• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1<html>
2<head>
3<meta http-equiv="Content-Type" content="text/html; charset=ISO-8859-1">
4<title>5.�Cachegrind: a cache and branch-prediction profiler</title>
5<link rel="stylesheet" type="text/css" href="vg_basic.css">
6<meta name="generator" content="DocBook XSL Stylesheets V1.79.1">
7<link rel="home" href="index.html" title="Valgrind Documentation">
8<link rel="up" href="manual.html" title="Valgrind User Manual">
9<link rel="prev" href="mc-manual.html" title="4.�Memcheck: a memory error detector">
10<link rel="next" href="cl-manual.html" title="6.�Callgrind: a call-graph generating cache and branch prediction profiler">
11</head>
12<body bgcolor="white" text="black" link="#0000FF" vlink="#840084" alink="#0000FF">
13<div><table class="nav" width="100%" cellspacing="3" cellpadding="3" border="0" summary="Navigation header"><tr>
14<td width="22px" align="center" valign="middle"><a accesskey="p" href="mc-manual.html"><img src="images/prev.png" width="18" height="21" border="0" alt="Prev"></a></td>
15<td width="25px" align="center" valign="middle"><a accesskey="u" href="manual.html"><img src="images/up.png" width="21" height="18" border="0" alt="Up"></a></td>
16<td width="31px" align="center" valign="middle"><a accesskey="h" href="index.html"><img src="images/home.png" width="27" height="20" border="0" alt="Up"></a></td>
17<th align="center" valign="middle">Valgrind User Manual</th>
18<td width="22px" align="center" valign="middle"><a accesskey="n" href="cl-manual.html"><img src="images/next.png" width="18" height="21" border="0" alt="Next"></a></td>
19</tr></table></div>
20<div class="chapter">
21<div class="titlepage"><div><div><h1 class="title">
22<a name="cg-manual"></a>5.�Cachegrind: a cache and branch-prediction profiler</h1></div></div></div>
23<div class="toc">
24<p><b>Table of Contents</b></p>
25<dl class="toc">
26<dt><span class="sect1"><a href="cg-manual.html#cg-manual.overview">5.1. Overview</a></span></dt>
27<dt><span class="sect1"><a href="cg-manual.html#cg-manual.profile">5.2. Using Cachegrind, cg_annotate and cg_merge</a></span></dt>
28<dd><dl>
29<dt><span class="sect2"><a href="cg-manual.html#cg-manual.running-cachegrind">5.2.1. Running Cachegrind</a></span></dt>
30<dt><span class="sect2"><a href="cg-manual.html#cg-manual.outputfile">5.2.2. Output File</a></span></dt>
31<dt><span class="sect2"><a href="cg-manual.html#cg-manual.running-cg_annotate">5.2.3. Running cg_annotate</a></span></dt>
32<dt><span class="sect2"><a href="cg-manual.html#cg-manual.the-output-preamble">5.2.4. The Output Preamble</a></span></dt>
33<dt><span class="sect2"><a href="cg-manual.html#cg-manual.the-global">5.2.5. The Global and Function-level Counts</a></span></dt>
34<dt><span class="sect2"><a href="cg-manual.html#cg-manual.line-by-line">5.2.6. Line-by-line Counts</a></span></dt>
35<dt><span class="sect2"><a href="cg-manual.html#cg-manual.assembler">5.2.7. Annotating Assembly Code Programs</a></span></dt>
36<dt><span class="sect2"><a href="cg-manual.html#ms-manual.forkingprograms">5.2.8. Forking Programs</a></span></dt>
37<dt><span class="sect2"><a href="cg-manual.html#cg-manual.annopts.warnings">5.2.9. cg_annotate Warnings</a></span></dt>
38<dt><span class="sect2"><a href="cg-manual.html#cg-manual.annopts.things-to-watch-out-for">5.2.10. Unusual Annotation Cases</a></span></dt>
39<dt><span class="sect2"><a href="cg-manual.html#cg-manual.cg_merge">5.2.11. Merging Profiles with cg_merge</a></span></dt>
40<dt><span class="sect2"><a href="cg-manual.html#cg-manual.cg_diff">5.2.12. Differencing Profiles with cg_diff</a></span></dt>
41</dl></dd>
42<dt><span class="sect1"><a href="cg-manual.html#cg-manual.cgopts">5.3. Cachegrind Command-line Options</a></span></dt>
43<dt><span class="sect1"><a href="cg-manual.html#cg-manual.annopts">5.4. cg_annotate Command-line Options</a></span></dt>
44<dt><span class="sect1"><a href="cg-manual.html#cg-manual.mergeopts">5.5. cg_merge Command-line Options</a></span></dt>
45<dt><span class="sect1"><a href="cg-manual.html#cg-manual.diffopts">5.6. cg_diff Command-line Options</a></span></dt>
46<dt><span class="sect1"><a href="cg-manual.html#cg-manual.acting-on">5.7. Acting on Cachegrind's Information</a></span></dt>
47<dt><span class="sect1"><a href="cg-manual.html#cg-manual.sim-details">5.8. Simulation Details</a></span></dt>
48<dd><dl>
49<dt><span class="sect2"><a href="cg-manual.html#cache-sim">5.8.1. Cache Simulation Specifics</a></span></dt>
50<dt><span class="sect2"><a href="cg-manual.html#branch-sim">5.8.2. Branch Simulation Specifics</a></span></dt>
51<dt><span class="sect2"><a href="cg-manual.html#cg-manual.annopts.accuracy">5.8.3. Accuracy</a></span></dt>
52</dl></dd>
53<dt><span class="sect1"><a href="cg-manual.html#cg-manual.impl-details">5.9. Implementation Details</a></span></dt>
54<dd><dl>
55<dt><span class="sect2"><a href="cg-manual.html#cg-manual.impl-details.how-cg-works">5.9.1. How Cachegrind Works</a></span></dt>
56<dt><span class="sect2"><a href="cg-manual.html#cg-manual.impl-details.file-format">5.9.2. Cachegrind Output File Format</a></span></dt>
57</dl></dd>
58</dl>
59</div>
60<p>To use this tool, you must specify
61<code class="option">--tool=cachegrind</code> on the
62Valgrind command line.</p>
63<div class="sect1">
64<div class="titlepage"><div><div><h2 class="title" style="clear: both">
65<a name="cg-manual.overview"></a>5.1.�Overview</h2></div></div></div>
66<p>Cachegrind simulates how your program interacts with a machine's cache
67hierarchy and (optionally) branch predictor.  It simulates a machine with
68independent first-level instruction and data caches (I1 and D1), backed by a
69unified second-level cache (L2).  This exactly matches the configuration of
70many modern machines.</p>
71<p>However, some modern machines have three or four levels of cache.  For these
72machines (in the cases where Cachegrind can auto-detect the cache
73configuration) Cachegrind simulates the first-level and last-level caches.
74The reason for this choice is that the last-level cache has the most influence on
75runtime, as it masks accesses to main memory.  Furthermore, the L1 caches
76often have low associativity, so simulating them can detect cases where the
77code interacts badly with this cache (eg. traversing a matrix column-wise
78with the row length being a power of 2).</p>
79<p>Therefore, Cachegrind always refers to the I1, D1 and LL (last-level)
80caches.</p>
81<p>
82Cachegrind gathers the following statistics (abbreviations used for each statistic
83is given in parentheses):</p>
84<div class="itemizedlist"><ul class="itemizedlist" style="list-style-type: disc; ">
85<li class="listitem"><p>I cache reads (<code class="computeroutput">Ir</code>,
86    which equals the number of instructions executed),
87    I1 cache read misses (<code class="computeroutput">I1mr</code>) and
88    LL cache instruction read misses (<code class="computeroutput">ILmr</code>).
89    </p></li>
90<li class="listitem"><p>D cache reads (<code class="computeroutput">Dr</code>, which
91    equals the number of memory reads),
92    D1 cache read misses (<code class="computeroutput">D1mr</code>), and
93    LL cache data read misses (<code class="computeroutput">DLmr</code>).
94    </p></li>
95<li class="listitem"><p>D cache writes (<code class="computeroutput">Dw</code>, which equals
96    the number of memory writes),
97    D1 cache write misses (<code class="computeroutput">D1mw</code>), and
98    LL cache data write misses (<code class="computeroutput">DLmw</code>).
99    </p></li>
100<li class="listitem"><p>Conditional branches executed (<code class="computeroutput">Bc</code>) and
101    conditional branches mispredicted (<code class="computeroutput">Bcm</code>).
