• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //===--- Type.h - C Language Family Type Representation ---------*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 /// \file
10 /// \brief C Language Family Type Representation
11 ///
12 /// This file defines the clang::Type interface and subclasses, used to
13 /// represent types for languages in the C family.
14 ///
15 //===----------------------------------------------------------------------===//
16 
17 #ifndef LLVM_CLANG_AST_TYPE_H
18 #define LLVM_CLANG_AST_TYPE_H
19 
20 #include "clang/AST/NestedNameSpecifier.h"
21 #include "clang/AST/TemplateName.h"
22 #include "clang/Basic/AddressSpaces.h"
23 #include "clang/Basic/Diagnostic.h"
24 #include "clang/Basic/ExceptionSpecificationType.h"
25 #include "clang/Basic/LLVM.h"
26 #include "clang/Basic/Linkage.h"
27 #include "clang/Basic/PartialDiagnostic.h"
28 #include "clang/Basic/Specifiers.h"
29 #include "clang/Basic/Visibility.h"
30 #include "llvm/ADT/APInt.h"
31 #include "llvm/ADT/FoldingSet.h"
32 #include "llvm/ADT/Optional.h"
33 #include "llvm/ADT/PointerIntPair.h"
34 #include "llvm/ADT/PointerUnion.h"
35 #include "llvm/ADT/Twine.h"
36 #include "llvm/ADT/iterator_range.h"
37 #include "llvm/Support/ErrorHandling.h"
38 
39 namespace clang {
40   enum {
41     TypeAlignmentInBits = 4,
42     TypeAlignment = 1 << TypeAlignmentInBits
43   };
44   class Type;
45   class ExtQuals;
46   class QualType;
47 }
48 
49 namespace llvm {
50   template <typename T>
51   class PointerLikeTypeTraits;
52   template<>
53   class PointerLikeTypeTraits< ::clang::Type*> {
54   public:
getAsVoidPointer(::clang::Type * P)55     static inline void *getAsVoidPointer(::clang::Type *P) { return P; }
getFromVoidPointer(void * P)56     static inline ::clang::Type *getFromVoidPointer(void *P) {
57       return static_cast< ::clang::Type*>(P);
58     }
59     enum { NumLowBitsAvailable = clang::TypeAlignmentInBits };
60   };
61   template<>
62   class PointerLikeTypeTraits< ::clang::ExtQuals*> {
63   public:
getAsVoidPointer(::clang::ExtQuals * P)64     static inline void *getAsVoidPointer(::clang::ExtQuals *P) { return P; }
getFromVoidPointer(void * P)65     static inline ::clang::ExtQuals *getFromVoidPointer(void *P) {
66       return static_cast< ::clang::ExtQuals*>(P);
67     }
68     enum { NumLowBitsAvailable = clang::TypeAlignmentInBits };
69   };
70 
71   template <>
72   struct isPodLike<clang::QualType> { static const bool value = true; };
73 }
74 
75 namespace clang {
76   class ASTContext;
77   class TypedefNameDecl;
78   class TemplateDecl;
79   class TemplateTypeParmDecl;
80   class NonTypeTemplateParmDecl;
81   class TemplateTemplateParmDecl;
82   class TagDecl;
83   class RecordDecl;
84   class CXXRecordDecl;
85   class EnumDecl;
86   class FieldDecl;
87   class FunctionDecl;
88   class ObjCInterfaceDecl;
89   class ObjCProtocolDecl;
90   class ObjCMethodDecl;
91   class UnresolvedUsingTypenameDecl;
92   class Expr;
93   class Stmt;
94   class SourceLocation;
95   class StmtIteratorBase;
96   class TemplateArgument;
97   class TemplateArgumentLoc;
98   class TemplateArgumentListInfo;
99   class ElaboratedType;
100   class ExtQuals;
101   class ExtQualsTypeCommonBase;
102   struct PrintingPolicy;
103 
104   template <typename> class CanQual;
105   typedef CanQual<Type> CanQualType;
106 
107   // Provide forward declarations for all of the *Type classes
108 #define TYPE(Class, Base) class Class##Type;
109 #include "clang/AST/TypeNodes.def"
110 
111 /// The collection of all-type qualifiers we support.
112 /// Clang supports five independent qualifiers:
113 /// * C99: const, volatile, and restrict
114 /// * MS: __unaligned
115 /// * Embedded C (TR18037): address spaces
116 /// * Objective C: the GC attributes (none, weak, or strong)
117 class Qualifiers {
118 public:
119   enum TQ { // NOTE: These flags must be kept in sync with DeclSpec::TQ.
120     Const    = 0x1,
121     Restrict = 0x2,
122     Volatile = 0x4,
123     CVRMask = Const | Volatile | Restrict
124   };
125 
126   enum GC {
127     GCNone = 0,
128     Weak,
129     Strong
130   };
131 
132   enum ObjCLifetime {
133     /// There is no lifetime qualification on this type.
134     OCL_None,
135 
136     /// This object can be modified without requiring retains or
137     /// releases.
138     OCL_ExplicitNone,
139 
140     /// Assigning into this object requires the old value to be
141     /// released and the new value to be retained.  The timing of the
142     /// release of the old value is inexact: it may be moved to
143     /// immediately after the last known point where the value is
144     /// live.
145     OCL_Strong,
146 
147     /// Reading or writing from this object requires a barrier call.
148     OCL_Weak,
149 
150     /// Assigning into this object requires a lifetime extension.
151     OCL_Autoreleasing
152   };
153 
154   enum {
155     /// The maximum supported address space number.
156     /// 23 bits should be enough for anyone.
157     MaxAddressSpace = 0x7fffffu,
158 
159     /// The width of the "fast" qualifier mask.
160     FastWidth = 3,
161 
162     /// The fast qualifier mask.
163     FastMask = (1 << FastWidth) - 1
164   };
165 
166   Qualifiers() : Mask(0) {}
167 
168   /// Returns the common set of qualifiers while removing them from
169   /// the given sets.
170   static Qualifiers removeCommonQualifiers(Qualifiers &L, Qualifiers &R) {
171     // If both are only CVR-qualified, bit operations are sufficient.
172     if (!(L.Mask & ~CVRMask) && !(R.Mask & ~CVRMask)) {
173       Qualifiers Q;
174       Q.Mask = L.Mask & R.Mask;
175       L.Mask &= ~Q.Mask;
176       R.Mask &= ~Q.Mask;
177       return Q;
178     }
179 
180     Qualifiers Q;
181     unsigned CommonCRV = L.getCVRQualifiers() & R.getCVRQualifiers();
182     Q.addCVRQualifiers(CommonCRV);
183     L.removeCVRQualifiers(CommonCRV);
184     R.removeCVRQualifiers(CommonCRV);
185 
186     if (L.getObjCGCAttr() == R.getObjCGCAttr()) {
187       Q.setObjCGCAttr(L.getObjCGCAttr());
188       L.removeObjCGCAttr();
189       R.removeObjCGCAttr();
190     }
191 
192     if (L.getObjCLifetime() == R.getObjCLifetime()) {
193       Q.setObjCLifetime(L.getObjCLifetime());
194       L.removeObjCLifetime();
195       R.removeObjCLifetime();
196     }
197 
198     if (L.getAddressSpace() == R.getAddressSpace()) {
199       Q.setAddressSpace(L.getAddressSpace());
200       L.removeAddressSpace();
201       R.removeAddressSpace();
202     }
203     return Q;
204   }
205 
206   static Qualifiers fromFastMask(unsigned Mask) {
207     Qualifiers Qs;
208     Qs.addFastQualifiers(Mask);
209     return Qs;
210   }
211 
212   static Qualifiers fromCVRMask(unsigned CVR) {
213     Qualifiers Qs;
214     Qs.addCVRQualifiers(CVR);
215     return Qs;
216   }
217 
218   static Qualifiers fromCVRUMask(unsigned CVRU) {
219     Qualifiers Qs;
220     Qs.addCVRUQualifiers(CVRU);
221     return Qs;
222   }
223 
224   // Deserialize qualifiers from an opaque representation.
225   static Qualifiers fromOpaqueValue(unsigned opaque) {
226     Qualifiers Qs;
227     Qs.Mask = opaque;
228     return Qs;
229   }
230 
231   // Serialize these qualifiers into an opaque representation.
232   unsigned getAsOpaqueValue() const {
233     return Mask;
234   }
235 
236   bool hasConst() const { return Mask & Const; }
237   void setConst(bool flag) {
238     Mask = (Mask & ~Const) | (flag ? Const : 0);
239   }
240   void removeConst() { Mask &= ~Const; }
241   void addConst() { Mask |= Const; }
242 
243   bool hasVolatile() const { return Mask & Volatile; }
244   void setVolatile(bool flag) {
245     Mask = (Mask & ~Volatile) | (flag ? Volatile : 0);
246   }
247   void removeVolatile() { Mask &= ~Volatile; }
248   void addVolatile() { Mask |= Volatile; }
249 
250   bool hasRestrict() const { return Mask & Restrict; }
251   void setRestrict(bool flag) {
252     Mask = (Mask & ~Restrict) | (flag ? Restrict : 0);
253   }
254   void removeRestrict() { Mask &= ~Restrict; }
255   void addRestrict() { Mask |= Restrict; }
256 
257   bool hasCVRQualifiers() const { return getCVRQualifiers(); }
258   unsigned getCVRQualifiers() const { return Mask & CVRMask; }
259   void setCVRQualifiers(unsigned mask) {
260     assert(!(mask & ~CVRMask) && "bitmask contains non-CVR bits");
261     Mask = (Mask & ~CVRMask) | mask;
262   }
263   void removeCVRQualifiers(unsigned mask) {
264     assert(!(mask & ~CVRMask) && "bitmask contains non-CVR bits");
265     Mask &= ~mask;
266   }
267   void removeCVRQualifiers() {
268     removeCVRQualifiers(CVRMask);
269   }
270   void addCVRQualifiers(unsigned mask) {
271     assert(!(mask & ~CVRMask) && "bitmask contains non-CVR bits");
272     Mask |= mask;
273   }
274   void addCVRUQualifiers(unsigned mask) {
275     assert(!(mask & ~CVRMask & ~UMask) && "bitmask contains non-CVRU bits");
276     Mask |= mask;
277   }
278 
279   bool hasUnaligned() const { return Mask & UMask; }
280   void setUnaligned(bool flag) {
281     Mask = (Mask & ~UMask) | (flag ? UMask : 0);
282   }
283   void removeUnaligned() { Mask &= ~UMask; }
284   void addUnaligned() { Mask |= UMask; }
285 
286   bool hasObjCGCAttr() const { return Mask & GCAttrMask; }
287   GC getObjCGCAttr() const { return GC((Mask & GCAttrMask) >> GCAttrShift); }
288   void setObjCGCAttr(GC type) {
289     Mask = (Mask & ~GCAttrMask) | (type << GCAttrShift);
290   }
291   void removeObjCGCAttr() { setObjCGCAttr(GCNone); }
292   void addObjCGCAttr(GC type) {
293     assert(type);
294     setObjCGCAttr(type);
295   }
296   Qualifiers withoutObjCGCAttr() const {
297     Qualifiers qs = *this;
298     qs.removeObjCGCAttr();
299     return qs;
300   }
301   Qualifiers withoutObjCLifetime() const {
302     Qualifiers qs = *this;
303     qs.removeObjCLifetime();
304     return qs;
305   }
306 
307   bool hasObjCLifetime() const { return Mask & LifetimeMask; }
308   ObjCLifetime getObjCLifetime() const {
309     return ObjCLifetime((Mask & LifetimeMask) >> LifetimeShift);
310   }
311   void setObjCLifetime(ObjCLifetime type) {
312     Mask = (Mask & ~LifetimeMask) | (type << LifetimeShift);
313   }
314   void removeObjCLifetime() { setObjCLifetime(OCL_None); }
315   void addObjCLifetime(ObjCLifetime type) {
316     assert(type);
317     assert(!hasObjCLifetime());
318     Mask |= (type << LifetimeShift);
319   }
320 
321   /// True if the lifetime is neither None or ExplicitNone.
