• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /* x86_64 BIGNUM accelerator version 0.1, December 2002.
2  *
3  * Implemented by Andy Polyakov <appro@fy.chalmers.se> for the OpenSSL
4  * project.
5  *
6  * Rights for redistribution and usage in source and binary forms are
7  * granted according to the OpenSSL license. Warranty of any kind is
8  * disclaimed.
9  *
10  * Q. Version 0.1? It doesn't sound like Andy, he used to assign real
11  *    versions, like 1.0...
12  * A. Well, that's because this code is basically a quick-n-dirty
13  *    proof-of-concept hack. As you can see it's implemented with
14  *    inline assembler, which means that you're bound to GCC and that
15  *    there might be enough room for further improvement.
16  *
17  * Q. Why inline assembler?
18  * A. x86_64 features own ABI which I'm not familiar with. This is
19  *    why I decided to let the compiler take care of subroutine
20  *    prologue/epilogue as well as register allocation. For reference.
21  *    Win64 implements different ABI for AMD64, different from Linux.
22  *
23  * Q. How much faster does it get?
24  * A. 'apps/openssl speed rsa dsa' output with no-asm:
25  *
26  *	                  sign    verify    sign/s verify/s
27  *	rsa  512 bits   0.0006s   0.0001s   1683.8  18456.2
28  *	rsa 1024 bits   0.0028s   0.0002s    356.0   6407.0
29  *	rsa 2048 bits   0.0172s   0.0005s     58.0   1957.8
30  *	rsa 4096 bits   0.1155s   0.0018s      8.7    555.6
31  *	                  sign    verify    sign/s verify/s
32  *	dsa  512 bits   0.0005s   0.0006s   2100.8   1768.3
33  *	dsa 1024 bits   0.0014s   0.0018s    692.3    559.2
34  *	dsa 2048 bits   0.0049s   0.0061s    204.7    165.0
35  *
36  *    'apps/openssl speed rsa dsa' output with this module:
37  *
38  *	                  sign    verify    sign/s verify/s
39  *	rsa  512 bits   0.0004s   0.0000s   2767.1  33297.9
40  *	rsa 1024 bits   0.0012s   0.0001s    867.4  14674.7
41  *	rsa 2048 bits   0.0061s   0.0002s    164.0   5270.0
42  *	rsa 4096 bits   0.0384s   0.0006s     26.1   1650.8
43  *	                  sign    verify    sign/s verify/s
44  *	dsa  512 bits   0.0002s   0.0003s   4442.2   3786.3
45  *	dsa 1024 bits   0.0005s   0.0007s   1835.1   1497.4
46  *	dsa 2048 bits   0.0016s   0.0020s    620.4    504.6
47  *
48  *    For the reference. IA-32 assembler implementation performs
49  *    very much like 64-bit code compiled with no-asm on the same
50  *    machine.
51  */
52 
53 #include <openssl/bn.h>
54 
55 /* TODO(davidben): Get this file working on Windows x64. */
56 #if !defined(OPENSSL_NO_ASM) && defined(OPENSSL_X86_64) && defined(__GNUC__)
57 
58 #include "../internal.h"
59 
60 
61 #undef mul
62 #undef mul_add
63 
64 #define asm __asm__
65 
66 /*
67  * "m"(a), "+m"(r)	is the way to favor DirectPath µ-code;
68  * "g"(0)		let the compiler to decide where does it
69  *			want to keep the value of zero;
70  */
71 #define mul_add(r, a, word, carry)                                     \
