1 /*
2 * Copyright(C) 2006 Cameron Rich
3 *
4 * This library is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU Lesser General Public License as published by
6 * the Free Software Foundation; either version 2.1 of the License, or
7 * (at your option) any later version.
8 *
9 * This library is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU Lesser General Public License for more details.
13 *
14 * You should have received a copy of the GNU Lesser General Public License
15 * along with this library; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
17 */
18
19 /**
20 * @defgroup bigint_api Big Integer API
21 * @brief The bigint implementation as used by the axTLS project.
22 *
23 * The bigint library is for RSA encryption/decryption as well as signing.
24 * This code tries to minimise use of malloc/free by maintaining a small
25 * cache. A bigint context may maintain state by being made "permanent".
26 * It be be later released with a bi_depermanent() and bi_free() call.
27 *
28 * It supports the following reduction techniques:
29 * - Classical
30 * - Barrett
31 * - Montgomery
32 *
33 * It also implements the following:
34 * - Karatsuba multiplication
35 * - Squaring
36 * - Sliding window exponentiation
37 * - Chinese Remainder Theorem (implemented in rsa.c).
38 *
39 * All the algorithms used are pretty standard, and designed for different
40 * data bus sizes. Negative numbers are not dealt with at all, so a subtraction
41 * may need to be tested for negativity.
42 *
43 * This library steals some ideas from Jef Poskanzer
44 * <http://cs.marlboro.edu/term/cs-fall02/algorithms/crypto/RSA/bigint>
45 * and GMP <http://www.swox.com/gmp>. It gets most of its implementation
46 * detail from "The Handbook of Applied Cryptography"
47 * <http://www.cacr.math.uwaterloo.ca/hac/about/chap14.pdf>
48 * @{
49 */
50
51 #include <stdlib.h>
52 #include <limits.h>
53 #include <string.h>
54 #include <stdio.h>
55 #include <time.h>
56 #include "bigint.h"
57 #include "crypto.h"
58
59 static bigint *bi_int_multiply(BI_CTX *ctx, bigint *bi, comp i);
60 static bigint *bi_int_divide(BI_CTX *ctx, bigint *biR, comp denom);
61 static bigint __malloc *alloc(BI_CTX *ctx, int size);
62 static bigint *trim(bigint *bi);
63 static void more_comps(bigint *bi, int n);
64 #if defined(CONFIG_BIGINT_KARATSUBA) || defined(CONFIG_BIGINT_BARRETT) || \
65 defined(CONFIG_BIGINT_MONTGOMERY)
66 static bigint *comp_right_shift(bigint *biR, int num_shifts);
67 static bigint *comp_left_shift(bigint *biR, int num_shifts);
68 #endif
69
70 #ifdef CONFIG_BIGINT_CHECK_ON
71 static void check(const bigint *bi);
72 #endif
73
74 /**
75 * @brief Start a new bigint context.
76 * @return A bigint context.
77 */
bi_initialize(void)78 BI_CTX *bi_initialize(void)
79 {
80 /* calloc() sets everything to zero */
81 BI_CTX *ctx = (BI_CTX *)calloc(1, sizeof(BI_CTX));
82
83 /* the radix */
84 ctx->bi_radix = alloc(ctx, 2);
85 ctx->bi_radix->comps[0] = 0;
86 ctx->bi_radix->comps[1] = 1;
87 bi_permanent(ctx->bi_radix);
88 return ctx;
89 }
90
91 /**
92 * @brief Close the bigint context and free any resources.
93 *
94 * Free up any used memory - a check is done if all objects were not
95 * properly freed.
96 * @param ctx [in] The bigint session context.
97 */
bi_terminate(BI_CTX * ctx)98 void bi_terminate(BI_CTX *ctx)
99 {
100 bigint *p, *pn;
101
102 bi_depermanent(ctx->bi_radix);
103 bi_free(ctx, ctx->bi_radix);
104
105 if (ctx->active_count != 0)
106 {
107 #ifdef CONFIG_SSL_FULL_MODE
108 printf("bi_terminate: there were %d un-freed bigints\n",
109 ctx->active_count);
110 #endif
111 abort();
112 }
113
114 for (p = ctx->free_list; p != NULL; p = pn)
115 {
116 pn = p->next;
117 free(p->comps);
118 free(p);
119 }
120
121 free(ctx);
122 }
123
124 /**
125 * @brief Increment the number of references to this object.
126 * It does not do a full copy.
127 * @param bi [in] The bigint to copy.
128 * @return A reference to the same bigint.
129 */
bi_copy(bigint * bi)130 bigint *bi_copy(bigint *bi)
131 {
132 check(bi);
133 if (bi->refs != PERMANENT)
134 bi->refs++;
135 return bi;
136 }
137
138 /**
139 * @brief Simply make a bigint object "unfreeable" if bi_free() is called on it.
140 *
141 * For this object to be freed, bi_depermanent() must be called.
142 * @param bi [in] The bigint to be made permanent.
143 */
bi_permanent(bigint * bi)144 void bi_permanent(bigint *bi)
145 {
146 check(bi);
147 if (bi->refs != 1)
148 {
149 #ifdef CONFIG_SSL_FULL_MODE
150 printf("bi_permanent: refs was not 1\n");
151 #endif
152 abort();
153 }
154
155 bi->refs = PERMANENT;
156 }
157
158 /**
159 * @brief Take a permanent object and make it eligible for freedom.
160 * @param bi [in] The bigint to be made back to temporary.
161 */
bi_depermanent(bigint * bi)162 void bi_depermanent(bigint *bi)
163 {
164 check(bi);
165 if (bi->refs != PERMANENT)
166 {
167 #ifdef CONFIG_SSL_FULL_MODE
168 printf("bi_depermanent: bigint was not permanent\n");
169 #endif
170 abort();
171 }
172
173 bi->refs = 1;
174 }
175
176 /**
177 * @brief Free a bigint object so it can be used again.
178 *
179 * The memory itself it not actually freed, just tagged as being available
180 * @param ctx [in] The bigint session context.
181 * @param bi [in] The bigint to be freed.
182 */
bi_free(BI_CTX * ctx,bigint * bi)183 void bi_free(BI_CTX *ctx, bigint *bi)
184 {
185 check(bi);
186 if (bi->refs == PERMANENT)
187 {
188 return;
189 }
190
191 if (--bi->refs > 0)
192 {
193 return;
194 }
195
196 bi->next = ctx->free_list;
197 ctx->free_list = bi;
198 ctx->free_count++;
199
200 if (--ctx->active_count < 0)
201 {
202 #ifdef CONFIG_SSL_FULL_MODE
203 printf("bi_free: active_count went negative "
204 "- double-freed bigint?\n");
205 #endif
206 abort();
207 }
208 }
209
210 /**
211 * @brief Convert an (unsigned) integer into a bigint.