102    </p></li>
103<li class="listitem"><p>Indirect branches executed (<code class="computeroutput">Bi</code>) and
104    indirect branches mispredicted (<code class="computeroutput">Bim</code>).
105    </p></li>
106</ul></div>
107<p>Note that D1 total accesses is given by
108<code class="computeroutput">D1mr</code> +
109<code class="computeroutput">D1mw</code>, and that LL total
110accesses is given by <code class="computeroutput">ILmr</code> +
111<code class="computeroutput">DLmr</code> +
112<code class="computeroutput">DLmw</code>.
113</p>
114<p>These statistics are presented for the entire program and for each
115function in the program.  You can also annotate each line of source code in
116the program with the counts that were caused directly by it.</p>
117<p>On a modern machine, an L1 miss will typically cost
118around 10 cycles, an LL miss can cost as much as 200
119cycles, and a mispredicted branch costs in the region of 10
120to 30 cycles.  Detailed cache and branch profiling can be very useful
121for understanding how your program interacts with the machine and thus how
122to make it faster.</p>
123<p>Also, since one instruction cache read is performed per
124instruction executed, you can find out how many instructions are
125executed per line, which can be useful for traditional profiling.</p>
126</div>
127<div class="sect1">
128<div class="titlepage"><div><div><h2 class="title" style="clear: both">
129<a name="cg-manual.profile"></a>5.2.�Using Cachegrind, cg_annotate and cg_merge</h2></div></div></div>
130<p>First off, as for normal Valgrind use, you probably want to
131compile with debugging info (the
132<code class="option">-g</code> option).  But by contrast with
133normal Valgrind use, you probably do want to turn
134optimisation on, since you should profile your program as it will
135be normally run.</p>
136<p>Then, you need to run Cachegrind itself to gather the profiling
137information, and then run cg_annotate to get a detailed presentation of that
138information.  As an optional intermediate step, you can use cg_merge to sum
139together the outputs of multiple Cachegrind runs into a single file which
140you then use as the input for cg_annotate.  Alternatively, you can use
141cg_diff to difference the outputs of two Cachegrind runs into a single file
142which you then use as the input for cg_annotate.</p>
143<div class="sect2">
144<div class="titlepage"><div><div><h3 class="title">
145<a name="cg-manual.running-cachegrind"></a>5.2.1.�Running Cachegrind</h3></div></div></div>
146<p>To run Cachegrind on a program <code class="filename">prog</code>, run:</p>
147<pre class="screen">
148valgrind --tool=cachegrind prog
149</pre>
150<p>The program will execute (slowly).  Upon completion,
151summary statistics that look like this will be printed:</p>
152<pre class="programlisting">
153==31751== I   refs:      27,742,716
154==31751== I1  misses:           276
155==31751== LLi misses:           275
156==31751== I1  miss rate:        0.0%
157==31751== LLi miss rate:        0.0%
158==31751==
159==31751== D   refs:      15,430,290  (10,955,517 rd + 4,474,773 wr)
160==31751== D1  misses:        41,185  (    21,905 rd +    19,280 wr)
161==31751== LLd misses:        23,085  (     3,987 rd +    19,098 wr)
162==31751== D1  miss rate:        0.2% (       0.1%   +       0.4%)
163==31751== LLd miss rate:        0.1% (       0.0%   +       0.4%)
164==31751==
165==31751== LL misses:         23,360  (     4,262 rd +    19,098 wr)
166==31751== LL miss rate:         0.0% (       0.0%   +       0.4%)</pre>
167<p>Cache accesses for instruction fetches are summarised
168first, giving the number of fetches made (this is the number of
169instructions executed, which can be useful to know in its own
170right), the number of I1 misses, and the number of LL instruction
171(<code class="computeroutput">LLi</code>) misses.</p>
172<p>Cache accesses for data follow. The information is similar
173to that of the instruction fetches, except that the values are
174also shown split between reads and writes (note each row's
175<code class="computeroutput">rd</code> and
176<code class="computeroutput">wr</code> values add up to the row's
177total).</p>
178<p>Combined instruction and data figures for the LL cache
179follow that.  Note that the LL miss rate is computed relative to the total
180number of memory accesses, not the number of L1 misses.  I.e.  it is
181<code class="computeroutput">(ILmr + DLmr + DLmw) / (Ir + Dr + Dw)</code>
182not
183<code class="computeroutput">(ILmr + DLmr + DLmw) / (I1mr + D1mr + D1mw)</code>
184</p>
185<p>Branch prediction statistics are not collected by default.
186To do so, add the option <code class="option">--branch-sim=yes</code>.</p>
187</div>
188<div class="sect2">
189<div class="titlepage"><div><div><h3 class="title">
190<a name="cg-manual.outputfile"></a>5.2.2.�Output File</h3></div></div></div>
191<p>As well as printing summary information, Cachegrind also writes
192more detailed profiling information to a file.  By default this file is named
193<code class="filename">cachegrind.out.&lt;pid&gt;</code> (where
194<code class="filename">&lt;pid&gt;</code> is the program's process ID), but its name
195can be changed with the <code class="option">--cachegrind-out-file</code> option.  This
196file is human-readable, but is intended to be interpreted by the
197accompanying program cg_annotate, described in the next section.</p>
198<p>The default <code class="computeroutput">.&lt;pid&gt;</code> suffix
199on the output file name serves two purposes.  Firstly, it means you
200don't have to rename old log files that you don't want to overwrite.
201Secondly, and more importantly, it allows correct profiling with the
202<code class="option">--trace-children=yes</code> option of
203programs that spawn child processes.</p>
204<p>The output file can be big, many megabytes for large applications
205built with full debugging information.</p>
206</div>
207<div class="sect2">
208<div class="titlepage"><div><div><h3 class="title">
209<a name="cg-manual.running-cg_annotate"></a>5.2.3.�Running cg_annotate</h3></div></div></div>
210<p>Before using cg_annotate,
211it is worth widening your window to be at least 120-characters
212wide if possible, as the output lines can be quite long.</p>
213<p>To get a function-by-function summary, run:</p>
214<pre class="screen">cg_annotate &lt;filename&gt;</pre>
215<p>on a Cachegrind output file.</p>
216</div>
217<div class="sect2">
218<div class="titlepage"><div><div><h3 class="title">
219<a name="cg-manual.the-output-preamble"></a>5.2.4.�The Output Preamble</h3></div></div></div>
220<p>The first part of the output looks like this:</p>
221<pre class="programlisting">
222--------------------------------------------------------------------------------
223I1 cache:              65536 B, 64 B, 2-way associative
224D1 cache:              65536 B, 64 B, 2-way associative
225LL cache:              262144 B, 64 B, 8-way associative
226Command:               concord vg_to_ucode.c
227Events recorded:       Ir I1mr ILmr Dr D1mr DLmr Dw D1mw DLmw
228Events shown:          Ir I1mr ILmr Dr D1mr DLmr Dw D1mw DLmw
229Event sort order:      Ir I1mr ILmr Dr D1mr DLmr Dw D1mw DLmw
230Threshold:             99%
231Chosen for annotation:
232Auto-annotation:       off
233</pre>
234<p>This is a summary of the annotation options:</p>
235<div class="itemizedlist"><ul class="itemizedlist" style="list-style-type: disc; ">
236<li class="listitem"><p>I1 cache, D1 cache, LL cache: cache configuration.  So
237    you know the configuration with which these results were
238    obtained.</p></li>
239<li class="listitem"><p>Command: the command line invocation of the program
240      under examination.</p></li>
241<li class="listitem"><p>Events recorded: which events were recorded.</p></li>
242<li class="listitem"><p>Events shown: the events shown, which is a subset of the events
243   gathered.  This can be adjusted with the
244   <code class="option">--show</code> option.</p></li>
245<li class="listitem">
246<p>Event sort order: the sort order in which functions are
247    shown.  For example, in this case the functions are sorted
248    from highest <code class="computeroutput">Ir</code> counts to
249    lowest.  If two functions have identical
250    <code class="computeroutput">Ir</code> counts, they will then be
251    sorted by <code class="computeroutput">I1mr</code> counts, and
252    so on.  This order can be adjusted with the
253    <code class="option">--sort</code> option.</p>
254<p>Note that this dictates the order the functions appear.