72   do {                                                                 \
73     register BN_ULONG high, low;                                       \
74     asm("mulq %3" : "=a"(low), "=d"(high) : "a"(word), "m"(a) : "cc"); \
75     asm("addq %2,%0; adcq %3,%1"                                       \
76         : "+r"(carry), "+d"(high)                                      \
77         : "a"(low), "g"(0)                                             \
78         : "cc");                                                       \
79     asm("addq %2,%0; adcq %3,%1"                                       \
80         : "+m"(r), "+d"(high)                                          \
81         : "r"(carry), "g"(0)                                           \
82         : "cc");                                                       \
83     (carry) = high;                                                    \
84   } while (0)
85 
86 #define mul(r, a, word, carry)                                         \
87   do {                                                                 \
88     register BN_ULONG high, low;                                       \
89     asm("mulq %3" : "=a"(low), "=d"(high) : "a"(word), "g"(a) : "cc"); \
90     asm("addq %2,%0; adcq %3,%1"                                       \
91         : "+r"(carry), "+d"(high)                                      \
92         : "a"(low), "g"(0)                                             \
93         : "cc");                                                       \
94     (r) = (carry);                                                     \
95     (carry) = high;                                                    \
96   } while (0)
97 #undef sqr
98 #define sqr(r0, r1, a) asm("mulq %2" : "=a"(r0), "=d"(r1) : "a"(a) : "cc");
99 
bn_mul_add_words(BN_ULONG * rp,const BN_ULONG * ap,int num,BN_ULONG w)100 BN_ULONG bn_mul_add_words(BN_ULONG *rp, const BN_ULONG *ap, int num,
101                           BN_ULONG w) {
102   BN_ULONG c1 = 0;
103 
104   if (num <= 0) {
105     return (c1);
106   }
107 
108   while (num & ~3) {
109     mul_add(rp[0], ap[0], w, c1);
110     mul_add(rp[1], ap[1], w, c1);
111     mul_add(rp[2], ap[2], w, c1);
112     mul_add(rp[3], ap[3], w, c1);
113     ap += 4;
114     rp += 4;
115     num -= 4;
116   }
117   if (num) {
118     mul_add(rp[0], ap[0], w, c1);
119     if (--num == 0) {
120       return c1;
121     }
122     mul_add(rp[1], ap[1], w, c1);
123     if (--num == 0) {
124       return c1;
125     }
126     mul_add(rp[2], ap[2], w, c1);
127     return c1;
128   }
129 
130   return c1;
131 }
132 
bn_mul_words(BN_ULONG * rp,const BN_ULONG * ap,int num,BN_ULONG w)133 BN_ULONG bn_mul_words(BN_ULONG *rp, const BN_ULONG *ap, int num, BN_ULONG w) {
134   BN_ULONG c1 = 0;
135 
136   if (num <= 0) {
137     return c1;
138   }
139 
140   while (num & ~3) {
141     mul(rp[0], ap[0], w, c1);
142     mul(rp[1], ap[1], w, c1);
143     mul(rp[2], ap[2], w, c1);
144     mul(rp[3], ap[3], w, c1);
145     ap += 4;
146     rp += 4;