212 * @param ctx [in] The bigint session context.
213 * @param i [in] The (unsigned) integer to be converted.
214 *
215 */
int_to_bi(BI_CTX * ctx,comp i)216 bigint *int_to_bi(BI_CTX *ctx, comp i)
217 {
218 bigint *biR = alloc(ctx, 1);
219 biR->comps[0] = i;
220 return biR;
221 }
222
223 /**
224 * @brief Do a full copy of the bigint object.
225 * @param ctx [in] The bigint session context.
226 * @param bi [in] The bigint object to be copied.
227 */
bi_clone(BI_CTX * ctx,const bigint * bi)228 bigint *bi_clone(BI_CTX *ctx, const bigint *bi)
229 {
230 bigint *biR = alloc(ctx, bi->size);
231 check(bi);
232 memcpy(biR->comps, bi->comps, bi->size*COMP_BYTE_SIZE);
233 return biR;
234 }
235
236 /**
237 * @brief Perform an addition operation between two bigints.
238 * @param ctx [in] The bigint session context.
239 * @param bia [in] A bigint.
240 * @param bib [in] Another bigint.
241 * @return The result of the addition.
242 */
bi_add(BI_CTX * ctx,bigint * bia,bigint * bib)243 bigint *bi_add(BI_CTX *ctx, bigint *bia, bigint *bib)
244 {
245 int n;
246 comp carry = 0;
247 comp *pa, *pb;
248
249 check(bia);
250 check(bib);
251
252 n = max(bia->size, bib->size);
253 more_comps(bia, n+1);
254 more_comps(bib, n);
255 pa = bia->comps;
256 pb = bib->comps;
257
258 do
259 {
260 comp sl, rl, cy1;
261 sl = *pa + *pb++;
262 rl = sl + carry;
263 cy1 = sl < *pa;
264 carry = cy1 | (rl < sl);
265 *pa++ = rl;
266 } while (--n != 0);
267
268 *pa = carry; /* do overflow */
269 bi_free(ctx, bib);
270 return trim(bia);
271 }
272
273 /**
274 * @brief Perform a subtraction operation between two bigints.
275 * @param ctx [in] The bigint session context.
276 * @param bia [in] A bigint.
277 * @param bib [in] Another bigint.
278 * @param is_negative [out] If defined, indicates that the result was negative.
279 * is_negative may be null.
280 * @return The result of the subtraction. The result is always positive.
281 */
bi_subtract(BI_CTX * ctx,bigint * bia,bigint * bib,int * is_negative)282 bigint *bi_subtract(BI_CTX *ctx,
283 bigint *bia, bigint *bib, int *is_negative)
284 {
285 int n = bia->size;
286 comp *pa, *pb, carry = 0;
287
288 check(bia);
289 check(bib);
290
291 more_comps(bib, n);
292 pa = bia->comps;
293 pb = bib->comps;
294
295 do
296 {
297 comp sl, rl, cy1;
298 sl = *pa - *pb++;
299 rl = sl - carry;
300 cy1 = sl > *pa;
301 carry = cy1 | (rl > sl);
302 *pa++ = rl;
303 } while (--n != 0);
304
305 if (is_negative) /* indicate a negative result */
306 {
307 *is_negative = carry;
308 }
309
310 bi_free(ctx, trim(bib)); /* put bib back to the way it was */
311 return trim(bia);
312 }
313
314 /**
315 * Perform a multiply between a bigint an an (unsigned) integer
316 */
bi_int_multiply(BI_CTX * ctx,bigint * bia,comp b)317 static bigint *bi_int_multiply(BI_CTX *ctx, bigint *bia, comp b)
318 {
319 int j = 0, n = bia->size;
320 bigint *biR = alloc(ctx, n + 1);
321 comp carry = 0;
322 comp *r = biR->comps;
323 comp *a = bia->comps;
324
325 check(bia);
326
327 /* clear things to start with */
328 memset(r, 0, ((n+1)*COMP_BYTE_SIZE));
329
330 do
331 {
332 long_comp tmp = *r + (long_comp)a[j]*b + carry;
333 *r++ = (comp)tmp; /* downsize */
334 carry = (comp)(tmp >> COMP_BIT_SIZE);
335 } while (++j < n);
336
337 *r = carry;
338 bi_free(ctx, bia);
339 return trim(biR);
340 }
341
342 /**
343 * @brief Does both division and modulo calculations.
344 *
345 * Used extensively when doing classical reduction.
346 * @param ctx [in] The bigint session context.
347 * @param u [in] A bigint which is the numerator.
348 * @param v [in] Either the denominator or the modulus depending on the mode.
349 * @param is_mod [n] Determines if this is a normal division (0) or a reduction
350 * (1).
351 * @return The result of the division/reduction.
