1 // Copyright (c) 2012 The Chromium Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4
5 #include <stddef.h>
6
7 #include <algorithm>
8 #include <vector>
9
10 #include "base/logging.h"
11 #include "base/synchronization/condition_variable.h"
12 #include "base/synchronization/lock.h"
13 #include "base/synchronization/waitable_event.h"
14 #include "base/threading/thread_restrictions.h"
15
16 // -----------------------------------------------------------------------------
17 // A WaitableEvent on POSIX is implemented as a wait-list. Currently we don't
18 // support cross-process events (where one process can signal an event which
19 // others are waiting on). Because of this, we can avoid having one thread per
20 // listener in several cases.
21 //
22 // The WaitableEvent maintains a list of waiters, protected by a lock. Each
23 // waiter is either an async wait, in which case we have a Task and the
24 // MessageLoop to run it on, or a blocking wait, in which case we have the
25 // condition variable to signal.
26 //
27 // Waiting involves grabbing the lock and adding oneself to the wait list. Async
28 // waits can be canceled, which means grabbing the lock and removing oneself
29 // from the list.
30 //
31 // Waiting on multiple events is handled by adding a single, synchronous wait to
32 // the wait-list of many events. An event passes a pointer to itself when
33 // firing a waiter and so we can store that pointer to find out which event
34 // triggered.
35 // -----------------------------------------------------------------------------
36
37 namespace base {
38
39 // -----------------------------------------------------------------------------
40 // This is just an abstract base class for waking the two types of waiters
41 // -----------------------------------------------------------------------------
WaitableEvent(ResetPolicy reset_policy,InitialState initial_state)42 WaitableEvent::WaitableEvent(ResetPolicy reset_policy,
43 InitialState initial_state)
44 : kernel_(new WaitableEventKernel(reset_policy, initial_state)) {}
45
46 WaitableEvent::~WaitableEvent() = default;
47
Reset()48 void WaitableEvent::Reset() {
49 base::AutoLock locked(kernel_->lock_);
50 kernel_->signaled_ = false;
51 }
52
Signal()53 void WaitableEvent::Signal() {
54 base::AutoLock locked(kernel_->lock_);
55
56 if (kernel_->signaled_)
57 return;
58
59 if (kernel_->manual_reset_) {
60 SignalAll();
61 kernel_->signaled_ = true;
62 } else {
63 // In the case of auto reset, if no waiters were woken, we remain
64 // signaled.
65 if (!SignalOne())
66 kernel_->signaled_ = true;
67 }
68 }
69
IsSignaled()70 bool WaitableEvent::IsSignaled() {
71 base::AutoLock locked(kernel_->lock_);
72
73 const bool result = kernel_->signaled_;
74 if (result && !kernel_->manual_reset_)
75 kernel_->signaled_ = false;
76 return result;
77 }
78
79 // -----------------------------------------------------------------------------
80 // Synchronous waits
81
82 // -----------------------------------------------------------------------------
83 // This is a synchronous waiter. The thread is waiting on the given condition
84 // variable and the fired flag in this object.
85 // -----------------------------------------------------------------------------
86 class SyncWaiter : public WaitableEvent::Waiter {
87 public:
SyncWaiter()88 SyncWaiter()
89 : fired_(false),
90 signaling_event_(NULL),
91 lock_(),
92 cv_(&lock_) {
93 }
94
Fire(WaitableEvent * signaling_event)95 bool Fire(WaitableEvent* signaling_event) override {
96 base::AutoLock locked(lock_);
97
98 if (fired_)
99 return false;
100
101 fired_ = true;
102 signaling_event_ = signaling_event;
103
104 cv_.Broadcast();
105
106 // Unlike AsyncWaiter objects, SyncWaiter objects are stack-allocated on
107 // the blocking thread's stack. There is no |delete this;| in Fire. The
108 // SyncWaiter object is destroyed when it goes out of scope.