322   bool hasNonTrivialObjCLifetime() const {
323     ObjCLifetime lifetime = getObjCLifetime();
324     return (lifetime > OCL_ExplicitNone);
325   }
326 
327   /// True if the lifetime is either strong or weak.
328   bool hasStrongOrWeakObjCLifetime() const {
329     ObjCLifetime lifetime = getObjCLifetime();
330     return (lifetime == OCL_Strong || lifetime == OCL_Weak);
331   }
332 
333   bool hasAddressSpace() const { return Mask & AddressSpaceMask; }
334   unsigned getAddressSpace() const { return Mask >> AddressSpaceShift; }
335   void setAddressSpace(unsigned space) {
336     assert(space <= MaxAddressSpace);
337     Mask = (Mask & ~AddressSpaceMask)
338          | (((uint32_t) space) << AddressSpaceShift);
339   }
340   void removeAddressSpace() { setAddressSpace(0); }
341   void addAddressSpace(unsigned space) {
342     assert(space);
343     setAddressSpace(space);
344   }
345 
346   // Fast qualifiers are those that can be allocated directly
347   // on a QualType object.
348   bool hasFastQualifiers() const { return getFastQualifiers(); }
349   unsigned getFastQualifiers() const { return Mask & FastMask; }
350   void setFastQualifiers(unsigned mask) {
351     assert(!(mask & ~FastMask) && "bitmask contains non-fast qualifier bits");
352     Mask = (Mask & ~FastMask) | mask;
353   }
354   void removeFastQualifiers(unsigned mask) {
355     assert(!(mask & ~FastMask) && "bitmask contains non-fast qualifier bits");
356     Mask &= ~mask;
357   }
358   void removeFastQualifiers() {
359     removeFastQualifiers(FastMask);
360   }
361   void addFastQualifiers(unsigned mask) {
362     assert(!(mask & ~FastMask) && "bitmask contains non-fast qualifier bits");
363     Mask |= mask;
364   }
365 
366   /// Return true if the set contains any qualifiers which require an ExtQuals
367   /// node to be allocated.
368   bool hasNonFastQualifiers() const { return Mask & ~FastMask; }
369   Qualifiers getNonFastQualifiers() const {
370     Qualifiers Quals = *this;
371     Quals.setFastQualifiers(0);
372     return Quals;
373   }
374 
375   /// Return true if the set contains any qualifiers.
376   bool hasQualifiers() const { return Mask; }
377   bool empty() const { return !Mask; }
378 
379   /// Add the qualifiers from the given set to this set.
380   void addQualifiers(Qualifiers Q) {
381     // If the other set doesn't have any non-boolean qualifiers, just
382     // bit-or it in.
383     if (!(Q.Mask & ~CVRMask))
384       Mask |= Q.Mask;
385     else {
386       Mask |= (Q.Mask & CVRMask);
387       if (Q.hasAddressSpace())
388         addAddressSpace(Q.getAddressSpace());
389       if (Q.hasObjCGCAttr())
390         addObjCGCAttr(Q.getObjCGCAttr());
391       if (Q.hasObjCLifetime())
392         addObjCLifetime(Q.getObjCLifetime());
393     }
394   }
395 
396   /// \brief Remove the qualifiers from the given set from this set.
397   void removeQualifiers(Qualifiers Q) {
398     // If the other set doesn't have any non-boolean qualifiers, just
399     // bit-and the inverse in.
400     if (!(Q.Mask & ~CVRMask))
401       Mask &= ~Q.Mask;
402     else {
403       Mask &= ~(Q.Mask & CVRMask);
404       if (getObjCGCAttr() == Q.getObjCGCAttr())
405         removeObjCGCAttr();
406       if (getObjCLifetime() == Q.getObjCLifetime())
407         removeObjCLifetime();
408       if (getAddressSpace() == Q.getAddressSpace())
409         removeAddressSpace();
410     }
411   }
412 
413   /// Add the qualifiers from the given set to this set, given that
414   /// they don't conflict.
415   void addConsistentQualifiers(Qualifiers qs) {
416     assert(getAddressSpace() == qs.getAddressSpace() ||
417            !hasAddressSpace() || !qs.hasAddressSpace());
418     assert(getObjCGCAttr() == qs.getObjCGCAttr() ||
419            !hasObjCGCAttr() || !qs.hasObjCGCAttr());
420     assert(getObjCLifetime() == qs.getObjCLifetime() ||
421            !hasObjCLifetime() || !qs.hasObjCLifetime());
422     Mask |= qs.Mask;
423   }
424 
425   /// Returns true if this address space is a superset of the other one.
426   /// OpenCL v2.0 defines conversion rules (OpenCLC v2.0 s6.5.5) and notion of
427   /// overlapping address spaces.
428   /// CL1.1 or CL1.2:
429   ///   every address space is a superset of itself.
430   /// CL2.0 adds:
431   ///   __generic is a superset of any address space except for __constant.
432   bool isAddressSpaceSupersetOf(Qualifiers other) const {
433     return
434         // Address spaces must match exactly.
435         getAddressSpace() == other.getAddressSpace() ||
436         // Otherwise in OpenCLC v2.0 s6.5.5: every address space except
437         // for __constant can be used as __generic.
438         (getAddressSpace() == LangAS::opencl_generic &&
439          other.getAddressSpace() != LangAS::opencl_constant);
440   }
441 
442   /// Determines if these qualifiers compatibly include another set.
443   /// Generally this answers the question of whether an object with the other
444   /// qualifiers can be safely used as an object with these qualifiers.
445   bool compatiblyIncludes(Qualifiers other) const {
446     return isAddressSpaceSupersetOf(other) &&
447            // ObjC GC qualifiers can match, be added, or be removed, but can't
448            // be changed.
449            (getObjCGCAttr() == other.getObjCGCAttr() || !hasObjCGCAttr() ||
450             !other.hasObjCGCAttr()) &&
451            // ObjC lifetime qualifiers must match exactly.
452            getObjCLifetime() == other.getObjCLifetime() &&
453            // CVR qualifiers may subset.
454            (((Mask & CVRMask) | (other.Mask & CVRMask)) == (Mask & CVRMask)) &&
455            // U qualifier may superset.
456            (!other.hasUnaligned() || hasUnaligned());
457   }
458 
459   /// \brief Determines if these qualifiers compatibly include another set of
460   /// qualifiers from the narrow perspective of Objective-C ARC lifetime.
461   ///
462   /// One set of Objective-C lifetime qualifiers compatibly includes the other
463   /// if the lifetime qualifiers match, or if both are non-__weak and the
464   /// including set also contains the 'const' qualifier, or both are non-__weak
465   /// and one is None (which can only happen in non-ARC modes).
466   bool compatiblyIncludesObjCLifetime(Qualifiers other) const {
467     if (getObjCLifetime() == other.getObjCLifetime())
468       return true;
469 
470     if (getObjCLifetime() == OCL_Weak || other.getObjCLifetime() == OCL_Weak)
471       return false;
472 
473     if (getObjCLifetime() == OCL_None || other.getObjCLifetime() == OCL_None)
474       return true;
475 
476     return hasConst();
477   }
478 
479   /// \brief Determine whether this set of qualifiers is a strict superset of
480   /// another set of qualifiers, not considering qualifier compatibility.
481   bool isStrictSupersetOf(Qualifiers Other) const;
482 
483   bool operator==(Qualifiers Other) const { return Mask == Other.Mask; }
484   bool operator!=(Qualifiers Other) const { return Mask != Other.Mask; }
485 
486   explicit operator bool() const { return hasQualifiers(); }
487 
488   Qualifiers &operator+=(Qualifiers R) {
489     addQualifiers(R);
490     return *this;
491   }
492 
493   // Union two qualifier sets.  If an enumerated qualifier appears
494   // in both sets, use the one from the right.
495   friend Qualifiers operator+(Qualifiers L, Qualifiers R) {
496     L += R;
497     return L;
498   }
499 
500   Qualifiers &operator-=(Qualifiers R) {
501     removeQualifiers(R);
502     return *this;
503   }
504 
505   /// \brief Compute the difference between two qualifier sets.
506   friend Qualifiers operator-(Qualifiers L, Qualifiers R) {
507     L -= R;
508     return L;
509   }
510 
511   std::string getAsString() const;
512   std::string getAsString(const PrintingPolicy &Policy) const;
513 
514   bool isEmptyWhenPrinted(const PrintingPolicy &Policy) const;
515   void print(raw_ostream &OS, const PrintingPolicy &Policy,
516              bool appendSpaceIfNonEmpty = false) const;
517 
518   void Profile(llvm::FoldingSetNodeID &ID) const {
519     ID.AddInteger(Mask);
520   }
521 
522 private:
523 
524   // bits:     |0 1 2|3|4 .. 5|6  ..  8|9   ...   31|
525   //           |C R V|U|GCAttr|Lifetime|AddressSpace|
526   uint32_t Mask;
527 
528   static const uint32_t UMask = 0x8;
529   static const uint32_t UShift = 3;
530   static const uint32_t GCAttrMask = 0x30;
531   static const uint32_t GCAttrShift = 4;
532   static const uint32_t LifetimeMask = 0x1C0;
533   static const uint32_t LifetimeShift = 6;
534   static const uint32_t AddressSpaceMask =
535       ~(CVRMask | UMask | GCAttrMask | LifetimeMask);
536   static const uint32_t AddressSpaceShift = 9;
537 };
538 
539 /// A std::pair-like structure for storing a qualified type split
540 /// into its local qualifiers and its locally-unqualified type.
