1 /***********************************************************************
2 Copyright (c) 2006-2011, Skype Limited. All rights reserved.
3 Redistribution and use in source and binary forms, with or without
4 modification, are permitted provided that the following conditions
5 are met:
6 - Redistributions of source code must retain the above copyright notice,
7 this list of conditions and the following disclaimer.
8 - Redistributions in binary form must reproduce the above copyright
9 notice, this list of conditions and the following disclaimer in the
10 documentation and/or other materials provided with the distribution.
11 - Neither the name of Internet Society, IETF or IETF Trust, nor the
12 names of specific contributors, may be used to endorse or promote
13 products derived from this software without specific prior written
14 permission.
15 THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
16 AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
17 IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
18 ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
19 LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
20 CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
21 SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
22 INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
23 CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
24 ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
25 POSSIBILITY OF SUCH DAMAGE.
26 ***********************************************************************/
27
28 #ifndef SILK_SIGPROC_FIX_H
29 #define SILK_SIGPROC_FIX_H
30
31 #ifdef __cplusplus
32 extern "C"
33 {
34 #endif
35
36 /*#define silk_MACRO_COUNT */ /* Used to enable WMOPS counting */
37
38 #define SILK_MAX_ORDER_LPC 16 /* max order of the LPC analysis in schur() and k2a() */
39
40 #include <string.h> /* for memset(), memcpy(), memmove() */
41 #include "typedef.h"
42 #include "resampler_structs.h"
43 #include "macros.h"
44 #include "cpu_support.h"
45
46 #if defined(OPUS_X86_MAY_HAVE_SSE4_1)
47 #include "x86/SigProc_FIX_sse.h"
48 #endif
49
50 /********************************************************************/
51 /* SIGNAL PROCESSING FUNCTIONS */
52 /********************************************************************/
53
54 /*!
55 * Initialize/reset the resampler state for a given pair of input/output sampling rates
56 */
57 opus_int silk_resampler_init(
58 silk_resampler_state_struct *S, /* I/O Resampler state */
59 opus_int32 Fs_Hz_in, /* I Input sampling rate (Hz) */
60 opus_int32 Fs_Hz_out, /* I Output sampling rate (Hz) */
61 opus_int forEnc /* I If 1: encoder; if 0: decoder */
62 );
63
64 /*!
65 * Resampler: convert from one sampling rate to another
66 */
67 opus_int silk_resampler(
68 silk_resampler_state_struct *S, /* I/O Resampler state */
69 opus_int16 out[], /* O Output signal */
70 const opus_int16 in[], /* I Input signal */
71 opus_int32 inLen /* I Number of input samples */
72 );
73
74 /*!
75 * Downsample 2x, mediocre quality
76 */
77 void silk_resampler_down2(
78 opus_int32 *S, /* I/O State vector [ 2 ] */
79 opus_int16 *out, /* O Output signal [ len ] */
80 const opus_int16 *in, /* I Input signal [ floor(len/2) ] */
81 opus_int32 inLen /* I Number of input samples */
82 );
83
84 /*!
85 * Downsample by a factor 2/3, low quality
86 */
87 void silk_resampler_down2_3(
88 opus_int32 *S, /* I/O State vector [ 6 ] */
89 opus_int16 *out, /* O Output signal [ floor(2*inLen/3) ] */
90 const opus_int16 *in, /* I Input signal [ inLen ] */
91 opus_int32 inLen /* I Number of input samples */
92 );
93
94 /*!