255    It is <span class="emphasis"><em>not</em></span> the order in which the columns
256    appear; that is dictated by the "events shown" line (and can
257    be changed with the <code class="option">--show</code>
258    option).</p>
259</li>
260<li class="listitem"><p>Threshold: cg_annotate
261    by default omits functions that cause very low counts
262    to avoid drowning you in information.  In this case,
263    cg_annotate shows summaries the functions that account for
264    99% of the <code class="computeroutput">Ir</code> counts;
265    <code class="computeroutput">Ir</code> is chosen as the
266    threshold event since it is the primary sort event.  The
267    threshold can be adjusted with the
268    <code class="option">--threshold</code>
269    option.</p></li>
270<li class="listitem"><p>Chosen for annotation: names of files specified
271    manually for annotation; in this case none.</p></li>
272<li class="listitem"><p>Auto-annotation: whether auto-annotation was requested
273    via the <code class="option">--auto=yes</code>
274    option. In this case no.</p></li>
275</ul></div>
276</div>
277<div class="sect2">
278<div class="titlepage"><div><div><h3 class="title">
279<a name="cg-manual.the-global"></a>5.2.5.�The Global and Function-level Counts</h3></div></div></div>
280<p>Then follows summary statistics for the whole
281program:</p>
282<pre class="programlisting">
283--------------------------------------------------------------------------------
284Ir         I1mr ILmr Dr         D1mr   DLmr  Dw        D1mw   DLmw
285--------------------------------------------------------------------------------
28627,742,716  276  275 10,955,517 21,905 3,987 4,474,773 19,280 19,098  PROGRAM TOTALS</pre>
287<p>
288These are similar to the summary provided when Cachegrind finishes running.
289</p>
290<p>Then comes function-by-function statistics:</p>
291<pre class="programlisting">
292--------------------------------------------------------------------------------
293Ir        I1mr ILmr Dr        D1mr  DLmr  Dw        D1mw   DLmw    file:function
294--------------------------------------------------------------------------------
2958,821,482    5    5 2,242,702 1,621    73 1,794,230      0      0  getc.c:_IO_getc
2965,222,023    4    4 2,276,334    16    12   875,959      1      1  concord.c:get_word
2972,649,248    2    2 1,344,810 7,326 1,385         .      .      .  vg_main.c:strcmp
2982,521,927    2    2   591,215     0     0   179,398      0      0  concord.c:hash
2992,242,740    2    2 1,046,612   568    22   448,548      0      0  ctype.c:tolower
3001,496,937    4    4   630,874 9,000 1,400   279,388      0      0  concord.c:insert
301  897,991   51   51   897,831    95    30        62      1      1  ???:???
302  598,068    1    1   299,034     0     0   149,517      0      0  ../sysdeps/generic/lockfile.c:__flockfile
303  598,068    0    0   299,034     0     0   149,517      0      0  ../sysdeps/generic/lockfile.c:__funlockfile
304  598,024    4    4   213,580    35    16   149,506      0      0  vg_clientmalloc.c:malloc
305  446,587    1    1   215,973 2,167   430   129,948 14,057 13,957  concord.c:add_existing
306  341,760    2    2   128,160     0     0   128,160      0      0  vg_clientmalloc.c:vg_trap_here_WRAPPER
307  320,782    4    4   150,711   276     0    56,027     53     53  concord.c:init_hash_table
308  298,998    1    1   106,785     0     0    64,071      1      1  concord.c:create
309  149,518    0    0   149,516     0     0         1      0      0  ???:tolower@@GLIBC_2.0
310  149,518    0    0   149,516     0     0         1      0      0  ???:fgetc@@GLIBC_2.0
311   95,983    4    4    38,031     0     0    34,409  3,152  3,150  concord.c:new_word_node
312   85,440    0    0    42,720     0     0    21,360      0      0  vg_clientmalloc.c:vg_bogus_epilogue</pre>
313<p>Each function
314is identified by a
315<code class="computeroutput">file_name:function_name</code> pair. If
316a column contains only a dot it means the function never performs
317that event (e.g. the third row shows that
318<code class="computeroutput">strcmp()</code> contains no
319instructions that write to memory). The name
320<code class="computeroutput">???</code> is used if the file name
321and/or function name could not be determined from debugging
322information. If most of the entries have the form
323<code class="computeroutput">???:???</code> the program probably
324wasn't compiled with <code class="option">-g</code>.</p>
325<p>It is worth noting that functions will come both from
326the profiled program (e.g. <code class="filename">concord.c</code>)
327and from libraries (e.g. <code class="filename">getc.c</code>)</p>
328</div>
329<div class="sect2">
330<div class="titlepage"><div><div><h3 class="title">
331<a name="cg-manual.line-by-line"></a>5.2.6.�Line-by-line Counts</h3></div></div></div>
332<p>There are two ways to annotate source files -- by specifying them
333manually as arguments to cg_annotate, or with the
334<code class="option">--auto=yes</code> option.  For example, the output from running
335<code class="filename">cg_annotate &lt;filename&gt; concord.c</code> for our example
336produces the same output as above followed by an annotated version of
337<code class="filename">concord.c</code>, a section of which looks like:</p>
338<pre class="programlisting">
339--------------------------------------------------------------------------------
340-- User-annotated source: concord.c
341--------------------------------------------------------------------------------
342Ir        I1mr ILmr Dr      D1mr  DLmr  Dw      D1mw   DLmw
343
344        .    .    .       .     .     .       .      .      .  void init_hash_table(char *file_name, Word_Node *table[])
345        3    1    1       .     .     .       1      0      0  {
346        .    .    .       .     .     .       .      .      .      FILE *file_ptr;
347        .    .    .       .     .     .       .      .      .      Word_Info *data;
348        1    0    0       .     .     .       1      1      1      int line = 1, i;
349        .    .    .       .     .     .       .      .      .
350        5    0    0       .     .     .       3      0      0      data = (Word_Info *) create(sizeof(Word_Info));
351        .    .    .       .     .     .       .      .      .
352    4,991    0    0   1,995     0     0     998      0      0      for (i = 0; i &lt; TABLE_SIZE; i++)
353    3,988    1    1   1,994     0     0     997     53     52          table[i] = NULL;
354        .    .    .       .     .     .       .      .      .
355        .    .    .       .     .     .       .      .      .      /* Open file, check it. */
356        6    0    0       1     0     0       4      0      0      file_ptr = fopen(file_name, "r");
357        2    0    0       1     0     0       .      .      .      if (!(file_ptr)) {
358        .    .    .       .     .     .       .      .      .          fprintf(stderr, "Couldn't open '%s'.\n", file_name);
359        1    1    1       .     .     .       .      .      .          exit(EXIT_FAILURE);
360        .    .    .       .     .     .       .      .      .      }
361        .    .    .       .     .     .       .      .      .
362  165,062    1    1  73,360     0     0  91,700      0      0      while ((line = get_word(data, line, file_ptr)) != EOF)
363  146,712    0    0  73,356     0     0  73,356      0      0          insert(data-&gt;;word, data-&gt;line, table);
364        .    .    .       .     .     .       .      .      .