541 struct SplitQualType {
542   /// The locally-unqualified type.
543   const Type *Ty;
544 
545   /// The local qualifiers.
546   Qualifiers Quals;
547 
548   SplitQualType() : Ty(nullptr), Quals() {}
549   SplitQualType(const Type *ty, Qualifiers qs) : Ty(ty), Quals(qs) {}
550 
551   SplitQualType getSingleStepDesugaredType() const; // end of this file
552 
553   // Make std::tie work.
554   std::pair<const Type *,Qualifiers> asPair() const {
555     return std::pair<const Type *, Qualifiers>(Ty, Quals);
556   }
557 
558   friend bool operator==(SplitQualType a, SplitQualType b) {
559     return a.Ty == b.Ty && a.Quals == b.Quals;
560   }
561   friend bool operator!=(SplitQualType a, SplitQualType b) {
562     return a.Ty != b.Ty || a.Quals != b.Quals;
563   }
564 };
565 
566 /// The kind of type we are substituting Objective-C type arguments into.
567 ///
568 /// The kind of substitution affects the replacement of type parameters when
569 /// no concrete type information is provided, e.g., when dealing with an
570 /// unspecialized type.
571 enum class ObjCSubstitutionContext {
572   /// An ordinary type.
573   Ordinary,
574   /// The result type of a method or function.
575   Result,
576   /// The parameter type of a method or function.
577   Parameter,
578   /// The type of a property.
579   Property,
580   /// The superclass of a type.
581   Superclass,
582 };
583 
584 /// A (possibly-)qualified type.
585 ///
586 /// For efficiency, we don't store CV-qualified types as nodes on their
587 /// own: instead each reference to a type stores the qualifiers.  This
588 /// greatly reduces the number of nodes we need to allocate for types (for
589 /// example we only need one for 'int', 'const int', 'volatile int',
590 /// 'const volatile int', etc).
591 ///
592 /// As an added efficiency bonus, instead of making this a pair, we
593 /// just store the two bits we care about in the low bits of the
594 /// pointer.  To handle the packing/unpacking, we make QualType be a
595 /// simple wrapper class that acts like a smart pointer.  A third bit
596 /// indicates whether there are extended qualifiers present, in which
597 /// case the pointer points to a special structure.
598 class QualType {
599   // Thankfully, these are efficiently composable.
600   llvm::PointerIntPair<llvm::PointerUnion<const Type*,const ExtQuals*>,
601                        Qualifiers::FastWidth> Value;
602 
603   const ExtQuals *getExtQualsUnsafe() const {
604     return Value.getPointer().get<const ExtQuals*>();
605   }
606 
607   const Type *getTypePtrUnsafe() const {
608     return Value.getPointer().get<const Type*>();
609   }
610 
611   const ExtQualsTypeCommonBase *getCommonPtr() const {
612     assert(!isNull() && "Cannot retrieve a NULL type pointer");
613     uintptr_t CommonPtrVal
614       = reinterpret_cast<uintptr_t>(Value.getOpaqueValue());
615     CommonPtrVal &= ~(uintptr_t)((1 << TypeAlignmentInBits) - 1);
616     return reinterpret_cast<ExtQualsTypeCommonBase*>(CommonPtrVal);
617   }
618 
619   friend class QualifierCollector;
620 public:
621   QualType() {}
622 
623   QualType(const Type *Ptr, unsigned Quals)
624     : Value(Ptr, Quals) {}
625   QualType(const ExtQuals *Ptr, unsigned Quals)
626     : Value(Ptr, Quals) {}
627 
628   unsigned getLocalFastQualifiers() const { return Value.getInt(); }
629   void setLocalFastQualifiers(unsigned Quals) { Value.setInt(Quals); }
630 
631   /// Retrieves a pointer to the underlying (unqualified) type.
632   ///
633   /// This function requires that the type not be NULL. If the type might be
634   /// NULL, use the (slightly less efficient) \c getTypePtrOrNull().
635   const Type *getTypePtr() const;
636 
637   const Type *getTypePtrOrNull() const;
638 
639   /// Retrieves a pointer to the name of the base type.
640   const IdentifierInfo *getBaseTypeIdentifier() const;
641 
642   /// Divides a QualType into its unqualified type and a set of local
643   /// qualifiers.
644   SplitQualType split() const;
645 
646   void *getAsOpaquePtr() const { return Value.getOpaqueValue(); }
647   static QualType getFromOpaquePtr(const void *Ptr) {
648     QualType T;
649     T.Value.setFromOpaqueValue(const_cast<void*>(Ptr));
650     return T;
651   }
652 
653   const Type &operator*() const {
654     return *getTypePtr();
655   }
656 
657   const Type *operator->() const {
658     return getTypePtr();
659   }
660 
661   bool isCanonical() const;
662   bool isCanonicalAsParam() const;
663 
664   /// Return true if this QualType doesn't point to a type yet.
665   bool isNull() const {
666     return Value.getPointer().isNull();
667   }
668 
669   /// \brief Determine whether this particular QualType instance has the
670   /// "const" qualifier set, without looking through typedefs that may have
671   /// added "const" at a different level.
672   bool isLocalConstQualified() const {
673     return (getLocalFastQualifiers() & Qualifiers::Const);
674   }
675 
676   /// \brief Determine whether this type is const-qualified.
677   bool isConstQualified() const;
678 
679   /// \brief Determine whether this particular QualType instance has the
680   /// "restrict" qualifier set, without looking through typedefs that may have
681   /// added "restrict" at a different level.
682   bool isLocalRestrictQualified() const {
683     return (getLocalFastQualifiers() & Qualifiers::Restrict);
684   }
685 
686   /// \brief Determine whether this type is restrict-qualified.
687   bool isRestrictQualified() const;
688 
689   /// \brief Determine whether this particular QualType instance has the
690   /// "volatile" qualifier set, without looking through typedefs that may have
691   /// added "volatile" at a different level.
692   bool isLocalVolatileQualified() const {
693     return (getLocalFastQualifiers() & Qualifiers::Volatile);
694   }
695 
696   /// \brief Determine whether this type is volatile-qualified.
697   bool isVolatileQualified() const;
698 
699   /// \brief Determine whether this particular QualType instance has any
700   /// qualifiers, without looking through any typedefs that might add
701   /// qualifiers at a different level.
702   bool hasLocalQualifiers() const {
703     return getLocalFastQualifiers() || hasLocalNonFastQualifiers();
704   }
705 
706   /// \brief Determine whether this type has any qualifiers.
707   bool hasQualifiers() const;
708 
709   /// \brief Determine whether this particular QualType instance has any
710   /// "non-fast" qualifiers, e.g., those that are stored in an ExtQualType
711   /// instance.
712   bool hasLocalNonFastQualifiers() const {
713     return Value.getPointer().is<const ExtQuals*>();
714   }
715 
716   /// \brief Retrieve the set of qualifiers local to this particular QualType
717   /// instance, not including any qualifiers acquired through typedefs or
718   /// other sugar.
719   Qualifiers getLocalQualifiers() const;
720 
721   /// \brief Retrieve the set of qualifiers applied to this type.
722   Qualifiers getQualifiers() const;
723 
724   /// \brief Retrieve the set of CVR (const-volatile-restrict) qualifiers
725   /// local to this particular QualType instance, not including any qualifiers
726   /// acquired through typedefs or other sugar.
727   unsigned getLocalCVRQualifiers() const {
728     return getLocalFastQualifiers();
729   }
730 
731   /// \brief Retrieve the set of CVR (const-volatile-restrict) qualifiers
732   /// applied to this type.
733   unsigned getCVRQualifiers() const;
734 
735   bool isConstant(const ASTContext& Ctx) const {
736     return QualType::isConstant(*this, Ctx);
737   }
738 
739   /// \brief Determine whether this is a Plain Old Data (POD) type (C++ 3.9p10).
740   bool isPODType(const ASTContext &Context) const;
741 
742   /// Return true if this is a POD type according to the rules of the C++98
743   /// standard, regardless of the current compilation's language.
744   bool isCXX98PODType(const ASTContext &Context) const;
745 
746   /// Return true if this is a POD type according to the more relaxed rules
747   /// of the C++11 standard, regardless of the current compilation's language.
748   /// (C++0x [basic.types]p9)
749   bool isCXX11PODType(const ASTContext &Context) const;
750 
751   /// Return true if this is a trivial type per (C++0x [basic.types]p9)
752   bool isTrivialType(const ASTContext &Context) const;
753 
754   /// Return true if this is a trivially copyable type (C++0x [basic.types]p9)
755   bool isTriviallyCopyableType(const ASTContext &Context) const;
756 
757   // Don't promise in the API that anything besides 'const' can be
758   // easily added.
759 
760   /// Add the `const` type qualifier to this QualType.
761   void addConst() {
762     addFastQualifiers(Qualifiers::Const);
763   }
764   QualType withConst() const {
765     return withFastQualifiers(Qualifiers::Const);
766   }
767 
768   /// Add the `volatile` type qualifier to this QualType.
769   void addVolatile() {
770     addFastQualifiers(Qualifiers::Volatile);
771   }
772   QualType withVolatile() const {
773     return withFastQualifiers(Qualifiers::Volatile);
774   }
775 
776   /// Add the `restrict` qualifier to this QualType.
777   void addRestrict() {
778     addFastQualifiers(Qualifiers::Restrict);
779   }
780   QualType withRestrict() const {
781     return withFastQualifiers(Qualifiers::Restrict);
782   }
783 
784   QualType withCVRQualifiers(unsigned CVR) const {
785     return withFastQualifiers(CVR);
786   }
787 
788   void addFastQualifiers(unsigned TQs) {
789     assert(!(TQs & ~Qualifiers::FastMask)
790            && "non-fast qualifier bits set in mask!");
791     Value.setInt(Value.getInt() | TQs);
792   }
793 
794   void removeLocalConst();
795   void removeLocalVolatile();
796   void removeLocalRestrict();
797   void removeLocalCVRQualifiers(unsigned Mask);
798 
799   void removeLocalFastQualifiers() { Value.setInt(0); }
800   void removeLocalFastQualifiers(unsigned Mask) {
801     assert(!(Mask & ~Qualifiers::FastMask) && "mask has non-fast qualifiers");
802     Value.setInt(Value.getInt() & ~Mask);
803   }
804 
805   // Creates a type with the given qualifiers in addition to any
806   // qualifiers already on this type.