109
110 return true;
111 }
112
signaling_event() const113 WaitableEvent* signaling_event() const {
114 return signaling_event_;
115 }
116
117 // ---------------------------------------------------------------------------
118 // These waiters are always stack allocated and don't delete themselves. Thus
119 // there's no problem and the ABA tag is the same as the object pointer.
120 // ---------------------------------------------------------------------------
Compare(void * tag)121 bool Compare(void* tag) override { return this == tag; }
122
123 // ---------------------------------------------------------------------------
124 // Called with lock held.
125 // ---------------------------------------------------------------------------
fired() const126 bool fired() const {
127 return fired_;
128 }
129
130 // ---------------------------------------------------------------------------
131 // During a TimedWait, we need a way to make sure that an auto-reset
132 // WaitableEvent doesn't think that this event has been signaled between
133 // unlocking it and removing it from the wait-list. Called with lock held.
134 // ---------------------------------------------------------------------------
Disable()135 void Disable() {
136 fired_ = true;
137 }
138
lock()139 base::Lock* lock() {
140 return &lock_;
141 }
142
cv()143 base::ConditionVariable* cv() {
144 return &cv_;
145 }
146
147 private:
148 bool fired_;
149 WaitableEvent* signaling_event_; // The WaitableEvent which woke us
150 base::Lock lock_;
151 base::ConditionVariable cv_;
152 };
153
Wait()154 void WaitableEvent::Wait() {
155 bool result = TimedWait(TimeDelta::FromSeconds(-1));
156 DCHECK(result) << "TimedWait() should never fail with infinite timeout";
157 }
158
TimedWait(const TimeDelta & max_time)159 bool WaitableEvent::TimedWait(const TimeDelta& max_time) {
160 base::ThreadRestrictions::AssertWaitAllowed();
161 const TimeTicks end_time(TimeTicks::Now() + max_time);
162 const bool finite_time = max_time.ToInternalValue() >= 0;
163
164 kernel_->lock_.Acquire();
165 if (kernel_->signaled_) {
166 if (!kernel_->manual_reset_) {
167 // In this case we were signaled when we had no waiters. Now that
168 // someone has waited upon us, we can automatically reset.
169 kernel_->signaled_ = false;
170 }
171
172 kernel_->lock_.Release();
173 return true;
174 }
175
176 SyncWaiter sw;
177 sw.lock()->Acquire();
178
179 Enqueue(&sw);
180 kernel_->lock_.Release();
181 // We are violating locking order here by holding the SyncWaiter lock but not
182 // the WaitableEvent lock. However, this is safe because we don't lock @lock_
183 // again before unlocking it.
184
185 for (;;) {
186 const TimeTicks current_time(TimeTicks::Now());
187
188 if (sw.fired() || (finite_time && current_time >= end_time)) {
189 const bool return_value = sw.fired();
190
191 // We can't acquire @lock_ before releasing the SyncWaiter lock (because
192 // of locking order), however, in between the two a signal could be fired
193 // and @sw would accept it, however we will still return false, so the
194 // signal would be lost on an auto-reset WaitableEvent. Thus we call
195 // Disable which makes sw::Fire return false.
196 sw.Disable();
197 sw.lock()->Release();
198
199 // This is a bug that has been enshrined in the interface of
200 // WaitableEvent now: |Dequeue| is called even when |sw.fired()| is true,
201 // even though it'll always return false in that case. However, taking
202 // the lock ensures that |Signal| has completed before we return and
203 // means that a WaitableEvent can synchronise its own destruction.
204 kernel_->lock_.Acquire();
205 kernel_->Dequeue(&sw, &sw);
206 kernel_->lock_.Release();
207
208 return return_value;
209 }
210
211 if (finite_time) {
212 const TimeDelta max_wait(end_time - current_time);
213 sw.cv()->TimedWait(max_wait);
214 } else {
215 sw.cv()->Wait();
216 }
217 }
218 }
219
220 // -----------------------------------------------------------------------------
221 // Synchronous waiting on multiple objects.
