• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /** @file
2   This module contains EBC support routines that are customized based on
3   the target x64 processor.
4 
5 Copyright (c) 2006 - 2014, Intel Corporation. All rights reserved.<BR>
6 This program and the accompanying materials
7 are licensed and made available under the terms and conditions of the BSD License
8 which accompanies this distribution.  The full text of the license may be found at
9 http://opensource.org/licenses/bsd-license.php
10 
11 THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS,
12 WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED.
13 
14 **/
15 
16 #include "EbcInt.h"
17 #include "EbcExecute.h"
18 
19 //
20 // NOTE: This is the stack size allocated for the interpreter
21 //       when it executes an EBC image. The requirements can change
22 //       based on whether or not a debugger is present, and other
23 //       platform-specific configurations.
24 //
25 #define VM_STACK_SIZE   (1024 * 8)
26 
27 #define STACK_REMAIN_SIZE (1024 * 4)
28 
29 //
30 // This is instruction buffer used to create EBC thunk
31 //
32 #define EBC_ENTRYPOINT_SIGNATURE           0xAFAFAFAFAFAFAFAFull
33 #define EBC_LL_EBC_ENTRYPOINT_SIGNATURE    0xFAFAFAFAFAFAFAFAull
34 UINT8  mInstructionBufferTemplate[] = {
35   //
36   // Add a magic code here to help the VM recognize the thunk..
37   // mov rax, 0xca112ebcca112ebc  => 48 B8 BC 2E 11 CA BC 2E 11 CA
38   //
39   0x48, 0xB8, 0xBC, 0x2E, 0x11, 0xCA, 0xBC, 0x2E, 0x11, 0xCA,
40   //
41   // Add code bytes to load up a processor register with the EBC entry point.
42   //  mov r10, EbcEntryPoint  => 49 BA XX XX XX XX XX XX XX XX (To be fixed at runtime)
43   // These 8 bytes of the thunk entry is the address of the EBC
44   // entry point.
45   //
46   0x49, 0xBA,
47     (UINT8)(EBC_ENTRYPOINT_SIGNATURE & 0xFF),
48     (UINT8)((EBC_ENTRYPOINT_SIGNATURE >> 8) & 0xFF),
49     (UINT8)((EBC_ENTRYPOINT_SIGNATURE >> 16) & 0xFF),
50     (UINT8)((EBC_ENTRYPOINT_SIGNATURE >> 24) & 0xFF),
51     (UINT8)((EBC_ENTRYPOINT_SIGNATURE >> 32) & 0xFF),
52     (UINT8)((EBC_ENTRYPOINT_SIGNATURE >> 40) & 0xFF),
53     (UINT8)((EBC_ENTRYPOINT_SIGNATURE >> 48) & 0xFF),
54     (UINT8)((EBC_ENTRYPOINT_SIGNATURE >> 56) & 0xFF),
55   //
56   // Stick in a load of r11 with the address of appropriate VM function.
57   //  mov r11, EbcLLEbcInterpret  => 49 BB XX XX XX XX XX XX XX XX (To be fixed at runtime)
58   //
59   0x49, 0xBB,
60     (UINT8)(EBC_LL_EBC_ENTRYPOINT_SIGNATURE & 0xFF),
61     (UINT8)((EBC_LL_EBC_ENTRYPOINT_SIGNATURE >> 8) & 0xFF),
62     (UINT8)((EBC_LL_EBC_ENTRYPOINT_SIGNATURE >> 16) & 0xFF),
63     (UINT8)((EBC_LL_EBC_ENTRYPOINT_SIGNATURE >> 24) & 0xFF),
64     (UINT8)((EBC_LL_EBC_ENTRYPOINT_SIGNATURE >> 32) & 0xFF),
65     (UINT8)((EBC_LL_EBC_ENTRYPOINT_SIGNATURE >> 40) & 0xFF),
66     (UINT8)((EBC_LL_EBC_ENTRYPOINT_SIGNATURE >> 48) & 0xFF),
67     (UINT8)((EBC_LL_EBC_ENTRYPOINT_SIGNATURE >> 56) & 0xFF),
68   //
69   // Stick in jump opcode bytes
70   //  jmp r11 => 41 FF E3
71   //
72   0x41, 0xFF, 0xE3,
73 };
74 
75 /**
76   Begin executing an EBC image.
77   This is used for Ebc Thunk call.
78 
79   @return The value returned by the EBC application we're going to run.