95 * second order ARMA filter;
96 * slower than biquad() but uses more precise coefficients
97 * can handle (slowly) varying coefficients
98 */
99 void silk_biquad_alt(
100 const opus_int16 *in, /* I input signal */
101 const opus_int32 *B_Q28, /* I MA coefficients [3] */
102 const opus_int32 *A_Q28, /* I AR coefficients [2] */
103 opus_int32 *S, /* I/O State vector [2] */
104 opus_int16 *out, /* O output signal */
105 const opus_int32 len, /* I signal length (must be even) */
106 opus_int stride /* I Operate on interleaved signal if > 1 */
107 );
108
109 /* Variable order MA prediction error filter. */
110 void silk_LPC_analysis_filter(
111 opus_int16 *out, /* O Output signal */
112 const opus_int16 *in, /* I Input signal */
113 const opus_int16 *B, /* I MA prediction coefficients, Q12 [order] */
114 const opus_int32 len, /* I Signal length */
115 const opus_int32 d, /* I Filter order */
116 int arch /* I Run-time architecture */
117 );
118
119 /* Chirp (bandwidth expand) LP AR filter */
120 void silk_bwexpander(
121 opus_int16 *ar, /* I/O AR filter to be expanded (without leading 1) */
122 const opus_int d, /* I Length of ar */
123 opus_int32 chirp_Q16 /* I Chirp factor (typically in the range 0 to 1) */
124 );
125
126 /* Chirp (bandwidth expand) LP AR filter */
127 void silk_bwexpander_32(
128 opus_int32 *ar, /* I/O AR filter to be expanded (without leading 1) */
129 const opus_int d, /* I Length of ar */
130 opus_int32 chirp_Q16 /* I Chirp factor in Q16 */
131 );
132
133 /* Compute inverse of LPC prediction gain, and */
134 /* test if LPC coefficients are stable (all poles within unit circle) */
135 opus_int32 silk_LPC_inverse_pred_gain( /* O Returns inverse prediction gain in energy domain, Q30 */
136 const opus_int16 *A_Q12, /* I Prediction coefficients, Q12 [order] */
137 const opus_int order /* I Prediction order */
138 );
139
140 /* For input in Q24 domain */
141 opus_int32 silk_LPC_inverse_pred_gain_Q24( /* O Returns inverse prediction gain in energy domain, Q30 */
142 const opus_int32 *A_Q24, /* I Prediction coefficients [order] */
143 const opus_int order /* I Prediction order */
144 );
145
146 /* Split signal in two decimated bands using first-order allpass filters */
147 void silk_ana_filt_bank_1(
148 const opus_int16 *in, /* I Input signal [N] */
149 opus_int32 *S, /* I/O State vector [2] */
150 opus_int16 *outL, /* O Low band [N/2] */
151 opus_int16 *outH, /* O High band [N/2] */
152 const opus_int32 N /* I Number of input samples */
153 );
154
155 /********************************************************************/
156 /* SCALAR FUNCTIONS */
157 /********************************************************************/
158
159 /* Approximation of 128 * log2() (exact inverse of approx 2^() below) */
160 /* Convert input to a log scale */
161 opus_int32 silk_lin2log(
162 const opus_int32 inLin /* I input in linear scale */
163 );
164
165 /* Approximation of a sigmoid function */
166 opus_int silk_sigm_Q15(
167 opus_int in_Q5 /* I */
168 );
169
170 /* Approximation of 2^() (exact inverse of approx log2() above) */
171 /* Convert input to a linear scale */
172 opus_int32 silk_log2lin(
173 const opus_int32 inLog_Q7 /* I input on log scale */
174 );
175
176 /* Compute number of bits to right shift the sum of squares of a vector */
177 /* of int16s to make it fit in an int32 */
178 void silk_sum_sqr_shift(
179 opus_int32 *energy, /* O Energy of x, after shifting to the right */
180 opus_int *shift, /* O Number of bits right shift applied to energy */
181 const opus_int16 *x, /* I Input vector */
182 opus_int len /* I Length of input vector */
183 );
184
185 /* Calculates the reflection coefficients from the correlation sequence */
186 /* Faster than schur64(), but much less accurate. */
187 /* uses SMLAWB(), requiring armv5E and higher. */
188 opus_int32 silk_schur( /* O Returns residual energy */
189 opus_int16 *rc_Q15, /* O reflection coefficients [order] Q15 */
