98                   LAST:$last, R600_Pred:$pred_sel, LITERAL:$literal,
99                   BANK_SWIZZLE:$bank_swizzle),
100              !strconcat("  ", opName,
101                   "$clamp $last $dst$write$dst_rel$omod, "
102                   "$src0_neg$src0_abs$src0$src0_abs$src0_rel, "
103                   "$pred_sel $bank_swizzle"),
104              pattern,
105              itin>,
106    R600ALU_Word0,
107    R600ALU_Word1_OP2 <inst> {
108
109  let src1 = 0;
110  let src1_rel = 0;
111  let src1_neg = 0;
112  let src1_abs = 0;
113  let update_exec_mask = 0;
114  let update_pred = 0;
115  let HasNativeOperands = 1;
116  let Op1 = 1;
117  let ALUInst = 1;
118  let DisableEncoding = "$literal";
119  let UseNamedOperandTable = 1;
120
121  let Inst{31-0}  = Word0;
122  let Inst{63-32} = Word1;
123}
124
125class R600_1OP_Helper <bits<11> inst, string opName, SDPatternOperator node,
126                    InstrItinClass itin = AnyALU> :
127    R600_1OP <inst, opName,
128              [(set R600_Reg32:$dst, (node R600_Reg32:$src0))], itin
129>;
130
131// If you add or change the operands for R600_2OP instructions, you must
132// also update the R600Op2OperandIndex::ROI enum in R600Defines.h,
133// R600InstrInfo::buildDefaultInstruction(), and R600InstrInfo::getOperandIdx().
134class R600_2OP <bits<11> inst, string opName, list<dag> pattern,
135                InstrItinClass itin = AnyALU> :
136  InstR600 <(outs R600_Reg32:$dst),
137          (ins UEM:$update_exec_mask, UP:$update_pred, WRITE:$write,
138               OMOD:$omod, REL:$dst_rel, CLAMP:$clamp,
139               R600_Reg32:$src0, NEG:$src0_neg, REL:$src0_rel, ABS:$src0_abs, SEL:$src0_sel,
140               R600_Reg32:$src1, NEG:$src1_neg, REL:$src1_rel, ABS:$src1_abs, SEL:$src1_sel,
141               LAST:$last, R600_Pred:$pred_sel, LITERAL:$literal,
142               BANK_SWIZZLE:$bank_swizzle),
143          !strconcat("  ", opName,
144                "$clamp $last $update_exec_mask$update_pred$dst$write$dst_rel$omod, "
145                "$src0_neg$src0_abs$src0$src0_abs$src0_rel, "
146                "$src1_neg$src1_abs$src1$src1_abs$src1_rel, "
147                "$pred_sel $bank_swizzle"),
148          pattern,
149          itin>,
150    R600ALU_Word0,
151    R600ALU_Word1_OP2 <inst> {
152
153  let HasNativeOperands = 1;
154  let Op2 = 1;
155  let ALUInst = 1;
156  let DisableEncoding = "$literal";
157  let UseNamedOperandTable = 1;
158
159  let Inst{31-0}  = Word0;
160  let Inst{63-32} = Word1;
161}
162
163class R600_2OP_Helper <bits<11> inst, string opName,
164                       SDPatternOperator node = null_frag,
165                       InstrItinClass itin = AnyALU> :
166    R600_2OP <inst, opName,
167              [(set R600_Reg32:$dst, (node R600_Reg32:$src0,
168                                           R600_Reg32:$src1))], itin
169>;
170
171// If you add our change the operands for R600_3OP instructions, you must
172// also update the R600Op3OperandIndex::ROI enum in R600Defines.h,
173// R600InstrInfo::buildDefaultInstruction(), and
174// R600InstrInfo::getOperandIdx().
175class R600_3OP <bits<5> inst, string opName, list<dag> pattern,
176                InstrItinClass itin = AnyALU> :
177  InstR600 <(outs R600_Reg32:$dst),
178          (ins REL:$dst_rel, CLAMP:$clamp,
179               R600_Reg32:$src0, NEG:$src0_neg, REL:$src0_rel, SEL:$src0_sel,
180               R600_Reg32:$src1, NEG:$src1_neg, REL:$src1_rel, SEL:$src1_sel,
181               R600_Reg32:$src2, NEG:$src2_neg, REL:$src2_rel, SEL:$src2_sel,
182               LAST:$last, R600_Pred:$pred_sel, LITERAL:$literal,
183               BANK_SWIZZLE:$bank_swizzle),
184          !strconcat("  ", opName, "$clamp $last $dst$dst_rel, "
185                             "$src0_neg$src0$src0_rel, "
186                             "$src1_neg$src1$src1_rel, "
187                             "$src2_neg$src2$src2_rel, "
188                             "$pred_sel"
189                             "$bank_swizzle"),
190          pattern,
191          itin>,
192    R600ALU_Word0,
193    R600ALU_Word1_OP3<inst>{
194
195  let HasNativeOperands = 1;
196  let DisableEncoding = "$literal";
197  let Op3 = 1;
198  let UseNamedOperandTable = 1;
199  let ALUInst = 1;
200
201  let Inst{31-0}  = Word0;
202  let Inst{63-32} = Word1;
203}
204
205class R600_REDUCTION <bits<11> inst, dag ins, string asm, list<dag> pattern,
206                      InstrItinClass itin = VecALU> :
207  InstR600 <(outs R600_Reg32:$dst),
208          ins,
209          asm,
210          pattern,
211          itin>;
212
213
214
215} // End mayLoad = 1, mayStore = 0, hasSideEffects = 0
216
217def TEX_SHADOW : PatLeaf<
218  (imm),
219  [{uint32_t TType = (uint32_t)N->getZExtValue();
220    return (TType >= 6 && TType <= 8) || TType == 13;
221  }]
222>;
223
224def TEX_RECT : PatLeaf<
225  (imm),
226  [{uint32_t TType = (uint32_t)N->getZExtValue();
227    return TType == 5;
228  }]
229>;
230
231def TEX_ARRAY : PatLeaf<
232  (imm),
233  [{uint32_t TType = (uint32_t)N->getZExtValue();
234    return TType == 9 || TType == 10 || TType == 16;
235  }]
236>;
237
238def TEX_SHADOW_ARRAY : PatLeaf<
239  (imm),
240  [{uint32_t TType = (uint32_t)N->getZExtValue();
241    return TType == 11 || TType == 12 || TType == 17;
242  }]
243>;
244
245def TEX_MSAA : PatLeaf<
246  (imm),
247  [{uint32_t TType = (uint32_t)N->getZExtValue();
248    return TType == 14;
249  }]
250>;
251
252def TEX_ARRAY_MSAA : PatLeaf<
253  (imm),
254  [{uint32_t TType = (uint32_t)N->getZExtValue();
255    return TType == 15;
256  }]
257>;
258
259class EG_CF_RAT <bits <8> cfinst, bits <6> ratinst, bits<4> ratid, bits<4> mask,
260                 dag outs, dag ins, string asm, list<dag> pattern> :
261    InstR600ISA <outs, ins, asm, pattern>,
262    CF_ALLOC_EXPORT_WORD0_RAT, CF_ALLOC_EXPORT_WORD1_BUF  {
263
264  let rat_id = ratid;
265  let rat_inst = ratinst;
266  let rim         = 0;
267  // XXX: Have a separate instruction for non-indexed writes.
268  let type        = 1;
269  let rw_rel      = 0;
270  let elem_size   = 0;
271
272  let array_size  = 0;
273  let comp_mask   = mask;
274  let burst_count = 0;
275  let vpm         = 0;
276  let cf_inst = cfinst;
277  let mark        = 0;
278  let barrier     = 1;
279
280  let Inst{31-0} = Word0;
281  let Inst{63-32} = Word1;
282  let IsExport = 1;
283
284}
285
286class VTX_READ <string name, bits<8> buffer_id, dag outs, list<dag> pattern>
287    : InstR600ISA <outs, (ins MEMxi:$src_gpr), !strconcat("  ", name), pattern>,
288      VTX_WORD1_GPR {
289
290  // Static fields
291  let DST_REL = 0;
292  // The docs say that if this bit is set, then DATA_FORMAT, NUM_FORMAT_ALL,
293  // FORMAT_COMP_ALL, SRF_MODE_ALL, and ENDIAN_SWAP fields will be ignored,
294  // however, based on my testing if USE_CONST_FIELDS is set, then all
295  // these fields need to be set to 0.