352 */
bi_divide(BI_CTX * ctx,bigint * u,bigint * v,int is_mod)353 bigint *bi_divide(BI_CTX *ctx, bigint *u, bigint *v, int is_mod)
354 {
355 int n = v->size, m = u->size-n;
356 int j = 0, orig_u_size = u->size;
357 uint8_t mod_offset = ctx->mod_offset;
358 comp d;
359 bigint *quotient, *tmp_u;
360 comp q_dash;
361
362 check(u);
363 check(v);
364
365 /* if doing reduction and we are < mod, then return mod */
366 if (is_mod && bi_compare(v, u) > 0)
367 {
368 bi_free(ctx, v);
369 return u;
370 }
371
372 quotient = alloc(ctx, m+1);
373 tmp_u = alloc(ctx, n+1);
374 v = trim(v); /* make sure we have no leading 0's */
375 d = (comp)((long_comp)COMP_RADIX/(V1+1));
376
377 /* clear things to start with */
378 memset(quotient->comps, 0, ((quotient->size)*COMP_BYTE_SIZE));
379
380 /* normalise */
381 if (d > 1)
382 {
383 u = bi_int_multiply(ctx, u, d);
384
385 if (is_mod)
386 {
387 v = ctx->bi_normalised_mod[mod_offset];
388 }
389 else
390 {
391 v = bi_int_multiply(ctx, v, d);
392 }
393 }
394
395 if (orig_u_size == u->size) /* new digit position u0 */
396 {
397 more_comps(u, orig_u_size + 1);
398 }
399
400 do
401 {
402 /* get a temporary short version of u */
403 memcpy(tmp_u->comps, &u->comps[u->size-n-1-j], (n+1)*COMP_BYTE_SIZE);
404
405 /* calculate q' */
406 if (U(0) == V1)
407 {
408 q_dash = COMP_RADIX-1;
409 }
410 else
411 {
412 q_dash = (comp)(((long_comp)U(0)*COMP_RADIX + U(1))/V1);
413 }
414
415 if (v->size > 1 && V2)
416 {
417 /* we are implementing the following:
418 if (V2*q_dash > (((U(0)*COMP_RADIX + U(1) -
419 q_dash*V1)*COMP_RADIX) + U(2))) ... */
420 comp inner = (comp)((long_comp)COMP_RADIX*U(0) + U(1) -
421 (long_comp)q_dash*V1);
422 if ((long_comp)V2*q_dash > (long_comp)inner*COMP_RADIX + U(2))
423 {
424 q_dash--;
425 }
426 }
427
428 /* multiply and subtract */
429 if (q_dash)
430 {
431 int is_negative;
432 tmp_u = bi_subtract(ctx, tmp_u,
433 bi_int_multiply(ctx, bi_copy(v), q_dash), &is_negative);
434 more_comps(tmp_u, n+1);
435
436 Q(j) = q_dash;
437
438 /* add back */
439 if (is_negative)
440 {
441 Q(j)--;
442 tmp_u = bi_add(ctx, tmp_u, bi_copy(v));
443
444 /* lop off the carry */
445 tmp_u->size--;
446 v->size--;
447 }
448 }
449 else
450 {
451 Q(j) = 0;
452 }
453
454 /* copy back to u */
455 memcpy(&u->comps[u->size-n-1-j], tmp_u->comps, (n+1)*COMP_BYTE_SIZE);
456 } while (++j <= m);
457
458 bi_free(ctx, tmp_u);
459 bi_free(ctx, v);
460
461 if (is_mod) /* get the remainder */
462 {
463 bi_free(ctx, quotient);
464 return bi_int_divide(ctx, trim(u), d);
465 }
466 else /* get the quotient */
467 {
468 bi_free(ctx, u);
469 return trim(quotient);
470 }
471 }
472
473 /*
474 * Perform an integer divide on a bigint.
475 */
bi_int_divide(BI_CTX * ctx __unused,bigint * biR,comp denom)476 static bigint *bi_int_divide(BI_CTX *ctx __unused, bigint *biR, comp denom)
477 {
478 int i = biR->size - 1;
479 long_comp r = 0;
480
481 check(biR);
482
483 do
484 {
485 r = (r<<COMP_BIT_SIZE) + biR->comps[i];
486 biR->comps[i] = (comp)(r / denom);
487 r %= denom;
488 } while (--i != 0);
489
490 return trim(biR);
491 }
492
493 #ifdef CONFIG_BIGINT_MONTGOMERY
494 /**
495 * There is a need for the value of integer N' such that B^-1(B-1)-N^-1N'=1,
496 * where B^-1(B-1) mod N=1. Actually, only the least significant part of
497 * N' is needed, hence the definition N0'=N' mod b. We reproduce below the
498 * simple algorithm from an article by Dusse and Kaliski to efficiently
499 * find N0' from N0 and b */
modular_inverse(bigint * bim)500 static comp modular_inverse(bigint *bim)
501 {
502 int i;
503 comp t = 1;
504 comp two_2_i_minus_1 = 2; /* 2^(i-1) */
505 long_comp two_2_i = 4; /* 2^i */
506 comp N = bim->comps[0];
507
508 for (i = 2; i <= COMP_BIT_SIZE; i++)
509 {
510 if ((long_comp)N*t%two_2_i >= two_2_i_minus_1)
511 {
512 t += two_2_i_minus_1;
513 }
514
515 two_2_i_minus_1 <<= 1;
516 two_2_i <<= 1;
517 }
518
519 return (comp)(COMP_RADIX-t);
520 }
521 #endif
522
523 #if defined(CONFIG_BIGINT_KARATSUBA) || defined(CONFIG_BIGINT_BARRETT) || \
524 defined(CONFIG_BIGINT_MONTGOMERY)
525 /**
526 * Take each component and shift down (in terms of components)
527 */
comp_right_shift(bigint * biR,int num_shifts)528 static bigint *comp_right_shift(bigint *biR, int num_shifts)
529 {
530 int i = biR->size-num_shifts;
531 comp *x = biR->comps;
532 comp *y = &biR->comps[num_shifts];
533
534 check(biR);
535
536 if (i <= 0) /* have we completely right shifted? */
537 {
538 biR->comps[0] = 0; /* return 0 */
539 biR->size = 1;
540 return biR;
541 }
542
543 do
544 {
545 *x++ = *y++;
546 } while (--i > 0);
547
548 biR->size -= num_shifts;
549 return biR;
550 }
551
552 /**
553 * Take each component and shift it up (in terms of components)
554 */
comp_left_shift(bigint * biR,int num_shifts)555 static bigint *comp_left_shift(bigint *biR, int num_shifts)
556 {
557 int i = biR->size-1;
558 comp *x, *y;
559
560 check(biR);
561
562 if (num_shifts <= 0)
563 {
564 return biR;
565 }
566
567 more_comps(biR, biR->size + num_shifts);
568
569 x = &biR->comps[i+num_shifts];
570 y = &biR->comps[i];
571
572 do
573 {
574 *x-- = *y--;
575 } while (i--);
576
577 memset(biR->comps, 0, num_shifts*COMP_BYTE_SIZE); /* zero LS comps */
578 return biR;
579 }
580 #endif
581
582 /**
583 * @brief Allow a binary sequence to be imported as a bigint.
584 * @param ctx [in] The bigint session context.
585 * @param data [in] The data to be converted.
586 * @param size [in] The number of bytes of data.
587 * @return A bigint representing this data.
588 */
bi_import(BI_CTX * ctx,const uint8_t * data,int size)589 bigint *bi_import(BI_CTX *ctx, const uint8_t *data, int size)
590 {
591 bigint *biR = alloc(ctx, (size+COMP_BYTE_SIZE-1)/COMP_BYTE_SIZE);
592 int i, j = 0, offset = 0;
593
594 memset(biR->comps, 0, biR->size*COMP_BYTE_SIZE);
595
596 for (i = size-1; i >= 0; i--)
597 {
598 biR->comps[offset] += data[i] << (j*8);
599
600 if (++j == COMP_BYTE_SIZE)
601 {
602 j = 0;
603 offset ++;
604 }
605 }
606
607 return trim(biR);
608 }
609
610 #ifdef CONFIG_SSL_FULL_MODE
611 /**
612 * @brief The testharness uses this code to import text hex-streams and
613 * convert them into bigints.