80 
81 **/
82 UINT64
83 EFIAPI
84 EbcLLEbcInterpret (
85   VOID
86   );
87 
88 /**
89   Begin executing an EBC image.
90   This is used for Ebc image entrypoint.
91 
92   @return The value returned by the EBC application we're going to run.
93 
94 **/
95 UINT64
96 EFIAPI
97 EbcLLExecuteEbcImageEntryPoint (
98   VOID
99   );
100 
101 /**
102   Pushes a 64 bit unsigned value to the VM stack.
103 
104   @param VmPtr  The pointer to current VM context.
105   @param Arg    The value to be pushed.
106 
107 **/
108 VOID
PushU64(IN VM_CONTEXT * VmPtr,IN UINT64 Arg)109 PushU64 (
110   IN VM_CONTEXT *VmPtr,
111   IN UINT64     Arg
112   )
113 {
114   //
115   // Advance the VM stack down, and then copy the argument to the stack.
116   // Hope it's aligned.
117   //
118   VmPtr->Gpr[0] -= sizeof (UINT64);
119   *(UINT64 *) VmPtr->Gpr[0] = Arg;
120   return;
121 }
122 
123 
124 /**
125   Begin executing an EBC image.
126 
127   This is a thunk function. Microsoft x64 compiler only provide fast_call
128   calling convention, so the first four arguments are passed by rcx, rdx,
129   r8, and r9, while other arguments are passed in stack.
130 
131   @param  EntryPoint            The entrypoint of EBC code.
132   @param  Arg1                  The 1st argument.
133   @param  Arg2                  The 2nd argument.
134   @param  Arg3                  The 3rd argument.
135   @param  Arg4                  The 4th argument.
136   @param  Arg5                  The 5th argument.
137   @param  Arg6                  The 6th argument.
138   @param  Arg7                  The 7th argument.
139   @param  Arg8                  The 8th argument.
140   @param  Arg9                  The 9th argument.
141   @param  Arg10                 The 10th argument.
142   @param  Arg11                 The 11th argument.
143   @param  Arg12                 The 12th argument.
144   @param  Arg13                 The 13th argument.
145   @param  Arg14                 The 14th argument.
146   @param  Arg15                 The 15th argument.
147   @param  Arg16                 The 16th argument.
148 
149   @return The value returned by the EBC application we're going to run.
150 
151 **/
152 UINT64
153 EFIAPI
EbcInterpret(IN UINTN EntryPoint,IN UINTN Arg1,IN UINTN Arg2,IN UINTN Arg3,IN UINTN Arg4,IN UINTN Arg5,IN UINTN Arg6,IN UINTN Arg7,IN UINTN Arg8,IN UINTN Arg9,IN UINTN Arg10,IN UINTN Arg11,IN UINTN Arg12,IN UINTN Arg13,IN UINTN Arg14,IN UINTN Arg15,IN UINTN Arg16)154 EbcInterpret (
155   IN UINTN      EntryPoint,
156   IN UINTN      Arg1,
157   IN UINTN      Arg2,
158   IN UINTN      Arg3,
159   IN UINTN      Arg4,
160   IN UINTN      Arg5,
161   IN UINTN      Arg6,
162   IN UINTN      Arg7,
163   IN UINTN      Arg8,
164   IN UINTN      Arg9,
165   IN UINTN      Arg10,
166   IN UINTN      Arg11,
167   IN UINTN      Arg12,
168   IN UINTN      Arg13,
169   IN UINTN      Arg14,
170   IN UINTN      Arg15,
171   IN UINTN      Arg16
172   )
173 {
174   //
175   // Create a new VM context on the stack
176   //
177   VM_CONTEXT  VmContext;
178   UINTN       Addr;
179   EFI_STATUS  Status;
180   UINTN       StackIndex;
181 
182   //
183   // Get the EBC entry point
184   //
185   Addr = EntryPoint;
186 
187   //
188   // Now clear out our context
189   //
190   ZeroMem ((VOID *) &VmContext, sizeof (VM_CONTEXT));
191 
192   //
193   // Set the VM instruction pointer to the correct location in memory.