190 const opus_int32 *c, /* I correlations [order+1] */
191 const opus_int32 order /* I prediction order */
192 );
193
194 /* Calculates the reflection coefficients from the correlation sequence */
195 /* Slower than schur(), but more accurate. */
196 /* Uses SMULL(), available on armv4 */
197 opus_int32 silk_schur64( /* O returns residual energy */
198 opus_int32 rc_Q16[], /* O Reflection coefficients [order] Q16 */
199 const opus_int32 c[], /* I Correlations [order+1] */
200 opus_int32 order /* I Prediction order */
201 );
202
203 /* Step up function, converts reflection coefficients to prediction coefficients */
204 void silk_k2a(
205 opus_int32 *A_Q24, /* O Prediction coefficients [order] Q24 */
206 const opus_int16 *rc_Q15, /* I Reflection coefficients [order] Q15 */
207 const opus_int32 order /* I Prediction order */
208 );
209
210 /* Step up function, converts reflection coefficients to prediction coefficients */
211 void silk_k2a_Q16(
212 opus_int32 *A_Q24, /* O Prediction coefficients [order] Q24 */
213 const opus_int32 *rc_Q16, /* I Reflection coefficients [order] Q16 */
214 const opus_int32 order /* I Prediction order */
215 );
216
217 /* Apply sine window to signal vector. */
218 /* Window types: */
219 /* 1 -> sine window from 0 to pi/2 */
220 /* 2 -> sine window from pi/2 to pi */
221 /* every other sample of window is linearly interpolated, for speed */
222 void silk_apply_sine_window(
223 opus_int16 px_win[], /* O Pointer to windowed signal */
224 const opus_int16 px[], /* I Pointer to input signal */
225 const opus_int win_type, /* I Selects a window type */
226 const opus_int length /* I Window length, multiple of 4 */
227 );
228
229 /* Compute autocorrelation */
230 void silk_autocorr(
231 opus_int32 *results, /* O Result (length correlationCount) */
232 opus_int *scale, /* O Scaling of the correlation vector */
233 const opus_int16 *inputData, /* I Input data to correlate */
234 const opus_int inputDataSize, /* I Length of input */
235 const opus_int correlationCount, /* I Number of correlation taps to compute */
236 int arch /* I Run-time architecture */
237 );
238
239 void silk_decode_pitch(
240 opus_int16 lagIndex, /* I */
241 opus_int8 contourIndex, /* O */
242 opus_int pitch_lags[], /* O 4 pitch values */
243 const opus_int Fs_kHz, /* I sampling frequency (kHz) */
244 const opus_int nb_subfr /* I number of sub frames */
245 );
246
247 opus_int silk_pitch_analysis_core( /* O Voicing estimate: 0 voiced, 1 unvoiced */
248 const opus_int16 *frame, /* I Signal of length PE_FRAME_LENGTH_MS*Fs_kHz */
249 opus_int *pitch_out, /* O 4 pitch lag values */
250 opus_int16 *lagIndex, /* O Lag Index */
251 opus_int8 *contourIndex, /* O Pitch contour Index */
252 opus_int *LTPCorr_Q15, /* I/O Normalized correlation; input: value from previous frame */
253 opus_int prevLag, /* I Last lag of previous frame; set to zero is unvoiced */
254 const opus_int32 search_thres1_Q16, /* I First stage threshold for lag candidates 0 - 1 */
255 const opus_int search_thres2_Q13, /* I Final threshold for lag candidates 0 - 1 */
256 const opus_int Fs_kHz, /* I Sample frequency (kHz) */
257 const opus_int complexity, /* I Complexity setting, 0-2, where 2 is highest */
258 const opus_int nb_subfr, /* I number of 5 ms subframes */
259 int arch /* I Run-time architecture */
260 );
261
262 /* Compute Normalized Line Spectral Frequencies (NLSFs) from whitening filter coefficients */
263 /* If not all roots are found, the a_Q16 coefficients are bandwidth expanded until convergence. */
264 void silk_A2NLSF(
265 opus_int16 *NLSF, /* O Normalized Line Spectral Frequencies in Q15 (0..2^15-1) [d] */
266 opus_int32 *a_Q16, /* I/O Monic whitening filter coefficients in Q16 [d] */
267 const opus_int d /* I Filter order (must be even) */
268 );
269
270 /* compute whitening filter coefficients from normalized line spectral frequencies */
271 void silk_NLSF2A(
272 opus_int16 *a_Q12, /* O monic whitening filter coefficients in Q12, [ d ] */