296  let USE_CONST_FIELDS = 0;
297  let NUM_FORMAT_ALL = 1;
298  let FORMAT_COMP_ALL = 0;
299  let SRF_MODE_ALL = 0;
300
301  let Inst{63-32} = Word1;
302  // LLVM can only encode 64-bit instructions, so these fields are manually
303  // encoded in R600CodeEmitter
304  //
305  // bits<16> OFFSET;
306  // bits<2>  ENDIAN_SWAP = 0;
307  // bits<1>  CONST_BUF_NO_STRIDE = 0;
308  // bits<1>  MEGA_FETCH = 0;
309  // bits<1>  ALT_CONST = 0;
310  // bits<2>  BUFFER_INDEX_MODE = 0;
311
312  // VTX_WORD2 (LLVM can only encode 64-bit instructions, so WORD2 encoding
313  // is done in R600CodeEmitter
314  //
315  // Inst{79-64} = OFFSET;
316  // Inst{81-80} = ENDIAN_SWAP;
317  // Inst{82}    = CONST_BUF_NO_STRIDE;
318  // Inst{83}    = MEGA_FETCH;
319  // Inst{84}    = ALT_CONST;
320  // Inst{86-85} = BUFFER_INDEX_MODE;
321  // Inst{95-86} = 0; Reserved
322
323  // VTX_WORD3 (Padding)
324  //
325  // Inst{127-96} = 0;
326
327  let VTXInst = 1;
328}
329
330class LoadParamFrag <PatFrag load_type> : PatFrag <
331  (ops node:$ptr), (load_type node:$ptr),
332  [{ return isConstantLoad(cast<LoadSDNode>(N), 0) ||
333            (cast<LoadSDNode>(N)->getAddressSpace() == AMDGPUAS::PARAM_I_ADDRESS); }]
334>;
335
336def load_param : LoadParamFrag<load>;
337def load_param_exti8 : LoadParamFrag<az_extloadi8>;
338def load_param_exti16 : LoadParamFrag<az_extloadi16>;
339
340class LoadVtxId1 <PatFrag load> : PatFrag <
341  (ops node:$ptr), (load node:$ptr), [{
342  const MemSDNode *LD = cast<MemSDNode>(N);
343  return LD->getAddressSpace() == AMDGPUAS::GLOBAL_ADDRESS ||
344         (LD->getAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS &&
345           !isa<GlobalValue>(GetUnderlyingObject(
346           LD->getMemOperand()->getValue(), CurDAG->getDataLayout())));
347}]>;
348
349def vtx_id1_az_extloadi8 : LoadVtxId1 <az_extloadi8>;
350def vtx_id1_az_extloadi16 : LoadVtxId1 <az_extloadi16>;
351def vtx_id1_load : LoadVtxId1 <load>;
352
353class LoadVtxId2 <PatFrag load> : PatFrag <
354  (ops node:$ptr), (load node:$ptr), [{
355  const MemSDNode *LD = cast<MemSDNode>(N);
356  return LD->getAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS &&
357         isa<GlobalValue>(GetUnderlyingObject(
358         LD->getMemOperand()->getValue(), CurDAG->getDataLayout()));
359}]>;
360
361def vtx_id2_az_extloadi8 : LoadVtxId2 <az_extloadi8>;
362def vtx_id2_az_extloadi16 : LoadVtxId2 <az_extloadi16>;
363def vtx_id2_load : LoadVtxId2 <load>;
364
365def isR600 : Predicate<"Subtarget->getGeneration() <= R600Subtarget::R700">;
366
367def isR600toCayman
368    : Predicate<
369          "Subtarget->getGeneration() <= R600Subtarget::NORTHERN_ISLANDS">;
370
371//===----------------------------------------------------------------------===//
372// R600 SDNodes
373//===----------------------------------------------------------------------===//
374
375def INTERP_PAIR_XY :  AMDGPUShaderInst <
376  (outs R600_TReg32_X:$dst0, R600_TReg32_Y:$dst1),
377  (ins i32imm:$src0, R600_TReg32_Y:$src1, R600_TReg32_X:$src2),
378  "INTERP_PAIR_XY $src0 $src1 $src2 : $dst0 dst1",
379  []>;
380
381def INTERP_PAIR_ZW :  AMDGPUShaderInst <
382  (outs R600_TReg32_Z:$dst0, R600_TReg32_W:$dst1),
383  (ins i32imm:$src0, R600_TReg32_Y:$src1, R600_TReg32_X:$src2),
384  "INTERP_PAIR_ZW $src0 $src1 $src2 : $dst0 dst1",
385  []>;
386
387def CONST_ADDRESS: SDNode<"AMDGPUISD::CONST_ADDRESS",
388  SDTypeProfile<1, -1, [SDTCisInt<0>, SDTCisPtrTy<1>]>,
389  [SDNPVariadic]
390>;
391
392def DOT4 : SDNode<"AMDGPUISD::DOT4",
393  SDTypeProfile<1, 8, [SDTCisFP<0>, SDTCisVT<1, f32>, SDTCisVT<2, f32>,
394      SDTCisVT<3, f32>, SDTCisVT<4, f32>, SDTCisVT<5, f32>,
395      SDTCisVT<6, f32>, SDTCisVT<7, f32>, SDTCisVT<8, f32>]>,
396  []
397>;
398
399def COS_HW : SDNode<"AMDGPUISD::COS_HW",
400  SDTypeProfile<1, 1, [SDTCisFP<0>, SDTCisFP<1>]>
401>;
402
403def SIN_HW : SDNode<"AMDGPUISD::SIN_HW",
404  SDTypeProfile<1, 1, [SDTCisFP<0>, SDTCisFP<1>]>
405>;
406
407def TEXTURE_FETCH_Type : SDTypeProfile<1, 19, [SDTCisFP<0>]>;
408
409def TEXTURE_FETCH: SDNode<"AMDGPUISD::TEXTURE_FETCH", TEXTURE_FETCH_Type, []>;
410
411multiclass TexPattern<bits<32> TextureOp, Instruction inst, ValueType vt = v4f32> {
412def : Pat<(TEXTURE_FETCH (i32 TextureOp), vt:$SRC_GPR,
413          (i32 imm:$srcx), (i32 imm:$srcy), (i32 imm:$srcz), (i32 imm:$srcw),
414          (i32 imm:$offsetx), (i32 imm:$offsety), (i32 imm:$offsetz),
415          (i32 imm:$DST_SEL_X), (i32 imm:$DST_SEL_Y), (i32 imm:$DST_SEL_Z),
416          (i32 imm:$DST_SEL_W),
417          (i32 imm:$RESOURCE_ID), (i32 imm:$SAMPLER_ID),
418          (i32 imm:$COORD_TYPE_X), (i32 imm:$COORD_TYPE_Y), (i32 imm:$COORD_TYPE_Z),
419          (i32 imm:$COORD_TYPE_W)),
420          (inst R600_Reg128:$SRC_GPR,
421          imm:$srcx, imm:$srcy, imm:$srcz, imm:$srcw,
422          imm:$offsetx, imm:$offsety, imm:$offsetz,
423          imm:$DST_SEL_X, imm:$DST_SEL_Y, imm:$DST_SEL_Z,
424          imm:$DST_SEL_W,
425          imm:$RESOURCE_ID, imm:$SAMPLER_ID,
426          imm:$COORD_TYPE_X, imm:$COORD_TYPE_Y, imm:$COORD_TYPE_Z,
427          imm:$COORD_TYPE_W)>;
428}
429
430//===----------------------------------------------------------------------===//
431// Interpolation Instructions
432//===----------------------------------------------------------------------===//
433
434def INTERP_VEC_LOAD :  AMDGPUShaderInst <
435  (outs R600_Reg128:$dst),
436  (ins i32imm:$src0),
437  "INTERP_LOAD $src0 : $dst">;
438
439def INTERP_XY : R600_2OP <0xD6, "INTERP_XY", []> {
440  let bank_swizzle = 5;
441}
442
443def INTERP_ZW : R600_2OP <0xD7, "INTERP_ZW", []> {
444  let bank_swizzle = 5;
445}
446
447def INTERP_LOAD_P0 : R600_1OP <0xE0, "INTERP_LOAD_P0", []>;
448
449//===----------------------------------------------------------------------===//
450// Export Instructions
451//===----------------------------------------------------------------------===//
452
453def ExportType : SDTypeProfile<0, 7, [SDTCisFP<0>, SDTCisInt<1>]>;
454
455def EXPORT: SDNode<"AMDGPUISD::EXPORT", ExportType,
456  [SDNPHasChain, SDNPSideEffect]>;
457
458class ExportWord0 {
459  field bits<32> Word0;
460
461  bits<13> arraybase;
462  bits<2> type;
463  bits<7> gpr;
464  bits<2> elem_size;
465
466  let Word0{12-0} = arraybase;
467  let Word0{14-13} = type;
468  let Word0{21-15} = gpr;
469  let Word0{22} = 0; // RW_REL
470  let Word0{29-23} = 0; // INDEX_GPR
471  let Word0{31-30} = elem_size;
472}
473
474class ExportSwzWord1 {
475  field bits<32> Word1;
476
477  bits<3> sw_x;
478  bits<3> sw_y;
479  bits<3> sw_z;
480  bits<3> sw_w;
481  bits<1> eop;
482  bits<8> inst;
483
484  let Word1{2-0} = sw_x;
485  let Word1{5-3} = sw_y;
486  let Word1{8-6} = sw_z;
487  let Word1{11-9} = sw_w;
488}
489
490class ExportBufWord1 {
491  field bits<32> Word1;
492
493  bits<12> arraySize;
494  bits<4> compMask;
495  bits<1> eop;
496  bits<8> inst;
497
498  let Word1{11-0} = arraySize;