194   //
195   VmContext.Ip = (VMIP) Addr;
196 
197   //
198   // Initialize the stack pointer for the EBC. Get the current system stack
199   // pointer and adjust it down by the max needed for the interpreter.
200   //
201 
202   //
203   // Adjust the VM's stack pointer down.
204   //
205 
206   Status = GetEBCStack((EFI_HANDLE)(UINTN)-1, &VmContext.StackPool, &StackIndex);
207   if (EFI_ERROR(Status)) {
208     return Status;
209   }
210   VmContext.StackTop = (UINT8*)VmContext.StackPool + (STACK_REMAIN_SIZE);
211   VmContext.Gpr[0] = (UINT64) ((UINT8*)VmContext.StackPool + STACK_POOL_SIZE);
212   VmContext.HighStackBottom = (UINTN) VmContext.Gpr[0];
213   VmContext.Gpr[0] -= sizeof (UINTN);
214 
215   //
216   // Align the stack on a natural boundary.
217   //
218   VmContext.Gpr[0] &= ~(VM_REGISTER)(sizeof (UINTN) - 1);
219 
220   //
221   // Put a magic value in the stack gap, then adjust down again.
222   //
223   *(UINTN *) (UINTN) (VmContext.Gpr[0]) = (UINTN) VM_STACK_KEY_VALUE;
224   VmContext.StackMagicPtr             = (UINTN *) (UINTN) VmContext.Gpr[0];
225 
226   //
227   // The stack upper to LowStackTop is belong to the VM.
228   //
229   VmContext.LowStackTop   = (UINTN) VmContext.Gpr[0];
230 
231   //
232   // For the worst case, assume there are 4 arguments passed in registers, store
233   // them to VM's stack.
234   //
235   PushU64 (&VmContext, (UINT64) Arg16);
236   PushU64 (&VmContext, (UINT64) Arg15);
237   PushU64 (&VmContext, (UINT64) Arg14);
238   PushU64 (&VmContext, (UINT64) Arg13);
239   PushU64 (&VmContext, (UINT64) Arg12);
240   PushU64 (&VmContext, (UINT64) Arg11);
241   PushU64 (&VmContext, (UINT64) Arg10);
242   PushU64 (&VmContext, (UINT64) Arg9);
243   PushU64 (&VmContext, (UINT64) Arg8);
244   PushU64 (&VmContext, (UINT64) Arg7);
245   PushU64 (&VmContext, (UINT64) Arg6);
246   PushU64 (&VmContext, (UINT64) Arg5);
247   PushU64 (&VmContext, (UINT64) Arg4);
248   PushU64 (&VmContext, (UINT64) Arg3);
249   PushU64 (&VmContext, (UINT64) Arg2);
250   PushU64 (&VmContext, (UINT64) Arg1);
251 
252   //
253   // Interpreter assumes 64-bit return address is pushed on the stack.
254   // The x64 does not do this so pad the stack accordingly.
255   //
256   PushU64 (&VmContext, (UINT64) 0);
257   PushU64 (&VmContext, (UINT64) 0x1234567887654321ULL);
258 
259   //
260   // For x64, this is where we say our return address is
261   //
262   VmContext.StackRetAddr  = (UINT64) VmContext.Gpr[0];
263 
264   //
265   // We need to keep track of where the EBC stack starts. This way, if the EBC
266   // accesses any stack variables above its initial stack setting, then we know
267   // it's accessing variables passed into it, which means the data is on the
268   // VM's stack.
269   // When we're called, on the stack (high to low) we have the parameters, the
270   // return address, then the saved ebp. Save the pointer to the return address.
271   // EBC code knows that's there, so should look above it for function parameters.
272   // The offset is the size of locals (VMContext + Addr + saved ebp).
273   // Note that the interpreter assumes there is a 16 bytes of return address on
274   // the stack too, so adjust accordingly.