273 const opus_int16 *NLSF, /* I normalized line spectral frequencies in Q15, [ d ] */
274 const opus_int d /* I filter order (should be even) */
275 );
276
277 void silk_insertion_sort_increasing(
278 opus_int32 *a, /* I/O Unsorted / Sorted vector */
279 opus_int *idx, /* O Index vector for the sorted elements */
280 const opus_int L, /* I Vector length */
281 const opus_int K /* I Number of correctly sorted positions */
282 );
283
284 void silk_insertion_sort_decreasing_int16(
285 opus_int16 *a, /* I/O Unsorted / Sorted vector */
286 opus_int *idx, /* O Index vector for the sorted elements */
287 const opus_int L, /* I Vector length */
288 const opus_int K /* I Number of correctly sorted positions */
289 );
290
291 void silk_insertion_sort_increasing_all_values_int16(
292 opus_int16 *a, /* I/O Unsorted / Sorted vector */
293 const opus_int L /* I Vector length */
294 );
295
296 /* NLSF stabilizer, for a single input data vector */
297 void silk_NLSF_stabilize(
298 opus_int16 *NLSF_Q15, /* I/O Unstable/stabilized normalized LSF vector in Q15 [L] */
299 const opus_int16 *NDeltaMin_Q15, /* I Min distance vector, NDeltaMin_Q15[L] must be >= 1 [L+1] */
300 const opus_int L /* I Number of NLSF parameters in the input vector */
301 );
302
303 /* Laroia low complexity NLSF weights */
304 void silk_NLSF_VQ_weights_laroia(
305 opus_int16 *pNLSFW_Q_OUT, /* O Pointer to input vector weights [D] */
306 const opus_int16 *pNLSF_Q15, /* I Pointer to input vector [D] */
307 const opus_int D /* I Input vector dimension (even) */
308 );
309
310 /* Compute reflection coefficients from input signal */
311 void silk_burg_modified_c(
312 opus_int32 *res_nrg, /* O Residual energy */
313 opus_int *res_nrg_Q, /* O Residual energy Q value */
314 opus_int32 A_Q16[], /* O Prediction coefficients (length order) */
315 const opus_int16 x[], /* I Input signal, length: nb_subfr * ( D + subfr_length ) */
316 const opus_int32 minInvGain_Q30, /* I Inverse of max prediction gain */
317 const opus_int subfr_length, /* I Input signal subframe length (incl. D preceding samples) */
318 const opus_int nb_subfr, /* I Number of subframes stacked in x */
319 const opus_int D, /* I Order */
320 int arch /* I Run-time architecture */
321 );
322
323 /* Copy and multiply a vector by a constant */
324 void silk_scale_copy_vector16(
325 opus_int16 *data_out,
326 const opus_int16 *data_in,
327 opus_int32 gain_Q16, /* I Gain in Q16 */
328 const opus_int dataSize /* I Length */
329 );
330
331 /* Some for the LTP related function requires Q26 to work.*/
332 void silk_scale_vector32_Q26_lshift_18(
333 opus_int32 *data1, /* I/O Q0/Q18 */
334 opus_int32 gain_Q26, /* I Q26 */
335 opus_int dataSize /* I length */
336 );
337
338 /********************************************************************/
339 /* INLINE ARM MATH */
340 /********************************************************************/
341
342 /* return sum( inVec1[i] * inVec2[i] ) */
343
344 opus_int32 silk_inner_prod_aligned(
345 const opus_int16 *const inVec1, /* I input vector 1 */
346 const opus_int16 *const inVec2, /* I input vector 2 */
347 const opus_int len, /* I vector lengths */
348 int arch /* I Run-time architecture */
349 );
350
351
352 opus_int32 silk_inner_prod_aligned_scale(
353 const opus_int16 *const inVec1, /* I input vector 1 */
354 const opus_int16 *const inVec2, /* I input vector 2 */
355 const opus_int scale, /* I number of bits to shift */
356 const opus_int len /* I vector lengths */
357 );
358
359 opus_int64 silk_inner_prod16_aligned_64_c(
360 const opus_int16 *inVec1, /* I input vector 1 */
361 const opus_int16 *inVec2, /* I input vector 2 */
362 const opus_int len /* I vector lengths */
363 );
364
365 /********************************************************************/
366 /* MACROS */
367 /********************************************************************/
368
369 /* Rotate a32 right by 'rot' bits. Negative rot values result in rotating
370 left. Output is 32bit int.