499  let Word1{15-12} = compMask;
500}
501
502multiclass ExportPattern<Instruction ExportInst, bits<8> cf_inst> {
503  def : Pat<(EXPORT (v4f32 R600_Reg128:$src), (i32 imm:$base), (i32 imm:$type),
504    (i32 imm:$swz_x), (i32 imm:$swz_y), (i32 imm:$swz_z), (i32 imm:$swz_w)),
505        (ExportInst R600_Reg128:$src, imm:$type, imm:$base,
506        imm:$swz_x, imm:$swz_y, imm:$swz_z, imm:$swz_w, cf_inst, 0)
507  >;
508
509}
510
511multiclass SteamOutputExportPattern<Instruction ExportInst,
512    bits<8> buf0inst, bits<8> buf1inst, bits<8> buf2inst, bits<8> buf3inst> {
513// Stream0
514  def : Pat<(int_R600_store_stream_output (v4f32 R600_Reg128:$src),
515      (i32 imm:$arraybase), (i32 0), (i32 imm:$mask)),
516      (ExportInst R600_Reg128:$src, 0, imm:$arraybase,
517      4095, imm:$mask, buf0inst, 0)>;
518// Stream1
519  def : Pat<(int_R600_store_stream_output (v4f32 R600_Reg128:$src),
520      (i32 imm:$arraybase), (i32 1), (i32 imm:$mask)),
521      (ExportInst $src, 0, imm:$arraybase,
522      4095, imm:$mask, buf1inst, 0)>;
523// Stream2
524  def : Pat<(int_R600_store_stream_output (v4f32 R600_Reg128:$src),
525      (i32 imm:$arraybase), (i32 2), (i32 imm:$mask)),
526      (ExportInst $src, 0, imm:$arraybase,
527      4095, imm:$mask, buf2inst, 0)>;
528// Stream3
529  def : Pat<(int_R600_store_stream_output (v4f32 R600_Reg128:$src),
530      (i32 imm:$arraybase), (i32 3), (i32 imm:$mask)),
531      (ExportInst $src, 0, imm:$arraybase,
532      4095, imm:$mask, buf3inst, 0)>;
533}
534
535// Export Instructions should not be duplicated by TailDuplication pass
536// (which assumes that duplicable instruction are affected by exec mask)
537let usesCustomInserter = 1, isNotDuplicable = 1 in {
538
539class ExportSwzInst : InstR600ISA<(
540    outs),
541    (ins R600_Reg128:$gpr, i32imm:$type, i32imm:$arraybase,
542    RSel:$sw_x, RSel:$sw_y, RSel:$sw_z, RSel:$sw_w, i32imm:$inst,
543    i32imm:$eop),
544    !strconcat("EXPORT", " $gpr.$sw_x$sw_y$sw_z$sw_w"),
545    []>, ExportWord0, ExportSwzWord1 {
546  let elem_size = 3;
547  let Inst{31-0} = Word0;
548  let Inst{63-32} = Word1;
549  let IsExport = 1;
550}
551
552} // End usesCustomInserter = 1
553
554class ExportBufInst : InstR600ISA<(
555    outs),
556    (ins R600_Reg128:$gpr, i32imm:$type, i32imm:$arraybase,
557    i32imm:$arraySize, i32imm:$compMask, i32imm:$inst, i32imm:$eop),
558    !strconcat("EXPORT", " $gpr"),
559    []>, ExportWord0, ExportBufWord1 {
560  let elem_size = 0;
561  let Inst{31-0} = Word0;
562  let Inst{63-32} = Word1;
563  let IsExport = 1;
564}
565
566//===----------------------------------------------------------------------===//
567// Control Flow Instructions
568//===----------------------------------------------------------------------===//
569
570
571def KCACHE : InstFlag<"printKCache">;
572
573class ALU_CLAUSE<bits<4> inst, string OpName> : AMDGPUInst <(outs),
574(ins i32imm:$ADDR, i32imm:$KCACHE_BANK0, i32imm:$KCACHE_BANK1,
575KCACHE:$KCACHE_MODE0, KCACHE:$KCACHE_MODE1,
576i32imm:$KCACHE_ADDR0, i32imm:$KCACHE_ADDR1,
577i32imm:$COUNT, i32imm:$Enabled),
578!strconcat(OpName, " $COUNT, @$ADDR, "
579"KC0[$KCACHE_MODE0], KC1[$KCACHE_MODE1]"),
580[] >, CF_ALU_WORD0, CF_ALU_WORD1 {
581  field bits<64> Inst;
582
583  let CF_INST = inst;
584  let ALT_CONST = 0;
585  let WHOLE_QUAD_MODE = 0;
586  let BARRIER = 1;
587  let isCodeGenOnly = 1;
588  let UseNamedOperandTable = 1;
589
590  let Inst{31-0} = Word0;
591  let Inst{63-32} = Word1;
592}
593
594class CF_WORD0_R600 {
595  field bits<32> Word0;
596
597  bits<32> ADDR;
598
599  let Word0 = ADDR;
600}
601
602class CF_CLAUSE_R600 <bits<7> inst, dag ins, string AsmPrint> : AMDGPUInst <(outs),
603ins, AsmPrint, [] >, CF_WORD0_R600, CF_WORD1_R600 {
604  field bits<64> Inst;
605  bits<4> CNT;
606
607  let CF_INST = inst;
608  let BARRIER = 1;
609  let CF_CONST = 0;
610  let VALID_PIXEL_MODE = 0;
611  let COND = 0;
612  let COUNT = CNT{2-0};
613  let CALL_COUNT = 0;
614  let COUNT_3 = CNT{3};
615  let END_OF_PROGRAM = 0;
616  let WHOLE_QUAD_MODE = 0;
617
618  let Inst{31-0} = Word0;
619  let Inst{63-32} = Word1;
620}
621
622class CF_CLAUSE_EG <bits<8> inst, dag ins, string AsmPrint> : AMDGPUInst <(outs),
623ins, AsmPrint, [] >, CF_WORD0_EG, CF_WORD1_EG {
624  field bits<64> Inst;
625
626  let CF_INST = inst;
627  let BARRIER = 1;
628  let JUMPTABLE_SEL = 0;
629  let CF_CONST = 0;
630  let VALID_PIXEL_MODE = 0;
631  let COND = 0;
632  let END_OF_PROGRAM = 0;
633
634  let Inst{31-0} = Word0;
635  let Inst{63-32} = Word1;
636}
637
638def CF_ALU : ALU_CLAUSE<8, "ALU">;
639def CF_ALU_PUSH_BEFORE : ALU_CLAUSE<9, "ALU_PUSH_BEFORE">;
640def CF_ALU_POP_AFTER : ALU_CLAUSE<10, "ALU_POP_AFTER">;
641def CF_ALU_CONTINUE : ALU_CLAUSE<13, "ALU_CONTINUE">;
642def CF_ALU_BREAK : ALU_CLAUSE<14, "ALU_BREAK">;
643def CF_ALU_ELSE_AFTER : ALU_CLAUSE<15, "ALU_ELSE_AFTER">;
644
645def FETCH_CLAUSE : AMDGPUInst <(outs),
646(ins i32imm:$addr), "Fetch clause starting at $addr:", [] > {
647  field bits<8> Inst;
648  bits<8> num;
649  let Inst = num;
650  let isCodeGenOnly = 1;
651}
652
653def ALU_CLAUSE : AMDGPUInst <(outs),
654(ins i32imm:$addr), "ALU clause starting at $addr:", [] > {
655  field bits<8> Inst;
656  bits<8> num;
657  let Inst = num;
658  let isCodeGenOnly = 1;
659}
660
661def LITERALS : AMDGPUInst <(outs),
662(ins LITERAL:$literal1, LITERAL:$literal2), "$literal1, $literal2", [] > {
663  let isCodeGenOnly = 1;
664
665  field bits<64> Inst;
666  bits<32> literal1;
667  bits<32> literal2;
668
669  let Inst{31-0} = literal1;
670  let Inst{63-32} = literal2;
671}
672
673def PAD : AMDGPUInst <(outs), (ins), "PAD", [] > {
674  field bits<64> Inst;
675}
676
677let Predicates = [isR600toCayman] in {
678
679//===----------------------------------------------------------------------===//
680// Common Instructions R600, R700, Evergreen, Cayman
681//===----------------------------------------------------------------------===//
682
683def ADD : R600_2OP_Helper <0x0, "ADD", fadd>;
684// Non-IEEE MUL: 0 * anything = 0
685def MUL : R600_2OP_Helper <0x1, "MUL NON-IEEE">;
686def MUL_IEEE : R600_2OP_Helper <0x2, "MUL_IEEE", fmul>;
687// TODO: Do these actually match the regular fmin/fmax behavior?
688def MAX : R600_2OP_Helper <0x3, "MAX", AMDGPUfmax_legacy>;
689def MIN : R600_2OP_Helper <0x4, "MIN", AMDGPUfmin_legacy>;
690// According to https://msdn.microsoft.com/en-us/library/windows/desktop/cc308050%28v=vs.85%29.aspx
691// DX10 min/max returns the other operand if one is NaN,
692// this matches http://llvm.org/docs/LangRef.html#llvm-minnum-intrinsic
693def MAX_DX10 : R600_2OP_Helper <0x5, "MAX_DX10", fmaxnum>;
694def MIN_DX10 : R600_2OP_Helper <0x6, "MIN_DX10", fminnum>;
695
696// For the SET* instructions there is a naming conflict in TargetSelectionDAG.td,
697// so some of the instruction names don't match the asm string.
698// XXX: Use the defs in TargetSelectionDAG.td instead of intrinsics.