147     num -= 4;
148   }
149   if (num) {
150     mul(rp[0], ap[0], w, c1);
151     if (--num == 0) {
152       return c1;
153     }
154     mul(rp[1], ap[1], w, c1);
155     if (--num == 0) {
156       return c1;
157     }
158     mul(rp[2], ap[2], w, c1);
159   }
160   return c1;
161 }
162 
bn_sqr_words(BN_ULONG * r,const BN_ULONG * a,int n)163 void bn_sqr_words(BN_ULONG *r, const BN_ULONG *a, int n) {
164   if (n <= 0) {
165     return;
166   }
167 
168   while (n & ~3) {
169     sqr(r[0], r[1], a[0]);
170     sqr(r[2], r[3], a[1]);
171     sqr(r[4], r[5], a[2]);
172     sqr(r[6], r[7], a[3]);
173     a += 4;
174     r += 8;
175     n -= 4;
176   }
177   if (n) {
178     sqr(r[0], r[1], a[0]);
179     if (--n == 0) {
180       return;
181     }
182     sqr(r[2], r[3], a[1]);
183     if (--n == 0) {
184       return;
185     }
186     sqr(r[4], r[5], a[2]);
187   }
188 }
189 
bn_add_words(BN_ULONG * rp,const BN_ULONG * ap,const BN_ULONG * bp,int n)190 BN_ULONG bn_add_words(BN_ULONG *rp, const BN_ULONG *ap, const BN_ULONG *bp,
191                       int n) {
192   BN_ULONG ret;
193   size_t i = 0;
194 
195   if (n <= 0) {
196     return 0;
197   }
198 
199   asm volatile (
200       "	subq	%0,%0		\n" /* clear carry */
201       "	jmp	1f		\n"
202       ".p2align 4			\n"
203       "1:"
204       "	movq	(%4,%2,8),%0	\n"
205       "	adcq	(%5,%2,8),%0	\n"
206       "	movq	%0,(%3,%2,8)	\n"
207       "	lea	1(%2),%2	\n"
208       "	loop	1b		\n"
209       "	sbbq	%0,%0		\n"
210       : "=&r"(ret), "+c"(n), "+r"(i)
211       : "r"(rp), "r"(ap), "r"(bp)
212       : "cc", "memory");
213 
214   return ret & 1;
215 }
216 
bn_sub_words(BN_ULONG * rp,const BN_ULONG * ap,const BN_ULONG * bp,int n)217 BN_ULONG bn_sub_words(BN_ULONG *rp, const BN_ULONG *ap, const BN_ULONG *bp,
218                       int n) {
219   BN_ULONG ret;
220   size_t i = 0;
221 
222   if (n <= 0) {
223     return 0;
224   }
225 
226   asm volatile (
227       "	subq	%0,%0		\n" /* clear borrow */
228       "	jmp	1f		\n"
229       ".p2align 4			\n"
230       "1:"
231       "	movq	(%4,%2,8),%0	\n"
232       "	sbbq	(%5,%2,8),%0	\n"
233       "	movq	%0,(%3,%2,8)	\n"
234       "	lea	1(%2),%2	\n"
235       "	loop	1b		\n"
236       "	sbbq	%0,%0		\n"
237       : "=&r"(ret), "+c"(n), "+r"(i)
238       : "r"(rp), "r"(ap), "r"(bp)
239       : "cc", "memory");
240 
241   return ret & 1;
242 }
243 
244 /* mul_add_c(a,b,c0,c1,c2)  -- c+=a*b for three word number c=(c2,c1,c0) */
245 /* mul_add_c2(a,b,c0,c1,c2) -- c+=2*a*b for three word number c=(c2,c1,c0) */
246 /* sqr_add_c(a,i,c0,c1,c2)  -- c+=a[i]^2 for three word number c=(c2,c1,c0) */
247 /* sqr_add_c2(a,i,c0,c1,c2) -- c+=2*a[i]*a[j] for three word number c=(c2,c1,c0)
248  */
249 
250 /* Keep in mind that carrying into high part of multiplication result can not
251  * overflow, because it cannot be all-ones. */
252 #define mul_add_c(a, b, c0, c1, c2)          \
253   do {                                       \
254     BN_ULONG t1, t2;                \