275   //  VmContext.HighStackBottom = (UINTN)(Addr + sizeof (VmContext) + sizeof (Addr));
276   //
277 
278   //
279   // Begin executing the EBC code
280   //
281   EbcExecute (&VmContext);
282 
283   //
284   // Return the value in R[7] unless there was an error
285   //
286   ReturnEBCStack(StackIndex);
287   return (UINT64) VmContext.Gpr[7];
288 }
289 
290 
291 /**
292   Begin executing an EBC image.
293 
294   @param  EntryPoint       The entrypoint of EBC code.
295   @param  ImageHandle      image handle for the EBC application we're executing
296   @param  SystemTable      standard system table passed into an driver's entry
297                            point
298 
299   @return The value returned by the EBC application we're going to run.
300 
301 **/
302 UINT64
303 EFIAPI
ExecuteEbcImageEntryPoint(IN UINTN EntryPoint,IN EFI_HANDLE ImageHandle,IN EFI_SYSTEM_TABLE * SystemTable)304 ExecuteEbcImageEntryPoint (
305   IN UINTN                EntryPoint,
306   IN EFI_HANDLE           ImageHandle,
307   IN EFI_SYSTEM_TABLE     *SystemTable
308   )
309 {
310   //
311   // Create a new VM context on the stack
312   //
313   VM_CONTEXT  VmContext;
314   UINTN       Addr;
315   EFI_STATUS  Status;
316   UINTN       StackIndex;
317 
318   //
319   // Get the EBC entry point
320   //
321   Addr = EntryPoint;
322 
323   //
324   // Now clear out our context
325   //
326   ZeroMem ((VOID *) &VmContext, sizeof (VM_CONTEXT));
327 
328   //
329   // Save the image handle so we can track the thunks created for this image
330   //
331   VmContext.ImageHandle = ImageHandle;
332   VmContext.SystemTable = SystemTable;
333 
334   //
335   // Set the VM instruction pointer to the correct location in memory.
336   //
337   VmContext.Ip = (VMIP) Addr;
338 
339   //
340   // Initialize the stack pointer for the EBC. Get the current system stack
341   // pointer and adjust it down by the max needed for the interpreter.
342   //
343 
344   Status = GetEBCStack(ImageHandle, &VmContext.StackPool, &StackIndex);
345   if (EFI_ERROR(Status)) {
346     return Status;
347   }
348   VmContext.StackTop = (UINT8*)VmContext.StackPool + (STACK_REMAIN_SIZE);
349   VmContext.Gpr[0] = (UINT64) ((UINT8*)VmContext.StackPool + STACK_POOL_SIZE);
350   VmContext.HighStackBottom = (UINTN) VmContext.Gpr[0];
351   VmContext.Gpr[0] -= sizeof (UINTN);
352 
353 
354   //
355   // Put a magic value in the stack gap, then adjust down again
356   //
357   *(UINTN *) (UINTN) (VmContext.Gpr[0]) = (UINTN) VM_STACK_KEY_VALUE;
358   VmContext.StackMagicPtr             = (UINTN *) (UINTN) VmContext.Gpr[0];
359 
360   //
361   // Align the stack on a natural boundary
362   VmContext.Gpr[0] &= ~(VM_REGISTER)(sizeof(UINTN) - 1);
363   //
364   VmContext.LowStackTop   = (UINTN) VmContext.Gpr[0];
365 
366   //
367   // Simply copy the image handle and system table onto the EBC stack.
368   // Greatly simplifies things by not having to spill the args.
369   //
370   PushU64 (&VmContext, (UINT64) SystemTable);
371   PushU64 (&VmContext, (UINT64) ImageHandle);
372 
373   //
374   // VM pushes 16-bytes for return address. Simulate that here.
375   //
376   PushU64 (&VmContext, (UINT64) 0);
377   PushU64 (&VmContext, (UINT64) 0x1234567887654321ULL);
378 
379   //
380   // For x64, this is where we say our return address is
381   //
382   VmContext.StackRetAddr  = (UINT64) VmContext.Gpr[0];
383 
384   //
385   // Entry function needn't access high stack context, simply
386   // put the stack pointer here.