365        4    0    0       1     0     0       2      0      0      free(data);
366        4    0    0       1     0     0       2      0      0      fclose(file_ptr);
367        3    0    0       2     0     0       .      .      .  }</pre>
368<p>(Although column widths are automatically minimised, a wide
369terminal is clearly useful.)</p>
370<p>Each source file is clearly marked
371(<code class="computeroutput">User-annotated source</code>) as
372having been chosen manually for annotation.  If the file was
373found in one of the directories specified with the
374<code class="option">-I</code>/<code class="option">--include</code> option, the directory
375and file are both given.</p>
376<p>Each line is annotated with its event counts.  Events not
377applicable for a line are represented by a dot.  This is useful
378for distinguishing between an event which cannot happen, and one
379which can but did not.</p>
380<p>Sometimes only a small section of a source file is
381executed.  To minimise uninteresting output, Cachegrind only shows
382annotated lines and lines within a small distance of annotated
383lines.  Gaps are marked with the line numbers so you know which
384part of a file the shown code comes from, eg:</p>
385<pre class="programlisting">
386(figures and code for line 704)
387-- line 704 ----------------------------------------
388-- line 878 ----------------------------------------
389(figures and code for line 878)</pre>
390<p>The amount of context to show around annotated lines is
391controlled by the <code class="option">--context</code>
392option.</p>
393<p>To get automatic annotation, use the <code class="option">--auto=yes</code> option.
394cg_annotate will automatically annotate every source file it can
395find that is mentioned in the function-by-function summary.
396Therefore, the files chosen for auto-annotation are affected by
397the <code class="option">--sort</code> and
398<code class="option">--threshold</code> options.  Each
399source file is clearly marked (<code class="computeroutput">Auto-annotated
400source</code>) as being chosen automatically.  Any
401files that could not be found are mentioned at the end of the
402output, eg:</p>
403<pre class="programlisting">
404------------------------------------------------------------------
405The following files chosen for auto-annotation could not be found:
406------------------------------------------------------------------
407  getc.c
408  ctype.c
409  ../sysdeps/generic/lockfile.c</pre>
410<p>This is quite common for library files, since libraries are
411usually compiled with debugging information, but the source files
412are often not present on a system.  If a file is chosen for
413annotation both manually and automatically, it
414is marked as <code class="computeroutput">User-annotated
415source</code>. Use the
416<code class="option">-I</code>/<code class="option">--include</code> option to tell Valgrind where
417to look for source files if the filenames found from the debugging
418information aren't specific enough.</p>
419<p>Beware that cg_annotate can take some time to digest large
420<code class="filename">cachegrind.out.&lt;pid&gt;</code> files,
421e.g. 30 seconds or more.  Also beware that auto-annotation can
422produce a lot of output if your program is large!</p>
423</div>
424<div class="sect2">
425<div class="titlepage"><div><div><h3 class="title">
426<a name="cg-manual.assembler"></a>5.2.7.�Annotating Assembly Code Programs</h3></div></div></div>
427<p>Valgrind can annotate assembly code programs too, or annotate
428the assembly code generated for your C program.  Sometimes this is
429useful for understanding what is really happening when an
430interesting line of C code is translated into multiple
431instructions.</p>
432<p>To do this, you just need to assemble your
433<code class="computeroutput">.s</code> files with assembly-level debug
434information.  You can use compile with the <code class="option">-S</code> to compile C/C++
435programs to assembly code, and then assemble the assembly code files with
436<code class="option">-g</code> to achieve this.  You can then profile and annotate the
437assembly code source files in the same way as C/C++ source files.</p>
438</div>
439<div class="sect2">
440<div class="titlepage"><div><div><h3 class="title">
441<a name="ms-manual.forkingprograms"></a>5.2.8.�Forking Programs</h3></div></div></div>
442<p>If your program forks, the child will inherit all the profiling data that
443has been gathered for the parent.</p>
444<p>If the output file format string (controlled by
445<code class="option">--cachegrind-out-file</code>) does not contain <code class="option">%p</code>,
446then the outputs from the parent and child will be intermingled in a single
447output file, which will almost certainly make it unreadable by
448cg_annotate.</p>
449</div>
450<div class="sect2">
451<div class="titlepage"><div><div><h3 class="title">
452<a name="cg-manual.annopts.warnings"></a>5.2.9.�cg_annotate Warnings</h3></div></div></div>
453<p>There are a couple of situations in which
454cg_annotate issues warnings.</p>
455<div class="itemizedlist"><ul class="itemizedlist" style="list-style-type: disc; ">
456<li class="listitem"><p>If a source file is more recent than the
457    <code class="filename">cachegrind.out.&lt;pid&gt;</code> file.
458    This is because the information in
459    <code class="filename">cachegrind.out.&lt;pid&gt;</code> is only
460    recorded with line numbers, so if the line numbers change at
461    all in the source (e.g.  lines added, deleted, swapped), any
462    annotations will be incorrect.</p></li>
463<li class="listitem"><p>If information is recorded about line numbers past the
464    end of a file.  This can be caused by the above problem,
465    i.e. shortening the source file while using an old
466    <code class="filename">cachegrind.out.&lt;pid&gt;</code> file.  If
467    this happens, the figures for the bogus lines are printed
468    anyway (clearly marked as bogus) in case they are
469    important.</p></li>
470</ul></div>
471</div>
472<div class="sect2">
473<div class="titlepage"><div><div><h3 class="title">
474<a name="cg-manual.annopts.things-to-watch-out-for"></a>5.2.10.�Unusual Annotation Cases</h3></div></div></div>
475<p>Some odd things that can occur during annotation:</p>
476<div class="itemizedlist"><ul class="itemizedlist" style="list-style-type: disc; ">
477<li class="listitem">
478<p>If annotating at the assembler level, you might see
479    something like this:</p>
480<pre class="programlisting">
481      1    0    0  .    .    .  .    .    .          leal -12(%ebp),%eax
482      1    0    0  .    .    .  1    0    0          movl %eax,84(%ebx)
483      2    0    0  0    0    0  1    0    0          movl $1,-20(%ebp)
484      .    .    .  .    .    .  .    .    .          .align 4,0x90
485      1    0    0  .    .    .  .    .    .          movl $.LnrB,%eax
486      1    0    0  .    .    .  1    0    0          movl %eax,-16(%ebp)</pre>
487<p>How can the third instruction be executed twice when
488    the others are executed only once?  As it turns out, it
489    isn't.  Here's a dump of the executable, using
490    <code class="computeroutput">objdump -d</code>:</p>
491<pre class="programlisting">
492      8048f25:       8d 45 f4                lea    0xfffffff4(%ebp),%eax
493      8048f28:       89 43 54                mov    %eax,0x54(%ebx)
494      8048f2b:       c7 45 ec 01 00 00 00    movl   $0x1,0xffffffec(%ebp)
495      8048f32:       89 f6                   mov    %esi,%esi
496      8048f34:       b8 08 8b 07 08          mov    $0x8078b08,%eax
497      8048f39:       89 45 f0                mov    %eax,0xfffffff0(%ebp)</pre>
498<p>Notice the extra <code class="computeroutput">mov
499    %esi,%esi</code> instruction.  Where did this come
500    from?  The GNU assembler inserted it to serve as the two
501    bytes of padding needed to align the <code class="computeroutput">movl
502    $.LnrB,%eax</code> instruction on a four-byte
503    boundary, but pretended it didn't exist when adding debug
504    information.  Thus when Valgrind reads the debug info it
505    thinks that the <code class="computeroutput">movl
506    $0x1,0xffffffec(%ebp)</code> instruction covers the
507    address range 0x8048f2b--0x804833 by itself, and attributes
508    the counts for the <code class="computeroutput">mov
509    %esi,%esi</code> to it.</p>
510</li>
511<li class="listitem"><p>Sometimes, the same filename might be represented with
512    a relative name and with an absolute name in different parts
513    of the debug info, eg:
514    <code class="filename">/home/user/proj/proj.h</code> and
515    <code class="filename">../proj.h</code>.  In this case, if you use
516    auto-annotation, the file will be annotated twice with the
517    counts split between the two.</p></li>
518<li class="listitem"><p>If you compile some files with
519    <code class="option">-g</code> and some without, some
520    events that take place in a file without debug info could be
521    attributed to the last line of a file with debug info
522    (whichever one gets placed before the non-debug-info file in
523    the executable).</p></li>
524</ul></div>
525<p>This list looks long, but these cases should be fairly
526rare.</p>
527</div>
528<div class="sect2">
529<div class="titlepage"><div><div><h3 class="title">
530<a name="cg-manual.cg_merge"></a>5.2.11.�Merging Profiles with cg_merge</h3></div></div></div>
531<p>
532cg_merge is a simple program which
533reads multiple profile files, as created by Cachegrind, merges them
534together, and writes the results into another file in the same format.