614 * @param ctx [in] The bigint session context.
615 * @param data [in] A string consisting of hex characters. The characters must
616 * be in upper case.
617 * @return A bigint representing this data.
618 */
bi_str_import(BI_CTX * ctx,const char * data)619 bigint *bi_str_import(BI_CTX *ctx, const char *data)
620 {
621 int size = strlen(data);
622 bigint *biR = alloc(ctx, (size+COMP_NUM_NIBBLES-1)/COMP_NUM_NIBBLES);
623 int i, j = 0, offset = 0;
624 memset(biR->comps, 0, biR->size*COMP_BYTE_SIZE);
625
626 for (i = size-1; i >= 0; i--)
627 {
628 int num = (data[i] <= '9') ? (data[i] - '0') : (data[i] - 'A' + 10);
629 biR->comps[offset] += num << (j*4);
630
631 if (++j == COMP_NUM_NIBBLES)
632 {
633 j = 0;
634 offset ++;
635 }
636 }
637
638 return biR;
639 }
640
bi_print(const char * label,bigint * x)641 void bi_print(const char *label, bigint *x)
642 {
643 int i, j;
644
645 if (x == NULL)
646 {
647 printf("%s: (null)\n", label);
648 return;
649 }
650
651 printf("%s: (size %d)\n", label, x->size);
652 for (i = x->size-1; i >= 0; i--)
653 {
654 for (j = COMP_NUM_NIBBLES-1; j >= 0; j--)
655 {
656 comp mask = 0x0f << (j*4);
657 comp num = (x->comps[i] & mask) >> (j*4);
658 putc((num <= 9) ? (num + '0') : (num + 'A' - 10), stdout);
659 }
660 }
661
662 printf("\n");
663 }
664 #endif
665
666 /**
667 * @brief Take a bigint and convert it into a byte sequence.
668 *
669 * This is useful after a decrypt operation.
670 * @param ctx [in] The bigint session context.
671 * @param x [in] The bigint to be converted.
672 * @param data [out] The converted data as a byte stream.
673 * @param size [in] The maximum size of the byte stream. Unused bytes will be
674 * zeroed.
675 */
bi_export(BI_CTX * ctx,bigint * x,uint8_t * data,int size)676 void bi_export(BI_CTX *ctx, bigint *x, uint8_t *data, int size)
677 {
678 int i, j, k = size-1;
679
680 check(x);
681 memset(data, 0, size); /* ensure all leading 0's are cleared */
682
683 for (i = 0; i < x->size; i++)
684 {
685 for (j = 0; j < COMP_BYTE_SIZE; j++)
686 {
687 comp mask = 0xff << (j*8);
688 int num = (x->comps[i] & mask) >> (j*8);
689 data[k--] = num;
690
691 if (k < 0)
692 {
693 break;
694 }
695 }
696 }
697
698 bi_free(ctx, x);
699 }
700
701 /**
702 * @brief Pre-calculate some of the expensive steps in reduction.
703 *
704 * This function should only be called once (normally when a session starts).
705 * When the session is over, bi_free_mod() should be called. bi_mod_power()
706 * relies on this function being called.
707 * @param ctx [in] The bigint session context.
708 * @param bim [in] The bigint modulus that will be used.
709 * @param mod_offset [in] There are three moduluii that can be stored - the
710 * standard modulus, and its two primes p and q. This offset refers to which
711 * modulus we are referring to.
712 * @see bi_free_mod(), bi_mod_power().
713 */
bi_set_mod(BI_CTX * ctx,bigint * bim,int mod_offset)714 void bi_set_mod(BI_CTX *ctx, bigint *bim, int mod_offset)
715 {
716 int k = bim->size;
717 comp d = (comp)((long_comp)COMP_RADIX/(bim->comps[k-1]+1));
718 #ifdef CONFIG_BIGINT_MONTGOMERY
719 bigint *R, *R2;
720 #endif
721
722 ctx->bi_mod[mod_offset] = bim;
723 bi_permanent(ctx->bi_mod[mod_offset]);
724 ctx->bi_normalised_mod[mod_offset] = bi_int_multiply(ctx, bim, d);
725 bi_permanent(ctx->bi_normalised_mod[mod_offset]);
726
727 #if defined(CONFIG_BIGINT_MONTGOMERY)
728 /* set montgomery variables */
729 R = comp_left_shift(bi_clone(ctx, ctx->bi_radix), k-1); /* R */
730 R2 = comp_left_shift(bi_clone(ctx, ctx->bi_radix), k*2-1); /* R^2 */
731 ctx->bi_RR_mod_m[mod_offset] = bi_mod(ctx, R2); /* R^2 mod m */
732 ctx->bi_R_mod_m[mod_offset] = bi_mod(ctx, R); /* R mod m */
733
734 bi_permanent(ctx->bi_RR_mod_m[mod_offset]);
735 bi_permanent(ctx->bi_R_mod_m[mod_offset]);
736
737 ctx->N0_dash[mod_offset] = modular_inverse(ctx->bi_mod[mod_offset]);
738
739 #elif defined (CONFIG_BIGINT_BARRETT)
740 ctx->bi_mu[mod_offset] =
741 bi_divide(ctx, comp_left_shift(
742 bi_clone(ctx, ctx->bi_radix), k*2-1), ctx->bi_mod[mod_offset], 0);
743 bi_permanent(ctx->bi_mu[mod_offset]);
744 #endif
745 }
746
747 /**
748 * @brief Used when cleaning various bigints at the end of a session.
749 * @param ctx [in] The bigint session context.
750 * @param mod_offset [in] The offset to use.
751 * @see bi_set_mod().