222
223 static bool // StrictWeakOrdering
cmp_fst_addr(const std::pair<WaitableEvent *,unsigned> & a,const std::pair<WaitableEvent *,unsigned> & b)224 cmp_fst_addr(const std::pair<WaitableEvent*, unsigned> &a,
225 const std::pair<WaitableEvent*, unsigned> &b) {
226 return a.first < b.first;
227 }
228
229 // static
WaitMany(WaitableEvent ** raw_waitables,size_t count)230 size_t WaitableEvent::WaitMany(WaitableEvent** raw_waitables,
231 size_t count) {
232 base::ThreadRestrictions::AssertWaitAllowed();
233 DCHECK(count) << "Cannot wait on no events";
234
235 // We need to acquire the locks in a globally consistent order. Thus we sort
236 // the array of waitables by address. We actually sort a pairs so that we can
237 // map back to the original index values later.
238 std::vector<std::pair<WaitableEvent*, size_t> > waitables;
239 waitables.reserve(count);
240 for (size_t i = 0; i < count; ++i)
241 waitables.push_back(std::make_pair(raw_waitables[i], i));
242
243 DCHECK_EQ(count, waitables.size());
244
245 sort(waitables.begin(), waitables.end(), cmp_fst_addr);
246
247 // The set of waitables must be distinct. Since we have just sorted by
248 // address, we can check this cheaply by comparing pairs of consecutive
249 // elements.
250 for (size_t i = 0; i < waitables.size() - 1; ++i) {
251 DCHECK(waitables[i].first != waitables[i+1].first);
252 }
253
254 SyncWaiter sw;
255
256 const size_t r = EnqueueMany(&waitables[0], count, &sw);
257 if (r) {
258 // One of the events is already signaled. The SyncWaiter has not been
259 // enqueued anywhere. EnqueueMany returns the count of remaining waitables
260 // when the signaled one was seen, so the index of the signaled event is
261 // @count - @r.
262 return waitables[count - r].second;
263 }
264
265 // At this point, we hold the locks on all the WaitableEvents and we have
266 // enqueued our waiter in them all.
267 sw.lock()->Acquire();
268 // Release the WaitableEvent locks in the reverse order
269 for (size_t i = 0; i < count; ++i) {
270 waitables[count - (1 + i)].first->kernel_->lock_.Release();
271 }
272
273 for (;;) {
274 if (sw.fired())
275 break;
276
277 sw.cv()->Wait();
278 }
279 sw.lock()->Release();
280
281 // The address of the WaitableEvent which fired is stored in the SyncWaiter.
282 WaitableEvent *const signaled_event = sw.signaling_event();
283 // This will store the index of the raw_waitables which fired.
284 size_t signaled_index = 0;
285
286 // Take the locks of each WaitableEvent in turn (except the signaled one) and
287 // remove our SyncWaiter from the wait-list
288 for (size_t i = 0; i < count; ++i) {
289 if (raw_waitables[i] != signaled_event) {
290 raw_waitables[i]->kernel_->lock_.Acquire();
291 // There's no possible ABA issue with the address of the SyncWaiter here
292 // because it lives on the stack. Thus the tag value is just the pointer
293 // value again.
294 raw_waitables[i]->kernel_->Dequeue(&sw, &sw);
295 raw_waitables[i]->kernel_->lock_.Release();
296 } else {
297 // By taking this lock here we ensure that |Signal| has completed by the
298 // time we return, because |Signal| holds this lock. This matches the
299 // behaviour of |Wait| and |TimedWait|.
300 raw_waitables[i]->kernel_->lock_.Acquire();
301 raw_waitables[i]->kernel_->lock_.Release();
302 signaled_index = i;
303 }
304 }
305
306 return signaled_index;
307 }
308
309 // -----------------------------------------------------------------------------
310 // If return value == 0:
311 // The locks of the WaitableEvents have been taken in order and the Waiter has
312 // been enqueued in the wait-list of each. None of the WaitableEvents are
313 // currently signaled
314 // else:
315 // None of the WaitableEvent locks are held. The Waiter has not been enqueued
316 // in any of them and the return value is the index of the first WaitableEvent
317 // which was signaled, from the end of the array.
