1 //===-- StraightLineStrengthReduce.cpp - ------------------------*- C++ -*-===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements straight-line strength reduction (SLSR). Unlike loop
11 // strength reduction, this algorithm is designed to reduce arithmetic
12 // redundancy in straight-line code instead of loops. It has proven to be
13 // effective in simplifying arithmetic statements derived from an unrolled loop.
14 // It can also simplify the logic of SeparateConstOffsetFromGEP.
15 //
16 // There are many optimizations we can perform in the domain of SLSR. This file
17 // for now contains only an initial step. Specifically, we look for strength
18 // reduction candidates in the following forms:
19 //
20 // Form 1: B + i * S
21 // Form 2: (B + i) * S
22 // Form 3: &B[i * S]
23 //
24 // where S is an integer variable, and i is a constant integer. If we found two
25 // candidates S1 and S2 in the same form and S1 dominates S2, we may rewrite S2
26 // in a simpler way with respect to S1. For example,
27 //
28 // S1: X = B + i * S
29 // S2: Y = B + i' * S => X + (i' - i) * S
30 //
31 // S1: X = (B + i) * S
32 // S2: Y = (B + i') * S => X + (i' - i) * S
33 //
34 // S1: X = &B[i * S]
35 // S2: Y = &B[i' * S] => &X[(i' - i) * S]
36 //
37 // Note: (i' - i) * S is folded to the extent possible.
38 //
39 // This rewriting is in general a good idea. The code patterns we focus on
40 // usually come from loop unrolling, so (i' - i) * S is likely the same
41 // across iterations and can be reused. When that happens, the optimized form
42 // takes only one add starting from the second iteration.
43 //
44 // When such rewriting is possible, we call S1 a "basis" of S2. When S2 has
45 // multiple bases, we choose to rewrite S2 with respect to its "immediate"
46 // basis, the basis that is the closest ancestor in the dominator tree.
47 //
48 // TODO:
49 //
50 // - Floating point arithmetics when fast math is enabled.
51 //
52 // - SLSR may decrease ILP at the architecture level. Targets that are very
53 // sensitive to ILP may want to disable it. Having SLSR to consider ILP is
54 // left as future work.
55 //
56 // - When (i' - i) is constant but i and i' are not, we could still perform
57 // SLSR.
58 #include <vector>
59
60 #include "llvm/Analysis/ScalarEvolution.h"
61 #include "llvm/Analysis/TargetTransformInfo.h"
62 #include "llvm/Analysis/ValueTracking.h"
63 #include "llvm/IR/DataLayout.h"
64 #include "llvm/IR/Dominators.h"
65 #include "llvm/IR/IRBuilder.h"
66 #include "llvm/IR/Module.h"
67 #include "llvm/IR/PatternMatch.h"
68 #include "llvm/Support/raw_ostream.h"
69 #include "llvm/Transforms/Scalar.h"
70 #include "llvm/Transforms/Utils/Local.h"
71
72 using namespace llvm;
73 using namespace PatternMatch;
74
75 namespace {
76
77 static const unsigned UnknownAddressSpace = ~0u;
78
79 class StraightLineStrengthReduce : public FunctionPass {
80 public:
81 // SLSR candidate. Such a candidate must be in one of the forms described in
82 // the header comments.
83 struct Candidate : public ilist_node<Candidate> {
84 enum Kind {
85 Invalid, // reserved for the default constructor
86 Add, // B + i * S
87 Mul, // (B + i) * S
88 GEP, // &B[..][i * S][..]
89 };
90
Candidate__anonde56e9e90111::StraightLineStrengthReduce::Candidate91 Candidate()
92 : CandidateKind(Invalid), Base(nullptr), Index(nullptr),
93 Stride(nullptr), Ins(nullptr), Basis(nullptr) {}
Candidate__anonde56e9e90111::StraightLineStrengthReduce::Candidate94 Candidate(Kind CT, const SCEV *B, ConstantInt *Idx, Value *S,
95 Instruction *I)
96 : CandidateKind(CT), Base(B), Index(Idx), Stride(S), Ins(I),
97 Basis(nullptr) {}
98 Kind CandidateKind;
99 const SCEV *Base;
100 // Note that Index and Stride of a GEP candidate do not necessarily have the
101 // same integer type. In that case, during rewriting, Stride will be
102 // sign-extended or truncated to Index's type.