255     asm("mulq %3" : "=a"(t1), "=d"(t2) : "a"(a), "m"(b) : "cc"); \
256     asm("addq %3,%0; adcq %4,%1; adcq %5,%2" \
257         : "+r"(c0), "+r"(c1), "+r"(c2)       \
258         : "r"(t1), "r"(t2), "g"(0)           \
259         : "cc");                             \
260   } while (0)
261 
262 #define sqr_add_c(a, i, c0, c1, c2)                           \
263   do {                                                        \
264     BN_ULONG t1, t2;                                          \
265     asm("mulq %2" : "=a"(t1), "=d"(t2) : "a"((a)[i]) : "cc"); \
266     asm("addq %3,%0; adcq %4,%1; adcq %5,%2"                  \
267         : "+r"(c0), "+r"(c1), "+r"(c2)                        \
268         : "r"(t1), "r"(t2), "g"(0)                            \
269         : "cc");                                              \
270   } while (0)
271 
272 #define mul_add_c2(a, b, c0, c1, c2)         \
273   do {                                       \
274     BN_ULONG t1, t2;                                                    \
275     asm("mulq %3" : "=a"(t1), "=d"(t2) : "a"(a), "m"(b) : "cc");        \
276     asm("addq %3,%0; adcq %4,%1; adcq %5,%2" \
277         : "+r"(c0), "+r"(c1), "+r"(c2)       \
278         : "r"(t1), "r"(t2), "g"(0)           \
279         : "cc");                             \
280     asm("addq %3,%0; adcq %4,%1; adcq %5,%2" \
281         : "+r"(c0), "+r"(c1), "+r"(c2)       \
282         : "r"(t1), "r"(t2), "g"(0)           \
283         : "cc");                             \
284   } while (0)
285 
286 #define sqr_add_c2(a, i, j, c0, c1, c2) mul_add_c2((a)[i], (a)[j], c0, c1, c2)
287 
bn_mul_comba8(BN_ULONG * r,BN_ULONG * a,BN_ULONG * b)288 void bn_mul_comba8(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b) {
289   BN_ULONG c1, c2, c3;
290 
291   c1 = 0;
292   c2 = 0;
293   c3 = 0;
294   mul_add_c(a[0], b[0], c1, c2, c3);
295   r[0] = c1;
296   c1 = 0;
297   mul_add_c(a[0], b[1], c2, c3, c1);
298   mul_add_c(a[1], b[0], c2, c3, c1);
299   r[1] = c2;
300   c2 = 0;
301   mul_add_c(a[2], b[0], c3, c1, c2);
302   mul_add_c(a[1], b[1], c3, c1, c2);
303   mul_add_c(a[0], b[2], c3, c1, c2);
304   r[2] = c3;
305   c3 = 0;
306   mul_add_c(a[0], b[3], c1, c2, c3);
307   mul_add_c(a[1], b[2], c1, c2, c3);
308   mul_add_c(a[2], b[1], c1, c2, c3);
309   mul_add_c(a[3], b[0], c1, c2, c3);
310   r[3] = c1;
311   c1 = 0;
312   mul_add_c(a[4], b[0], c2, c3, c1);
313   mul_add_c(a[3], b[1], c2, c3, c1);
314   mul_add_c(a[2], b[2], c2, c3, c1);
315   mul_add_c(a[1], b[3], c2, c3, c1);
316   mul_add_c(a[0], b[4], c2, c3, c1);
317   r[4] = c2;
318   c2 = 0;
319   mul_add_c(a[0], b[5], c3, c1, c2);
320   mul_add_c(a[1], b[4], c3, c1, c2);
321   mul_add_c(a[2], b[3], c3, c1, c2);
322   mul_add_c(a[3], b[2], c3, c1, c2);
323   mul_add_c(a[4], b[1], c3, c1, c2);
324   mul_add_c(a[5], b[0], c3, c1, c2);
325   r[5] = c3;
326   c3 = 0;
327   mul_add_c(a[6], b[0], c1, c2, c3);
328   mul_add_c(a[5], b[1], c1, c2, c3);
329   mul_add_c(a[4], b[2], c1, c2, c3);