371 Note: contemporary compilers recognize the C expression below and
372 compile it into a 'ror' instruction if available. No need for OPUS_INLINE ASM! */
silk_ROR32(opus_int32 a32,opus_int rot)373 static OPUS_INLINE opus_int32 silk_ROR32( opus_int32 a32, opus_int rot )
374 {
375 opus_uint32 x = (opus_uint32) a32;
376 opus_uint32 r = (opus_uint32) rot;
377 opus_uint32 m = (opus_uint32) -rot;
378 if( rot == 0 ) {
379 return a32;
380 } else if( rot < 0 ) {
381 return (opus_int32) ((x << m) | (x >> (32 - m)));
382 } else {
383 return (opus_int32) ((x << (32 - r)) | (x >> r));
384 }
385 }
386
387 /* Allocate opus_int16 aligned to 4-byte memory address */
388 #if EMBEDDED_ARM
389 #define silk_DWORD_ALIGN __attribute__((aligned(4)))
390 #else
391 #define silk_DWORD_ALIGN
392 #endif
393
394 /* Useful Macros that can be adjusted to other platforms */
395 #define silk_memcpy(dest, src, size) memcpy((dest), (src), (size))
396 #define silk_memset(dest, src, size) memset((dest), (src), (size))
397 #define silk_memmove(dest, src, size) memmove((dest), (src), (size))
398
399 /* Fixed point macros */
400
401 /* (a32 * b32) output have to be 32bit int */
402 #define silk_MUL(a32, b32) ((a32) * (b32))
403
404 /* (a32 * b32) output have to be 32bit uint */
405 #define silk_MUL_uint(a32, b32) silk_MUL(a32, b32)
406
407 /* a32 + (b32 * c32) output have to be 32bit int */
408 #define silk_MLA(a32, b32, c32) silk_ADD32((a32),((b32) * (c32)))
409
410 /* a32 + (b32 * c32) output have to be 32bit uint */
411 #define silk_MLA_uint(a32, b32, c32) silk_MLA(a32, b32, c32)
412
413 /* ((a32 >> 16) * (b32 >> 16)) output have to be 32bit int */
414 #define silk_SMULTT(a32, b32) (((a32) >> 16) * ((b32) >> 16))
415
416 /* a32 + ((a32 >> 16) * (b32 >> 16)) output have to be 32bit int */
417 #define silk_SMLATT(a32, b32, c32) silk_ADD32((a32),((b32) >> 16) * ((c32) >> 16))
418
419 #define silk_SMLALBB(a64, b16, c16) silk_ADD64((a64),(opus_int64)((opus_int32)(b16) * (opus_int32)(c16)))
420
421 /* (a32 * b32) */
422 #define silk_SMULL(a32, b32) ((opus_int64)(a32) * /*(opus_int64)*/(b32))
423
424 /* Adds two signed 32-bit values in a way that can overflow, while not relying on undefined behaviour
425 (just standard two's complement implementation-specific behaviour) */
426 #define silk_ADD32_ovflw(a, b) ((opus_int32)((opus_uint32)(a) + (opus_uint32)(b)))
427 /* Subtractss two signed 32-bit values in a way that can overflow, while not relying on undefined behaviour
428 (just standard two's complement implementation-specific behaviour) */
429 #define silk_SUB32_ovflw(a, b) ((opus_int32)((opus_uint32)(a) - (opus_uint32)(b)))
430
431 /* Multiply-accumulate macros that allow overflow in the addition (ie, no asserts in debug mode) */
432 #define silk_MLA_ovflw(a32, b32, c32) silk_ADD32_ovflw((a32), (opus_uint32)(b32) * (opus_uint32)(c32))
433 #define silk_SMLABB_ovflw(a32, b32, c32) (silk_ADD32_ovflw((a32) , ((opus_int32)((opus_int16)(b32))) * (opus_int32)((opus_int16)(c32))))
434
435 #define silk_DIV32_16(a32, b16) ((opus_int32)((a32) / (b16)))