752 */
bi_free_mod(BI_CTX * ctx,int mod_offset)753 void bi_free_mod(BI_CTX *ctx, int mod_offset)
754 {
755 bi_depermanent(ctx->bi_mod[mod_offset]);
756 bi_free(ctx, ctx->bi_mod[mod_offset]);
757 #if defined (CONFIG_BIGINT_MONTGOMERY)
758 bi_depermanent(ctx->bi_RR_mod_m[mod_offset]);
759 bi_depermanent(ctx->bi_R_mod_m[mod_offset]);
760 bi_free(ctx, ctx->bi_RR_mod_m[mod_offset]);
761 bi_free(ctx, ctx->bi_R_mod_m[mod_offset]);
762 #elif defined(CONFIG_BIGINT_BARRETT)
763 bi_depermanent(ctx->bi_mu[mod_offset]);
764 bi_free(ctx, ctx->bi_mu[mod_offset]);
765 #endif
766 bi_depermanent(ctx->bi_normalised_mod[mod_offset]);
767 bi_free(ctx, ctx->bi_normalised_mod[mod_offset]);
768 }
769
770 /**
771 * Perform a standard multiplication between two bigints.
772 */
regular_multiply(BI_CTX * ctx,bigint * bia,bigint * bib)773 static bigint *regular_multiply(BI_CTX *ctx, bigint *bia, bigint *bib)
774 {
775 int i, j, i_plus_j;
776 int n = bia->size;
777 int t = bib->size;
778 bigint *biR = alloc(ctx, n + t);
779 comp *sr = biR->comps;
780 comp *sa = bia->comps;
781 comp *sb = bib->comps;
782
783 check(bia);
784 check(bib);
785
786 /* clear things to start with */
787 memset(biR->comps, 0, ((n+t)*COMP_BYTE_SIZE));
788 i = 0;
789
790 do
791 {
792 comp carry = 0;
793 comp b = *sb++;
794 i_plus_j = i;
795 j = 0;
796
797 do
798 {
799 long_comp tmp = sr[i_plus_j] + (long_comp)sa[j]*b + carry;
800 sr[i_plus_j++] = (comp)tmp; /* downsize */
801 carry = (comp)(tmp >> COMP_BIT_SIZE);
802 } while (++j < n);
803
804 sr[i_plus_j] = carry;
805 } while (++i < t);
806
807 bi_free(ctx, bia);
808 bi_free(ctx, bib);
809 return trim(biR);
810 }
811
812 #ifdef CONFIG_BIGINT_KARATSUBA
813 /*
814 * Karatsuba improves on regular multiplication due to only 3 multiplications
815 * being done instead of 4. The additional additions/subtractions are O(N)
816 * rather than O(N^2) and so for big numbers it saves on a few operations
817 */
karatsuba(BI_CTX * ctx,bigint * bia,bigint * bib,int is_square)818 static bigint *karatsuba(BI_CTX *ctx, bigint *bia, bigint *bib, int is_square)
819 {
820 bigint *x0, *x1;
821 bigint *p0, *p1, *p2;
822 int m;
823
824 if (is_square)
825 {
826 m = (bia->size + 1)/2;
827 }
828 else
829 {
830 m = (max(bia->size, bib->size) + 1)/2;
831 }
832
833 x0 = bi_clone(ctx, bia);
834 x0->size = m;
835 x1 = bi_clone(ctx, bia);
836 comp_right_shift(x1, m);
837 bi_free(ctx, bia);
838
839 /* work out the 3 partial products */
840 if (is_square)
841 {
842 p0 = bi_square(ctx, bi_copy(x0));
843 p2 = bi_square(ctx, bi_copy(x1));
844 p1 = bi_square(ctx, bi_add(ctx, x0, x1));
845 }
846 else /* normal multiply */
847 {
848 bigint *y0, *y1;
849 y0 = bi_clone(ctx, bib);
850 y0->size = m;
851 y1 = bi_clone(ctx, bib);
852 comp_right_shift(y1, m);
853 bi_free(ctx, bib);
854
855 p0 = bi_multiply(ctx, bi_copy(x0), bi_copy(y0));
856 p2 = bi_multiply(ctx, bi_copy(x1), bi_copy(y1));
857 p1 = bi_multiply(ctx, bi_add(ctx, x0, x1), bi_add(ctx, y0, y1));
858 }
859
860 p1 = bi_subtract(ctx,
861 bi_subtract(ctx, p1, bi_copy(p2), NULL), bi_copy(p0), NULL);
862
863 comp_left_shift(p1, m);
864 comp_left_shift(p2, 2*m);
865 return bi_add(ctx, p1, bi_add(ctx, p0, p2));
866 }
867 #endif
868
869 /**
870 * @brief Perform a multiplication operation between two bigints.
871 * @param ctx [in] The bigint session context.
872 * @param bia [in] A bigint.
873 * @param bib [in] Another bigint.
874 * @return The result of the multiplication.
875 */
bi_multiply(BI_CTX * ctx,bigint * bia,bigint * bib)876 bigint *bi_multiply(BI_CTX *ctx, bigint *bia, bigint *bib)
877 {
878 check(bia);
879 check(bib);
880
881 #ifdef CONFIG_BIGINT_KARATSUBA
882 if (min(bia->size, bib->size) < MUL_KARATSUBA_THRESH)
883 {
884 return regular_multiply(ctx, bia, bib);
885 }
886
887 return karatsuba(ctx, bia, bib, 0);
888 #else
889 return regular_multiply(ctx, bia, bib);
890 #endif
891 }
892
893 #ifdef CONFIG_BIGINT_SQUARE
894 /*
895 * Perform the actual square operion. It takes into account overflow.
896 */
regular_square(BI_CTX * ctx,bigint * bi)897 static bigint *regular_square(BI_CTX *ctx, bigint *bi)
898 {
899 int t = bi->size;
900 int i = 0, j;
901 bigint *biR = alloc(ctx, t*2);
902 comp *w = biR->comps;
903 comp *x = bi->comps;
904 comp carry;
905
906 memset(w, 0, biR->size*COMP_BYTE_SIZE);
907
908 do
909 {
910 long_comp tmp = w[2*i] + (long_comp)x[i]*x[i];
911 comp u = 0;
912 w[2*i] = (comp)tmp;
913 carry = (comp)(tmp >> COMP_BIT_SIZE);
914
915 for (j = i+1; j < t; j++)
916 {
917 long_comp xx = (long_comp)x[i]*x[j];
918 long_comp blob = (long_comp)w[i+j]+carry;
919
920 if (u) /* previous overflow */
921 {
922 blob += COMP_RADIX;
923 }
924
925 u = 0;
926 if (xx & COMP_BIG_MSB) /* check for overflow */
927 {
928 u = 1;
929 }
930
931 tmp = 2*xx + blob;
932 w[i+j] = (comp)tmp;
933 carry = (comp)(tmp >> COMP_BIT_SIZE);
934 }
935
936 w[i+t] += carry;
937
938 if (u)
939 {
940 w[i+t+1] = 1; /* add carry */
941 }
942 } while (++i < t);
943
944 bi_free(ctx, bi);
945 return trim(biR);
946 }
947
948 /**
949 * @brief Perform a square operation on a bigint.