807   QualType withFastQualifiers(unsigned TQs) const {
808     QualType T = *this;
809     T.addFastQualifiers(TQs);
810     return T;
811   }
812 
813   // Creates a type with exactly the given fast qualifiers, removing
814   // any existing fast qualifiers.
815   QualType withExactLocalFastQualifiers(unsigned TQs) const {
816     return withoutLocalFastQualifiers().withFastQualifiers(TQs);
817   }
818 
819   // Removes fast qualifiers, but leaves any extended qualifiers in place.
820   QualType withoutLocalFastQualifiers() const {
821     QualType T = *this;
822     T.removeLocalFastQualifiers();
823     return T;
824   }
825 
826   QualType getCanonicalType() const;
827 
828   /// \brief Return this type with all of the instance-specific qualifiers
829   /// removed, but without removing any qualifiers that may have been applied
830   /// through typedefs.
831   QualType getLocalUnqualifiedType() const { return QualType(getTypePtr(), 0); }
832 
833   /// \brief Retrieve the unqualified variant of the given type,
834   /// removing as little sugar as possible.
835   ///
836   /// This routine looks through various kinds of sugar to find the
837   /// least-desugared type that is unqualified. For example, given:
838   ///
839   /// \code
840   /// typedef int Integer;
841   /// typedef const Integer CInteger;
842   /// typedef CInteger DifferenceType;
843   /// \endcode
844   ///
845   /// Executing \c getUnqualifiedType() on the type \c DifferenceType will
846   /// desugar until we hit the type \c Integer, which has no qualifiers on it.
847   ///
848   /// The resulting type might still be qualified if it's sugar for an array
849   /// type.  To strip qualifiers even from within a sugared array type, use
850   /// ASTContext::getUnqualifiedArrayType.
851   inline QualType getUnqualifiedType() const;
852 
853   /// Retrieve the unqualified variant of the given type, removing as little
854   /// sugar as possible.
855   ///
856   /// Like getUnqualifiedType(), but also returns the set of
857   /// qualifiers that were built up.
858   ///
859   /// The resulting type might still be qualified if it's sugar for an array
860   /// type.  To strip qualifiers even from within a sugared array type, use
861   /// ASTContext::getUnqualifiedArrayType.
862   inline SplitQualType getSplitUnqualifiedType() const;
863 
864   /// \brief Determine whether this type is more qualified than the other
865   /// given type, requiring exact equality for non-CVR qualifiers.
866   bool isMoreQualifiedThan(QualType Other) const;
867 
868   /// \brief Determine whether this type is at least as qualified as the other
869   /// given type, requiring exact equality for non-CVR qualifiers.
870   bool isAtLeastAsQualifiedAs(QualType Other) const;
871 
872   QualType getNonReferenceType() const;
873 
874   /// \brief Determine the type of a (typically non-lvalue) expression with the
875   /// specified result type.
876   ///
877   /// This routine should be used for expressions for which the return type is
878   /// explicitly specified (e.g., in a cast or call) and isn't necessarily
879   /// an lvalue. It removes a top-level reference (since there are no
880   /// expressions of reference type) and deletes top-level cvr-qualifiers
881   /// from non-class types (in C++) or all types (in C).
882   QualType getNonLValueExprType(const ASTContext &Context) const;
883 
884   /// Return the specified type with any "sugar" removed from
885   /// the type.  This takes off typedefs, typeof's etc.  If the outer level of
886   /// the type is already concrete, it returns it unmodified.  This is similar
887   /// to getting the canonical type, but it doesn't remove *all* typedefs.  For
888   /// example, it returns "T*" as "T*", (not as "int*"), because the pointer is
889   /// concrete.
890   ///
891   /// Qualifiers are left in place.
892   QualType getDesugaredType(const ASTContext &Context) const {
893     return getDesugaredType(*this, Context);
894   }
895 
896   SplitQualType getSplitDesugaredType() const {
897     return getSplitDesugaredType(*this);
898   }
899 
900   /// \brief Return the specified type with one level of "sugar" removed from
901   /// the type.
902   ///
903   /// This routine takes off the first typedef, typeof, etc. If the outer level
904   /// of the type is already concrete, it returns it unmodified.
905   QualType getSingleStepDesugaredType(const ASTContext &Context) const {
906     return getSingleStepDesugaredTypeImpl(*this, Context);
907   }
908 
909   /// Returns the specified type after dropping any
910   /// outer-level parentheses.
911   QualType IgnoreParens() const {
912     if (isa<ParenType>(*this))
913       return QualType::IgnoreParens(*this);
914     return *this;
915   }
916 
917   /// Indicate whether the specified types and qualifiers are identical.
918   friend bool operator==(const QualType &LHS, const QualType &RHS) {
919     return LHS.Value == RHS.Value;
920   }
921   friend bool operator!=(const QualType &LHS, const QualType &RHS) {
922     return LHS.Value != RHS.Value;
923   }
924   std::string getAsString() const {
925     return getAsString(split());
926   }
927   static std::string getAsString(SplitQualType split) {
928     return getAsString(split.Ty, split.Quals);
929   }
930   static std::string getAsString(const Type *ty, Qualifiers qs);
931 
932   std::string getAsString(const PrintingPolicy &Policy) const;
933 
934   void print(raw_ostream &OS, const PrintingPolicy &Policy,
935              const Twine &PlaceHolder = Twine(),
936              unsigned Indentation = 0) const {
937     print(split(), OS, Policy, PlaceHolder, Indentation);
938   }
939   static void print(SplitQualType split, raw_ostream &OS,
940                     const PrintingPolicy &policy, const Twine &PlaceHolder,
941                     unsigned Indentation = 0) {
942     return print(split.Ty, split.Quals, OS, policy, PlaceHolder, Indentation);
943   }
944   static void print(const Type *ty, Qualifiers qs,
945                     raw_ostream &OS, const PrintingPolicy &policy,
946                     const Twine &PlaceHolder,
947                     unsigned Indentation = 0);
948 
949   void getAsStringInternal(std::string &Str,
950                            const PrintingPolicy &Policy) const {
951     return getAsStringInternal(split(), Str, Policy);
952   }
953   static void getAsStringInternal(SplitQualType split, std::string &out,
954                                   const PrintingPolicy &policy) {
955     return getAsStringInternal(split.Ty, split.Quals, out, policy);
956   }
957   static void getAsStringInternal(const Type *ty, Qualifiers qs,
958                                   std::string &out,
959                                   const PrintingPolicy &policy);
960 
961   class StreamedQualTypeHelper {
962     const QualType &T;
963     const PrintingPolicy &Policy;
964     const Twine &PlaceHolder;
965     unsigned Indentation;
966   public:
967     StreamedQualTypeHelper(const QualType &T, const PrintingPolicy &Policy,
968                            const Twine &PlaceHolder, unsigned Indentation)
969       : T(T), Policy(Policy), PlaceHolder(PlaceHolder),
970         Indentation(Indentation) { }
971 
972     friend raw_ostream &operator<<(raw_ostream &OS,
973                                    const StreamedQualTypeHelper &SQT) {
974       SQT.T.print(OS, SQT.Policy, SQT.PlaceHolder, SQT.Indentation);
975       return OS;
976     }
977   };
978 
979   StreamedQualTypeHelper stream(const PrintingPolicy &Policy,
980                                 const Twine &PlaceHolder = Twine(),
981                                 unsigned Indentation = 0) const {
982     return StreamedQualTypeHelper(*this, Policy, PlaceHolder, Indentation);
983   }
984 
985   void dump(const char *s) const;
986   void dump() const;
987 
988   void Profile(llvm::FoldingSetNodeID &ID) const {
989     ID.AddPointer(getAsOpaquePtr());
990   }
991 
992   /// Return the address space of this type.
993   inline unsigned getAddressSpace() const;
994 
995   /// Returns gc attribute of this type.
996   inline Qualifiers::GC getObjCGCAttr() const;
997 
998   /// true when Type is objc's weak.
999   bool isObjCGCWeak() const {
1000     return getObjCGCAttr() == Qualifiers::Weak;
1001   }
1002 
1003   /// true when Type is objc's strong.
1004   bool isObjCGCStrong() const {
1005     return getObjCGCAttr() == Qualifiers::Strong;
1006   }
1007 
1008   /// Returns lifetime attribute of this type.
1009   Qualifiers::ObjCLifetime getObjCLifetime() const {
1010     return getQualifiers().getObjCLifetime();
1011   }
1012 
1013   bool hasNonTrivialObjCLifetime() const {
1014     return getQualifiers().hasNonTrivialObjCLifetime();
1015   }
1016 
1017   bool hasStrongOrWeakObjCLifetime() const {
1018     return getQualifiers().hasStrongOrWeakObjCLifetime();
1019   }
1020 
1021   enum DestructionKind {
1022     DK_none,
1023     DK_cxx_destructor,
1024     DK_objc_strong_lifetime,
1025     DK_objc_weak_lifetime
1026   };
1027 
1028   /// Returns a nonzero value if objects of this type require
1029   /// non-trivial work to clean up after.  Non-zero because it's
1030   /// conceivable that qualifiers (objc_gc(weak)?) could make
1031   /// something require destruction.
1032   DestructionKind isDestructedType() const {
1033     return isDestructedTypeImpl(*this);
1034   }
1035 
1036   /// Determine whether expressions of the given type are forbidden
1037   /// from being lvalues in C.
1038   ///
1039   /// The expression types that are forbidden to be lvalues are:
1040   ///   - 'void', but not qualified void
1041   ///   - function types
1042   ///
1043   /// The exact rule here is C99 6.3.2.1:
1044   ///   An lvalue is an expression with an object type or an incomplete
1045   ///   type other than void.
1046   bool isCForbiddenLValueType() const;
1047 
1048   /// Substitute type arguments for the Objective-C type parameters used in the
1049   /// subject type.
1050   ///
1051   /// \param ctx ASTContext in which the type exists.
1052   ///
1053   /// \param typeArgs The type arguments that will be substituted for the
1054   /// Objective-C type parameters in the subject type, which are generally
1055   /// computed via \c Type::getObjCSubstitutions. If empty, the type
1056   /// parameters will be replaced with their bounds or id/Class, as appropriate
1057   /// for the context.
1058   ///
1059   /// \param context The context in which the subject type was written.
1060   ///
1061   /// \returns the resulting type.
1062   QualType substObjCTypeArgs(ASTContext &ctx,
1063                              ArrayRef<QualType> typeArgs,
1064                              ObjCSubstitutionContext context) const;
1065 
1066   /// Substitute type arguments from an object type for the Objective-C type
1067   /// parameters used in the subject type.
1068   ///
1069   /// This operation combines the computation of type arguments for
1070   /// substitution (\c Type::getObjCSubstitutions) with the actual process of
1071   /// substitution (\c QualType::substObjCTypeArgs) for the convenience of
1072   /// callers that need to perform a single substitution in isolation.