103 ConstantInt *Index;
104 Value *Stride;
105 // The instruction this candidate corresponds to. It helps us to rewrite a
106 // candidate with respect to its immediate basis. Note that one instruction
107 // can correspond to multiple candidates depending on how you associate the
108 // expression. For instance,
109 //
110 // (a + 1) * (b + 2)
111 //
112 // can be treated as
113 //
114 // <Base: a, Index: 1, Stride: b + 2>
115 //
116 // or
117 //
118 // <Base: b, Index: 2, Stride: a + 1>
119 Instruction *Ins;
120 // Points to the immediate basis of this candidate, or nullptr if we cannot
121 // find any basis for this candidate.
122 Candidate *Basis;
123 };
124
125 static char ID;
126
StraightLineStrengthReduce()127 StraightLineStrengthReduce()
128 : FunctionPass(ID), DL(nullptr), DT(nullptr), TTI(nullptr) {
129 initializeStraightLineStrengthReducePass(*PassRegistry::getPassRegistry());
130 }
131
getAnalysisUsage(AnalysisUsage & AU) const132 void getAnalysisUsage(AnalysisUsage &AU) const override {
133 AU.addRequired<DominatorTreeWrapperPass>();
134 AU.addRequired<ScalarEvolutionWrapperPass>();
135 AU.addRequired<TargetTransformInfoWrapperPass>();
136 // We do not modify the shape of the CFG.
137 AU.setPreservesCFG();
138 }
139
doInitialization(Module & M)140 bool doInitialization(Module &M) override {
141 DL = &M.getDataLayout();
142 return false;
143 }
144
145 bool runOnFunction(Function &F) override;
146
147 private:
148 // Returns true if Basis is a basis for C, i.e., Basis dominates C and they
149 // share the same base and stride.
150 bool isBasisFor(const Candidate &Basis, const Candidate &C);
151 // Returns whether the candidate can be folded into an addressing mode.
152 bool isFoldable(const Candidate &C, TargetTransformInfo *TTI,
153 const DataLayout *DL);
154 // Returns true if C is already in a simplest form and not worth being
155 // rewritten.
156 bool isSimplestForm(const Candidate &C);
157 // Checks whether I is in a candidate form. If so, adds all the matching forms
158 // to Candidates, and tries to find the immediate basis for each of them.
159 void allocateCandidatesAndFindBasis(Instruction *I);
160 // Allocate candidates and find bases for Add instructions.
161 void allocateCandidatesAndFindBasisForAdd(Instruction *I);
162 // Given I = LHS + RHS, factors RHS into i * S and makes (LHS + i * S) a
163 // candidate.
164 void allocateCandidatesAndFindBasisForAdd(Value *LHS, Value *RHS,
165 Instruction *I);
166 // Allocate candidates and find bases for Mul instructions.
167 void allocateCandidatesAndFindBasisForMul(Instruction *I);
168 // Splits LHS into Base + Index and, if succeeds, calls
169 // allocateCandidatesAndFindBasis.
170 void allocateCandidatesAndFindBasisForMul(Value *LHS, Value *RHS,
171 Instruction *I);
172 // Allocate candidates and find bases for GetElementPtr instructions.
173 void allocateCandidatesAndFindBasisForGEP(GetElementPtrInst *GEP);
174 // A helper function that scales Idx with ElementSize before invoking
175 // allocateCandidatesAndFindBasis.
176 void allocateCandidatesAndFindBasisForGEP(const SCEV *B, ConstantInt *Idx,
177 Value *S, uint64_t ElementSize,
178 Instruction *I);
179 // Adds the given form <CT, B, Idx, S> to Candidates, and finds its immediate
180 // basis.
181 void allocateCandidatesAndFindBasis(Candidate::Kind CT, const SCEV *B,
182 ConstantInt *Idx, Value *S,
183 Instruction *I);
184 // Rewrites candidate C with respect to Basis.
185 void rewriteCandidateWithBasis(const Candidate &C, const Candidate &Basis);
186 // A helper function that factors ArrayIdx to a product of a stride and a
187 // constant index, and invokes allocateCandidatesAndFindBasis with the
188 // factorings.
189 void factorArrayIndex(Value *ArrayIdx, const SCEV *Base, uint64_t ElementSize,
190 GetElementPtrInst *GEP);
191 // Emit code that computes the "bump" from Basis to C. If the candidate is a
192 // GEP and the bump is not divisible by the element size of the GEP, this
193 // function sets the BumpWithUglyGEP flag to notify its caller to bump the
194 // basis using an ugly GEP.
195 static Value *emitBump(const Candidate &Basis, const Candidate &C,
196 IRBuilder<> &Builder, const DataLayout *DL,
197 bool &BumpWithUglyGEP);
198
199 const DataLayout *DL;
200 DominatorTree *DT;
201 ScalarEvolution *SE;
202 TargetTransformInfo *TTI;
203 ilist<Candidate> Candidates;
204 // Temporarily holds all instructions that are unlinked (but not deleted) by
205 // rewriteCandidateWithBasis. These instructions will be actually removed
206 // after all rewriting finishes.