436 #define silk_DIV32(a32, b32) ((opus_int32)((a32) / (b32)))
437
438 /* These macros enables checking for overflow in silk_API_Debug.h*/
439 #define silk_ADD16(a, b) ((a) + (b))
440 #define silk_ADD32(a, b) ((a) + (b))
441 #define silk_ADD64(a, b) ((a) + (b))
442
443 #define silk_SUB16(a, b) ((a) - (b))
444 #define silk_SUB32(a, b) ((a) - (b))
445 #define silk_SUB64(a, b) ((a) - (b))
446
447 #define silk_SAT8(a) ((a) > silk_int8_MAX ? silk_int8_MAX : \
448 ((a) < silk_int8_MIN ? silk_int8_MIN : (a)))
449 #define silk_SAT16(a) ((a) > silk_int16_MAX ? silk_int16_MAX : \
450 ((a) < silk_int16_MIN ? silk_int16_MIN : (a)))
451 #define silk_SAT32(a) ((a) > silk_int32_MAX ? silk_int32_MAX : \
452 ((a) < silk_int32_MIN ? silk_int32_MIN : (a)))
453
454 #define silk_CHECK_FIT8(a) (a)
455 #define silk_CHECK_FIT16(a) (a)
456 #define silk_CHECK_FIT32(a) (a)
457
458 #define silk_ADD_SAT16(a, b) (opus_int16)silk_SAT16( silk_ADD32( (opus_int32)(a), (b) ) )
459 #define silk_ADD_SAT64(a, b) ((((a) + (b)) & 0x8000000000000000LL) == 0 ? \
460 ((((a) & (b)) & 0x8000000000000000LL) != 0 ? silk_int64_MIN : (a)+(b)) : \
461 ((((a) | (b)) & 0x8000000000000000LL) == 0 ? silk_int64_MAX : (a)+(b)) )
462
463 #define silk_SUB_SAT16(a, b) (opus_int16)silk_SAT16( silk_SUB32( (opus_int32)(a), (b) ) )
464 #define silk_SUB_SAT64(a, b) ((((a)-(b)) & 0x8000000000000000LL) == 0 ? \
465 (( (a) & ((b)^0x8000000000000000LL) & 0x8000000000000000LL) ? silk_int64_MIN : (a)-(b)) : \
466 ((((a)^0x8000000000000000LL) & (b) & 0x8000000000000000LL) ? silk_int64_MAX : (a)-(b)) )
467
468 /* Saturation for positive input values */
469 #define silk_POS_SAT32(a) ((a) > silk_int32_MAX ? silk_int32_MAX : (a))
470
471 /* Add with saturation for positive input values */
472 #define silk_ADD_POS_SAT8(a, b) ((((a)+(b)) & 0x80) ? silk_int8_MAX : ((a)+(b)))
473 #define silk_ADD_POS_SAT16(a, b) ((((a)+(b)) & 0x8000) ? silk_int16_MAX : ((a)+(b)))
474 #define silk_ADD_POS_SAT32(a, b) ((((a)+(b)) & 0x80000000) ? silk_int32_MAX : ((a)+(b)))
475 #define silk_ADD_POS_SAT64(a, b) ((((a)+(b)) & 0x8000000000000000LL) ? silk_int64_MAX : ((a)+(b)))
476
477 #define silk_LSHIFT8(a, shift) ((opus_int8)((opus_uint8)(a)<<(shift))) /* shift >= 0, shift < 8 */
478 #define silk_LSHIFT16(a, shift) ((opus_int16)((opus_uint16)(a)<<(shift))) /* shift >= 0, shift < 16 */
479 #define silk_LSHIFT32(a, shift) ((opus_int32)((opus_uint32)(a)<<(shift))) /* shift >= 0, shift < 32 */
480 #define silk_LSHIFT64(a, shift) ((opus_int64)((opus_uint64)(a)<<(shift))) /* shift >= 0, shift < 64 */
481 #define silk_LSHIFT(a, shift) silk_LSHIFT32(a, shift) /* shift >= 0, shift < 32 */
482
483 #define silk_RSHIFT8(a, shift) ((a)>>(shift)) /* shift >= 0, shift < 8 */
484 #define silk_RSHIFT16(a, shift) ((a)>>(shift)) /* shift >= 0, shift < 16 */
485 #define silk_RSHIFT32(a, shift) ((a)>>(shift)) /* shift >= 0, shift < 32 */
486 #define silk_RSHIFT64(a, shift) ((a)>>(shift)) /* shift >= 0, shift < 64 */
487 #define silk_RSHIFT(a, shift) silk_RSHIFT32(a, shift) /* shift >= 0, shift < 32 */