1073   ///
1074   /// \param objectType The type of the object whose member type we're
1075   /// substituting into. For example, this might be the receiver of a message
1076   /// or the base of a property access.
1077   ///
1078   /// \param dc The declaration context from which the subject type was
1079   /// retrieved, which indicates (for example) which type parameters should
1080   /// be substituted.
1081   ///
1082   /// \param context The context in which the subject type was written.
1083   ///
1084   /// \returns the subject type after replacing all of the Objective-C type
1085   /// parameters with their corresponding arguments.
1086   QualType substObjCMemberType(QualType objectType,
1087                                const DeclContext *dc,
1088                                ObjCSubstitutionContext context) const;
1089 
1090   /// Strip Objective-C "__kindof" types from the given type.
1091   QualType stripObjCKindOfType(const ASTContext &ctx) const;
1092 
1093   /// Remove all qualifiers including _Atomic.
1094   QualType getAtomicUnqualifiedType() const;
1095 
1096 private:
1097   // These methods are implemented in a separate translation unit;
1098   // "static"-ize them to avoid creating temporary QualTypes in the
1099   // caller.
1100   static bool isConstant(QualType T, const ASTContext& Ctx);
1101   static QualType getDesugaredType(QualType T, const ASTContext &Context);
1102   static SplitQualType getSplitDesugaredType(QualType T);
1103   static SplitQualType getSplitUnqualifiedTypeImpl(QualType type);
1104   static QualType getSingleStepDesugaredTypeImpl(QualType type,
1105                                                  const ASTContext &C);
1106   static QualType IgnoreParens(QualType T);
1107   static DestructionKind isDestructedTypeImpl(QualType type);
1108 };
1109 
1110 } // end clang.
1111 
1112 namespace llvm {
1113 /// Implement simplify_type for QualType, so that we can dyn_cast from QualType
1114 /// to a specific Type class.
1115 template<> struct simplify_type< ::clang::QualType> {
1116   typedef const ::clang::Type *SimpleType;
1117   static SimpleType getSimplifiedValue(::clang::QualType Val) {
1118     return Val.getTypePtr();
1119   }
1120 };
1121 
1122 // Teach SmallPtrSet that QualType is "basically a pointer".
1123 template<>
1124 class PointerLikeTypeTraits<clang::QualType> {
1125 public:
1126   static inline void *getAsVoidPointer(clang::QualType P) {
1127     return P.getAsOpaquePtr();
1128   }
1129   static inline clang::QualType getFromVoidPointer(void *P) {
1130     return clang::QualType::getFromOpaquePtr(P);
1131   }
1132   // Various qualifiers go in low bits.
1133   enum { NumLowBitsAvailable = 0 };
1134 };
1135 
1136 } // end namespace llvm
1137 
1138 namespace clang {
1139 
1140 /// \brief Base class that is common to both the \c ExtQuals and \c Type
1141 /// classes, which allows \c QualType to access the common fields between the
1142 /// two.
1143 ///
1144 class ExtQualsTypeCommonBase {
1145   ExtQualsTypeCommonBase(const Type *baseType, QualType canon)
1146     : BaseType(baseType), CanonicalType(canon) {}
1147 
1148   /// \brief The "base" type of an extended qualifiers type (\c ExtQuals) or
1149   /// a self-referential pointer (for \c Type).
1150   ///
1151   /// This pointer allows an efficient mapping from a QualType to its
1152   /// underlying type pointer.
1153   const Type *const BaseType;
1154 
1155   /// \brief The canonical type of this type.  A QualType.
1156   QualType CanonicalType;
1157 
1158   friend class QualType;
1159   friend class Type;
1160   friend class ExtQuals;
1161 };
1162 
1163 /// We can encode up to four bits in the low bits of a
1164 /// type pointer, but there are many more type qualifiers that we want
1165 /// to be able to apply to an arbitrary type.  Therefore we have this
1166 /// struct, intended to be heap-allocated and used by QualType to
1167 /// store qualifiers.
1168 ///
1169 /// The current design tags the 'const', 'restrict', and 'volatile' qualifiers
1170 /// in three low bits on the QualType pointer; a fourth bit records whether
1171 /// the pointer is an ExtQuals node. The extended qualifiers (address spaces,
1172 /// Objective-C GC attributes) are much more rare.
1173 class ExtQuals : public ExtQualsTypeCommonBase, public llvm::FoldingSetNode {
1174   // NOTE: changing the fast qualifiers should be straightforward as
1175   // long as you don't make 'const' non-fast.
1176   // 1. Qualifiers:
1177   //    a) Modify the bitmasks (Qualifiers::TQ and DeclSpec::TQ).
1178   //       Fast qualifiers must occupy the low-order bits.
1179   //    b) Update Qualifiers::FastWidth and FastMask.
1180   // 2. QualType:
1181   //    a) Update is{Volatile,Restrict}Qualified(), defined inline.
1182   //    b) Update remove{Volatile,Restrict}, defined near the end of
1183   //       this header.
1184   // 3. ASTContext:
1185   //    a) Update get{Volatile,Restrict}Type.
1186 
1187   /// The immutable set of qualifiers applied by this node. Always contains
1188   /// extended qualifiers.
1189   Qualifiers Quals;
1190 
1191   ExtQuals *this_() { return this; }
1192 
1193 public:
1194   ExtQuals(const Type *baseType, QualType canon, Qualifiers quals)
1195     : ExtQualsTypeCommonBase(baseType,
1196                              canon.isNull() ? QualType(this_(), 0) : canon),
1197       Quals(quals)
1198   {
1199     assert(Quals.hasNonFastQualifiers()
1200            && "ExtQuals created with no fast qualifiers");
1201     assert(!Quals.hasFastQualifiers()
1202            && "ExtQuals created with fast qualifiers");
1203   }
1204 
1205   Qualifiers getQualifiers() const { return Quals; }
1206 
1207   bool hasObjCGCAttr() const { return Quals.hasObjCGCAttr(); }
1208   Qualifiers::GC getObjCGCAttr() const { return Quals.getObjCGCAttr(); }
1209 
1210   bool hasObjCLifetime() const { return Quals.hasObjCLifetime(); }
1211   Qualifiers::ObjCLifetime getObjCLifetime() const {
1212     return Quals.getObjCLifetime();
1213   }
1214 
1215   bool hasAddressSpace() const { return Quals.hasAddressSpace(); }
1216   unsigned getAddressSpace() const { return Quals.getAddressSpace(); }
1217 
1218   const Type *getBaseType() const { return BaseType; }
1219 
1220 public:
1221   void Profile(llvm::FoldingSetNodeID &ID) const {
1222     Profile(ID, getBaseType(), Quals);
1223   }
1224   static void Profile(llvm::FoldingSetNodeID &ID,
1225                       const Type *BaseType,
1226                       Qualifiers Quals) {
1227     assert(!Quals.hasFastQualifiers() && "fast qualifiers in ExtQuals hash!");
1228     ID.AddPointer(BaseType);
1229     Quals.Profile(ID);
1230   }
1231 };
1232 
1233 /// The kind of C++11 ref-qualifier associated with a function type.
1234 /// This determines whether a member function's "this" object can be an
1235 /// lvalue, rvalue, or neither.
1236 enum RefQualifierKind {
1237   /// \brief No ref-qualifier was provided.
1238   RQ_None = 0,
1239   /// \brief An lvalue ref-qualifier was provided (\c &).
1240   RQ_LValue,
1241   /// \brief An rvalue ref-qualifier was provided (\c &&).
1242   RQ_RValue
1243 };
1244 
1245 /// Which keyword(s) were used to create an AutoType.
1246 enum class AutoTypeKeyword {
1247   /// \brief auto
1248   Auto,
1249   /// \brief decltype(auto)
1250   DecltypeAuto,
1251   /// \brief __auto_type (GNU extension)
1252   GNUAutoType
1253 };
1254 
1255 /// The base class of the type hierarchy.
1256 ///
1257 /// A central concept with types is that each type always has a canonical
1258 /// type.  A canonical type is the type with any typedef names stripped out
1259 /// of it or the types it references.  For example, consider:
1260 ///
1261 ///  typedef int  foo;
1262 ///  typedef foo* bar;
1263 ///    'int *'    'foo *'    'bar'
1264 ///
1265 /// There will be a Type object created for 'int'.  Since int is canonical, its
1266 /// CanonicalType pointer points to itself.  There is also a Type for 'foo' (a
1267 /// TypedefType).  Its CanonicalType pointer points to the 'int' Type.  Next
1268 /// there is a PointerType that represents 'int*', which, like 'int', is
1269 /// canonical.  Finally, there is a PointerType type for 'foo*' whose canonical
1270 /// type is 'int*', and there is a TypedefType for 'bar', whose canonical type
1271 /// is also 'int*'.
1272 ///
1273 /// Non-canonical types are useful for emitting diagnostics, without losing
1274 /// information about typedefs being used.  Canonical types are useful for type
1275 /// comparisons (they allow by-pointer equality tests) and useful for reasoning
1276 /// about whether something has a particular form (e.g. is a function type),
1277 /// because they implicitly, recursively, strip all typedefs out of a type.
1278 ///
1279 /// Types, once created, are immutable.
1280 ///
1281 class Type : public ExtQualsTypeCommonBase {
1282 public:
1283   enum TypeClass {
1284 #define TYPE(Class, Base) Class,
1285 #define LAST_TYPE(Class) TypeLast = Class,
1286 #define ABSTRACT_TYPE(Class, Base)
1287 #include "clang/AST/TypeNodes.def"
1288     TagFirst = Record, TagLast = Enum
1289   };
1290 
1291 private:
1292   Type(const Type &) = delete;
1293   void operator=(const Type &) = delete;
1294 
1295   /// Bitfields required by the Type class.
1296   class TypeBitfields {
1297     friend class Type;
1298     template <class T> friend class TypePropertyCache;
1299 
1300     /// TypeClass bitfield - Enum that specifies what subclass this belongs to.
1301     unsigned TC : 8;
1302 
1303     /// Whether this type is a dependent type (C++ [temp.dep.type]).
1304     unsigned Dependent : 1;
1305 
1306     /// Whether this type somehow involves a template parameter, even
1307     /// if the resolution of the type does not depend on a template parameter.
1308     unsigned InstantiationDependent : 1;
1309 
1310     /// Whether this type is a variably-modified type (C99 6.7.5).
1311     unsigned VariablyModified : 1;
1312 
1313     /// \brief Whether this type contains an unexpanded parameter pack
1314     /// (for C++11 variadic templates).
1315     unsigned ContainsUnexpandedParameterPack : 1;
1316 
1317     /// \brief True if the cache (i.e. the bitfields here starting with
1318     /// 'Cache') is valid.