699def SETE : R600_2OP <
700  0x08, "SETE",
701  [(set f32:$dst, (selectcc f32:$src0, f32:$src1, FP_ONE, FP_ZERO, COND_OEQ))]
702>;
703
704def SGT : R600_2OP <
705  0x09, "SETGT",
706  [(set f32:$dst, (selectcc f32:$src0, f32:$src1, FP_ONE, FP_ZERO, COND_OGT))]
707>;
708
709def SGE : R600_2OP <
710  0xA, "SETGE",
711  [(set f32:$dst, (selectcc f32:$src0, f32:$src1, FP_ONE, FP_ZERO, COND_OGE))]
712>;
713
714def SNE : R600_2OP <
715  0xB, "SETNE",
716  [(set f32:$dst, (selectcc f32:$src0, f32:$src1, FP_ONE, FP_ZERO, COND_UNE_NE))]
717>;
718
719def SETE_DX10 : R600_2OP <
720  0xC, "SETE_DX10",
721  [(set i32:$dst, (selectcc f32:$src0, f32:$src1, -1, 0, COND_OEQ))]
722>;
723
724def SETGT_DX10 : R600_2OP <
725  0xD, "SETGT_DX10",
726  [(set i32:$dst, (selectcc f32:$src0, f32:$src1, -1, 0, COND_OGT))]
727>;
728
729def SETGE_DX10 : R600_2OP <
730  0xE, "SETGE_DX10",
731  [(set i32:$dst, (selectcc f32:$src0, f32:$src1, -1, 0, COND_OGE))]
732>;
733
734// FIXME: This should probably be COND_ONE
735def SETNE_DX10 : R600_2OP <
736  0xF, "SETNE_DX10",
737  [(set i32:$dst, (selectcc f32:$src0, f32:$src1, -1, 0, COND_UNE_NE))]
738>;
739
740// FIXME: Need combine for AMDGPUfract
741def FRACT : R600_1OP_Helper <0x10, "FRACT", AMDGPUfract>;
742def TRUNC : R600_1OP_Helper <0x11, "TRUNC", ftrunc>;
743def CEIL : R600_1OP_Helper <0x12, "CEIL", fceil>;
744def RNDNE : R600_1OP_Helper <0x13, "RNDNE", frint>;
745def FLOOR : R600_1OP_Helper <0x14, "FLOOR", ffloor>;
746
747def MOV : R600_1OP <0x19, "MOV", []>;
748
749let isPseudo = 1, isCodeGenOnly = 1, usesCustomInserter = 1 in {
750
751class MOV_IMM <ValueType vt, Operand immType> : AMDGPUInst <
752  (outs R600_Reg32:$dst),
753  (ins immType:$imm),
754  "",
755  []
756>;
757
758} // end let isPseudo = 1, isCodeGenOnly = 1, usesCustomInserter = 1
759
760def MOV_IMM_I32 : MOV_IMM<i32, i32imm>;
761def : Pat <
762  (imm:$val),
763  (MOV_IMM_I32 imm:$val)
764>;
765
766def MOV_IMM_GLOBAL_ADDR : MOV_IMM<iPTR, i32imm>;
767def : Pat <
768  (AMDGPUconstdata_ptr tglobaladdr:$addr),
769  (MOV_IMM_GLOBAL_ADDR tglobaladdr:$addr)
770>;
771
772
773def MOV_IMM_F32 : MOV_IMM<f32, f32imm>;
774def : Pat <
775  (fpimm:$val),
776  (MOV_IMM_F32  fpimm:$val)
777>;
778
779def PRED_SETE : R600_2OP <0x20, "PRED_SETE", []>;
780def PRED_SETGT : R600_2OP <0x21, "PRED_SETGT", []>;
781def PRED_SETGE : R600_2OP <0x22, "PRED_SETGE", []>;
782def PRED_SETNE : R600_2OP <0x23, "PRED_SETNE", []>;
783
784let hasSideEffects = 1 in {
785
786def KILLGT : R600_2OP <0x2D, "KILLGT", []>;
787
788} // end hasSideEffects
789
790def AND_INT : R600_2OP_Helper <0x30, "AND_INT", and>;
791def OR_INT : R600_2OP_Helper <0x31, "OR_INT", or>;
792def XOR_INT : R600_2OP_Helper <0x32, "XOR_INT", xor>;
793def NOT_INT : R600_1OP_Helper <0x33, "NOT_INT", not>;
794def ADD_INT : R600_2OP_Helper <0x34, "ADD_INT", add>;
795def SUB_INT : R600_2OP_Helper <0x35, "SUB_INT", sub>;
796def MAX_INT : R600_2OP_Helper <0x36, "MAX_INT", smax>;
797def MIN_INT : R600_2OP_Helper <0x37, "MIN_INT", smin>;
798def MAX_UINT : R600_2OP_Helper <0x38, "MAX_UINT", umax>;
799def MIN_UINT : R600_2OP_Helper <0x39, "MIN_UINT", umin>;
800
801def SETE_INT : R600_2OP <
802  0x3A, "SETE_INT",
803  [(set i32:$dst, (selectcc i32:$src0, i32:$src1, -1, 0, SETEQ))]
804>;
805
806def SETGT_INT : R600_2OP <
807  0x3B, "SETGT_INT",
808  [(set i32:$dst, (selectcc i32:$src0, i32:$src1, -1, 0, SETGT))]
809>;
810
811def SETGE_INT : R600_2OP <
812  0x3C, "SETGE_INT",
813  [(set i32:$dst, (selectcc i32:$src0, i32:$src1, -1, 0, SETGE))]
814>;
815
816def SETNE_INT : R600_2OP <
817  0x3D, "SETNE_INT",
818  [(set i32:$dst, (selectcc i32:$src0, i32:$src1, -1, 0, SETNE))]
819>;
820
821def SETGT_UINT : R600_2OP <
822  0x3E, "SETGT_UINT",
823  [(set i32:$dst, (selectcc i32:$src0, i32:$src1, -1, 0, SETUGT))]
824>;
825
826def SETGE_UINT : R600_2OP <
827  0x3F, "SETGE_UINT",
828  [(set i32:$dst, (selectcc i32:$src0, i32:$src1, -1, 0, SETUGE))]
829>;
830
831def PRED_SETE_INT : R600_2OP <0x42, "PRED_SETE_INT", []>;
832def PRED_SETGT_INT : R600_2OP <0x43, "PRED_SETGE_INT", []>;
833def PRED_SETGE_INT : R600_2OP <0x44, "PRED_SETGE_INT", []>;
834def PRED_SETNE_INT : R600_2OP <0x45, "PRED_SETNE_INT", []>;
835
836def CNDE_INT : R600_3OP <
837  0x1C, "CNDE_INT",
838  [(set i32:$dst, (selectcc i32:$src0, 0, i32:$src1, i32:$src2, COND_EQ))]
839>;
840
841def CNDGE_INT : R600_3OP <
842  0x1E, "CNDGE_INT",
843  [(set i32:$dst, (selectcc i32:$src0, 0, i32:$src1, i32:$src2, COND_SGE))]
844>;
845
846def CNDGT_INT : R600_3OP <
847  0x1D, "CNDGT_INT",
848  [(set i32:$dst, (selectcc i32:$src0, 0, i32:$src1, i32:$src2, COND_SGT))]
849>;
850
851//===----------------------------------------------------------------------===//
852// Texture instructions
853//===----------------------------------------------------------------------===//
854
855let mayLoad = 0, mayStore = 0, hasSideEffects = 0 in {
856
857class R600_TEX <bits<11> inst, string opName> :
858  InstR600 <(outs R600_Reg128:$DST_GPR),
859          (ins R600_Reg128:$SRC_GPR,
860          RSel:$srcx, RSel:$srcy, RSel:$srcz, RSel:$srcw,
861          i32imm:$offsetx, i32imm:$offsety, i32imm:$offsetz,
862          RSel:$DST_SEL_X, RSel:$DST_SEL_Y, RSel:$DST_SEL_Z, RSel:$DST_SEL_W,
863          i32imm:$RESOURCE_ID, i32imm:$SAMPLER_ID,
864          CT:$COORD_TYPE_X, CT:$COORD_TYPE_Y, CT:$COORD_TYPE_Z,
865          CT:$COORD_TYPE_W),
866          !strconcat("  ", opName,
867          " $DST_GPR.$DST_SEL_X$DST_SEL_Y$DST_SEL_Z$DST_SEL_W, "
868          "$SRC_GPR.$srcx$srcy$srcz$srcw "
869          "RID:$RESOURCE_ID SID:$SAMPLER_ID "
870          "CT:$COORD_TYPE_X$COORD_TYPE_Y$COORD_TYPE_Z$COORD_TYPE_W"),
871          [],
872          NullALU>, TEX_WORD0, TEX_WORD1, TEX_WORD2 {
873  let Inst{31-0} = Word0;
874  let Inst{63-32} = Word1;
875
876  let TEX_INST = inst{4-0};
877  let SRC_REL = 0;
878  let DST_REL = 0;
879  let LOD_BIAS = 0;
880
881  let INST_MOD = 0;
882  let FETCH_WHOLE_QUAD = 0;
883  let ALT_CONST = 0;
884  let SAMPLER_INDEX_MODE = 0;
885  let RESOURCE_INDEX_MODE = 0;
886
887  let TEXInst = 1;
888}
889
890} // End mayLoad = 0, mayStore = 0, hasSideEffects = 0
891
892
893
894def TEX_SAMPLE : R600_TEX <0x10, "TEX_SAMPLE">;
895def TEX_SAMPLE_C : R600_TEX <0x18, "TEX_SAMPLE_C">;
896def TEX_SAMPLE_L : R600_TEX <0x11, "TEX_SAMPLE_L">;
897def TEX_SAMPLE_C_L : R600_TEX <0x19, "TEX_SAMPLE_C_L">;
898def TEX_SAMPLE_LB : R600_TEX <0x12, "TEX_SAMPLE_LB">;
899def TEX_SAMPLE_C_LB : R600_TEX <0x1A, "TEX_SAMPLE_C_LB">;
900def TEX_LD : R600_TEX <0x03, "TEX_LD">;
901def TEX_LDPTR : R600_TEX <0x03, "TEX_LDPTR"> {
902  let INST_MOD = 1;
903}
904def TEX_GET_TEXTURE_RESINFO : R600_TEX <0x04, "TEX_GET_TEXTURE_RESINFO">;
905def TEX_GET_GRADIENTS_H : R600_TEX <0x07, "TEX_GET_GRADIENTS_H">;
906def TEX_GET_GRADIENTS_V : R600_TEX <0x08, "TEX_GET_GRADIENTS_V">;
907def TEX_SET_GRADIENTS_H : R600_TEX <0x0B, "TEX_SET_GRADIENTS_H">;
908def TEX_SET_GRADIENTS_V : R600_TEX <0x0C, "TEX_SET_GRADIENTS_V">;
909def TEX_SAMPLE_G : R600_TEX <0x14, "TEX_SAMPLE_G">;