535You can then examine the merged results using
536<code class="computeroutput">cg_annotate &lt;filename&gt;</code>, as
537described above.  The merging functionality might be useful if you
538want to aggregate costs over multiple runs of the same program, or
539from a single parallel run with multiple instances of the same
540program.</p>
541<p>
542cg_merge is invoked as follows:
543</p>
544<pre class="programlisting">
545cg_merge -o outputfile file1 file2 file3 ...</pre>
546<p>
547It reads and checks <code class="computeroutput">file1</code>, then read
548and checks <code class="computeroutput">file2</code> and merges it into
549the running totals, then the same with
550<code class="computeroutput">file3</code>, etc.  The final results are
551written to <code class="computeroutput">outputfile</code>, or to standard
552out if no output file is specified.</p>
553<p>
554Costs are summed on a per-function, per-line and per-instruction
555basis.  Because of this, the order in which the input files does not
556matter, although you should take care to only mention each file once,
557since any file mentioned twice will be added in twice.</p>
558<p>
559cg_merge does not attempt to check
560that the input files come from runs of the same executable.  It will
561happily merge together profile files from completely unrelated
562programs.  It does however check that the
563<code class="computeroutput">Events:</code> lines of all the inputs are
564identical, so as to ensure that the addition of costs makes sense.
565For example, it would be nonsensical for it to add a number indicating
566D1 read references to a number from a different file indicating LL
567write misses.</p>
568<p>
569A number of other syntax and sanity checks are done whilst reading the
570inputs.  cg_merge will stop and
571attempt to print a helpful error message if any of the input files
572fail these checks.</p>
573</div>
574<div class="sect2">
575<div class="titlepage"><div><div><h3 class="title">
576<a name="cg-manual.cg_diff"></a>5.2.12.�Differencing Profiles with cg_diff</h3></div></div></div>
577<p>
578cg_diff is a simple program which
579reads two profile files, as created by Cachegrind, finds the difference
580between them, and writes the results into another file in the same format.
581You can then examine the merged results using
582<code class="computeroutput">cg_annotate &lt;filename&gt;</code>, as
583described above.  This is very useful if you want to measure how a change to
584a program affected its performance.
585</p>
586<p>
587cg_diff is invoked as follows:
588</p>
589<pre class="programlisting">
590cg_diff file1 file2</pre>
591<p>
592It reads and checks <code class="computeroutput">file1</code>, then read
593and checks <code class="computeroutput">file2</code>, then computes the
594difference (effectively <code class="computeroutput">file1</code> -
595<code class="computeroutput">file2</code>).  The final results are written to
596standard output.</p>
597<p>
598Costs are summed on a per-function basis.  Per-line costs are not summed,
599because doing so is too difficult.  For example, consider differencing two
600profiles, one from a single-file program A, and one from the same program A
601where a single blank line was inserted at the top of the file.  Every single
602per-line count has changed.  In comparison, the per-function counts have not
603changed.  The per-function count differences are still very useful for
604determining differences between programs.  Note that because the result is
605the difference of two profiles, many of the counts will be negative;  this
606indicates that the counts for the relevant function are fewer in the second
607version than those in the first version.</p>
608<p>
609cg_diff does not attempt to check
610that the input files come from runs of the same executable.  It will
611happily merge together profile files from completely unrelated
612programs.  It does however check that the
613<code class="computeroutput">Events:</code> lines of all the inputs are
614identical, so as to ensure that the addition of costs makes sense.
615For example, it would be nonsensical for it to add a number indicating
616D1 read references to a number from a different file indicating LL
617write misses.</p>
618<p>
619A number of other syntax and sanity checks are done whilst reading the
620inputs.  cg_diff will stop and
621attempt to print a helpful error message if any of the input files
622fail these checks.</p>
623<p>
624Sometimes you will want to compare Cachegrind profiles of two versions of a
625program that you have sitting side-by-side.  For example, you might have
626<code class="computeroutput">version1/prog.c</code> and
627<code class="computeroutput">version2/prog.c</code>, where the second is
628slightly different to the first.  A straight comparison of the two will not
629be useful -- because functions are qualified with filenames, a function
630<code class="function">f</code> will be listed as
631<code class="computeroutput">version1/prog.c:f</code> for the first version but
632<code class="computeroutput">version2/prog.c:f</code> for the second
633version.</p>
634<p>
635When this happens, you can use the <code class="option">--mod-filename</code> option.
636Its argument is a Perl search-and-replace expression that will be applied
637to all the filenames in both Cachegrind output files.  It can be used to
638remove minor differences in filenames.  For example, the option
639<code class="option">--mod-filename='s/version[0-9]/versionN/'</code> will suffice for
640this case.</p>
641<p>
642Similarly, sometimes compilers auto-generate certain functions and give them
643randomized names.  For example, GCC sometimes auto-generates functions with
644names like <code class="function">T.1234</code>, and the suffixes vary from build to
645build.  You can use the <code class="option">--mod-funcname</code> option to remove
646small differences like these;  it works in the same way as
647<code class="option">--mod-filename</code>.</p>
648</div>
649</div>
650<div class="sect1">
651<div class="titlepage"><div><div><h2 class="title" style="clear: both">
652<a name="cg-manual.cgopts"></a>5.3.�Cachegrind Command-line Options</h2></div></div></div>
653<p>Cachegrind-specific options are:</p>
654<div class="variablelist">
655<a name="cg.opts.list"></a><dl class="variablelist">
656<dt>
657<a name="opt.I1"></a><span class="term">
658      <code class="option">--I1=&lt;size&gt;,&lt;associativity&gt;,&lt;line size&gt; </code>
659    </span>
660</dt>
661<dd><p>Specify the size, associativity and line size of the level 1
662      instruction cache.  </p></dd>
663<dt>
664<a name="opt.D1"></a><span class="term">
665      <code class="option">--D1=&lt;size&gt;,&lt;associativity&gt;,&lt;line size&gt; </code>
666    </span>
667</dt>
668<dd><p>Specify the size, associativity and line size of the level 1
669      data cache.</p></dd>
670<dt>
671<a name="opt.LL"></a><span class="term">
672      <code class="option">--LL=&lt;size&gt;,&lt;associativity&gt;,&lt;line size&gt; </code>
673    </span>
674</dt>
675<dd><p>Specify the size, associativity and line size of the last-level
676      cache.</p></dd>
677<dt>
678<a name="opt.cache-sim"></a><span class="term">
679      <code class="option">--cache-sim=no|yes [yes] </code>
680    </span>
681</dt>
682<dd><p>Enables or disables collection of cache access and miss
683            counts.</p></dd>
684<dt>
685<a name="opt.branch-sim"></a><span class="term">
686      <code class="option">--branch-sim=no|yes [no] </code>
687    </span>
688</dt>
689<dd><p>Enables or disables collection of branch instruction and
690            misprediction counts.  By default this is disabled as it
691            slows Cachegrind down by approximately 25%.  Note that you
692            cannot specify <code class="option">--cache-sim=no</code>
693            and <code class="option">--branch-sim=no</code>
694            together, as that would leave Cachegrind with no
695            information to collect.</p></dd>
696<dt>
697<a name="opt.cachegrind-out-file"></a><span class="term">
698      <code class="option">--cachegrind-out-file=&lt;file&gt; </code>
699    </span>
700</dt>
701<dd><p>Write the profile data to
702            <code class="computeroutput">file</code> rather than to the default
703            output file,
704            <code class="filename">cachegrind.out.&lt;pid&gt;</code>.  The
705            <code class="option">%p</code> and <code class="option">%q</code> format specifiers
706            can be used to embed the process ID and/or the contents of an
707            environment variable in the name, as is the case for the core
708            option <code class="option"><a class="xref" href="manual-core.html#opt.log-file">--log-file</a></code>.