1319     mutable unsigned CacheValid : 1;
1320 
1321     /// \brief Linkage of this type.
1322     mutable unsigned CachedLinkage : 3;
1323 
1324     /// \brief Whether this type involves and local or unnamed types.
1325     mutable unsigned CachedLocalOrUnnamed : 1;
1326 
1327     /// \brief Whether this type comes from an AST file.
1328     mutable unsigned FromAST : 1;
1329 
1330     bool isCacheValid() const {
1331       return CacheValid;
1332     }
1333     Linkage getLinkage() const {
1334       assert(isCacheValid() && "getting linkage from invalid cache");
1335       return static_cast<Linkage>(CachedLinkage);
1336     }
1337     bool hasLocalOrUnnamedType() const {
1338       assert(isCacheValid() && "getting linkage from invalid cache");
1339       return CachedLocalOrUnnamed;
1340     }
1341   };
1342   enum { NumTypeBits = 18 };
1343 
1344 protected:
1345   // These classes allow subclasses to somewhat cleanly pack bitfields
1346   // into Type.
1347 
1348   class ArrayTypeBitfields {
1349     friend class ArrayType;
1350 
1351     unsigned : NumTypeBits;
1352 
1353     /// CVR qualifiers from declarations like
1354     /// 'int X[static restrict 4]'. For function parameters only.
1355     unsigned IndexTypeQuals : 3;
1356 
1357     /// Storage class qualifiers from declarations like
1358     /// 'int X[static restrict 4]'. For function parameters only.
1359     /// Actually an ArrayType::ArraySizeModifier.
1360     unsigned SizeModifier : 3;
1361   };
1362 
1363   class BuiltinTypeBitfields {
1364     friend class BuiltinType;
1365 
1366     unsigned : NumTypeBits;
1367 
1368     /// The kind (BuiltinType::Kind) of builtin type this is.
1369     unsigned Kind : 8;
1370   };
1371 
1372   class FunctionTypeBitfields {
1373     friend class FunctionType;
1374     friend class FunctionProtoType;
1375 
1376     unsigned : NumTypeBits;
1377 
1378     /// Extra information which affects how the function is called, like
1379     /// regparm and the calling convention.
1380     unsigned ExtInfo : 9;
1381 
1382     /// Used only by FunctionProtoType, put here to pack with the
1383     /// other bitfields.
1384     /// The qualifiers are part of FunctionProtoType because...
1385     ///
1386     /// C++ 8.3.5p4: The return type, the parameter type list and the
1387     /// cv-qualifier-seq, [...], are part of the function type.
1388     unsigned TypeQuals : 4;
1389 
1390     /// \brief The ref-qualifier associated with a \c FunctionProtoType.
1391     ///
1392     /// This is a value of type \c RefQualifierKind.
1393     unsigned RefQualifier : 2;
1394   };
1395 
1396   class ObjCObjectTypeBitfields {
1397     friend class ObjCObjectType;
1398 
1399     unsigned : NumTypeBits;
1400 
1401     /// The number of type arguments stored directly on this object type.
1402     unsigned NumTypeArgs : 7;
1403 
1404     /// The number of protocols stored directly on this object type.
1405     unsigned NumProtocols : 6;
1406 
1407     /// Whether this is a "kindof" type.
1408     unsigned IsKindOf : 1;
1409   };
1410   static_assert(NumTypeBits + 7 + 6 + 1 <= 32, "Does not fit in an unsigned");
1411 
1412   class ReferenceTypeBitfields {
1413     friend class ReferenceType;
1414 
1415     unsigned : NumTypeBits;
1416 
1417     /// True if the type was originally spelled with an lvalue sigil.
1418     /// This is never true of rvalue references but can also be false
1419     /// on lvalue references because of C++0x [dcl.typedef]p9,
1420     /// as follows:
1421     ///
1422     ///   typedef int &ref;    // lvalue, spelled lvalue
1423     ///   typedef int &&rvref; // rvalue
1424     ///   ref &a;              // lvalue, inner ref, spelled lvalue
1425     ///   ref &&a;             // lvalue, inner ref
1426     ///   rvref &a;            // lvalue, inner ref, spelled lvalue
1427     ///   rvref &&a;           // rvalue, inner ref
1428     unsigned SpelledAsLValue : 1;
1429 
1430     /// True if the inner type is a reference type.  This only happens
1431     /// in non-canonical forms.
1432     unsigned InnerRef : 1;
1433   };
1434 
1435   class TypeWithKeywordBitfields {
1436     friend class TypeWithKeyword;
1437 
1438     unsigned : NumTypeBits;
1439 
1440     /// An ElaboratedTypeKeyword.  8 bits for efficient access.
1441     unsigned Keyword : 8;
1442   };
1443 
1444   class VectorTypeBitfields {
1445     friend class VectorType;
1446 
1447     unsigned : NumTypeBits;
1448 
1449     /// The kind of vector, either a generic vector type or some
1450     /// target-specific vector type such as for AltiVec or Neon.
1451     unsigned VecKind : 3;
1452 
1453     /// The number of elements in the vector.
1454     unsigned NumElements : 29 - NumTypeBits;
1455 
1456     enum { MaxNumElements = (1 << (29 - NumTypeBits)) - 1 };
1457   };
1458 
1459   class AttributedTypeBitfields {
1460     friend class AttributedType;
1461 
1462     unsigned : NumTypeBits;
1463 
1464     /// An AttributedType::Kind
1465     unsigned AttrKind : 32 - NumTypeBits;
1466   };
1467 
1468   class AutoTypeBitfields {
1469     friend class AutoType;
1470 
1471     unsigned : NumTypeBits;
1472 
1473     /// Was this placeholder type spelled as 'auto', 'decltype(auto)',
1474     /// or '__auto_type'?  AutoTypeKeyword value.
1475     unsigned Keyword : 2;
1476   };
1477 
1478   union {
1479     TypeBitfields TypeBits;
1480     ArrayTypeBitfields ArrayTypeBits;
1481     AttributedTypeBitfields AttributedTypeBits;
1482     AutoTypeBitfields AutoTypeBits;
1483     BuiltinTypeBitfields BuiltinTypeBits;
1484     FunctionTypeBitfields FunctionTypeBits;
1485     ObjCObjectTypeBitfields ObjCObjectTypeBits;
1486     ReferenceTypeBitfields ReferenceTypeBits;
1487     TypeWithKeywordBitfields TypeWithKeywordBits;
1488     VectorTypeBitfields VectorTypeBits;
1489   };
1490 
1491 private:
1492   /// \brief Set whether this type comes from an AST file.
1493   void setFromAST(bool V = true) const {
1494     TypeBits.FromAST = V;
1495   }
1496 
1497   template <class T> friend class TypePropertyCache;
1498 
1499 protected:
1500   // silence VC++ warning C4355: 'this' : used in base member initializer list
1501   Type *this_() { return this; }
1502   Type(TypeClass tc, QualType canon, bool Dependent,
1503        bool InstantiationDependent, bool VariablyModified,
1504        bool ContainsUnexpandedParameterPack)
1505     : ExtQualsTypeCommonBase(this,
1506                              canon.isNull() ? QualType(this_(), 0) : canon) {
1507     TypeBits.TC = tc;
1508     TypeBits.Dependent = Dependent;
1509     TypeBits.InstantiationDependent = Dependent || InstantiationDependent;
1510     TypeBits.VariablyModified = VariablyModified;
1511     TypeBits.ContainsUnexpandedParameterPack = ContainsUnexpandedParameterPack;
1512     TypeBits.CacheValid = false;
1513     TypeBits.CachedLocalOrUnnamed = false;
1514     TypeBits.CachedLinkage = NoLinkage;
1515     TypeBits.FromAST = false;
1516   }
1517   friend class ASTContext;
1518 
1519   void setDependent(bool D = true) {
1520     TypeBits.Dependent = D;
1521     if (D)
1522       TypeBits.InstantiationDependent = true;
1523   }
1524   void setInstantiationDependent(bool D = true) {
1525     TypeBits.InstantiationDependent = D; }
1526   void setVariablyModified(bool VM = true) { TypeBits.VariablyModified = VM;
1527   }
1528   void setContainsUnexpandedParameterPack(bool PP = true) {
1529     TypeBits.ContainsUnexpandedParameterPack = PP;
1530   }
1531 
1532 public:
1533   TypeClass getTypeClass() const { return static_cast<TypeClass>(TypeBits.TC); }
1534 
1535   /// \brief Whether this type comes from an AST file.
1536   bool isFromAST() const { return TypeBits.FromAST; }
1537 
1538   /// \brief Whether this type is or contains an unexpanded parameter
1539   /// pack, used to support C++0x variadic templates.
1540   ///
1541   /// A type that contains a parameter pack shall be expanded by the
1542   /// ellipsis operator at some point. For example, the typedef in the
1543   /// following example contains an unexpanded parameter pack 'T':
1544   ///
1545   /// \code
1546   /// template<typename ...T>
1547   /// struct X {
1548   ///   typedef T* pointer_types; // ill-formed; T is a parameter pack.
1549   /// };
1550   /// \endcode
1551   ///
1552   /// Note that this routine does not specify which
1553   bool containsUnexpandedParameterPack() const {
1554     return TypeBits.ContainsUnexpandedParameterPack;
1555   }
1556 
1557   /// Determines if this type would be canonical if it had no further
1558   /// qualification.
1559   bool isCanonicalUnqualified() const {
1560     return CanonicalType == QualType(this, 0);
1561   }
1562 
1563   /// Pull a single level of sugar off of this locally-unqualified type.
1564   /// Users should generally prefer SplitQualType::getSingleStepDesugaredType()
1565   /// or QualType::getSingleStepDesugaredType(const ASTContext&).
1566   QualType getLocallyUnqualifiedSingleStepDesugaredType() const;
1567 
1568   /// Types are partitioned into 3 broad categories (C99 6.2.5p1):
1569   /// object types, function types, and incomplete types.
1570 
1571   /// Return true if this is an incomplete type.
1572   /// A type that can describe objects, but which lacks information needed to
1573   /// determine its size (e.g. void, or a fwd declared struct). Clients of this
1574   /// routine will need to determine if the size is actually required.
1575   ///
1576   /// \brief Def If non-null, and the type refers to some kind of declaration
1577   /// that can be completed (such as a C struct, C++ class, or Objective-C
1578   /// class), will be set to the declaration.
1579   bool isIncompleteType(NamedDecl **Def = nullptr) const;
1580 
1581   /// Return true if this is an incomplete or object
1582   /// type, in other words, not a function type.
1583   bool isIncompleteOrObjectType() const {
1584     return !isFunctionType();
1585   }
1586 
1587   /// \brief Determine whether this type is an object type.