488
489 /* saturates before shifting */
490 #define silk_LSHIFT_SAT32(a, shift) (silk_LSHIFT32( silk_LIMIT( (a), silk_RSHIFT32( silk_int32_MIN, (shift) ), \
491 silk_RSHIFT32( silk_int32_MAX, (shift) ) ), (shift) ))
492
493 #define silk_LSHIFT_ovflw(a, shift) ((opus_int32)((opus_uint32)(a) << (shift))) /* shift >= 0, allowed to overflow */
494 #define silk_LSHIFT_uint(a, shift) ((a) << (shift)) /* shift >= 0 */
495 #define silk_RSHIFT_uint(a, shift) ((a) >> (shift)) /* shift >= 0 */
496
497 #define silk_ADD_LSHIFT(a, b, shift) ((a) + silk_LSHIFT((b), (shift))) /* shift >= 0 */
498 #define silk_ADD_LSHIFT32(a, b, shift) silk_ADD32((a), silk_LSHIFT32((b), (shift))) /* shift >= 0 */
499 #define silk_ADD_LSHIFT_uint(a, b, shift) ((a) + silk_LSHIFT_uint((b), (shift))) /* shift >= 0 */
500 #define silk_ADD_RSHIFT(a, b, shift) ((a) + silk_RSHIFT((b), (shift))) /* shift >= 0 */
501 #define silk_ADD_RSHIFT32(a, b, shift) silk_ADD32((a), silk_RSHIFT32((b), (shift))) /* shift >= 0 */
502 #define silk_ADD_RSHIFT_uint(a, b, shift) ((a) + silk_RSHIFT_uint((b), (shift))) /* shift >= 0 */
503 #define silk_SUB_LSHIFT32(a, b, shift) silk_SUB32((a), silk_LSHIFT32((b), (shift))) /* shift >= 0 */
504 #define silk_SUB_RSHIFT32(a, b, shift) silk_SUB32((a), silk_RSHIFT32((b), (shift))) /* shift >= 0 */
505
506 /* Requires that shift > 0 */
507 #define silk_RSHIFT_ROUND(a, shift) ((shift) == 1 ? ((a) >> 1) + ((a) & 1) : (((a) >> ((shift) - 1)) + 1) >> 1)
508 #define silk_RSHIFT_ROUND64(a, shift) ((shift) == 1 ? ((a) >> 1) + ((a) & 1) : (((a) >> ((shift) - 1)) + 1) >> 1)
509
510 /* Number of rightshift required to fit the multiplication */
511 #define silk_NSHIFT_MUL_32_32(a, b) ( -(31- (32-silk_CLZ32(silk_abs(a)) + (32-silk_CLZ32(silk_abs(b))))) )
512 #define silk_NSHIFT_MUL_16_16(a, b) ( -(15- (16-silk_CLZ16(silk_abs(a)) + (16-silk_CLZ16(silk_abs(b))))) )
513
514
515 #define silk_min(a, b) (((a) < (b)) ? (a) : (b))
516 #define silk_max(a, b) (((a) > (b)) ? (a) : (b))
517
518 /* Macro to convert floating-point constants to fixed-point */
519 #define SILK_FIX_CONST( C, Q ) ((opus_int32)((C) * ((opus_int64)1 << (Q)) + 0.5))
520
521 /* silk_min() versions with typecast in the function call */
silk_min_int(opus_int a,opus_int b)522 static OPUS_INLINE opus_int silk_min_int(opus_int a, opus_int b)
523 {
524 return (((a) < (b)) ? (a) : (b));
525 }
silk_min_16(opus_int16 a,opus_int16 b)526 static OPUS_INLINE opus_int16 silk_min_16(opus_int16 a, opus_int16 b)
527 {
528 return (((a) < (b)) ? (a) : (b));
529 }
silk_min_32(opus_int32 a,opus_int32 b)530 static OPUS_INLINE opus_int32 silk_min_32(opus_int32 a, opus_int32 b)
531 {
532 return (((a) < (b)) ? (a) : (b));
533 }
silk_min_64(opus_int64 a,opus_int64 b)534 static OPUS_INLINE opus_int64 silk_min_64(opus_int64 a, opus_int64 b)
535 {
536 return (((a) < (b)) ? (a) : (b));
537 }
538
539 /* silk_min() versions with typecast in the function call */
silk_max_int(opus_int a,opus_int b)540 static OPUS_INLINE opus_int silk_max_int(opus_int a, opus_int b)