207 std::vector<Instruction *> UnlinkedInstructions;
208 };
209 } // anonymous namespace
210
211 char StraightLineStrengthReduce::ID = 0;
212 INITIALIZE_PASS_BEGIN(StraightLineStrengthReduce, "slsr",
213 "Straight line strength reduction", false, false)
INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)214 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
215 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)
216 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
217 INITIALIZE_PASS_END(StraightLineStrengthReduce, "slsr",
218 "Straight line strength reduction", false, false)
219
220 FunctionPass *llvm::createStraightLineStrengthReducePass() {
221 return new StraightLineStrengthReduce();
222 }
223
isBasisFor(const Candidate & Basis,const Candidate & C)224 bool StraightLineStrengthReduce::isBasisFor(const Candidate &Basis,
225 const Candidate &C) {
226 return (Basis.Ins != C.Ins && // skip the same instruction
227 // They must have the same type too. Basis.Base == C.Base doesn't
228 // guarantee their types are the same (PR23975).
229 Basis.Ins->getType() == C.Ins->getType() &&
230 // Basis must dominate C in order to rewrite C with respect to Basis.
231 DT->dominates(Basis.Ins->getParent(), C.Ins->getParent()) &&
232 // They share the same base, stride, and candidate kind.
233 Basis.Base == C.Base && Basis.Stride == C.Stride &&
234 Basis.CandidateKind == C.CandidateKind);
235 }
236
isGEPFoldable(GetElementPtrInst * GEP,const TargetTransformInfo * TTI)237 static bool isGEPFoldable(GetElementPtrInst *GEP,
238 const TargetTransformInfo *TTI) {
239 SmallVector<const Value*, 4> Indices;
240 for (auto I = GEP->idx_begin(); I != GEP->idx_end(); ++I)
241 Indices.push_back(*I);
242 return TTI->getGEPCost(GEP->getSourceElementType(), GEP->getPointerOperand(),
243 Indices) == TargetTransformInfo::TCC_Free;
244 }
245
246 // Returns whether (Base + Index * Stride) can be folded to an addressing mode.
isAddFoldable(const SCEV * Base,ConstantInt * Index,Value * Stride,TargetTransformInfo * TTI)247 static bool isAddFoldable(const SCEV *Base, ConstantInt *Index, Value *Stride,
248 TargetTransformInfo *TTI) {
249 // Index->getSExtValue() may crash if Index is wider than 64-bit.
250 return Index->getBitWidth() <= 64 &&
251 TTI->isLegalAddressingMode(Base->getType(), nullptr, 0, true,
252 Index->getSExtValue(), UnknownAddressSpace);
253 }
254
isFoldable(const Candidate & C,TargetTransformInfo * TTI,const DataLayout * DL)255 bool StraightLineStrengthReduce::isFoldable(const Candidate &C,
256 TargetTransformInfo *TTI,
257 const DataLayout *DL) {
258 if (C.CandidateKind == Candidate::Add)
259 return isAddFoldable(C.Base, C.Index, C.Stride, TTI);
260 if (C.CandidateKind == Candidate::GEP)
261 return isGEPFoldable(cast<GetElementPtrInst>(C.Ins), TTI);
262 return false;
263 }
264
265 // Returns true if GEP has zero or one non-zero index.
hasOnlyOneNonZeroIndex(GetElementPtrInst * GEP)266 static bool hasOnlyOneNonZeroIndex(GetElementPtrInst *GEP) {
267 unsigned NumNonZeroIndices = 0;
268 for (auto I = GEP->idx_begin(); I != GEP->idx_end(); ++I) {
269 ConstantInt *ConstIdx = dyn_cast<ConstantInt>(*I);
270 if (ConstIdx == nullptr || !ConstIdx->isZero())
271 ++NumNonZeroIndices;
272 }
273 return NumNonZeroIndices <= 1;
274 }
275
isSimplestForm(const Candidate & C)276 bool StraightLineStrengthReduce::isSimplestForm(const Candidate &C) {
277 if (C.CandidateKind == Candidate::Add) {
278 // B + 1 * S or B + (-1) * S
279 return C.Index->isOne() || C.Index->isMinusOne();
280 }
281 if (C.CandidateKind == Candidate::Mul) {
282 // (B + 0) * S
283 return C.Index->isZero();
284 }
285 if (C.CandidateKind == Candidate::GEP) {
286 // (char*)B + S or (char*)B - S
287 return ((C.Index->isOne() || C.Index->isMinusOne()) &&
288 hasOnlyOneNonZeroIndex(cast<GetElementPtrInst>(C.Ins)));
289 }
290 return false;
291 }
292
293 // TODO: We currently implement an algorithm whose time complexity is linear in
294 // the number of existing candidates. However, we could do better by using
295 // ScopedHashTable. Specifically, while traversing the dominator tree, we could
296 // maintain all the candidates that dominate the basic block being traversed in
297 // a ScopedHashTable. This hash table is indexed by the base and the stride of
298 // a candidate. Therefore, finding the immediate basis of a candidate boils down
299 // to one hash-table look up.