1588   bool isObjectType() const {
1589     // C++ [basic.types]p8:
1590     //   An object type is a (possibly cv-qualified) type that is not a
1591     //   function type, not a reference type, and not a void type.
1592     return !isReferenceType() && !isFunctionType() && !isVoidType();
1593   }
1594 
1595   /// Return true if this is a literal type
1596   /// (C++11 [basic.types]p10)
1597   bool isLiteralType(const ASTContext &Ctx) const;
1598 
1599   /// Test if this type is a standard-layout type.
1600   /// (C++0x [basic.type]p9)
1601   bool isStandardLayoutType() const;
1602 
1603   /// Helper methods to distinguish type categories. All type predicates
1604   /// operate on the canonical type, ignoring typedefs and qualifiers.
1605 
1606   /// Returns true if the type is a builtin type.
1607   bool isBuiltinType() const;
1608 
1609   /// Test for a particular builtin type.
1610   bool isSpecificBuiltinType(unsigned K) const;
1611 
1612   /// Test for a type which does not represent an actual type-system type but
1613   /// is instead used as a placeholder for various convenient purposes within
1614   /// Clang.  All such types are BuiltinTypes.
1615   bool isPlaceholderType() const;
1616   const BuiltinType *getAsPlaceholderType() const;
1617 
1618   /// Test for a specific placeholder type.
1619   bool isSpecificPlaceholderType(unsigned K) const;
1620 
1621   /// Test for a placeholder type other than Overload; see
1622   /// BuiltinType::isNonOverloadPlaceholderType.
1623   bool isNonOverloadPlaceholderType() const;
1624 
1625   /// isIntegerType() does *not* include complex integers (a GCC extension).
1626   /// isComplexIntegerType() can be used to test for complex integers.
1627   bool isIntegerType() const;     // C99 6.2.5p17 (int, char, bool, enum)
1628   bool isEnumeralType() const;
1629   bool isBooleanType() const;
1630   bool isCharType() const;
1631   bool isWideCharType() const;
1632   bool isChar16Type() const;
1633   bool isChar32Type() const;
1634   bool isAnyCharacterType() const;
1635   bool isIntegralType(const ASTContext &Ctx) const;
1636 
1637   /// Determine whether this type is an integral or enumeration type.
1638   bool isIntegralOrEnumerationType() const;
1639   /// Determine whether this type is an integral or unscoped enumeration type.
1640   bool isIntegralOrUnscopedEnumerationType() const;
1641 
1642   /// Floating point categories.
1643   bool isRealFloatingType() const; // C99 6.2.5p10 (float, double, long double)
1644   /// isComplexType() does *not* include complex integers (a GCC extension).
1645   /// isComplexIntegerType() can be used to test for complex integers.
1646   bool isComplexType() const;      // C99 6.2.5p11 (complex)
1647   bool isAnyComplexType() const;   // C99 6.2.5p11 (complex) + Complex Int.
1648   bool isFloatingType() const;     // C99 6.2.5p11 (real floating + complex)
1649   bool isHalfType() const;         // OpenCL 6.1.1.1, NEON (IEEE 754-2008 half)
1650   bool isRealType() const;         // C99 6.2.5p17 (real floating + integer)
1651   bool isArithmeticType() const;   // C99 6.2.5p18 (integer + floating)
1652   bool isVoidType() const;         // C99 6.2.5p19
1653   bool isScalarType() const;       // C99 6.2.5p21 (arithmetic + pointers)
1654   bool isAggregateType() const;
1655   bool isFundamentalType() const;
1656   bool isCompoundType() const;
1657 
1658   // Type Predicates: Check to see if this type is structurally the specified
1659   // type, ignoring typedefs and qualifiers.
1660   bool isFunctionType() const;
1661   bool isFunctionNoProtoType() const { return getAs<FunctionNoProtoType>(); }
1662   bool isFunctionProtoType() const { return getAs<FunctionProtoType>(); }
1663   bool isPointerType() const;
1664   bool isAnyPointerType() const;   // Any C pointer or ObjC object pointer
1665   bool isBlockPointerType() const;
1666   bool isVoidPointerType() const;
1667   bool isReferenceType() const;
1668   bool isLValueReferenceType() const;
1669   bool isRValueReferenceType() const;
1670   bool isFunctionPointerType() const;
1671   bool isMemberPointerType() const;
1672   bool isMemberFunctionPointerType() const;
1673   bool isMemberDataPointerType() const;
1674   bool isArrayType() const;
1675   bool isConstantArrayType() const;
1676   bool isIncompleteArrayType() const;
1677   bool isVariableArrayType() const;
1678   bool isDependentSizedArrayType() const;
1679   bool isRecordType() const;
1680   bool isClassType() const;
1681   bool isStructureType() const;
1682   bool isObjCBoxableRecordType() const;
1683   bool isInterfaceType() const;
1684   bool isStructureOrClassType() const;
1685   bool isUnionType() const;
1686   bool isComplexIntegerType() const;            // GCC _Complex integer type.
1687   bool isVectorType() const;                    // GCC vector type.
1688   bool isExtVectorType() const;                 // Extended vector type.
1689   bool isObjCObjectPointerType() const;         // pointer to ObjC object
1690   bool isObjCRetainableType() const;            // ObjC object or block pointer
1691   bool isObjCLifetimeType() const;              // (array of)* retainable type
1692   bool isObjCIndirectLifetimeType() const;      // (pointer to)* lifetime type
1693   bool isObjCNSObjectType() const;              // __attribute__((NSObject))
1694   bool isObjCIndependentClassType() const;      // __attribute__((objc_independent_class))
1695   // FIXME: change this to 'raw' interface type, so we can used 'interface' type
1696   // for the common case.
1697   bool isObjCObjectType() const;                // NSString or typeof(*(id)0)
1698   bool isObjCQualifiedInterfaceType() const;    // NSString<foo>
1699   bool isObjCQualifiedIdType() const;           // id<foo>
1700   bool isObjCQualifiedClassType() const;        // Class<foo>
1701   bool isObjCObjectOrInterfaceType() const;
1702   bool isObjCIdType() const;                    // id
1703   bool isObjCInertUnsafeUnretainedType() const;
1704 
1705   /// Whether the type is Objective-C 'id' or a __kindof type of an
1706   /// object type, e.g., __kindof NSView * or __kindof id
1707   /// <NSCopying>.
1708   ///
1709   /// \param bound Will be set to the bound on non-id subtype types,
1710   /// which will be (possibly specialized) Objective-C class type, or
1711   /// null for 'id.
1712   bool isObjCIdOrObjectKindOfType(const ASTContext &ctx,
1713                                   const ObjCObjectType *&bound) const;
1714 
1715   bool isObjCClassType() const;                 // Class
1716 
1717   /// Whether the type is Objective-C 'Class' or a __kindof type of an
1718   /// Class type, e.g., __kindof Class <NSCopying>.
1719   ///
1720   /// Unlike \c isObjCIdOrObjectKindOfType, there is no relevant bound
1721   /// here because Objective-C's type system cannot express "a class
1722   /// object for a subclass of NSFoo".
1723   bool isObjCClassOrClassKindOfType() const;
1724 
1725   bool isBlockCompatibleObjCPointerType(ASTContext &ctx) const;
1726   bool isObjCSelType() const;                 // Class
1727   bool isObjCBuiltinType() const;               // 'id' or 'Class'
1728   bool isObjCARCBridgableType() const;
1729   bool isCARCBridgableType() const;
1730   bool isTemplateTypeParmType() const;          // C++ template type parameter
1731   bool isNullPtrType() const;                   // C++0x nullptr_t
1732   bool isAtomicType() const;                    // C11 _Atomic()
1733 
1734 #define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) \
1735   bool is##Id##Type() const;
1736 #include "clang/Basic/OpenCLImageTypes.def"
1737 
1738   bool isImageType() const;                     // Any OpenCL image type
1739 
1740   bool isSamplerT() const;                      // OpenCL sampler_t
1741   bool isEventT() const;                        // OpenCL event_t
1742   bool isClkEventT() const;                     // OpenCL clk_event_t
1743   bool isQueueT() const;                        // OpenCL queue_t
1744   bool isNDRangeT() const;                      // OpenCL ndrange_t
1745   bool isReserveIDT() const;                    // OpenCL reserve_id_t
1746 
1747   bool isPipeType() const;                      // OpenCL pipe type
1748   bool isOpenCLSpecificType() const;            // Any OpenCL specific type
1749 
1750   /// Determines if this type, which must satisfy
1751   /// isObjCLifetimeType(), is implicitly __unsafe_unretained rather
1752   /// than implicitly __strong.
1753   bool isObjCARCImplicitlyUnretainedType() const;
1754 
1755   /// Return the implicit lifetime for this type, which must not be dependent.
1756   Qualifiers::ObjCLifetime getObjCARCImplicitLifetime() const;
1757 
1758   enum ScalarTypeKind {
1759     STK_CPointer,
1760     STK_BlockPointer,
1761     STK_ObjCObjectPointer,
1762     STK_MemberPointer,
1763     STK_Bool,
1764     STK_Integral,
1765     STK_Floating,
1766     STK_IntegralComplex,
1767     STK_FloatingComplex
1768   };
1769   /// Given that this is a scalar type, classify it.
1770   ScalarTypeKind getScalarTypeKind() const;
1771 
1772   /// Whether this type is a dependent type, meaning that its definition
1773   /// somehow depends on a template parameter (C++ [temp.dep.type]).
1774   bool isDependentType() const { return TypeBits.Dependent; }
1775 
1776   /// \brief Determine whether this type is an instantiation-dependent type,
1777   /// meaning that the type involves a template parameter (even if the
1778   /// definition does not actually depend on the type substituted for that
1779   /// template parameter).
1780   bool isInstantiationDependentType() const {
1781     return TypeBits.InstantiationDependent;
1782   }
1783 
1784   /// \brief Determine whether this type is an undeduced type, meaning that
1785   /// it somehow involves a C++11 'auto' type which has not yet been deduced.
1786   bool isUndeducedType() const;
1787 
1788   /// \brief Whether this type is a variably-modified type (C99 6.7.5).
1789   bool isVariablyModifiedType() const { return TypeBits.VariablyModified; }
1790 
1791   /// \brief Whether this type involves a variable-length array type
1792   /// with a definite size.
1793   bool hasSizedVLAType() const;
1794 
1795   /// \brief Whether this type is or contains a local or unnamed type.
1796   bool hasUnnamedOrLocalType() const;
1797 
1798   bool isOverloadableType() const;
1799 
1800   /// \brief Determine wither this type is a C++ elaborated-type-specifier.