910def TEX_SAMPLE_C_G : R600_TEX <0x1C, "TEX_SAMPLE_C_G">;
911
912defm : TexPattern<0, TEX_SAMPLE>;
913defm : TexPattern<1, TEX_SAMPLE_C>;
914defm : TexPattern<2, TEX_SAMPLE_L>;
915defm : TexPattern<3, TEX_SAMPLE_C_L>;
916defm : TexPattern<4, TEX_SAMPLE_LB>;
917defm : TexPattern<5, TEX_SAMPLE_C_LB>;
918defm : TexPattern<6, TEX_LD, v4i32>;
919defm : TexPattern<7, TEX_GET_TEXTURE_RESINFO, v4i32>;
920defm : TexPattern<8, TEX_GET_GRADIENTS_H>;
921defm : TexPattern<9, TEX_GET_GRADIENTS_V>;
922defm : TexPattern<10, TEX_LDPTR, v4i32>;
923
924//===----------------------------------------------------------------------===//
925// Helper classes for common instructions
926//===----------------------------------------------------------------------===//
927
928class MUL_LIT_Common <bits<5> inst> : R600_3OP <
929  inst, "MUL_LIT",
930  []
931>;
932
933class MULADD_Common <bits<5> inst> : R600_3OP <
934  inst, "MULADD",
935  []
936>;
937
938class MULADD_IEEE_Common <bits<5> inst> : R600_3OP <
939  inst, "MULADD_IEEE",
940  [(set f32:$dst, (fmad f32:$src0, f32:$src1, f32:$src2))]
941>;
942
943class FMA_Common <bits<5> inst> : R600_3OP <
944  inst, "FMA",
945  [(set f32:$dst, (fma f32:$src0, f32:$src1, f32:$src2))], VecALU
946>;
947
948class CNDE_Common <bits<5> inst> : R600_3OP <
949  inst, "CNDE",
950  [(set f32:$dst, (selectcc f32:$src0, FP_ZERO, f32:$src1, f32:$src2, COND_OEQ))]
951>;
952
953class CNDGT_Common <bits<5> inst> : R600_3OP <
954  inst, "CNDGT",
955  [(set f32:$dst, (selectcc f32:$src0, FP_ZERO, f32:$src1, f32:$src2, COND_OGT))]
956> {
957  let Itinerary = VecALU;
958}
959
960class CNDGE_Common <bits<5> inst> : R600_3OP <
961  inst, "CNDGE",
962  [(set f32:$dst, (selectcc f32:$src0, FP_ZERO, f32:$src1, f32:$src2, COND_OGE))]
963> {
964  let Itinerary = VecALU;
965}
966
967
968let isCodeGenOnly = 1, isPseudo = 1, Namespace = "AMDGPU"  in {
969class R600_VEC2OP<list<dag> pattern> : InstR600 <(outs R600_Reg32:$dst), (ins
970// Slot X
971   UEM:$update_exec_mask_X, UP:$update_pred_X, WRITE:$write_X,
972   OMOD:$omod_X, REL:$dst_rel_X, CLAMP:$clamp_X,
973   R600_TReg32_X:$src0_X, NEG:$src0_neg_X, REL:$src0_rel_X, ABS:$src0_abs_X, SEL:$src0_sel_X,
974   R600_TReg32_X:$src1_X, NEG:$src1_neg_X, REL:$src1_rel_X, ABS:$src1_abs_X, SEL:$src1_sel_X,
975   R600_Pred:$pred_sel_X,
976// Slot Y
977   UEM:$update_exec_mask_Y, UP:$update_pred_Y, WRITE:$write_Y,
978   OMOD:$omod_Y, REL:$dst_rel_Y, CLAMP:$clamp_Y,
979   R600_TReg32_Y:$src0_Y, NEG:$src0_neg_Y, REL:$src0_rel_Y, ABS:$src0_abs_Y, SEL:$src0_sel_Y,
980   R600_TReg32_Y:$src1_Y, NEG:$src1_neg_Y, REL:$src1_rel_Y, ABS:$src1_abs_Y, SEL:$src1_sel_Y,
981   R600_Pred:$pred_sel_Y,
982// Slot Z
983   UEM:$update_exec_mask_Z, UP:$update_pred_Z, WRITE:$write_Z,
984   OMOD:$omod_Z, REL:$dst_rel_Z, CLAMP:$clamp_Z,
985   R600_TReg32_Z:$src0_Z, NEG:$src0_neg_Z, REL:$src0_rel_Z, ABS:$src0_abs_Z, SEL:$src0_sel_Z,
986   R600_TReg32_Z:$src1_Z, NEG:$src1_neg_Z, REL:$src1_rel_Z, ABS:$src1_abs_Z, SEL:$src1_sel_Z,
987   R600_Pred:$pred_sel_Z,
988// Slot W
989   UEM:$update_exec_mask_W, UP:$update_pred_W, WRITE:$write_W,
990   OMOD:$omod_W, REL:$dst_rel_W, CLAMP:$clamp_W,
991   R600_TReg32_W:$src0_W, NEG:$src0_neg_W, REL:$src0_rel_W, ABS:$src0_abs_W, SEL:$src0_sel_W,
992   R600_TReg32_W:$src1_W, NEG:$src1_neg_W, REL:$src1_rel_W, ABS:$src1_abs_W, SEL:$src1_sel_W,
993   R600_Pred:$pred_sel_W,
994   LITERAL:$literal0, LITERAL:$literal1),
995  "",
996  pattern,
997  AnyALU> {
998
999  let UseNamedOperandTable = 1;
1000
1001}
1002}
1003
1004def DOT_4 : R600_VEC2OP<[(set R600_Reg32:$dst, (DOT4
1005  R600_TReg32_X:$src0_X, R600_TReg32_X:$src1_X,
1006  R600_TReg32_Y:$src0_Y, R600_TReg32_Y:$src1_Y,
1007  R600_TReg32_Z:$src0_Z, R600_TReg32_Z:$src1_Z,
1008  R600_TReg32_W:$src0_W, R600_TReg32_W:$src1_W))]>;
1009
1010
1011class DOT4_Common <bits<11> inst> : R600_2OP <inst, "DOT4", []>;
1012
1013
1014let mayLoad = 0, mayStore = 0, hasSideEffects = 0 in {
1015multiclass CUBE_Common <bits<11> inst> {
1016
1017  def _pseudo : InstR600 <
1018    (outs R600_Reg128:$dst),
1019    (ins R600_Reg128:$src0),
1020    "CUBE $dst $src0",
1021    [(set v4f32:$dst, (int_AMDGPU_cube v4f32:$src0))],
1022    VecALU
1023  > {
1024    let isPseudo = 1;
1025    let UseNamedOperandTable = 1;
1026  }
1027
1028  def _real : R600_2OP <inst, "CUBE", []>;
1029}
1030} // End mayLoad = 0, mayStore = 0, hasSideEffects = 0
1031
1032class EXP_IEEE_Common <bits<11> inst> : R600_1OP_Helper <
1033  inst, "EXP_IEEE", fexp2
1034> {
1035  let Itinerary = TransALU;
1036}
1037
1038class FLT_TO_INT_Common <bits<11> inst> : R600_1OP_Helper <
1039  inst, "FLT_TO_INT", fp_to_sint
1040> {
1041  let Itinerary = TransALU;
1042}
1043
1044class INT_TO_FLT_Common <bits<11> inst> : R600_1OP_Helper <
1045  inst, "INT_TO_FLT", sint_to_fp
1046> {
1047  let Itinerary = TransALU;
1048}
1049
1050class FLT_TO_UINT_Common <bits<11> inst> : R600_1OP_Helper <
1051  inst, "FLT_TO_UINT", fp_to_uint
1052> {
1053  let Itinerary = TransALU;
1054}
1055
1056class UINT_TO_FLT_Common <bits<11> inst> : R600_1OP_Helper <
1057  inst, "UINT_TO_FLT", uint_to_fp
1058> {
1059  let Itinerary = TransALU;
1060}
1061
1062class LOG_CLAMPED_Common <bits<11> inst> : R600_1OP <
1063  inst, "LOG_CLAMPED", []
1064>;
1065
1066class LOG_IEEE_Common <bits<11> inst> : R600_1OP_Helper <
1067  inst, "LOG_IEEE", flog2
1068> {
1069  let Itinerary = TransALU;
1070}
1071
1072class LSHL_Common <bits<11> inst> : R600_2OP_Helper <inst, "LSHL", shl>;
1073class LSHR_Common <bits<11> inst> : R600_2OP_Helper <inst, "LSHR", srl>;
1074class ASHR_Common <bits<11> inst> : R600_2OP_Helper <inst, "ASHR", sra>;
1075class MULHI_INT_Common <bits<11> inst> : R600_2OP_Helper <
1076  inst, "MULHI_INT", mulhs
1077> {
1078  let Itinerary = TransALU;
1079}
1080class MULHI_UINT_Common <bits<11> inst> : R600_2OP_Helper <
1081  inst, "MULHI", mulhu
1082> {
1083  let Itinerary = TransALU;
1084}
1085class MULLO_INT_Common <bits<11> inst> : R600_2OP_Helper <
1086  inst, "MULLO_INT", mul
1087> {
1088  let Itinerary = TransALU;
1089}
1090class MULLO_UINT_Common <bits<11> inst> : R600_2OP <inst, "MULLO_UINT", []> {
1091  let Itinerary = TransALU;
1092}
1093
1094class RECIP_CLAMPED_Common <bits<11> inst> : R600_1OP <
1095  inst, "RECIP_CLAMPED", []
1096> {
1097  let Itinerary = TransALU;
1098}
1099
1100class RECIP_IEEE_Common <bits<11> inst> : R600_1OP <
1101  inst, "RECIP_IEEE", [(set f32:$dst, (AMDGPUrcp f32:$src0))]
1102> {
1103  let Itinerary = TransALU;
1104}
1105
1106class RECIP_UINT_Common <bits<11> inst> : R600_1OP_Helper <
1107  inst, "RECIP_UINT", AMDGPUurecip
1108> {
1109  let Itinerary = TransALU;
1110}
1111
1112// Clamped to maximum.
1113class RECIPSQRT_CLAMPED_Common <bits<11> inst> : R600_1OP_Helper <
1114  inst, "RECIPSQRT_CLAMPED", AMDGPUrsq_clamp
1115> {
1116  let Itinerary = TransALU;
1117}
1118
1119class RECIPSQRT_IEEE_Common <bits<11> inst> : R600_1OP_Helper <
1120  inst, "RECIPSQRT_IEEE", AMDGPUrsq_legacy
1121> {
1122  let Itinerary = TransALU;
1123}
1124
1125// TODO: There is also RECIPSQRT_FF which clamps to zero.