950 * @param ctx [in] The bigint session context.
951 * @param bia [in] A bigint.
952 * @return The result of the multiplication.
953 */
bi_square(BI_CTX * ctx,bigint * bia)954 bigint *bi_square(BI_CTX *ctx, bigint *bia)
955 {
956 check(bia);
957
958 #ifdef CONFIG_BIGINT_KARATSUBA
959 if (bia->size < SQU_KARATSUBA_THRESH)
960 {
961 return regular_square(ctx, bia);
962 }
963
964 return karatsuba(ctx, bia, NULL, 1);
965 #else
966 return regular_square(ctx, bia);
967 #endif
968 }
969 #endif
970
971 /**
972 * @brief Compare two bigints.
973 * @param bia [in] A bigint.
974 * @param bib [in] Another bigint.
975 * @return -1 if smaller, 1 if larger and 0 if equal.
976 */
bi_compare(bigint * bia,bigint * bib)977 int bi_compare(bigint *bia, bigint *bib)
978 {
979 int r, i;
980
981 check(bia);
982 check(bib);
983
984 if (bia->size > bib->size)
985 r = 1;
986 else if (bia->size < bib->size)
987 r = -1;
988 else
989 {
990 comp *a = bia->comps;
991 comp *b = bib->comps;
992
993 /* Same number of components. Compare starting from the high end
994 * and working down. */
995 r = 0;
996 i = bia->size - 1;
997
998 do
999 {
1000 if (a[i] > b[i])
1001 {
1002 r = 1;
1003 break;
1004 }
1005 else if (a[i] < b[i])
1006 {
1007 r = -1;
1008 break;
1009 }
1010 } while (--i >= 0);
1011 }
1012
1013 return r;
1014 }
1015
1016 /*
1017 * Allocate and zero more components. Does not consume bi.
1018 */
more_comps(bigint * bi,int n)1019 static void more_comps(bigint *bi, int n)
1020 {
1021 if (n > bi->max_comps)
1022 {
1023 bi->max_comps = max(bi->max_comps * 2, n);
1024 bi->comps = (comp*)realloc(bi->comps, bi->max_comps * COMP_BYTE_SIZE);
1025 }
1026
1027 if (n > bi->size)
1028 {
1029 memset(&bi->comps[bi->size], 0, (n-bi->size)*COMP_BYTE_SIZE);
1030 }
1031
1032 bi->size = n;
1033 }
1034
1035 /*
1036 * Make a new empty bigint. It may just use an old one if one is available.
1037 * Otherwise get one off the heap.
1038 */
alloc(BI_CTX * ctx,int size)1039 static bigint *alloc(BI_CTX *ctx, int size)
1040 {
1041 bigint *biR;
1042
1043 /* Can we recycle an old bigint? */
1044 if (ctx->free_list != NULL)
1045 {
1046 biR = ctx->free_list;
1047 ctx->free_list = biR->next;
1048 ctx->free_count--;
1049
1050 if (biR->refs != 0)
1051 {
1052 #ifdef CONFIG_SSL_FULL_MODE
1053 printf("alloc: refs was not 0\n");
1054 #endif
1055 abort(); /* create a stack trace from a core dump */
1056 }
1057
1058 more_comps(biR, size);
1059 }
1060 else
1061 {
1062 /* No free bigints available - create a new one. */
1063 biR = (bigint *)malloc(sizeof(bigint));
1064 biR->comps = (comp*)malloc(size * COMP_BYTE_SIZE);
1065 biR->max_comps = size; /* give some space to spare */
1066 }
1067
1068 biR->size = size;
1069 biR->refs = 1;
1070 biR->next = NULL;
1071 ctx->active_count++;
1072 return biR;
1073 }
1074
1075 /*
1076 * Work out the highest '1' bit in an exponent. Used when doing sliding-window
1077 * exponentiation.
1078 */
find_max_exp_index(bigint * biexp)1079 static int find_max_exp_index(bigint *biexp)
1080 {
1081 int i = COMP_BIT_SIZE-1;
1082 comp shift = COMP_RADIX/2;
1083 comp test = biexp->comps[biexp->size-1]; /* assume no leading zeroes */
1084
1085 check(biexp);
1086
1087 do
1088 {
1089 if (test & shift)
1090 {
1091 return i+(biexp->size-1)*COMP_BIT_SIZE;
1092 }
1093
1094 shift >>= 1;
1095 } while (--i != 0);
1096
1097 return -1; /* error - must have been a leading 0 */
1098 }
1099
1100 /*
1101 * Is a particular bit is an exponent 1 or 0? Used when doing sliding-window
1102 * exponentiation.
1103 */
exp_bit_is_one(bigint * biexp,int offset)1104 static int exp_bit_is_one(bigint *biexp, int offset)
1105 {
1106 comp test = biexp->comps[offset / COMP_BIT_SIZE];
1107 int num_shifts = offset % COMP_BIT_SIZE;
1108 comp shift = 1;
1109 int i;
1110
1111 check(biexp);
1112
1113 for (i = 0; i < num_shifts; i++)
1114 {
1115 shift <<= 1;
1116 }
1117
1118 return test & shift;
1119 }
1120
1121 #ifdef CONFIG_BIGINT_CHECK_ON
1122 /*
1123 * Perform a sanity check on bi.
1124 */
check(const bigint * bi)1125 static void check(const bigint *bi)
1126 {
1127 if (bi->refs <= 0)
1128 {
1129 printf("check: zero or negative refs in bigint\n");
1130 abort();
1131 }
1132
1133 if (bi->next != NULL)
1134 {
1135 printf("check: attempt to use a bigint from "
1136 "the free list\n");
1137 abort();
1138 }
1139 }
1140 #endif
1141
1142 /*
1143 * Delete any leading 0's (and allow for 0).
1144 */
trim(bigint * bi)1145 static bigint *trim(bigint *bi)
1146 {
1147 check(bi);
1148
1149 while (bi->comps[bi->size-1] == 0 && bi->size > 1)
1150 {
1151 bi->size--;
1152 }
1153
1154 return bi;
1155 }
1156
1157 #if defined(CONFIG_BIGINT_MONTGOMERY)
1158 /**
1159 * @brief Perform a single montgomery reduction.