allocateCandidatesAndFindBasis(Candidate::Kind CT,const SCEV * B,ConstantInt * Idx,Value * S,Instruction * I)300 void StraightLineStrengthReduce::allocateCandidatesAndFindBasis(
301 Candidate::Kind CT, const SCEV *B, ConstantInt *Idx, Value *S,
302 Instruction *I) {
303 Candidate C(CT, B, Idx, S, I);
304 // SLSR can complicate an instruction in two cases:
305 //
306 // 1. If we can fold I into an addressing mode, computing I is likely free or
307 // takes only one instruction.
308 //
309 // 2. I is already in a simplest form. For example, when
310 // X = B + 8 * S
311 // Y = B + S,
312 // rewriting Y to X - 7 * S is probably a bad idea.
313 //
314 // In the above cases, we still add I to the candidate list so that I can be
315 // the basis of other candidates, but we leave I's basis blank so that I
316 // won't be rewritten.
317 if (!isFoldable(C, TTI, DL) && !isSimplestForm(C)) {
318 // Try to compute the immediate basis of C.
319 unsigned NumIterations = 0;
320 // Limit the scan radius to avoid running in quadratice time.
321 static const unsigned MaxNumIterations = 50;
322 for (auto Basis = Candidates.rbegin();
323 Basis != Candidates.rend() && NumIterations < MaxNumIterations;
324 ++Basis, ++NumIterations) {
325 if (isBasisFor(*Basis, C)) {
326 C.Basis = &(*Basis);
327 break;
328 }
329 }
330 }
331 // Regardless of whether we find a basis for C, we need to push C to the
332 // candidate list so that it can be the basis of other candidates.
333 Candidates.push_back(C);
334 }
335
allocateCandidatesAndFindBasis(Instruction * I)336 void StraightLineStrengthReduce::allocateCandidatesAndFindBasis(
337 Instruction *I) {
338 switch (I->getOpcode()) {
339 case Instruction::Add:
340 allocateCandidatesAndFindBasisForAdd(I);
341 break;
342 case Instruction::Mul:
343 allocateCandidatesAndFindBasisForMul(I);
344 break;
345 case Instruction::GetElementPtr:
346 allocateCandidatesAndFindBasisForGEP(cast<GetElementPtrInst>(I));
347 break;
348 }
349 }
350
allocateCandidatesAndFindBasisForAdd(Instruction * I)351 void StraightLineStrengthReduce::allocateCandidatesAndFindBasisForAdd(
352 Instruction *I) {
353 // Try matching B + i * S.
354 if (!isa<IntegerType>(I->getType()))
355 return;
356
357 assert(I->getNumOperands() == 2 && "isn't I an add?");
358 Value *LHS = I->getOperand(0), *RHS = I->getOperand(1);
359 allocateCandidatesAndFindBasisForAdd(LHS, RHS, I);
360 if (LHS != RHS)
361 allocateCandidatesAndFindBasisForAdd(RHS, LHS, I);
362 }
363
allocateCandidatesAndFindBasisForAdd(Value * LHS,Value * RHS,Instruction * I)364 void StraightLineStrengthReduce::allocateCandidatesAndFindBasisForAdd(
365 Value *LHS, Value *RHS, Instruction *I) {
366 Value *S = nullptr;
367 ConstantInt *Idx = nullptr;
368 if (match(RHS, m_Mul(m_Value(S), m_ConstantInt(Idx)))) {
369 // I = LHS + RHS = LHS + Idx * S
370 allocateCandidatesAndFindBasis(Candidate::Add, SE->getSCEV(LHS), Idx, S, I);
371 } else if (match(RHS, m_Shl(m_Value(S), m_ConstantInt(Idx)))) {
372 // I = LHS + RHS = LHS + (S << Idx) = LHS + S * (1 << Idx)
373 APInt One(Idx->getBitWidth(), 1);
374 Idx = ConstantInt::get(Idx->getContext(), One << Idx->getValue());
375 allocateCandidatesAndFindBasis(Candidate::Add, SE->getSCEV(LHS), Idx, S, I);
376 } else {
377 // At least, I = LHS + 1 * RHS
378 ConstantInt *One = ConstantInt::get(cast<IntegerType>(I->getType()), 1);
379 allocateCandidatesAndFindBasis(Candidate::Add, SE->getSCEV(LHS), One, RHS,
380 I);
381 }
382 }
383
384 // Returns true if A matches B + C where C is constant.