1126
1127class SIN_Common <bits<11> inst> : R600_1OP <
1128  inst, "SIN", [(set f32:$dst, (SIN_HW f32:$src0))]>{
1129  let Trig = 1;
1130  let Itinerary = TransALU;
1131}
1132
1133class COS_Common <bits<11> inst> : R600_1OP <
1134  inst, "COS", [(set f32:$dst, (COS_HW f32:$src0))]> {
1135  let Trig = 1;
1136  let Itinerary = TransALU;
1137}
1138
1139def CLAMP_R600 :  CLAMP <R600_Reg32>;
1140def FABS_R600 : FABS<R600_Reg32>;
1141def FNEG_R600 : FNEG<R600_Reg32>;
1142
1143//===----------------------------------------------------------------------===//
1144// Helper patterns for complex intrinsics
1145//===----------------------------------------------------------------------===//
1146
1147// FIXME: Should be predicated on unsafe fp math.
1148multiclass DIV_Common <InstR600 recip_ieee> {
1149def : Pat<
1150  (fdiv f32:$src0, f32:$src1),
1151  (MUL_IEEE $src0, (recip_ieee $src1))
1152>;
1153
1154def : RcpPat<recip_ieee, f32>;
1155}
1156
1157//===----------------------------------------------------------------------===//
1158// R600 / R700 Instructions
1159//===----------------------------------------------------------------------===//
1160
1161let Predicates = [isR600] in {
1162
1163  def MUL_LIT_r600 : MUL_LIT_Common<0x0C>;
1164  def MULADD_r600 : MULADD_Common<0x10>;
1165  def MULADD_IEEE_r600 : MULADD_IEEE_Common<0x14>;
1166  def CNDE_r600 : CNDE_Common<0x18>;
1167  def CNDGT_r600 : CNDGT_Common<0x19>;
1168  def CNDGE_r600 : CNDGE_Common<0x1A>;
1169  def DOT4_r600 : DOT4_Common<0x50>;
1170  defm CUBE_r600 : CUBE_Common<0x52>;
1171  def EXP_IEEE_r600 : EXP_IEEE_Common<0x61>;
1172  def LOG_CLAMPED_r600 : LOG_CLAMPED_Common<0x62>;
1173  def LOG_IEEE_r600 : LOG_IEEE_Common<0x63>;
1174  def RECIP_CLAMPED_r600 : RECIP_CLAMPED_Common<0x64>;
1175  def RECIP_IEEE_r600 : RECIP_IEEE_Common<0x66>;
1176  def RECIPSQRT_CLAMPED_r600 : RECIPSQRT_CLAMPED_Common<0x67>;
1177  def RECIPSQRT_IEEE_r600 : RECIPSQRT_IEEE_Common<0x69>;
1178  def FLT_TO_INT_r600 : FLT_TO_INT_Common<0x6b>;
1179  def INT_TO_FLT_r600 : INT_TO_FLT_Common<0x6c>;
1180  def FLT_TO_UINT_r600 : FLT_TO_UINT_Common<0x79>;
1181  def UINT_TO_FLT_r600 : UINT_TO_FLT_Common<0x6d>;
1182  def SIN_r600 : SIN_Common<0x6E>;
1183  def COS_r600 : COS_Common<0x6F>;
1184  def ASHR_r600 : ASHR_Common<0x70>;
1185  def LSHR_r600 : LSHR_Common<0x71>;
1186  def LSHL_r600 : LSHL_Common<0x72>;
1187  def MULLO_INT_r600 : MULLO_INT_Common<0x73>;
1188  def MULHI_INT_r600 : MULHI_INT_Common<0x74>;
1189  def MULLO_UINT_r600 : MULLO_UINT_Common<0x75>;
1190  def MULHI_UINT_r600 : MULHI_UINT_Common<0x76>;
1191  def RECIP_UINT_r600 : RECIP_UINT_Common <0x78>;
1192
1193  defm DIV_r600 : DIV_Common<RECIP_IEEE_r600>;
1194  def : POW_Common <LOG_IEEE_r600, EXP_IEEE_r600, MUL>;
1195
1196  def : Pat<(fsqrt f32:$src), (MUL $src, (RECIPSQRT_CLAMPED_r600 $src))>;
1197  def : RsqPat<RECIPSQRT_IEEE_r600, f32>;
1198
1199  def R600_ExportSwz : ExportSwzInst {
1200    let Word1{20-17} = 0; // BURST_COUNT
1201    let Word1{21} = eop;
1202    let Word1{22} = 0; // VALID_PIXEL_MODE
1203    let Word1{30-23} = inst;
1204    let Word1{31} = 1; // BARRIER
1205  }
1206  defm : ExportPattern<R600_ExportSwz, 39>;
1207
1208  def R600_ExportBuf : ExportBufInst {
1209    let Word1{20-17} = 0; // BURST_COUNT
1210    let Word1{21} = eop;
1211    let Word1{22} = 0; // VALID_PIXEL_MODE
1212    let Word1{30-23} = inst;
1213    let Word1{31} = 1; // BARRIER
1214  }
1215  defm : SteamOutputExportPattern<R600_ExportBuf, 0x20, 0x21, 0x22, 0x23>;
1216
1217  def CF_TC_R600 : CF_CLAUSE_R600<1, (ins i32imm:$ADDR, i32imm:$CNT),
1218  "TEX $CNT @$ADDR"> {
1219    let POP_COUNT = 0;
1220  }
1221  def CF_VC_R600 : CF_CLAUSE_R600<2, (ins i32imm:$ADDR, i32imm:$CNT),
1222  "VTX $CNT @$ADDR"> {
1223    let POP_COUNT = 0;
1224  }
1225  def WHILE_LOOP_R600 : CF_CLAUSE_R600<6, (ins i32imm:$ADDR),
1226  "LOOP_START_DX10 @$ADDR"> {
1227    let POP_COUNT = 0;
1228    let CNT = 0;
1229  }
1230  def END_LOOP_R600 : CF_CLAUSE_R600<5, (ins i32imm:$ADDR), "END_LOOP @$ADDR"> {
1231    let POP_COUNT = 0;
1232    let CNT = 0;
1233  }
1234  def LOOP_BREAK_R600 : CF_CLAUSE_R600<9, (ins i32imm:$ADDR),
1235  "LOOP_BREAK @$ADDR"> {
1236    let POP_COUNT = 0;
1237    let CNT = 0;
1238  }
1239  def CF_CONTINUE_R600 : CF_CLAUSE_R600<8, (ins i32imm:$ADDR),
1240  "CONTINUE @$ADDR"> {
1241    let POP_COUNT = 0;
1242    let CNT = 0;
1243  }
1244  def CF_JUMP_R600 : CF_CLAUSE_R600<10, (ins i32imm:$ADDR, i32imm:$POP_COUNT),
1245  "JUMP @$ADDR POP:$POP_COUNT"> {
1246    let CNT = 0;
1247  }
1248  def CF_PUSH_ELSE_R600 : CF_CLAUSE_R600<12, (ins i32imm:$ADDR),
1249  "PUSH_ELSE @$ADDR"> {
1250    let CNT = 0;
1251    let POP_COUNT = 0; // FIXME?