330   mul_add_c(a[3], b[3], c1, c2, c3);
331   mul_add_c(a[2], b[4], c1, c2, c3);
332   mul_add_c(a[1], b[5], c1, c2, c3);
333   mul_add_c(a[0], b[6], c1, c2, c3);
334   r[6] = c1;
335   c1 = 0;
336   mul_add_c(a[0], b[7], c2, c3, c1);
337   mul_add_c(a[1], b[6], c2, c3, c1);
338   mul_add_c(a[2], b[5], c2, c3, c1);
339   mul_add_c(a[3], b[4], c2, c3, c1);
340   mul_add_c(a[4], b[3], c2, c3, c1);
341   mul_add_c(a[5], b[2], c2, c3, c1);
342   mul_add_c(a[6], b[1], c2, c3, c1);
343   mul_add_c(a[7], b[0], c2, c3, c1);
344   r[7] = c2;
345   c2 = 0;
346   mul_add_c(a[7], b[1], c3, c1, c2);
347   mul_add_c(a[6], b[2], c3, c1, c2);
348   mul_add_c(a[5], b[3], c3, c1, c2);
349   mul_add_c(a[4], b[4], c3, c1, c2);
350   mul_add_c(a[3], b[5], c3, c1, c2);
351   mul_add_c(a[2], b[6], c3, c1, c2);
352   mul_add_c(a[1], b[7], c3, c1, c2);
353   r[8] = c3;
354   c3 = 0;
355   mul_add_c(a[2], b[7], c1, c2, c3);
356   mul_add_c(a[3], b[6], c1, c2, c3);
357   mul_add_c(a[4], b[5], c1, c2, c3);
358   mul_add_c(a[5], b[4], c1, c2, c3);
359   mul_add_c(a[6], b[3], c1, c2, c3);
360   mul_add_c(a[7], b[2], c1, c2, c3);
361   r[9] = c1;
362   c1 = 0;
363   mul_add_c(a[7], b[3], c2, c3, c1);
364   mul_add_c(a[6], b[4], c2, c3, c1);
365   mul_add_c(a[5], b[5], c2, c3, c1);
366   mul_add_c(a[4], b[6], c2, c3, c1);
367   mul_add_c(a[3], b[7], c2, c3, c1);
368   r[10] = c2;
369   c2 = 0;
370   mul_add_c(a[4], b[7], c3, c1, c2);
371   mul_add_c(a[5], b[6], c3, c1, c2);
372   mul_add_c(a[6], b[5], c3, c1, c2);
373   mul_add_c(a[7], b[4], c3, c1, c2);
374   r[11] = c3;
375   c3 = 0;
376   mul_add_c(a[7], b[5], c1, c2, c3);
377   mul_add_c(a[6], b[6], c1, c2, c3);
378   mul_add_c(a[5], b[7], c1, c2, c3);
379   r[12] = c1;
380   c1 = 0;
381   mul_add_c(a[6], b[7], c2, c3, c1);
382   mul_add_c(a[7], b[6], c2, c3, c1);
383   r[13] = c2;
384   c2 = 0;
385   mul_add_c(a[7], b[7], c3, c1, c2);
386   r[14] = c3;
387   r[15] = c1;
388 }
389 
bn_mul_comba4(BN_ULONG * r,BN_ULONG * a,BN_ULONG * b)390 void bn_mul_comba4(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b) {
391   BN_ULONG c1, c2, c3;
392 
393   c1 = 0;
394   c2 = 0;
395   c3 = 0;
396   mul_add_c(a[0], b[0], c1, c2, c3);
397   r[0] = c1;
398   c1 = 0;
399   mul_add_c(a[0], b[1], c2, c3, c1);
400   mul_add_c(a[1], b[0], c2, c3, c1);
401   r[1] = c2;
402   c2 = 0;
403   mul_add_c(a[2], b[0], c3, c1, c2);
404   mul_add_c(a[1], b[1], c3, c1, c2);
405   mul_add_c(a[0], b[2], c3, c1, c2);
406   r[2] = c3;
407   c3 = 0;
408   mul_add_c(a[0], b[3], c1, c2, c3);
409   mul_add_c(a[1], b[2], c1, c2, c3);
410   mul_add_c(a[2], b[1], c1, c2, c3);
411   mul_add_c(a[3], b[0], c1, c2, c3);
412   r[3] = c1;
413   c1 = 0;
414   mul_add_c(a[3], b[1], c2, c3, c1);
415   mul_add_c(a[2], b[2], c2, c3, c1);
416   mul_add_c(a[1], b[3], c2, c3, c1);
417   r[4] = c2;
418   c2 = 0;
419   mul_add_c(a[2], b[3], c3, c1, c2);
420   mul_add_c(a[3], b[2], c3, c1, c2);
421   r[5] = c3;
422   c3 = 0;
423   mul_add_c(a[3], b[3], c1, c2, c3);
424   r[6] = c1;
425   r[7] = c2;