709      </p></dd>
710</dl>
711</div>
712</div>
713<div class="sect1">
714<div class="titlepage"><div><div><h2 class="title" style="clear: both">
715<a name="cg-manual.annopts"></a>5.4.�cg_annotate Command-line Options</h2></div></div></div>
716<div class="variablelist">
717<a name="cg_annotate.opts.list"></a><dl class="variablelist">
718<dt><span class="term">
719      <code class="option">-h --help </code>
720    </span></dt>
721<dd><p>Show the help message.</p></dd>
722<dt><span class="term">
723      <code class="option">--version </code>
724    </span></dt>
725<dd><p>Show the version number.</p></dd>
726<dt><span class="term">
727      <code class="option">--show=A,B,C [default: all, using order in
728      cachegrind.out.&lt;pid&gt;] </code>
729    </span></dt>
730<dd><p>Specifies which events to show (and the column
731      order). Default is to use all present in the
732      <code class="filename">cachegrind.out.&lt;pid&gt;</code> file (and
733      use the order in the file).  Useful if you want to concentrate on, for
734      example, I cache misses (<code class="option">--show=I1mr,ILmr</code>), or data
735      read misses (<code class="option">--show=D1mr,DLmr</code>), or LL data misses
736      (<code class="option">--show=DLmr,DLmw</code>).  Best used in conjunction with
737      <code class="option">--sort</code>.</p></dd>
738<dt><span class="term">
739      <code class="option">--sort=A,B,C [default: order in
740      cachegrind.out.&lt;pid&gt;] </code>
741    </span></dt>
742<dd><p>Specifies the events upon which the sorting of the
743      function-by-function entries will be based.</p></dd>
744<dt><span class="term">
745      <code class="option">--threshold=X [default: 0.1%] </code>
746    </span></dt>
747<dd>
748<p>Sets the threshold for the function-by-function
749      summary.  A function is shown if it accounts for more than X%
750      of the counts for the primary sort event.  If auto-annotating, also
751      affects which files are annotated.</p>
752<p>Note: thresholds can be set for more than one of the
753      events by appending any events for the
754      <code class="option">--sort</code> option with a colon
755      and a number (no spaces, though).  E.g. if you want to see
756      each function that covers more than 1% of LL read misses or 1% of LL
757      write misses, use this option:</p>
758<p><code class="option">--sort=DLmr:1,DLmw:1</code></p>
759</dd>
760<dt><span class="term">
761      <code class="option">--auto=&lt;no|yes&gt; [default: no] </code>
762    </span></dt>
763<dd><p>When enabled, automatically annotates every file that
764      is mentioned in the function-by-function summary that can be
765      found.  Also gives a list of those that couldn't be found.</p></dd>
766<dt><span class="term">
767      <code class="option">--context=N [default: 8] </code>
768    </span></dt>
769<dd><p>Print N lines of context before and after each
770      annotated line.  Avoids printing large sections of source
771      files that were not executed.  Use a large number
772      (e.g. 100000) to show all source lines.</p></dd>
773<dt><span class="term">
774      <code class="option">-I&lt;dir&gt; --include=&lt;dir&gt; [default: none] </code>
775    </span></dt>
776<dd><p>Adds a directory to the list in which to search for
777      files.  Multiple <code class="option">-I</code>/<code class="option">--include</code>
778      options can be given to add multiple directories.</p></dd>
779</dl>
780</div>
781</div>
782<div class="sect1">
783<div class="titlepage"><div><div><h2 class="title" style="clear: both">
784<a name="cg-manual.mergeopts"></a>5.5.�cg_merge Command-line Options</h2></div></div></div>
785<div class="variablelist">
786<a name="cg_merge.opts.list"></a><dl class="variablelist">
787<dt><span class="term">
788      <code class="option">-o outfile</code>
789    </span></dt>
790<dd><p>Write the profile data to <code class="computeroutput">outfile</code>
791            rather than to standard output.
792      </p></dd>
793</dl>
794</div>
795</div>
796<div class="sect1">
797<div class="titlepage"><div><div><h2 class="title" style="clear: both">
798<a name="cg-manual.diffopts"></a>5.6.�cg_diff Command-line Options</h2></div></div></div>
799<div class="variablelist">
800<a name="cg_diff.opts.list"></a><dl class="variablelist">
801<dt><span class="term">
802      <code class="option">-h --help </code>
803    </span></dt>
804<dd><p>Show the help message.</p></dd>
805<dt><span class="term">
806      <code class="option">--version </code>
807    </span></dt>
808<dd><p>Show the version number.</p></dd>
809<dt><span class="term">
810      <code class="option">--mod-filename=&lt;expr&gt; [default: none]</code>
811    </span></dt>
812<dd><p>Specifies a Perl search-and-replace expression that is applied
813      to all filenames.  Useful for removing minor differences in paths
814      between two different versions of a program that are sitting in
815      different directories.</p></dd>
816<dt><span class="term">
817      <code class="option">--mod-funcname=&lt;expr&gt; [default: none]</code>
818    </span></dt>
819<dd><p>Like <code class="option">--mod-filename</code>, but for filenames.
820      Useful for removing minor differences in randomized names of
821      auto-generated functions generated by some compilers.</p></dd>
822</dl>
823</div>
824</div>
825<div class="sect1">
826<div class="titlepage"><div><div><h2 class="title" style="clear: both">
827<a name="cg-manual.acting-on"></a>5.7.�Acting on Cachegrind's Information</h2></div></div></div>
828<p>
829Cachegrind gives you lots of information, but acting on that information
830isn't always easy.  Here are some rules of thumb that we have found to be
831useful.</p>
832<p>
833First of all, the global hit/miss counts and miss rates are not that useful.
834If you have multiple programs or multiple runs of a program, comparing the
835numbers might identify if any are outliers and worthy of closer
836investigation.  Otherwise, they're not enough to act on.</p>
837<p>
838The function-by-function counts are more useful to look at, as they pinpoint
839which functions are causing large numbers of counts.  However, beware that
840inlining can make these counts misleading.  If a function
841<code class="function">f</code> is always inlined, counts will be attributed to the
842functions it is inlined into, rather than itself.  However, if you look at
843the line-by-line annotations for <code class="function">f</code> you'll see the
844counts that belong to <code class="function">f</code>.  (This is hard to avoid, it's
845how the debug info is structured.)  So it's worth looking for large numbers
846in the line-by-line annotations.</p>
847<p>
848The line-by-line source code annotations are much more useful.  In our
849experience, the best place to start is by looking at the
850<code class="computeroutput">Ir</code> numbers.  They simply measure how many
851instructions were executed for each line, and don't include any cache
852information, but they can still be very useful for identifying
853bottlenecks.</p>
854<p>
855After that, we have found that LL misses are typically a much bigger source
856of slow-downs than L1 misses.  So it's worth looking for any snippets of
857code with high <code class="computeroutput">DLmr</code> or
858<code class="computeroutput">DLmw</code> counts.  (You can use
859<code class="option">--show=DLmr
860--sort=DLmr</code> with cg_annotate to focus just on
861<code class="literal">DLmr</code> counts, for example.) If you find any, it's still
862not always easy to work out how to improve things.  You need to have a
863reasonable understanding of how caches work, the principles of locality, and
864your program's data access patterns.  Improving things may require
865redesigning a data structure, for example.</p>
866<p>
867Looking at the <code class="computeroutput">Bcm</code> and
868<code class="computeroutput">Bim</code> misses can also be helpful.