matchesAdd(Value * A,Value * & B,ConstantInt * & C)385 static bool matchesAdd(Value *A, Value *&B, ConstantInt *&C) {
386 return (match(A, m_Add(m_Value(B), m_ConstantInt(C))) ||
387 match(A, m_Add(m_ConstantInt(C), m_Value(B))));
388 }
389
390 // Returns true if A matches B | C where C is constant.
matchesOr(Value * A,Value * & B,ConstantInt * & C)391 static bool matchesOr(Value *A, Value *&B, ConstantInt *&C) {
392 return (match(A, m_Or(m_Value(B), m_ConstantInt(C))) ||
393 match(A, m_Or(m_ConstantInt(C), m_Value(B))));
394 }
395
allocateCandidatesAndFindBasisForMul(Value * LHS,Value * RHS,Instruction * I)396 void StraightLineStrengthReduce::allocateCandidatesAndFindBasisForMul(
397 Value *LHS, Value *RHS, Instruction *I) {
398 Value *B = nullptr;
399 ConstantInt *Idx = nullptr;
400 if (matchesAdd(LHS, B, Idx)) {
401 // If LHS is in the form of "Base + Index", then I is in the form of
402 // "(Base + Index) * RHS".
403 allocateCandidatesAndFindBasis(Candidate::Mul, SE->getSCEV(B), Idx, RHS, I);
404 } else if (matchesOr(LHS, B, Idx) && haveNoCommonBitsSet(B, Idx, *DL)) {
405 // If LHS is in the form of "Base | Index" and Base and Index have no common
406 // bits set, then
407 // Base | Index = Base + Index
408 // and I is thus in the form of "(Base + Index) * RHS".
409 allocateCandidatesAndFindBasis(Candidate::Mul, SE->getSCEV(B), Idx, RHS, I);
410 } else {
411 // Otherwise, at least try the form (LHS + 0) * RHS.
412 ConstantInt *Zero = ConstantInt::get(cast<IntegerType>(I->getType()), 0);
413 allocateCandidatesAndFindBasis(Candidate::Mul, SE->getSCEV(LHS), Zero, RHS,
414 I);
415 }
416 }
417
allocateCandidatesAndFindBasisForMul(Instruction * I)418 void StraightLineStrengthReduce::allocateCandidatesAndFindBasisForMul(
419 Instruction *I) {
420 // Try matching (B + i) * S.
421 // TODO: we could extend SLSR to float and vector types.
422 if (!isa<IntegerType>(I->getType()))
423 return;
424
425 assert(I->getNumOperands() == 2 && "isn't I a mul?");
426 Value *LHS = I->getOperand(0), *RHS = I->getOperand(1);
427 allocateCandidatesAndFindBasisForMul(LHS, RHS, I);
428 if (LHS != RHS) {
429 // Symmetrically, try to split RHS to Base + Index.
430 allocateCandidatesAndFindBasisForMul(RHS, LHS, I);
431 }
432 }
433
allocateCandidatesAndFindBasisForGEP(const SCEV * B,ConstantInt * Idx,Value * S,uint64_t ElementSize,Instruction * I)434 void StraightLineStrengthReduce::allocateCandidatesAndFindBasisForGEP(
435 const SCEV *B, ConstantInt *Idx, Value *S, uint64_t ElementSize,
436 Instruction *I) {
437 // I = B + sext(Idx *nsw S) * ElementSize
438 // = B + (sext(Idx) * sext(S)) * ElementSize
439 // = B + (sext(Idx) * ElementSize) * sext(S)
440 // Casting to IntegerType is safe because we skipped vector GEPs.
441 IntegerType *IntPtrTy = cast<IntegerType>(DL->getIntPtrType(I->getType()));
442 ConstantInt *ScaledIdx = ConstantInt::get(
443 IntPtrTy, Idx->getSExtValue() * (int64_t)ElementSize, true);
444 allocateCandidatesAndFindBasis(Candidate::GEP, B, ScaledIdx, S, I);
445 }
446
factorArrayIndex(Value * ArrayIdx,const SCEV * Base,uint64_t ElementSize,GetElementPtrInst * GEP)447 void StraightLineStrengthReduce::factorArrayIndex(Value *ArrayIdx,
448 const SCEV *Base,
449 uint64_t ElementSize,
450 GetElementPtrInst *GEP) {
451 // At least, ArrayIdx = ArrayIdx *nsw 1.