426 }
427 
bn_sqr_comba8(BN_ULONG * r,const BN_ULONG * a)428 void bn_sqr_comba8(BN_ULONG *r, const BN_ULONG *a) {
429   BN_ULONG c1, c2, c3;
430 
431   c1 = 0;
432   c2 = 0;
433   c3 = 0;
434   sqr_add_c(a, 0, c1, c2, c3);
435   r[0] = c1;
436   c1 = 0;
437   sqr_add_c2(a, 1, 0, c2, c3, c1);
438   r[1] = c2;
439   c2 = 0;
440   sqr_add_c(a, 1, c3, c1, c2);
441   sqr_add_c2(a, 2, 0, c3, c1, c2);
442   r[2] = c3;
443   c3 = 0;
444   sqr_add_c2(a, 3, 0, c1, c2, c3);
445   sqr_add_c2(a, 2, 1, c1, c2, c3);
446   r[3] = c1;
447   c1 = 0;
448   sqr_add_c(a, 2, c2, c3, c1);
449   sqr_add_c2(a, 3, 1, c2, c3, c1);
450   sqr_add_c2(a, 4, 0, c2, c3, c1);
451   r[4] = c2;
452   c2 = 0;
453   sqr_add_c2(a, 5, 0, c3, c1, c2);
454   sqr_add_c2(a, 4, 1, c3, c1, c2);
455   sqr_add_c2(a, 3, 2, c3, c1, c2);
456   r[5] = c3;
457   c3 = 0;
458   sqr_add_c(a, 3, c1, c2, c3);
459   sqr_add_c2(a, 4, 2, c1, c2, c3);
460   sqr_add_c2(a, 5, 1, c1, c2, c3);
461   sqr_add_c2(a, 6, 0, c1, c2, c3);
462   r[6] = c1;
463   c1 = 0;
464   sqr_add_c2(a, 7, 0, c2, c3, c1);
465   sqr_add_c2(a, 6, 1, c2, c3, c1);
466   sqr_add_c2(a, 5, 2, c2, c3, c1);
467   sqr_add_c2(a, 4, 3, c2, c3, c1);
468   r[7] = c2;
469   c2 = 0;
470   sqr_add_c(a, 4, c3, c1, c2);
471   sqr_add_c2(a, 5, 3, c3, c1, c2);
472   sqr_add_c2(a, 6, 2, c3, c1, c2);
473   sqr_add_c2(a, 7, 1, c3, c1, c2);
474   r[8] = c3;
475   c3 = 0;
476   sqr_add_c2(a, 7, 2, c1, c2, c3);
477   sqr_add_c2(a, 6, 3, c1, c2, c3);
478   sqr_add_c2(a, 5, 4, c1, c2, c3);
479   r[9] = c1;
480   c1 = 0;
481   sqr_add_c(a, 5, c2, c3, c1);
482   sqr_add_c2(a, 6, 4, c2, c3, c1);
483   sqr_add_c2(a, 7, 3, c2, c3, c1);
484   r[10] = c2;
485   c2 = 0;
486   sqr_add_c2(a, 7, 4, c3, c1, c2);
487   sqr_add_c2(a, 6, 5, c3, c1, c2);
488   r[11] = c3;
489   c3 = 0;
490   sqr_add_c(a, 6, c1, c2, c3);
491   sqr_add_c2(a, 7, 5, c1, c2, c3);
492   r[12] = c1;
493   c1 = 0;
494   sqr_add_c2(a, 7, 6, c2, c3, c1);
495   r[13] = c2;
496   c2 = 0;
497   sqr_add_c(a, 7, c3, c1, c2);
498   r[14] = c3;
499   r[15] = c1;
500 }
501 
bn_sqr_comba4(BN_ULONG * r,const BN_ULONG * a)502 void bn_sqr_comba4(BN_ULONG *r, const BN_ULONG *a) {
503   BN_ULONG c1, c2, c3;
504 
505   c1 = 0;
506   c2 = 0;
507   c3 = 0;
508   sqr_add_c(a, 0, c1, c2, c3);
509   r[0] = c1;
510   c1 = 0;
511   sqr_add_c2(a, 1, 0, c2, c3, c1);
512   r[1] = c2;
513   c2 = 0;
514   sqr_add_c(a, 1, c3, c1, c2);
515   sqr_add_c2(a, 2, 0, c3, c1, c2);
516   r[2] = c3;
517   c3 = 0;
518   sqr_add_c2(a, 3, 0, c1, c2, c3);
519   sqr_add_c2(a, 2, 1, c1, c2, c3);
520   r[3] = c1;
521   c1 = 0;
522   sqr_add_c(a, 2, c2, c3, c1);
523   sqr_add_c2(a, 3, 1, c2, c3, c1);
524   r[4] = c2;
525   c2 = 0;
526   sqr_add_c2(a, 3, 2, c3, c1, c2);
527   r[5] = c3;
528   c3 = 0;
529   sqr_add_c(a, 3, c1, c2, c3);
530   r[6] = c1;
531   r[7] = c2;
532 }
533 
534 #undef mul_add
535 #undef mul
536 #undef sqr
537 #undef mul_add_c
538 #undef sqr_add_c
539 #undef mul_add_c2
540 #undef sqr_add_c2
541 
542 #endif  /* !NO_ASM && X86_64 && __GNUC__ */
543