1160 * @param ctx [in] The bigint session context.
1161 * @param bixy [in] A bigint.
1162 * @return The result of the montgomery reduction.
1163 */
bi_mont(BI_CTX * ctx,bigint * bixy)1164 bigint *bi_mont(BI_CTX *ctx, bigint *bixy)
1165 {
1166 int i = 0, n;
1167 uint8_t mod_offset = ctx->mod_offset;
1168 bigint *bim = ctx->bi_mod[mod_offset];
1169 comp mod_inv = ctx->N0_dash[mod_offset];
1170
1171 check(bixy);
1172
1173 if (ctx->use_classical) /* just use classical instead */
1174 {
1175 return bi_mod(ctx, bixy);
1176 }
1177
1178 n = bim->size;
1179
1180 do
1181 {
1182 bixy = bi_add(ctx, bixy, comp_left_shift(
1183 bi_int_multiply(ctx, bim, bixy->comps[i]*mod_inv), i));
1184 } while (++i < n);
1185
1186 comp_right_shift(bixy, n);
1187
1188 if (bi_compare(bixy, bim) >= 0)
1189 {
1190 bixy = bi_subtract(ctx, bixy, bim, NULL);
1191 }
1192
1193 return bixy;
1194 }
1195
1196 #elif defined(CONFIG_BIGINT_BARRETT)
1197 /*
1198 * Stomp on the most significant components to give the illusion of a "mod base
1199 * radix" operation
1200 */
comp_mod(bigint * bi,int mod)1201 static bigint *comp_mod(bigint *bi, int mod)
1202 {
1203 check(bi);
1204
1205 if (bi->size > mod)
1206 {
1207 bi->size = mod;
1208 }
1209
1210 return bi;
1211 }
1212
1213 /*
1214 * Barrett reduction has no need for some parts of the product, so ignore bits
1215 * of the multiply. This routine gives Barrett its big performance
1216 * improvements over Classical/Montgomery reduction methods.
1217 */
partial_multiply(BI_CTX * ctx,bigint * bia,bigint * bib,int inner_partial,int outer_partial)1218 static bigint *partial_multiply(BI_CTX *ctx, bigint *bia, bigint *bib,
1219 int inner_partial, int outer_partial)
1220 {
1221 int i = 0, j, n = bia->size, t = bib->size;
1222 bigint *biR;
1223 comp carry;
1224 comp *sr, *sa, *sb;
1225
1226 check(bia);
1227 check(bib);
1228
1229 biR = alloc(ctx, n + t);
1230 sa = bia->comps;
1231 sb = bib->comps;
1232 sr = biR->comps;
1233
1234 if (inner_partial)
1235 {
1236 memset(sr, 0, inner_partial*COMP_BYTE_SIZE);
1237 }
1238 else /* outer partial */
1239 {
1240 if (n < outer_partial || t < outer_partial) /* should we bother? */
1241 {
1242 bi_free(ctx, bia);
1243 bi_free(ctx, bib);
1244 biR->comps[0] = 0; /* return 0 */
1245 biR->size = 1;
1246 return biR;
1247 }
1248
1249 memset(&sr[outer_partial], 0, (n+t-outer_partial)*COMP_BYTE_SIZE);
1250 }
1251
1252 do
1253 {
1254 comp *a = sa;
1255 comp b = *sb++;
1256 long_comp tmp;
1257 int i_plus_j = i;
1258 carry = 0;
1259 j = n;
1260
1261 if (outer_partial && i_plus_j < outer_partial)
1262 {
1263 i_plus_j = outer_partial;
1264 a = &sa[outer_partial-i];
1265 j = n-(outer_partial-i);
1266 }
1267
1268 do
1269 {
1270 if (inner_partial && i_plus_j >= inner_partial)
1271 {
1272 break;
1273 }
1274
1275 tmp = sr[i_plus_j] + ((long_comp)*a++)*b + carry;
1276 sr[i_plus_j++] = (comp)tmp; /* downsize */
1277 carry = (comp)(tmp >> COMP_BIT_SIZE);
1278 } while (--j != 0);
1279
1280 sr[i_plus_j] = carry;
1281 } while (++i < t);
1282
1283 bi_free(ctx, bia);
1284 bi_free(ctx, bib);
1285 return trim(biR);
1286 }
1287
1288 /**
1289 * @brief Perform a single Barrett reduction.
1290 * @param ctx [in] The bigint session context.
1291 * @param bi [in] A bigint.
1292 * @return The result of the Barrett reduction.
1293 */
bi_barrett(BI_CTX * ctx,bigint * bi)1294 bigint *bi_barrett(BI_CTX *ctx, bigint *bi)
1295 {
1296 bigint *q1, *q2, *q3, *r1, *r2, *r;
1297 uint8_t mod_offset = ctx->mod_offset;
1298 bigint *bim = ctx->bi_mod[mod_offset];
1299 int k = bim->size;
1300
1301 check(bi);
1302 check(bim);
1303
1304 /* use Classical method instead - Barrett cannot help here */
1305 if (bi->size > k*2)
1306 {
1307 return bi_mod(ctx, bi);
1308 }
1309
1310 q1 = comp_right_shift(bi_clone(ctx, bi), k-1);
1311
1312 /* do outer partial multiply */
1313 q2 = partial_multiply(ctx, q1, ctx->bi_mu[mod_offset], 0, k-1);
1314 q3 = comp_right_shift(q2, k+1);
1315 r1 = comp_mod(bi, k+1);
1316
1317 /* do inner partial multiply */
1318 r2 = comp_mod(partial_multiply(ctx, q3, bim, k+1, 0), k+1);
1319 r = bi_subtract(ctx, r1, r2, NULL);
1320
1321 /* if (r >= m) r = r - m; */
1322 if (bi_compare(r, bim) >= 0)
1323 {
1324 r = bi_subtract(ctx, r, bim, NULL);
1325 }
1326
1327 return r;
1328 }
1329 #endif /* CONFIG_BIGINT_BARRETT */
1330
1331 #ifdef CONFIG_BIGINT_SLIDING_WINDOW
1332 /*
1333 * Work out g1, g3, g5, g7... etc for the sliding-window algorithm
1334 */
precompute_slide_window(BI_CTX * ctx,int window,bigint * g1)1335 static void precompute_slide_window(BI_CTX *ctx, int window, bigint *g1)
1336 {
1337 int k = 1, i;
1338 bigint *g2;
1339
1340 for (i = 0; i < window-1; i++) /* compute 2^(window-1) */
1341 {
1342 k <<= 1;
1343 }
1344
1345 ctx->g = (bigint **)malloc(k*sizeof(bigint *));
1346 ctx->g[0] = bi_clone(ctx, g1);
1347 bi_permanent(ctx->g[0]);
1348 g2 = bi_residue(ctx, bi_square(ctx, ctx->g[0])); /* g^2 */
1349
1350 for (i = 1; i < k; i++)
1351 {
1352 ctx->g[i] = bi_residue(ctx, bi_multiply(ctx, ctx->g[i-1], bi_copy(g2)));
1353 bi_permanent(ctx->g[i]);
1354 }
1355
1356 bi_free(ctx, g2);
1357 ctx->window = k;
1358 }
1359 #endif
1360
1361 /**
1362 * @brief Perform a modular exponentiation.