1252  }
1253  def CF_ELSE_R600 : CF_CLAUSE_R600<13, (ins i32imm:$ADDR, i32imm:$POP_COUNT),
1254  "ELSE @$ADDR POP:$POP_COUNT"> {
1255    let CNT = 0;
1256  }
1257  def CF_CALL_FS_R600 : CF_CLAUSE_R600<19, (ins), "CALL_FS"> {
1258    let ADDR = 0;
1259    let CNT = 0;
1260    let POP_COUNT = 0;
1261  }
1262  def POP_R600 : CF_CLAUSE_R600<14, (ins i32imm:$ADDR, i32imm:$POP_COUNT),
1263  "POP @$ADDR POP:$POP_COUNT"> {
1264    let CNT = 0;
1265  }
1266  def CF_END_R600 : CF_CLAUSE_R600<0, (ins), "CF_END"> {
1267    let CNT = 0;
1268    let POP_COUNT = 0;
1269    let ADDR = 0;
1270    let END_OF_PROGRAM = 1;
1271  }
1272
1273}
1274
1275
1276//===----------------------------------------------------------------------===//
1277// Regist loads and stores - for indirect addressing
1278//===----------------------------------------------------------------------===//
1279
1280defm R600_ : RegisterLoadStore <R600_Reg32, FRAMEri, ADDRIndirect>;
1281
1282
1283//===----------------------------------------------------------------------===//
1284// Pseudo instructions
1285//===----------------------------------------------------------------------===//
1286
1287let isPseudo = 1 in {
1288
1289def PRED_X : InstR600 <
1290  (outs R600_Predicate_Bit:$dst),
1291  (ins R600_Reg32:$src0, i32imm:$src1, i32imm:$flags),
1292  "", [], NullALU> {
1293  let FlagOperandIdx = 3;
1294}
1295
1296let isTerminator = 1, isBranch = 1 in {
1297def JUMP_COND : InstR600 <
1298          (outs),
1299          (ins brtarget:$target, R600_Predicate_Bit:$p),
1300          "JUMP $target ($p)",
1301          [], AnyALU
1302  >;
1303
1304def JUMP : InstR600 <
1305          (outs),
1306          (ins brtarget:$target),
1307          "JUMP $target",
1308          [], AnyALU
1309  >
1310{
1311  let isPredicable = 1;
1312  let isBarrier = 1;
1313}
1314
1315}  // End isTerminator = 1, isBranch = 1
1316
1317let usesCustomInserter = 1 in {
1318
1319let mayLoad = 0, mayStore = 0, hasSideEffects = 1 in {
1320
1321def MASK_WRITE : AMDGPUShaderInst <
1322    (outs),
1323    (ins R600_Reg32:$src),
1324    "MASK_WRITE $src",
1325    []
1326>;
1327
1328} // End mayLoad = 0, mayStore = 0, hasSideEffects = 1
1329
1330
1331def TXD: InstR600 <
1332  (outs R600_Reg128:$dst),
1333  (ins R600_Reg128:$src0, R600_Reg128:$src1, R600_Reg128:$src2,
1334       i32imm:$resourceId, i32imm:$samplerId, i32imm:$textureTarget),
1335  "TXD $dst, $src0, $src1, $src2, $resourceId, $samplerId, $textureTarget", [],
1336  NullALU > {
1337  let TEXInst = 1;
1338}
1339
1340def TXD_SHADOW: InstR600 <
1341  (outs R600_Reg128:$dst),
1342  (ins R600_Reg128:$src0, R600_Reg128:$src1, R600_Reg128:$src2,
1343       i32imm:$resourceId, i32imm:$samplerId, i32imm:$textureTarget),
1344  "TXD_SHADOW $dst, $src0, $src1, $src2, $resourceId, $samplerId, $textureTarget",
1345  [], NullALU> {
1346  let TEXInst = 1;
1347}
1348} // End isPseudo = 1
1349} // End usesCustomInserter = 1
1350
1351
1352//===----------------------------------------------------------------------===//
1353// Constant Buffer Addressing Support
1354//===----------------------------------------------------------------------===//
1355
1356let usesCustomInserter = 1, isCodeGenOnly = 1, isPseudo = 1, Namespace = "AMDGPU"  in {
1357def CONST_COPY : Instruction {
1358  let OutOperandList = (outs R600_Reg32:$dst);
1359  let InOperandList = (ins i32imm:$src);
1360  let Pattern =
1361      [(set R600_Reg32:$dst, (CONST_ADDRESS ADDRGA_CONST_OFFSET:$src))];
1362  let AsmString = "CONST_COPY";
1363  let hasSideEffects = 0;
1364  let isAsCheapAsAMove = 1;
1365  let Itinerary = NullALU;
1366}
1367} // end usesCustomInserter = 1, isCodeGenOnly = 1, isPseudo = 1, Namespace = "AMDGPU"
1368
1369def TEX_VTX_CONSTBUF :
1370  InstR600ISA <(outs R600_Reg128:$dst), (ins MEMxi:$ptr, i32imm:$BUFFER_ID), "VTX_READ_eg $dst, $ptr",
1371      [(set v4i32:$dst, (CONST_ADDRESS ADDRGA_VAR_OFFSET:$ptr, (i32 imm:$BUFFER_ID)))]>,
1372  VTX_WORD1_GPR, VTX_WORD0_eg {
1373
1374  let VC_INST = 0;
1375  let FETCH_TYPE = 2;
1376  let FETCH_WHOLE_QUAD = 0;
1377  let SRC_REL = 0;
1378  let SRC_SEL_X = 0;
1379  let DST_REL = 0;
1380  let USE_CONST_FIELDS = 0;
1381  let NUM_FORMAT_ALL = 2;
1382  let FORMAT_COMP_ALL = 1;
1383  let SRF_MODE_ALL = 1;
1384  let MEGA_FETCH_COUNT = 16;
1385  let DST_SEL_X        = 0;
1386  let DST_SEL_Y        = 1;
1387  let DST_SEL_Z        = 2;
1388  let DST_SEL_W        = 3;
1389  let DATA_FORMAT      = 35;
1390
1391  let Inst{31-0} = Word0;
1392  let Inst{63-32} = Word1;
1393
1394// LLVM can only encode 64-bit instructions, so these fields are manually
1395// encoded in R600CodeEmitter
1396//
1397// bits<16> OFFSET;
1398// bits<2>  ENDIAN_SWAP = 0;
1399// bits<1>  CONST_BUF_NO_STRIDE = 0;
1400// bits<1>  MEGA_FETCH = 0;
1401// bits<1>  ALT_CONST = 0;
1402// bits<2>  BUFFER_INDEX_MODE = 0;
1403
1404
1405
1406// VTX_WORD2 (LLVM can only encode 64-bit instructions, so WORD2 encoding
1407// is done in R600CodeEmitter
1408//
1409// Inst{79-64} = OFFSET;
1410// Inst{81-80} = ENDIAN_SWAP;
1411// Inst{82}    = CONST_BUF_NO_STRIDE;
1412// Inst{83}    = MEGA_FETCH;
1413// Inst{84}    = ALT_CONST;
1414// Inst{86-85} = BUFFER_INDEX_MODE;
1415// Inst{95-86} = 0; Reserved
1416
1417// VTX_WORD3 (Padding)
1418//
1419// Inst{127-96} = 0;
1420  let VTXInst = 1;
1421}
1422
1423def TEX_VTX_TEXBUF:
1424  InstR600ISA <(outs R600_Reg128:$dst), (ins MEMxi:$ptr, i32imm:$BUFFER_ID), "TEX_VTX_EXPLICIT_READ $dst, $ptr">,
1425VTX_WORD1_GPR, VTX_WORD0_eg {
1426
1427let VC_INST = 0;
1428let FETCH_TYPE = 2;
1429let FETCH_WHOLE_QUAD = 0;
1430let SRC_REL = 0;
1431let SRC_SEL_X = 0;
1432let DST_REL = 0;
1433let USE_CONST_FIELDS = 1;
1434let NUM_FORMAT_ALL = 0;
1435let FORMAT_COMP_ALL = 0;
1436let SRF_MODE_ALL = 1;
1437let MEGA_FETCH_COUNT = 16;
1438let DST_SEL_X        = 0;
1439let DST_SEL_Y        = 1;
1440let DST_SEL_Z        = 2;
1441let DST_SEL_W        = 3;
1442let DATA_FORMAT      = 0;
1443
1444let Inst{31-0} = Word0;
1445let Inst{63-32} = Word1;
1446
1447// LLVM can only encode 64-bit instructions, so these fields are manually
1448// encoded in R600CodeEmitter
1449//
1450// bits<16> OFFSET;
1451// bits<2>  ENDIAN_SWAP = 0;
1452// bits<1>  CONST_BUF_NO_STRIDE = 0;
1453// bits<1>  MEGA_FETCH = 0;
1454// bits<1>  ALT_CONST = 0;
1455// bits<2>  BUFFER_INDEX_MODE = 0;
1456
1457
1458
1459// VTX_WORD2 (LLVM can only encode 64-bit instructions, so WORD2 encoding
1460// is done in R600CodeEmitter
1461//
1462// Inst{79-64} = OFFSET;
1463// Inst{81-80} = ENDIAN_SWAP;
1464// Inst{82}    = CONST_BUF_NO_STRIDE;
1465// Inst{83}    = MEGA_FETCH;
1466// Inst{84}    = ALT_CONST;
1467// Inst{86-85} = BUFFER_INDEX_MODE;
1468// Inst{95-86} = 0; Reserved
1469
1470// VTX_WORD3 (Padding)
1471//
1472// Inst{127-96} = 0;
1473  let VTXInst = 1;
1474}
1475
1476//===---------------------------------------------------------------------===//
1477// Flow and Program control Instructions
1478//===---------------------------------------------------------------------===//
1479class ILFormat<dag outs, dag ins, string asmstr, list<dag> pattern>
1480: Instruction {
1481
1482     let Namespace = "AMDGPU";
1483     dag OutOperandList = outs;
1484     dag InOperandList = ins;
1485     let Pattern = pattern;
1486     let AsmString = !strconcat(asmstr, "\n");
1487     let isPseudo = 1;
1488     let Itinerary = NullALU;
1489     bit hasIEEEFlag = 0;
1490     bit hasZeroOpFlag = 0;
1491     let mayLoad = 0;
1492     let mayStore = 0;
1493     let hasSideEffects = 0;
1494     let isCodeGenOnly = 1;
1495}
1496
1497multiclass BranchConditional<SDNode Op, RegisterClass rci, RegisterClass rcf> {
1498    def _i32 : ILFormat<(outs),
1499  (ins brtarget:$target, rci:$src0),
1500        "; i32 Pseudo branch instruction",
1501  [(Op bb:$target, (i32 rci:$src0))]>;
1502    def _f32 : ILFormat<(outs),
1503  (ins brtarget:$target, rcf:$src0),
1504        "; f32 Pseudo branch instruction",
1505  [(Op bb:$target, (f32 rcf:$src0))]>;
1506}
1507
1508// Only scalar types should generate flow control
1509multiclass BranchInstr<string name> {
1510  def _i32 : ILFormat<(outs), (ins R600_Reg32:$src),
1511      !strconcat(name, " $src"), []>;
1512  def _f32 : ILFormat<(outs), (ins R600_Reg32:$src),
1513      !strconcat(name, " $src"), []>;
1514}
1515// Only scalar types should generate flow control
1516multiclass BranchInstr2<string name> {