541 {
542 return (((a) > (b)) ? (a) : (b));
543 }
silk_max_16(opus_int16 a,opus_int16 b)544 static OPUS_INLINE opus_int16 silk_max_16(opus_int16 a, opus_int16 b)
545 {
546 return (((a) > (b)) ? (a) : (b));
547 }
silk_max_32(opus_int32 a,opus_int32 b)548 static OPUS_INLINE opus_int32 silk_max_32(opus_int32 a, opus_int32 b)
549 {
550 return (((a) > (b)) ? (a) : (b));
551 }
silk_max_64(opus_int64 a,opus_int64 b)552 static OPUS_INLINE opus_int64 silk_max_64(opus_int64 a, opus_int64 b)
553 {
554 return (((a) > (b)) ? (a) : (b));
555 }
556
557 #define silk_LIMIT( a, limit1, limit2) ((limit1) > (limit2) ? ((a) > (limit1) ? (limit1) : ((a) < (limit2) ? (limit2) : (a))) \
558 : ((a) > (limit2) ? (limit2) : ((a) < (limit1) ? (limit1) : (a))))
559
560 #define silk_LIMIT_int silk_LIMIT
561 #define silk_LIMIT_16 silk_LIMIT
562 #define silk_LIMIT_32 silk_LIMIT
563
564 #define silk_abs(a) (((a) > 0) ? (a) : -(a)) /* Be careful, silk_abs returns wrong when input equals to silk_intXX_MIN */
565 #define silk_abs_int(a) (((a) ^ ((a) >> (8 * sizeof(a) - 1))) - ((a) >> (8 * sizeof(a) - 1)))
566 #define silk_abs_int32(a) (((a) ^ ((a) >> 31)) - ((a) >> 31))
567 #define silk_abs_int64(a) (((a) > 0) ? (a) : -(a))
568
569 #define silk_sign(a) ((a) > 0 ? 1 : ( (a) < 0 ? -1 : 0 ))
570
571 /* PSEUDO-RANDOM GENERATOR */
572 /* Make sure to store the result as the seed for the next call (also in between */
573 /* frames), otherwise result won't be random at all. When only using some of the */
574 /* bits, take the most significant bits by right-shifting. */
575 #define silk_RAND(seed) (silk_MLA_ovflw(907633515, (seed), 196314165))
576
577 /* Add some multiplication functions that can be easily mapped to ARM. */
578
579 /* silk_SMMUL: Signed top word multiply.
580 ARMv6 2 instruction cycles.
581 ARMv3M+ 3 instruction cycles. use SMULL and ignore LSB registers.(except xM)*/
582 /*#define silk_SMMUL(a32, b32) (opus_int32)silk_RSHIFT(silk_SMLAL(silk_SMULWB((a32), (b32)), (a32), silk_RSHIFT_ROUND((b32), 16)), 16)*/
583 /* the following seems faster on x86 */
584 #define silk_SMMUL(a32, b32) (opus_int32)silk_RSHIFT64(silk_SMULL((a32), (b32)), 32)
585
586 #if !defined(OPUS_X86_MAY_HAVE_SSE4_1)
587 #define silk_burg_modified(res_nrg, res_nrg_Q, A_Q16, x, minInvGain_Q30, subfr_length, nb_subfr, D, arch) \
588 ((void)(arch), silk_burg_modified_c(res_nrg, res_nrg_Q, A_Q16, x, minInvGain_Q30, subfr_length, nb_subfr, D, arch))
589
590 #define silk_inner_prod16_aligned_64(inVec1, inVec2, len, arch) \
591 ((void)(arch),silk_inner_prod16_aligned_64_c(inVec1, inVec2, len))
592 #endif
593
594 #include "Inlines.h"
595 #include "MacroCount.h"
596 #include "MacroDebug.h"
597
598 #ifdef OPUS_ARM_INLINE_ASM
599 #include "arm/SigProc_FIX_armv4.h"
600 #endif
601
602 #ifdef OPUS_ARM_INLINE_EDSP
603 #include "arm/SigProc_FIX_armv5e.h"
604 #endif
605
606 #if defined(MIPSr1_ASM)
607 #include "mips/sigproc_fix_mipsr1.h"
608 #endif
609
610
611 #ifdef __cplusplus
612 }
613 #endif
614
615 #endif /* SILK_SIGPROC_FIX_H */
616