1363 *
1364 * This function requires bi_set_mod() to have been called previously. This is
1365 * one of the optimisations used for performance.
1366 * @param ctx [in] The bigint session context.
1367 * @param bi [in] The bigint on which to perform the mod power operation.
1368 * @param biexp [in] The bigint exponent.
1369 * @see bi_set_mod().
1370 */
bi_mod_power(BI_CTX * ctx,bigint * bi,bigint * biexp)1371 bigint *bi_mod_power(BI_CTX *ctx, bigint *bi, bigint *biexp)
1372 {
1373 int i = find_max_exp_index(biexp), j, window_size = 1;
1374 bigint *biR = int_to_bi(ctx, 1);
1375
1376 #if defined(CONFIG_BIGINT_MONTGOMERY)
1377 uint8_t mod_offset = ctx->mod_offset;
1378 if (!ctx->use_classical)
1379 {
1380 /* preconvert */
1381 bi = bi_mont(ctx,
1382 bi_multiply(ctx, bi, ctx->bi_RR_mod_m[mod_offset])); /* x' */
1383 bi_free(ctx, biR);
1384 biR = ctx->bi_R_mod_m[mod_offset]; /* A */
1385 }
1386 #endif
1387
1388 check(bi);
1389 check(biexp);
1390
1391 #ifdef CONFIG_BIGINT_SLIDING_WINDOW
1392 for (j = i; j > 32; j /= 5) /* work out an optimum size */
1393 window_size++;
1394
1395 /* work out the slide constants */
1396 precompute_slide_window(ctx, window_size, bi);
1397 #else /* just one constant */
1398 ctx->g = (bigint **)malloc(sizeof(bigint *));
1399 ctx->g[0] = bi_clone(ctx, bi);
1400 ctx->window = 1;
1401 bi_permanent(ctx->g[0]);
1402 #endif
1403
1404 /* if sliding-window is off, then only one bit will be done at a time and
1405 * will reduce to standard left-to-right exponentiation */
1406 do
1407 {
1408 if (exp_bit_is_one(biexp, i))
1409 {
1410 int l = i-window_size+1;
1411 int part_exp = 0;
1412
1413 if (l < 0) /* LSB of exponent will always be 1 */
1414 l = 0;
1415 else
1416 {
1417 while (exp_bit_is_one(biexp, l) == 0)
1418 l++; /* go back up */
1419 }
1420
1421 /* build up the section of the exponent */
1422 for (j = i; j >= l; j--)
1423 {
1424 biR = bi_residue(ctx, bi_square(ctx, biR));
1425 if (exp_bit_is_one(biexp, j))
1426 part_exp++;
1427
1428 if (j != l)
1429 part_exp <<= 1;
1430 }
1431
1432 part_exp = (part_exp-1)/2; /* adjust for array */
1433 biR = bi_residue(ctx, bi_multiply(ctx, biR, ctx->g[part_exp]));
1434 i = l-1;
1435 }
1436 else /* square it */
1437 {
1438 biR = bi_residue(ctx, bi_square(ctx, biR));
1439 i--;
1440 }
1441 } while (i >= 0);
1442
1443 /* cleanup */
1444 for (i = 0; i < ctx->window; i++)
1445 {
1446 bi_depermanent(ctx->g[i]);
1447 bi_free(ctx, ctx->g[i]);
1448 }
1449
1450 free(ctx->g);
1451 bi_free(ctx, bi);
1452 bi_free(ctx, biexp);
1453 #if defined CONFIG_BIGINT_MONTGOMERY
1454 return ctx->use_classical ? biR : bi_mont(ctx, biR); /* convert back */
1455 #else /* CONFIG_BIGINT_CLASSICAL or CONFIG_BIGINT_BARRETT */
1456 return biR;
1457 #endif
1458 }
1459
1460 #ifdef CONFIG_SSL_CERT_VERIFICATION
1461 /**
1462 * @brief Perform a modular exponentiation using a temporary modulus.
1463 *
1464 * We need this function to check the signatures of certificates. The modulus
1465 * of this function is temporary as it's just used for authentication.
1466 * @param ctx [in] The bigint session context.
1467 * @param bi [in] The bigint to perform the exp/mod.
1468 * @param bim [in] The temporary modulus.
1469 * @param biexp [in] The bigint exponent.
1470 * @see bi_set_mod().
1471 */
bi_mod_power2(BI_CTX * ctx,bigint * bi,bigint * bim,bigint * biexp)1472 bigint *bi_mod_power2(BI_CTX *ctx, bigint *bi, bigint *bim, bigint *biexp)
1473 {
1474 bigint *biR, *tmp_biR;
1475
1476 /* Set up a temporary bigint context and transfer what we need between
1477 * them. We need to do this since we want to keep the original modulus
1478 * which is already in this context. This operation is only called when
1479 * doing peer verification, and so is not expensive :-) */
1480 BI_CTX *tmp_ctx = bi_initialize();
1481 bi_set_mod(tmp_ctx, bi_clone(tmp_ctx, bim), BIGINT_M_OFFSET);
1482 tmp_biR = bi_mod_power(tmp_ctx,
1483 bi_clone(tmp_ctx, bi),
1484 bi_clone(tmp_ctx, biexp));
1485 biR = bi_clone(ctx, tmp_biR);
1486 bi_free(tmp_ctx, tmp_biR);
1487 bi_free_mod(tmp_ctx, BIGINT_M_OFFSET);
1488 bi_terminate(tmp_ctx);
1489
1490 bi_free(ctx, bi);
1491 bi_free(ctx, bim);
1492 bi_free(ctx, biexp);
1493 return biR;
1494 }
1495 #endif
1496 /** @} */
1497