452 allocateCandidatesAndFindBasisForGEP(
453 Base, ConstantInt::get(cast<IntegerType>(ArrayIdx->getType()), 1),
454 ArrayIdx, ElementSize, GEP);
455 Value *LHS = nullptr;
456 ConstantInt *RHS = nullptr;
457 // One alternative is matching the SCEV of ArrayIdx instead of ArrayIdx
458 // itself. This would allow us to handle the shl case for free. However,
459 // matching SCEVs has two issues:
460 //
461 // 1. this would complicate rewriting because the rewriting procedure
462 // would have to translate SCEVs back to IR instructions. This translation
463 // is difficult when LHS is further evaluated to a composite SCEV.
464 //
465 // 2. ScalarEvolution is designed to be control-flow oblivious. It tends
466 // to strip nsw/nuw flags which are critical for SLSR to trace into
467 // sext'ed multiplication.
468 if (match(ArrayIdx, m_NSWMul(m_Value(LHS), m_ConstantInt(RHS)))) {
469 // SLSR is currently unsafe if i * S may overflow.
470 // GEP = Base + sext(LHS *nsw RHS) * ElementSize
471 allocateCandidatesAndFindBasisForGEP(Base, RHS, LHS, ElementSize, GEP);
472 } else if (match(ArrayIdx, m_NSWShl(m_Value(LHS), m_ConstantInt(RHS)))) {
473 // GEP = Base + sext(LHS <<nsw RHS) * ElementSize
474 // = Base + sext(LHS *nsw (1 << RHS)) * ElementSize
475 APInt One(RHS->getBitWidth(), 1);
476 ConstantInt *PowerOf2 =
477 ConstantInt::get(RHS->getContext(), One << RHS->getValue());
478 allocateCandidatesAndFindBasisForGEP(Base, PowerOf2, LHS, ElementSize, GEP);
479 }
480 }
481
allocateCandidatesAndFindBasisForGEP(GetElementPtrInst * GEP)482 void StraightLineStrengthReduce::allocateCandidatesAndFindBasisForGEP(
483 GetElementPtrInst *GEP) {
484 // TODO: handle vector GEPs
485 if (GEP->getType()->isVectorTy())
486 return;
487
488 SmallVector<const SCEV *, 4> IndexExprs;
489 for (auto I = GEP->idx_begin(); I != GEP->idx_end(); ++I)
490 IndexExprs.push_back(SE->getSCEV(*I));
491
492 gep_type_iterator GTI = gep_type_begin(GEP);
493 for (unsigned I = 1, E = GEP->getNumOperands(); I != E; ++I) {
494 if (!isa<SequentialType>(*GTI++))
495 continue;
496
497 const SCEV *OrigIndexExpr = IndexExprs[I - 1];
498 IndexExprs[I - 1] = SE->getZero(OrigIndexExpr->getType());
499
500 // The base of this candidate is GEP's base plus the offsets of all
501 // indices except this current one.
502 const SCEV *BaseExpr = SE->getGEPExpr(GEP->getSourceElementType(),
503 SE->getSCEV(GEP->getPointerOperand()),
504 IndexExprs, GEP->isInBounds());
505 Value *ArrayIdx = GEP->getOperand(I);
506 uint64_t ElementSize = DL->getTypeAllocSize(*GTI);
507 if (ArrayIdx->getType()->getIntegerBitWidth() <=
508 DL->getPointerSizeInBits(GEP->getAddressSpace())) {
509 // Skip factoring if ArrayIdx is wider than the pointer size, because
510 // ArrayIdx is implicitly truncated to the pointer size.
511 factorArrayIndex(ArrayIdx, BaseExpr, ElementSize, GEP);
512 }
513 // When ArrayIdx is the sext of a value, we try to factor that value as
514 // well. Handling this case is important because array indices are
515 // typically sign-extended to the pointer size.
516 Value *TruncatedArrayIdx = nullptr;
517 if (match(ArrayIdx, m_SExt(m_Value(TruncatedArrayIdx))) &&
518 TruncatedArrayIdx->getType()->getIntegerBitWidth() <=
519 DL->getPointerSizeInBits(GEP->getAddressSpace())) {
520 // Skip factoring if TruncatedArrayIdx is wider than the pointer size,
521 // because TruncatedArrayIdx is implicitly truncated to the pointer size.