869In particular, <code class="computeroutput">Bim</code> misses are often caused
870by <code class="literal">switch</code> statements, and in some cases these
871<code class="literal">switch</code> statements can be replaced with table-driven code.
872For example, you might replace code like this:</p>
873<pre class="programlisting">
874enum E { A, B, C };
875enum E e;
876int i;
877...
878switch (e)
879{
880    case A: i += 1; break;
881    case B: i += 2; break;
882    case C: i += 3; break;
883}
884</pre>
885<p>with code like this:</p>
886<pre class="programlisting">
887enum E { A, B, C };
888enum E e;
889enum E table[] = { 1, 2, 3 };
890int i;
891...
892i += table[e];
893</pre>
894<p>
895This is obviously a contrived example, but the basic principle applies in a
896wide variety of situations.</p>
897<p>
898In short, Cachegrind can tell you where some of the bottlenecks in your code
899are, but it can't tell you how to fix them.  You have to work that out for
900yourself.  But at least you have the information!
901</p>
902</div>
903<div class="sect1">
904<div class="titlepage"><div><div><h2 class="title" style="clear: both">
905<a name="cg-manual.sim-details"></a>5.8.�Simulation Details</h2></div></div></div>
906<p>
907This section talks about details you don't need to know about in order to
908use Cachegrind, but may be of interest to some people.
909</p>
910<div class="sect2">
911<div class="titlepage"><div><div><h3 class="title">
912<a name="cache-sim"></a>5.8.1.�Cache Simulation Specifics</h3></div></div></div>
913<p>Specific characteristics of the cache simulation are as
914follows:</p>
915<div class="itemizedlist"><ul class="itemizedlist" style="list-style-type: disc; ">
916<li class="listitem"><p>Write-allocate: when a write miss occurs, the block
917    written to is brought into the D1 cache.  Most modern caches
918    have this property.</p></li>
919<li class="listitem">
920<p>Bit-selection hash function: the set of line(s) in the cache
921    to which a memory block maps is chosen by the middle bits
922    M--(M+N-1) of the byte address, where:</p>
923<div class="itemizedlist"><ul class="itemizedlist" style="list-style-type: circle; ">
924<li class="listitem"><p>line size = 2^M bytes</p></li>
925<li class="listitem"><p>(cache size / line size / associativity) = 2^N bytes</p></li>
926</ul></div>
927</li>
928<li class="listitem"><p>Inclusive LL cache: the LL cache typically replicates all
929    the entries of the L1 caches, because fetching into L1 involves
930    fetching into LL first (this does not guarantee strict inclusiveness,
931    as lines evicted from LL still could reside in L1).  This is
932    standard on Pentium chips, but AMD Opterons, Athlons and Durons
933    use an exclusive LL cache that only holds
934    blocks evicted from L1.  Ditto most modern VIA CPUs.</p></li>
935</ul></div>
936<p>The cache configuration simulated (cache size,
937associativity and line size) is determined automatically using
938the x86 CPUID instruction.  If you have a machine that (a)
939doesn't support the CPUID instruction, or (b) supports it in an
940early incarnation that doesn't give any cache information, then
941Cachegrind will fall back to using a default configuration (that
942of a model 3/4 Athlon).  Cachegrind will tell you if this
943happens.  You can manually specify one, two or all three levels
944(I1/D1/LL) of the cache from the command line using the
945<code class="option">--I1</code>,
946<code class="option">--D1</code> and
947<code class="option">--LL</code> options.
948For cache parameters to be valid for simulation, the number
949of sets (with associativity being the number of cache lines in
950each set) has to be a power of two.</p>
951<p>On PowerPC platforms
952Cachegrind cannot automatically
953determine the cache configuration, so you will
954need to specify it with the
955<code class="option">--I1</code>,
956<code class="option">--D1</code> and
957<code class="option">--LL</code> options.</p>
958<p>Other noteworthy behaviour:</p>
959<div class="itemizedlist"><ul class="itemizedlist" style="list-style-type: disc; ">
960<li class="listitem">
961<p>References that straddle two cache lines are treated as
962    follows:</p>
963<div class="itemizedlist"><ul class="itemizedlist" style="list-style-type: circle; ">
964<li class="listitem"><p>If both blocks hit --&gt; counted as one hit</p></li>
965<li class="listitem"><p>If one block hits, the other misses --&gt; counted
966        as one miss.</p></li>
967<li class="listitem"><p>If both blocks miss --&gt; counted as one miss (not
968        two)</p></li>
969</ul></div>
970</li>
971<li class="listitem">
972<p>Instructions that modify a memory location
973    (e.g. <code class="computeroutput">inc</code> and
974    <code class="computeroutput">dec</code>) are counted as doing
975    just a read, i.e. a single data reference.  This may seem
976    strange, but since the write can never cause a miss (the read
977    guarantees the block is in the cache) it's not very
978    interesting.</p>
979<p>Thus it measures not the number of times the data cache
980    is accessed, but the number of times a data cache miss could
981    occur.</p>
982</li>
983</ul></div>
984<p>If you are interested in simulating a cache with different
985properties, it is not particularly hard to write your own cache
986simulator, or to modify the existing ones in
987<code class="computeroutput">cg_sim.c</code>. We'd be
988interested to hear from anyone who does.</p>
989</div>
990<div class="sect2">
991<div class="titlepage"><div><div><h3 class="title">
992<a name="branch-sim"></a>5.8.2.�Branch Simulation Specifics</h3></div></div></div>
993<p>Cachegrind simulates branch predictors intended to be
994typical of mainstream desktop/server processors of around 2004.</p>
995<p>Conditional branches are predicted using an array of 16384 2-bit
996saturating counters.  The array index used for a branch instruction is
997computed partly from the low-order bits of the branch instruction's
998address and partly using the taken/not-taken behaviour of the last few
999conditional branches.  As a result the predictions for any specific
1000branch depend both on its own history and the behaviour of previous
1001branches.  This is a standard technique for improving prediction
1002accuracy.</p>
1003<p>For indirect branches (that is, jumps to unknown destinations)
1004Cachegrind uses a simple branch target address predictor.  Targets are
1005predicted using an array of 512 entries indexed by the low order 9
1006bits of the branch instruction's address.  Each branch is predicted to
1007jump to the same address it did last time.  Any other behaviour causes
1008a mispredict.</p>
1009<p>More recent processors have better branch predictors, in
1010particular better indirect branch predictors.  Cachegrind's predictor
1011design is deliberately conservative so as to be representative of the
1012large installed base of processors which pre-date widespread
1013deployment of more sophisticated indirect branch predictors.  In
1014particular, late model Pentium 4s (Prescott), Pentium M, Core and Core
10152 have more sophisticated indirect branch predictors than modelled by
1016Cachegrind.  </p>
1017<p>Cachegrind does not simulate a return stack predictor.  It
1018assumes that processors perfectly predict function return addresses,
1019an assumption which is probably close to being true.</p>
1020<p>See Hennessy and Patterson's classic text "Computer
1021Architecture: A Quantitative Approach", 4th edition (2007), Section
10222.3 (pages 80-89) for background on modern branch predictors.</p>
1023</div>
1024<div class="sect2">
1025<div class="titlepage"><div><div><h3 class="title">
1026<a name="cg-manual.annopts.accuracy"></a>5.8.3.�Accuracy</h3></div></div></div>
1027<p>Valgrind's cache profiling has a number of
1028shortcomings:</p>
1029<div class="itemizedlist"><ul class="itemizedlist" style="list-style-type: disc; ">
1030<li class="listitem"><p>It doesn't account for kernel activity -- the effect of system
1031    calls on the cache and branch predictor contents is ignored.</p></li>
1032<li class="listitem"><p>It doesn't account for other process activity.