387   //
388 
389   //
390   // Begin executing the EBC code
391   //
392   EbcExecute (&VmContext);
393 
394   //
395   // Return the value in R[7] unless there was an error
396   //
397   ReturnEBCStack(StackIndex);
398   return (UINT64) VmContext.Gpr[7];
399 }
400 
401 
402 /**
403   Create thunks for an EBC image entry point, or an EBC protocol service.
404 
405   @param  ImageHandle           Image handle for the EBC image. If not null, then
406                                 we're creating a thunk for an image entry point.
407   @param  EbcEntryPoint         Address of the EBC code that the thunk is to call
408   @param  Thunk                 Returned thunk we create here
409   @param  Flags                 Flags indicating options for creating the thunk
410 
411   @retval EFI_SUCCESS           The thunk was created successfully.
412   @retval EFI_INVALID_PARAMETER The parameter of EbcEntryPoint is not 16-bit
413                                 aligned.
414   @retval EFI_OUT_OF_RESOURCES  There is not enough memory to created the EBC
415                                 Thunk.
416   @retval EFI_BUFFER_TOO_SMALL  EBC_THUNK_SIZE is not larger enough.
417 
418 **/
419 EFI_STATUS
EbcCreateThunks(IN EFI_HANDLE ImageHandle,IN VOID * EbcEntryPoint,OUT VOID ** Thunk,IN UINT32 Flags)420 EbcCreateThunks (
421   IN EFI_HANDLE           ImageHandle,
422   IN VOID                 *EbcEntryPoint,
423   OUT VOID                **Thunk,
424   IN  UINT32              Flags
425   )
426 {
427   UINT8       *Ptr;
428   UINT8       *ThunkBase;
429   UINT32      Index;
430   INT32       ThunkSize;
431 
432   //
433   // Check alignment of pointer to EBC code
434   //
435   if ((UINT32) (UINTN) EbcEntryPoint & 0x01) {
436     return EFI_INVALID_PARAMETER;
437   }
438 
439   ThunkSize = sizeof(mInstructionBufferTemplate);
440 
441   Ptr = AllocatePool (sizeof(mInstructionBufferTemplate));
442 
443   if (Ptr == NULL) {
444     return EFI_OUT_OF_RESOURCES;
445   }
446   //
447   //  Print(L"Allocate TH: 0x%X\n", (UINT32)Ptr);
448   //
449   // Save the start address so we can add a pointer to it to a list later.
450   //
451   ThunkBase = Ptr;
452 
453   //
454   // Give them the address of our buffer we're going to fix up
455   //
456   *Thunk = (VOID *) Ptr;
457 
458   //
459   // Copy whole thunk instruction buffer template
460   //
461   CopyMem (Ptr, mInstructionBufferTemplate, sizeof(mInstructionBufferTemplate));
462 
463   //
464   // Patch EbcEntryPoint and EbcLLEbcInterpret
465   //
466   for (Index = 0; Index < sizeof(mInstructionBufferTemplate) - sizeof(UINTN); Index++) {
467     if (*(UINTN *)&Ptr[Index] == EBC_ENTRYPOINT_SIGNATURE) {
468       *(UINTN *)&Ptr[Index] = (UINTN)EbcEntryPoint;
469     }
470     if (*(UINTN *)&Ptr[Index] == EBC_LL_EBC_ENTRYPOINT_SIGNATURE) {
471       if ((Flags & FLAG_THUNK_ENTRY_POINT) != 0) {
472         *(UINTN *)&Ptr[Index] = (UINTN)EbcLLExecuteEbcImageEntryPoint;
473       } else {
474         *(UINTN *)&Ptr[Index] = (UINTN)EbcLLEbcInterpret;
475       }
476     }
477   }
478 
479   //
480   // Add the thunk to the list for this image. Do this last since the add
481   // function flushes the cache for us.
482   //
483   EbcAddImageThunk (ImageHandle, (VOID *) ThunkBase, ThunkSize);
484 
485   return EFI_SUCCESS;
486 }
487 
488 
489 /**
490   This function is called to execute an EBC CALLEX instruction.
491   The function check the callee's content to see whether it is common native
492   code or a thunk to another piece of EBC code.