522 factorArrayIndex(TruncatedArrayIdx, BaseExpr, ElementSize, GEP);
523 }
524
525 IndexExprs[I - 1] = OrigIndexExpr;
526 }
527 }
528
529 // A helper function that unifies the bitwidth of A and B.
unifyBitWidth(APInt & A,APInt & B)530 static void unifyBitWidth(APInt &A, APInt &B) {
531 if (A.getBitWidth() < B.getBitWidth())
532 A = A.sext(B.getBitWidth());
533 else if (A.getBitWidth() > B.getBitWidth())
534 B = B.sext(A.getBitWidth());
535 }
536
emitBump(const Candidate & Basis,const Candidate & C,IRBuilder<> & Builder,const DataLayout * DL,bool & BumpWithUglyGEP)537 Value *StraightLineStrengthReduce::emitBump(const Candidate &Basis,
538 const Candidate &C,
539 IRBuilder<> &Builder,
540 const DataLayout *DL,
541 bool &BumpWithUglyGEP) {
542 APInt Idx = C.Index->getValue(), BasisIdx = Basis.Index->getValue();
543 unifyBitWidth(Idx, BasisIdx);
544 APInt IndexOffset = Idx - BasisIdx;
545
546 BumpWithUglyGEP = false;
547 if (Basis.CandidateKind == Candidate::GEP) {
548 APInt ElementSize(
549 IndexOffset.getBitWidth(),
550 DL->getTypeAllocSize(
551 cast<GetElementPtrInst>(Basis.Ins)->getResultElementType()));
552 APInt Q, R;
553 APInt::sdivrem(IndexOffset, ElementSize, Q, R);
554 if (R == 0)
555 IndexOffset = Q;
556 else
557 BumpWithUglyGEP = true;
558 }
559
560 // Compute Bump = C - Basis = (i' - i) * S.
561 // Common case 1: if (i' - i) is 1, Bump = S.
562 if (IndexOffset == 1)
563 return C.Stride;
564 // Common case 2: if (i' - i) is -1, Bump = -S.
565 if (IndexOffset.isAllOnesValue())
566 return Builder.CreateNeg(C.Stride);
567
568 // Otherwise, Bump = (i' - i) * sext/trunc(S). Note that (i' - i) and S may
569 // have different bit widths.
570 IntegerType *DeltaType =
571 IntegerType::get(Basis.Ins->getContext(), IndexOffset.getBitWidth());
572 Value *ExtendedStride = Builder.CreateSExtOrTrunc(C.Stride, DeltaType);
573 if (IndexOffset.isPowerOf2()) {
574 // If (i' - i) is a power of 2, Bump = sext/trunc(S) << log(i' - i).
575 ConstantInt *Exponent = ConstantInt::get(DeltaType, IndexOffset.logBase2());
576 return Builder.CreateShl(ExtendedStride, Exponent);
577 }
578 if ((-IndexOffset).isPowerOf2()) {
579 // If (i - i') is a power of 2, Bump = -sext/trunc(S) << log(i' - i).
580 ConstantInt *Exponent =
581 ConstantInt::get(DeltaType, (-IndexOffset).logBase2());
582 return Builder.CreateNeg(Builder.CreateShl(ExtendedStride, Exponent));
583 }
584 Constant *Delta = ConstantInt::get(DeltaType, IndexOffset);
585 return Builder.CreateMul(ExtendedStride, Delta);
586 }
587
rewriteCandidateWithBasis(const Candidate & C,const Candidate & Basis)588 void StraightLineStrengthReduce::rewriteCandidateWithBasis(
589 const Candidate &C, const Candidate &Basis) {
590 assert(C.CandidateKind == Basis.CandidateKind && C.Base == Basis.Base &&
591 C.Stride == Basis.Stride);
592 // We run rewriteCandidateWithBasis on all candidates in a post-order, so the
593 // basis of a candidate cannot be unlinked before the candidate.
594 assert(Basis.Ins->getParent() != nullptr && "the basis is unlinked");
595
596 // An instruction can correspond to multiple candidates. Therefore, instead of
597 // simply deleting an instruction when we rewrite it, we mark its parent as
598 // nullptr (i.e. unlink it) so that we can skip the candidates whose
599 // instruction is already rewritten.