1033    This is probably desirable when considering a single
1034    program.</p></li>
1035<li class="listitem"><p>It doesn't account for virtual-to-physical address
1036    mappings.  Hence the simulation is not a true
1037    representation of what's happening in the
1038    cache.  Most caches and branch predictors are physically indexed, but
1039    Cachegrind simulates caches using virtual addresses.</p></li>
1040<li class="listitem"><p>It doesn't account for cache misses not visible at the
1041    instruction level, e.g. those arising from TLB misses, or
1042    speculative execution.</p></li>
1043<li class="listitem"><p>Valgrind will schedule
1044    threads differently from how they would be when running natively.
1045    This could warp the results for threaded programs.</p></li>
1046<li class="listitem">
1047<p>The x86/amd64 instructions <code class="computeroutput">bts</code>,
1048    <code class="computeroutput">btr</code> and
1049    <code class="computeroutput">btc</code> will incorrectly be
1050    counted as doing a data read if both the arguments are
1051    registers, eg:</p>
1052<pre class="programlisting">
1053    btsl %eax, %edx</pre>
1054<p>This should only happen rarely.</p>
1055</li>
1056<li class="listitem"><p>x86/amd64 FPU instructions with data sizes of 28 and 108 bytes
1057    (e.g.  <code class="computeroutput">fsave</code>) are treated as
1058    though they only access 16 bytes.  These instructions seem to
1059    be rare so hopefully this won't affect accuracy much.</p></li>
1060</ul></div>
1061<p>Another thing worth noting is that results are very sensitive.
1062Changing the size of the executable being profiled, or the sizes
1063of any of the shared libraries it uses, or even the length of their
1064file names, can perturb the results.  Variations will be small, but
1065don't expect perfectly repeatable results if your program changes at
1066all.</p>
1067<p>More recent GNU/Linux distributions do address space
1068randomisation, in which identical runs of the same program have their
1069shared libraries loaded at different locations, as a security measure.
1070This also perturbs the results.</p>
1071<p>While these factors mean you shouldn't trust the results to
1072be super-accurate, they should be close enough to be useful.</p>
1073</div>
1074</div>
1075<div class="sect1">
1076<div class="titlepage"><div><div><h2 class="title" style="clear: both">
1077<a name="cg-manual.impl-details"></a>5.9.�Implementation Details</h2></div></div></div>
1078<p>
1079This section talks about details you don't need to know about in order to
1080use Cachegrind, but may be of interest to some people.
1081</p>
1082<div class="sect2">
1083<div class="titlepage"><div><div><h3 class="title">
1084<a name="cg-manual.impl-details.how-cg-works"></a>5.9.1.�How Cachegrind Works</h3></div></div></div>
1085<p>The best reference for understanding how Cachegrind works is chapter 3 of
1086"Dynamic Binary Analysis and Instrumentation", by Nicholas Nethercote.  It
1087is available on the <a class="ulink" href="http://www.valgrind.org/docs/pubs.html" target="_top">Valgrind publications
1088page</a>.</p>
1089</div>
1090<div class="sect2">
1091<div class="titlepage"><div><div><h3 class="title">
1092<a name="cg-manual.impl-details.file-format"></a>5.9.2.�Cachegrind Output File Format</h3></div></div></div>
1093<p>The file format is fairly straightforward, basically giving the
1094cost centre for every line, grouped by files and
1095functions.  It's also totally generic and self-describing, in the sense that
1096it can be used for any events that can be counted on a line-by-line basis,
1097not just cache and branch predictor events.  For example, earlier versions
1098of Cachegrind didn't have a branch predictor simulation.  When this was
1099added, the file format didn't need to change at all.  So the format (and
1100consequently, cg_annotate) could be used by other tools.</p>
1101<p>The file format:</p>
1102<pre class="programlisting">
1103file         ::= desc_line* cmd_line events_line data_line+ summary_line
1104desc_line    ::= "desc:" ws? non_nl_string
1105cmd_line     ::= "cmd:" ws? cmd
1106events_line  ::= "events:" ws? (event ws)+
1107data_line    ::= file_line | fn_line | count_line
1108file_line    ::= "fl=" filename
1109fn_line      ::= "fn=" fn_name
1110count_line   ::= line_num ws? (count ws)+
1111summary_line ::= "summary:" ws? (count ws)+
1112count        ::= num | "."</pre>
1113<p>Where:</p>
1114<div class="itemizedlist"><ul class="itemizedlist" style="list-style-type: disc; ">
1115<li class="listitem"><p><code class="computeroutput">non_nl_string</code> is any
1116    string not containing a newline.</p></li>
1117<li class="listitem"><p><code class="computeroutput">cmd</code> is a string holding the
1118    command line of the profiled program.</p></li>
1119<li class="listitem"><p><code class="computeroutput">event</code> is a string containing
1120    no whitespace.</p></li>
1121<li class="listitem"><p><code class="computeroutput">filename</code> and
1122    <code class="computeroutput">fn_name</code> are strings.</p></li>
1123<li class="listitem"><p><code class="computeroutput">num</code> and
1124    <code class="computeroutput">line_num</code> are decimal
1125    numbers.</p></li>
1126<li class="listitem"><p><code class="computeroutput">ws</code> is whitespace.</p></li>
1127</ul></div>
1128<p>The contents of the "desc:" lines are printed out at the top
1129of the summary.  This is a generic way of providing simulation
1130specific information, e.g. for giving the cache configuration for
1131cache simulation.</p>
1132<p>More than one line of info can be presented for each file/fn/line number.
1133In such cases, the counts for the named events will be accumulated.</p>
1134<p>Counts can be "." to represent zero.  This makes the files easier for
1135humans to read.</p>
1136<p>The number of counts in each
1137<code class="computeroutput">line</code> and the
1138<code class="computeroutput">summary_line</code> should not exceed
1139the number of events in the
1140<code class="computeroutput">event_line</code>.  If the number in
1141each <code class="computeroutput">line</code> is less, cg_annotate
1142treats those missing as though they were a "." entry.  This saves space.
1143</p>
1144<p>A <code class="computeroutput">file_line</code> changes the
1145current file name.  A <code class="computeroutput">fn_line</code>
1146changes the current function name.  A
1147<code class="computeroutput">count_line</code> contains counts that
1148pertain to the current filename/fn_name.  A "fn="
1149<code class="computeroutput">file_line</code> and a
1150<code class="computeroutput">fn_line</code> must appear before any
1151<code class="computeroutput">count_line</code>s to give the context
1152of the first <code class="computeroutput">count_line</code>s.</p>
1153<p>Each <code class="computeroutput">file_line</code> will normally be
1154immediately followed by a <code class="computeroutput">fn_line</code>.  But it
1155doesn't have to be.</p>
1156<p>The summary line is redundant, because it just holds the total counts
1157for each event.  But this serves as a useful sanity check of the data;  if
1158the totals for each event don't match the summary line, something has gone
1159wrong.</p>
1160</div>
1161</div>
1162</div>
1163<div>
1164<br><table class="nav" width="100%" cellspacing="3" cellpadding="2" border="0" summary="Navigation footer">
1165<tr>
1166<td rowspan="2" width="40%" align="left">
1167<a accesskey="p" href="mc-manual.html">&lt;&lt;�4.�Memcheck: a memory error detector</a>�</td>
1168<td width="20%" align="center"><a accesskey="u" href="manual.html">Up</a></td>
1169<td rowspan="2" width="40%" align="right">�<a accesskey="n" href="cl-manual.html">6.�Callgrind: a call-graph generating cache and branch prediction profiler�&gt;&gt;</a>
1170</td>
1171</tr>
1172<tr><td width="20%" align="center"><a accesskey="h" href="index.html">Home</a></td></tr>
1173</table>
1174</div>
1175</body>
1176</html>
1177