318 // -----------------------------------------------------------------------------
319 // static
EnqueueMany(std::pair<WaitableEvent *,size_t> * waitables,size_t count,Waiter * waiter)320 size_t WaitableEvent::EnqueueMany
321 (std::pair<WaitableEvent*, size_t>* waitables,
322 size_t count, Waiter* waiter) {
323 if (!count)
324 return 0;
325
326 waitables[0].first->kernel_->lock_.Acquire();
327 if (waitables[0].first->kernel_->signaled_) {
328 if (!waitables[0].first->kernel_->manual_reset_)
329 waitables[0].first->kernel_->signaled_ = false;
330 waitables[0].first->kernel_->lock_.Release();
331 return count;
332 }
333
334 const size_t r = EnqueueMany(waitables + 1, count - 1, waiter);
335 if (r) {
336 waitables[0].first->kernel_->lock_.Release();
337 } else {
338 waitables[0].first->Enqueue(waiter);
339 }
340
341 return r;
342 }
343
344 // -----------------------------------------------------------------------------
345
346
347 // -----------------------------------------------------------------------------
348 // Private functions...
349
WaitableEventKernel(ResetPolicy reset_policy,InitialState initial_state)350 WaitableEvent::WaitableEventKernel::WaitableEventKernel(
351 ResetPolicy reset_policy,
352 InitialState initial_state)
353 : manual_reset_(reset_policy == ResetPolicy::MANUAL),
354 signaled_(initial_state == InitialState::SIGNALED) {}
355
356 WaitableEvent::WaitableEventKernel::~WaitableEventKernel() = default;
357
358 // -----------------------------------------------------------------------------
359 // Wake all waiting waiters. Called with lock held.
360 // -----------------------------------------------------------------------------
SignalAll()361 bool WaitableEvent::SignalAll() {
362 bool signaled_at_least_one = false;
363
364 for (std::list<Waiter*>::iterator
365 i = kernel_->waiters_.begin(); i != kernel_->waiters_.end(); ++i) {
366 if ((*i)->Fire(this))
367 signaled_at_least_one = true;
368 }
369
370 kernel_->waiters_.clear();
371 return signaled_at_least_one;
372 }
373
374 // ---------------------------------------------------------------------------
375 // Try to wake a single waiter. Return true if one was woken. Called with lock
376 // held.
377 // ---------------------------------------------------------------------------
SignalOne()378 bool WaitableEvent::SignalOne() {
379 for (;;) {
380 if (kernel_->waiters_.empty())
381 return false;
382
383 const bool r = (*kernel_->waiters_.begin())->Fire(this);
384 kernel_->waiters_.pop_front();
385 if (r)
386 return true;
387 }
388 }
389
390 // -----------------------------------------------------------------------------
391 // Add a waiter to the list of those waiting. Called with lock held.
392 // -----------------------------------------------------------------------------
Enqueue(Waiter * waiter)393 void WaitableEvent::Enqueue(Waiter* waiter) {
394 kernel_->waiters_.push_back(waiter);
395 }
396
397 // -----------------------------------------------------------------------------
398 // Remove a waiter from the list of those waiting. Return true if the waiter was
399 // actually removed. Called with lock held.
400 // -----------------------------------------------------------------------------
Dequeue(Waiter * waiter,void * tag)401 bool WaitableEvent::WaitableEventKernel::Dequeue(Waiter* waiter, void* tag) {
402 for (std::list<Waiter*>::iterator
403 i = waiters_.begin(); i != waiters_.end(); ++i) {
404 if (*i == waiter && (*i)->Compare(tag)) {
405 waiters_.erase(i);
406 return true;
407 }
408 }
409
410 return false;
411 }
412
413 // -----------------------------------------------------------------------------
414
415 } // namespace base
416