600 if (!C.Ins->getParent())
601 return;
602
603 IRBuilder<> Builder(C.Ins);
604 bool BumpWithUglyGEP;
605 Value *Bump = emitBump(Basis, C, Builder, DL, BumpWithUglyGEP);
606 Value *Reduced = nullptr; // equivalent to but weaker than C.Ins
607 switch (C.CandidateKind) {
608 case Candidate::Add:
609 case Candidate::Mul:
610 // C = Basis + Bump
611 if (BinaryOperator::isNeg(Bump)) {
612 // If Bump is a neg instruction, emit C = Basis - (-Bump).
613 Reduced =
614 Builder.CreateSub(Basis.Ins, BinaryOperator::getNegArgument(Bump));
615 // We only use the negative argument of Bump, and Bump itself may be
616 // trivially dead.
617 RecursivelyDeleteTriviallyDeadInstructions(Bump);
618 } else {
619 // It's tempting to preserve nsw on Bump and/or Reduced. However, it's
620 // usually unsound, e.g.,
621 //
622 // X = (-2 +nsw 1) *nsw INT_MAX
623 // Y = (-2 +nsw 3) *nsw INT_MAX
624 // =>
625 // Y = X + 2 * INT_MAX
626 //
627 // Neither + and * in the resultant expression are nsw.
628 Reduced = Builder.CreateAdd(Basis.Ins, Bump);
629 }
630 break;
631 case Candidate::GEP:
632 {
633 Type *IntPtrTy = DL->getIntPtrType(C.Ins->getType());
634 bool InBounds = cast<GetElementPtrInst>(C.Ins)->isInBounds();
635 if (BumpWithUglyGEP) {
636 // C = (char *)Basis + Bump
637 unsigned AS = Basis.Ins->getType()->getPointerAddressSpace();
638 Type *CharTy = Type::getInt8PtrTy(Basis.Ins->getContext(), AS);
639 Reduced = Builder.CreateBitCast(Basis.Ins, CharTy);
640 if (InBounds)
641 Reduced =
642 Builder.CreateInBoundsGEP(Builder.getInt8Ty(), Reduced, Bump);
643 else
644 Reduced = Builder.CreateGEP(Builder.getInt8Ty(), Reduced, Bump);
645 Reduced = Builder.CreateBitCast(Reduced, C.Ins->getType());
646 } else {
647 // C = gep Basis, Bump
648 // Canonicalize bump to pointer size.
649 Bump = Builder.CreateSExtOrTrunc(Bump, IntPtrTy);
650 if (InBounds)
651 Reduced = Builder.CreateInBoundsGEP(nullptr, Basis.Ins, Bump);
652 else
653 Reduced = Builder.CreateGEP(nullptr, Basis.Ins, Bump);
654 }
655 }
656 break;
657 default:
658 llvm_unreachable("C.CandidateKind is invalid");
659 };
660 Reduced->takeName(C.Ins);
661 C.Ins->replaceAllUsesWith(Reduced);
662 // Unlink C.Ins so that we can skip other candidates also corresponding to
663 // C.Ins. The actual deletion is postponed to the end of runOnFunction.
664 C.Ins->removeFromParent();
665 UnlinkedInstructions.push_back(C.Ins);
666 }
667
runOnFunction(Function & F)668 bool StraightLineStrengthReduce::runOnFunction(Function &F) {
669 if (skipFunction(F))
670 return false;
671
672 TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
673 DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
674 SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
675 // Traverse the dominator tree in the depth-first order. This order makes sure
676 // all bases of a candidate are in Candidates when we process it.
677 for (auto node = GraphTraits<DominatorTree *>::nodes_begin(DT);
678 node != GraphTraits<DominatorTree *>::nodes_end(DT); ++node) {
679 for (auto &I : *node->getBlock())
680 allocateCandidatesAndFindBasis(&I);
681 }
682
683 // Rewrite candidates in the reverse depth-first order. This order makes sure
684 // a candidate being rewritten is not a basis for any other candidate.
685 while (!Candidates.empty()) {
686 const Candidate &C = Candidates.back();
687 if (C.Basis != nullptr) {
688 rewriteCandidateWithBasis(C, *C.Basis);
689 }
690 Candidates.pop_back();
691 }
692
693 // Delete all unlink instructions.
694 for (auto *UnlinkedInst : UnlinkedInstructions) {
695 for (unsigned I = 0, E = UnlinkedInst->getNumOperands(); I != E; ++I) {
696 Value *Op = UnlinkedInst->getOperand(I);
697 UnlinkedInst->setOperand(I, nullptr);
698 RecursivelyDeleteTriviallyDeadInstructions(Op);
699 }
700 delete UnlinkedInst;
701 }
702 bool Ret = !UnlinkedInstructions.empty();
703 UnlinkedInstructions.clear();
704 return Ret;
705 }
706