1517  def _i32 : ILFormat<(outs), (ins R600_Reg32:$src0, R600_Reg32:$src1),
1518      !strconcat(name, " $src0, $src1"), []>;
1519  def _f32 : ILFormat<(outs), (ins R600_Reg32:$src0, R600_Reg32:$src1),
1520      !strconcat(name, " $src0, $src1"), []>;
1521}
1522
1523//===---------------------------------------------------------------------===//
1524// Custom Inserter for Branches and returns, this eventually will be a
1525// separate pass
1526//===---------------------------------------------------------------------===//
1527let isTerminator = 1, usesCustomInserter = 1, isBranch = 1, isBarrier = 1 in {
1528  def BRANCH : ILFormat<(outs), (ins brtarget:$target),
1529      "; Pseudo unconditional branch instruction",
1530      [(br bb:$target)]>;
1531  defm BRANCH_COND : BranchConditional<IL_brcond, R600_Reg32, R600_Reg32>;
1532}
1533
1534//===---------------------------------------------------------------------===//
1535// Return instruction
1536//===---------------------------------------------------------------------===//
1537let isTerminator = 1, isReturn = 1, hasCtrlDep = 1,
1538    usesCustomInserter = 1 in {
1539  def RETURN : ILFormat<(outs), (ins variable_ops),
1540    "RETURN", [(AMDGPUendpgm)]
1541  >;
1542}
1543
1544//===----------------------------------------------------------------------===//
1545// Branch Instructions
1546//===----------------------------------------------------------------------===//
1547
1548def IF_PREDICATE_SET  : ILFormat<(outs), (ins R600_Reg32:$src),
1549  "IF_PREDICATE_SET $src", []>;
1550
1551let isTerminator=1 in {
1552  def BREAK       : ILFormat< (outs), (ins),
1553      "BREAK", []>;
1554  def CONTINUE    : ILFormat< (outs), (ins),
1555      "CONTINUE", []>;
1556  def DEFAULT     : ILFormat< (outs), (ins),
1557      "DEFAULT", []>;
1558  def ELSE        : ILFormat< (outs), (ins),
1559      "ELSE", []>;
1560  def ENDSWITCH   : ILFormat< (outs), (ins),
1561      "ENDSWITCH", []>;
1562  def ENDMAIN     : ILFormat< (outs), (ins),
1563      "ENDMAIN", []>;
1564  def END         : ILFormat< (outs), (ins),
1565      "END", []>;
1566  def ENDFUNC     : ILFormat< (outs), (ins),
1567      "ENDFUNC", []>;
1568  def ENDIF       : ILFormat< (outs), (ins),
1569      "ENDIF", []>;
1570  def WHILELOOP   : ILFormat< (outs), (ins),
1571      "WHILE", []>;
1572  def ENDLOOP     : ILFormat< (outs), (ins),
1573      "ENDLOOP", []>;
1574  def FUNC        : ILFormat< (outs), (ins),
1575      "FUNC", []>;
1576  def RETDYN      : ILFormat< (outs), (ins),
1577      "RET_DYN", []>;
1578  // This opcode has custom swizzle pattern encoded in Swizzle Encoder
1579  defm IF_LOGICALNZ  : BranchInstr<"IF_LOGICALNZ">;
1580  // This opcode has custom swizzle pattern encoded in Swizzle Encoder
1581  defm IF_LOGICALZ   : BranchInstr<"IF_LOGICALZ">;
1582  // This opcode has custom swizzle pattern encoded in Swizzle Encoder
1583  defm BREAK_LOGICALNZ : BranchInstr<"BREAK_LOGICALNZ">;
1584  // This opcode has custom swizzle pattern encoded in Swizzle Encoder
1585  defm BREAK_LOGICALZ : BranchInstr<"BREAK_LOGICALZ">;
1586  // This opcode has custom swizzle pattern encoded in Swizzle Encoder
1587  defm CONTINUE_LOGICALNZ : BranchInstr<"CONTINUE_LOGICALNZ">;
1588  // This opcode has custom swizzle pattern encoded in Swizzle Encoder
1589  defm CONTINUE_LOGICALZ : BranchInstr<"CONTINUE_LOGICALZ">;
1590  defm IFC         : BranchInstr2<"IFC">;
1591  defm BREAKC      : BranchInstr2<"BREAKC">;
1592  defm CONTINUEC   : BranchInstr2<"CONTINUEC">;
1593}
1594
1595//===----------------------------------------------------------------------===//
1596// Indirect addressing pseudo instructions
1597//===----------------------------------------------------------------------===//
1598
1599let isPseudo = 1 in {
1600
1601class ExtractVertical <RegisterClass vec_rc> : InstR600 <
1602  (outs R600_Reg32:$dst),
1603  (ins vec_rc:$vec, R600_Reg32:$index), "",
1604  [],
1605  AnyALU
1606>;
1607
1608let Constraints = "$dst = $vec" in {
1609
1610class InsertVertical <RegisterClass vec_rc> : InstR600 <
1611  (outs vec_rc:$dst),
1612  (ins vec_rc:$vec, R600_Reg32:$value, R600_Reg32:$index), "",
1613  [],
1614  AnyALU
1615>;
1616
1617} // End Constraints = "$dst = $vec"
1618
1619} // End isPseudo = 1
1620
1621def R600_EXTRACT_ELT_V2 : ExtractVertical <R600_Reg64Vertical>;
1622def R600_EXTRACT_ELT_V4 : ExtractVertical <R600_Reg128Vertical>;
1623
1624def R600_INSERT_ELT_V2 : InsertVertical <R600_Reg64Vertical>;
1625def R600_INSERT_ELT_V4 : InsertVertical <R600_Reg128Vertical>;
1626
1627class ExtractVerticalPat <Instruction inst, ValueType vec_ty,
1628                          ValueType scalar_ty> : Pat <
1629  (scalar_ty (extractelt vec_ty:$vec, i32:$index)),
1630  (inst $vec, $index)
1631>;
1632
1633def : ExtractVerticalPat <R600_EXTRACT_ELT_V2, v2i32, i32>;
1634def : ExtractVerticalPat <R600_EXTRACT_ELT_V2, v2f32, f32>;
1635def : ExtractVerticalPat <R600_EXTRACT_ELT_V4, v4i32, i32>;
1636def : ExtractVerticalPat <R600_EXTRACT_ELT_V4, v4f32, f32>;
1637
1638class InsertVerticalPat <Instruction inst, ValueType vec_ty,
1639                         ValueType scalar_ty> : Pat <
1640  (vec_ty (insertelt vec_ty:$vec, scalar_ty:$value, i32:$index)),
1641  (inst $vec, $value, $index)
1642>;
1643
1644def : InsertVerticalPat <R600_INSERT_ELT_V2, v2i32, i32>;
1645def : InsertVerticalPat <R600_INSERT_ELT_V2, v2f32, f32>;
1646def : InsertVerticalPat <R600_INSERT_ELT_V4, v4i32, i32>;
1647def : InsertVerticalPat <R600_INSERT_ELT_V4, v4f32, f32>;
1648
1649//===----------------------------------------------------------------------===//
1650// ISel Patterns
1651//===----------------------------------------------------------------------===//
1652
1653// CND*_INT Patterns for f32 True / False values
1654
1655class CND_INT_f32 <InstR600 cnd, CondCode cc> : Pat <
1656  (selectcc i32:$src0, 0, f32:$src1, f32:$src2, cc),
1657  (cnd $src0, $src1, $src2)
1658>;
1659
1660def : CND_INT_f32 <CNDE_INT,  SETEQ>;
1661def : CND_INT_f32 <CNDGT_INT, SETGT>;
1662def : CND_INT_f32 <CNDGE_INT, SETGE>;
1663
1664//CNDGE_INT extra pattern
1665def : Pat <
1666  (selectcc i32:$src0, -1, i32:$src1, i32:$src2, COND_SGT),
1667  (CNDGE_INT $src0, $src1, $src2)
1668>;
1669
1670// KIL Patterns
1671def KILP : Pat <
1672  (int_AMDGPU_kilp),
1673  (MASK_WRITE (KILLGT (f32 ONE), (f32 ZERO)))
1674>;
1675
1676def KIL : Pat <
1677  (int_AMDGPU_kill f32:$src0),
1678  (MASK_WRITE (KILLGT (f32 ZERO), $src0))
1679>;
1680
1681def : Extract_Element <f32, v4f32, 0, sub0>;
1682def : Extract_Element <f32, v4f32, 1, sub1>;
1683def : Extract_Element <f32, v4f32, 2, sub2>;
1684def : Extract_Element <f32, v4f32, 3, sub3>;
1685
1686def : Insert_Element <f32, v4f32, 0, sub0>;
1687def : Insert_Element <f32, v4f32, 1, sub1>;
1688def : Insert_Element <f32, v4f32, 2, sub2>;
1689def : Insert_Element <f32, v4f32, 3, sub3>;
1690
1691def : Extract_Element <i32, v4i32, 0, sub0>;
1692def : Extract_Element <i32, v4i32, 1, sub1>;
1693def : Extract_Element <i32, v4i32, 2, sub2>;
1694def : Extract_Element <i32, v4i32, 3, sub3>;
1695
1696def : Insert_Element <i32, v4i32, 0, sub0>;
1697def : Insert_Element <i32, v4i32, 1, sub1>;
1698def : Insert_Element <i32, v4i32, 2, sub2>;
1699def : Insert_Element <i32, v4i32, 3, sub3>;
1700
1701def : Extract_Element <f32, v2f32, 0, sub0>;
1702def : Extract_Element <f32, v2f32, 1, sub1>;
1703
1704def : Insert_Element <f32, v2f32, 0, sub0>;
1705def : Insert_Element <f32, v2f32, 1, sub1>;
1706
1707def : Extract_Element <i32, v2i32, 0, sub0>;
1708def : Extract_Element <i32, v2i32, 1, sub1>;
1709
1710def : Insert_Element <i32, v2i32, 0, sub0>;
1711def : Insert_Element <i32, v2i32, 1, sub1>;
1712
1713// bitconvert patterns
1714
1715def : BitConvert <i32, f32, R600_Reg32>;
1716def : BitConvert <f32, i32, R600_Reg32>;
1717def : BitConvert <v2f32, v2i32, R600_Reg64>;
1718def : BitConvert <v2i32, v2f32, R600_Reg64>;
1719def : BitConvert <v4f32, v4i32, R600_Reg128>;
1720def : BitConvert <v4i32, v4f32, R600_Reg128>;
1721
1722// DWORDADDR pattern
1723def : DwordAddrPat  <i32, R600_Reg32>;
1724
1725} // End isR600toCayman Predicate
1726
1727def getLDSNoRetOp : InstrMapping {
1728  let FilterClass = "R600_LDS_1A1D";
1729  let RowFields = ["BaseOp"];
1730  let ColFields = ["DisableEncoding"];
1731  let KeyCol = ["$dst"];
1732  let ValueCols = [[""""]];
1733}
1734