493   If the callee is common native code, use EbcLLCAllEXASM to manipulate,
494   otherwise, set the VM->IP to target EBC code directly to avoid another VM
495   be startup which cost time and stack space.
496 
497   @param  VmPtr            Pointer to a VM context.
498   @param  FuncAddr         Callee's address
499   @param  NewStackPointer  New stack pointer after the call
500   @param  FramePtr         New frame pointer after the call
501   @param  Size             The size of call instruction
502 
503 **/
504 VOID
EbcLLCALLEX(IN VM_CONTEXT * VmPtr,IN UINTN FuncAddr,IN UINTN NewStackPointer,IN VOID * FramePtr,IN UINT8 Size)505 EbcLLCALLEX (
506   IN VM_CONTEXT   *VmPtr,
507   IN UINTN        FuncAddr,
508   IN UINTN        NewStackPointer,
509   IN VOID         *FramePtr,
510   IN UINT8        Size
511   )
512 {
513   UINTN    IsThunk;
514   UINTN    TargetEbcAddr;
515   UINT8    InstructionBuffer[sizeof(mInstructionBufferTemplate)];
516   UINTN    Index;
517   UINTN    IndexOfEbcEntrypoint;
518 
519   IsThunk       = 1;
520   TargetEbcAddr = 0;
521   IndexOfEbcEntrypoint = 0;
522 
523   //
524   // Processor specific code to check whether the callee is a thunk to EBC.
525   //
526   CopyMem (InstructionBuffer, (VOID *)FuncAddr, sizeof(InstructionBuffer));
527   //
528   // Fill the signature according to mInstructionBufferTemplate
529   //
530   for (Index = 0; Index < sizeof(mInstructionBufferTemplate) - sizeof(UINTN); Index++) {
531     if (*(UINTN *)&mInstructionBufferTemplate[Index] == EBC_ENTRYPOINT_SIGNATURE) {
532       *(UINTN *)&InstructionBuffer[Index] = EBC_ENTRYPOINT_SIGNATURE;
533       IndexOfEbcEntrypoint = Index;
534     }
535     if (*(UINTN *)&mInstructionBufferTemplate[Index] == EBC_LL_EBC_ENTRYPOINT_SIGNATURE) {
536       *(UINTN *)&InstructionBuffer[Index] = EBC_LL_EBC_ENTRYPOINT_SIGNATURE;
537     }
538   }
539   //
540   // Check if we need thunk to native
541   //
542   if (CompareMem (InstructionBuffer, mInstructionBufferTemplate, sizeof(mInstructionBufferTemplate)) != 0) {
543     IsThunk = 0;
544   }
545 
546   if (IsThunk == 1){
547     //
548     // The callee is a thunk to EBC, adjust the stack pointer down 16 bytes and
549     // put our return address and frame pointer on the VM stack.
550     // Then set the VM's IP to new EBC code.
551     //
552     VmPtr->Gpr[0] -= 8;
553     VmWriteMemN (VmPtr, (UINTN) VmPtr->Gpr[0], (UINTN) FramePtr);
554     VmPtr->FramePtr = (VOID *) (UINTN) VmPtr->Gpr[0];
555     VmPtr->Gpr[0] -= 8;
556     VmWriteMem64 (VmPtr, (UINTN) VmPtr->Gpr[0], (UINT64) (UINTN) (VmPtr->Ip + Size));
557 
558     CopyMem (&TargetEbcAddr, (UINT8 *)FuncAddr + IndexOfEbcEntrypoint, sizeof(UINTN));
559     VmPtr->Ip = (VMIP) (UINTN) TargetEbcAddr;
560   } else {
561     //
562     // The callee is not a thunk to EBC, call native code,
563     // and get return value.
564     //
565     VmPtr->Gpr[7] = EbcLLCALLEXNative (FuncAddr, NewStackPointer, FramePtr);
566 
567     //
568     // Advance the IP.
569     //
570     VmPtr->Ip += Size;
571   }
572 }
573 
574