1801   bool isElaboratedTypeSpecifier() const;
1802 
1803   bool canDecayToPointerType() const;
1804 
1805   /// Whether this type is represented natively as a pointer.  This includes
1806   /// pointers, references, block pointers, and Objective-C interface,
1807   /// qualified id, and qualified interface types, as well as nullptr_t.
1808   bool hasPointerRepresentation() const;
1809 
1810   /// Whether this type can represent an objective pointer type for the
1811   /// purpose of GC'ability
1812   bool hasObjCPointerRepresentation() const;
1813 
1814   /// \brief Determine whether this type has an integer representation
1815   /// of some sort, e.g., it is an integer type or a vector.
1816   bool hasIntegerRepresentation() const;
1817 
1818   /// \brief Determine whether this type has an signed integer representation
1819   /// of some sort, e.g., it is an signed integer type or a vector.
1820   bool hasSignedIntegerRepresentation() const;
1821 
1822   /// \brief Determine whether this type has an unsigned integer representation
1823   /// of some sort, e.g., it is an unsigned integer type or a vector.
1824   bool hasUnsignedIntegerRepresentation() const;
1825 
1826   /// \brief Determine whether this type has a floating-point representation
1827   /// of some sort, e.g., it is a floating-point type or a vector thereof.
1828   bool hasFloatingRepresentation() const;
1829 
1830   // Type Checking Functions: Check to see if this type is structurally the
1831   // specified type, ignoring typedefs and qualifiers, and return a pointer to
1832   // the best type we can.
1833   const RecordType *getAsStructureType() const;
1834   /// NOTE: getAs*ArrayType are methods on ASTContext.
1835   const RecordType *getAsUnionType() const;
1836   const ComplexType *getAsComplexIntegerType() const; // GCC complex int type.
1837   const ObjCObjectType *getAsObjCInterfaceType() const;
1838   // The following is a convenience method that returns an ObjCObjectPointerType
1839   // for object declared using an interface.
1840   const ObjCObjectPointerType *getAsObjCInterfacePointerType() const;
1841   const ObjCObjectPointerType *getAsObjCQualifiedIdType() const;
1842   const ObjCObjectPointerType *getAsObjCQualifiedClassType() const;
1843   const ObjCObjectType *getAsObjCQualifiedInterfaceType() const;
1844 
1845   /// \brief Retrieves the CXXRecordDecl that this type refers to, either
1846   /// because the type is a RecordType or because it is the injected-class-name
1847   /// type of a class template or class template partial specialization.
1848   CXXRecordDecl *getAsCXXRecordDecl() const;
1849 
1850   /// \brief Retrieves the TagDecl that this type refers to, either
1851   /// because the type is a TagType or because it is the injected-class-name
1852   /// type of a class template or class template partial specialization.
1853   TagDecl *getAsTagDecl() const;
1854 
1855   /// If this is a pointer or reference to a RecordType, return the
1856   /// CXXRecordDecl that that type refers to.
1857   ///
1858   /// If this is not a pointer or reference, or the type being pointed to does
1859   /// not refer to a CXXRecordDecl, returns NULL.
1860   const CXXRecordDecl *getPointeeCXXRecordDecl() const;
1861 
1862   /// Get the AutoType whose type will be deduced for a variable with
1863   /// an initializer of this type. This looks through declarators like pointer
1864   /// types, but not through decltype or typedefs.
1865   AutoType *getContainedAutoType() const;
1866 
1867   /// Member-template getAs<specific type>'.  Look through sugar for
1868   /// an instance of \<specific type>.   This scheme will eventually
1869   /// replace the specific getAsXXXX methods above.
1870   ///
1871   /// There are some specializations of this member template listed
1872   /// immediately following this class.
1873   template <typename T> const T *getAs() const;
1874 
1875   /// A variant of getAs<> for array types which silently discards
1876   /// qualifiers from the outermost type.
1877   const ArrayType *getAsArrayTypeUnsafe() const;
1878 
1879   /// Member-template castAs<specific type>.  Look through sugar for
1880   /// the underlying instance of \<specific type>.
1881   ///
1882   /// This method has the same relationship to getAs<T> as cast<T> has
1883   /// to dyn_cast<T>; which is to say, the underlying type *must*
1884   /// have the intended type, and this method will never return null.
1885   template <typename T> const T *castAs() const;
1886 
1887   /// A variant of castAs<> for array type which silently discards
1888   /// qualifiers from the outermost type.
1889   const ArrayType *castAsArrayTypeUnsafe() const;
1890 
1891   /// Get the base element type of this type, potentially discarding type
1892   /// qualifiers.  This should never be used when type qualifiers
1893   /// are meaningful.
1894   const Type *getBaseElementTypeUnsafe() const;
1895 
1896   /// If this is an array type, return the element type of the array,
1897   /// potentially with type qualifiers missing.
1898   /// This should never be used when type qualifiers are meaningful.
1899   const Type *getArrayElementTypeNoTypeQual() const;
1900 
1901   /// If this is a pointer type, return the pointee type.
1902   /// If this is an array type, return the array element type.
1903   /// This should never be used when type qualifiers are meaningful.
1904   const Type *getPointeeOrArrayElementType() const;
1905 
1906   /// If this is a pointer, ObjC object pointer, or block
1907   /// pointer, this returns the respective pointee.
1908   QualType getPointeeType() const;
1909 
1910   /// Return the specified type with any "sugar" removed from the type,
1911   /// removing any typedefs, typeofs, etc., as well as any qualifiers.
1912   const Type *getUnqualifiedDesugaredType() const;
1913 
1914   /// More type predicates useful for type checking/promotion
1915   bool isPromotableIntegerType() const; // C99 6.3.1.1p2
1916 
1917   /// Return true if this is an integer type that is
1918   /// signed, according to C99 6.2.5p4 [char, signed char, short, int, long..],
1919   /// or an enum decl which has a signed representation.
1920   bool isSignedIntegerType() const;
1921 
1922   /// Return true if this is an integer type that is
1923   /// unsigned, according to C99 6.2.5p6 [which returns true for _Bool],
1924   /// or an enum decl which has an unsigned representation.
1925   bool isUnsignedIntegerType() const;
1926 
1927   /// Determines whether this is an integer type that is signed or an
1928   /// enumeration types whose underlying type is a signed integer type.
1929   bool isSignedIntegerOrEnumerationType() const;
1930 
1931   /// Determines whether this is an integer type that is unsigned or an
1932   /// enumeration types whose underlying type is a unsigned integer type.
1933   bool isUnsignedIntegerOrEnumerationType() const;
1934 
1935   /// Return true if this is not a variable sized type,
1936   /// according to the rules of C99 6.7.5p3.  It is not legal to call this on
1937   /// incomplete types.
1938   bool isConstantSizeType() const;
1939 
1940   /// Returns true if this type can be represented by some
1941   /// set of type specifiers.
1942   bool isSpecifierType() const;
1943 
1944   /// Determine the linkage of this type.
1945   Linkage getLinkage() const;
1946 
1947   /// Determine the visibility of this type.
1948   Visibility getVisibility() const {
1949     return getLinkageAndVisibility().getVisibility();
1950   }
1951 
1952   /// Return true if the visibility was explicitly set is the code.
1953   bool isVisibilityExplicit() const {
1954     return getLinkageAndVisibility().isVisibilityExplicit();
1955   }
1956 
1957   /// Determine the linkage and visibility of this type.
1958   LinkageInfo getLinkageAndVisibility() const;
1959 
1960   /// True if the computed linkage is valid. Used for consistency
1961   /// checking. Should always return true.
1962   bool isLinkageValid() const;
1963 
1964   /// Determine the nullability of the given type.
1965   ///
1966   /// Note that nullability is only captured as sugar within the type
1967   /// system, not as part of the canonical type, so nullability will
1968   /// be lost by canonicalization and desugaring.
1969   Optional<NullabilityKind> getNullability(const ASTContext &context) const;
1970 
1971   /// Determine whether the given type can have a nullability
1972   /// specifier applied to it, i.e., if it is any kind of pointer type
1973   /// or a dependent type that could instantiate to any kind of
1974   /// pointer type.
1975   bool canHaveNullability() const;
1976 
1977   /// Retrieve the set of substitutions required when accessing a member
1978   /// of the Objective-C receiver type that is declared in the given context.
1979   ///
1980   /// \c *this is the type of the object we're operating on, e.g., the
1981   /// receiver for a message send or the base of a property access, and is
1982   /// expected to be of some object or object pointer type.
1983   ///
1984   /// \param dc The declaration context for which we are building up a
1985   /// substitution mapping, which should be an Objective-C class, extension,
1986   /// category, or method within.
1987   ///
1988   /// \returns an array of type arguments that can be substituted for
1989   /// the type parameters of the given declaration context in any type described
1990   /// within that context, or an empty optional to indicate that no
1991   /// substitution is required.
1992   Optional<ArrayRef<QualType>>
1993   getObjCSubstitutions(const DeclContext *dc) const;
1994 
1995   /// Determines if this is an ObjC interface type that may accept type
1996   /// parameters.
1997   bool acceptsObjCTypeParams() const;
1998 
1999   const char *getTypeClassName() const;
2000 
2001   QualType getCanonicalTypeInternal() const {
2002     return CanonicalType;
2003   }
2004   CanQualType getCanonicalTypeUnqualified() const; // in CanonicalType.h
2005   void dump() const;
2006 
2007   friend class ASTReader;
2008   friend class ASTWriter;
2009 };
2010 
2011 /// \brief This will check for a TypedefType by removing any existing sugar
2012 /// until it reaches a TypedefType or a non-sugared type.
2013 template <> const TypedefType *Type::getAs() const;
2014 
2015 /// \brief This will check for a TemplateSpecializationType by removing any
2016 /// existing sugar until it reaches a TemplateSpecializationType or a
2017 /// non-sugared type.
2018 template <> const TemplateSpecializationType *Type::getAs() const;
2019 
2020 /// \brief This will check for an AttributedType by removing any existing sugar
2021 /// until it reaches an AttributedType or a non-sugared type.
2022 template <> const AttributedType *Type::getAs() const;
2023 
2024 // We can do canonical leaf types faster, because we don't have to
2025 // worry about preserving child type decoration.
2026 #define TYPE(Class, Base)
2027 #define LEAF_TYPE(Class) \
2028 template <> inline const Class##Type *Type::getAs() const { \
2029   return dyn_cast<Class##Type>(CanonicalType); \
2030 } \
2031 template <> inline const Class##Type *Type::castAs() const { \
2032   return cast<Class##Type>(CanonicalType); \
2033 }
2034 #include "clang/AST/TypeNodes.def"
2035 
2036 
2037 /// This class is used for builtin types like 'int'.  Builtin
2038 /// types are always canonical and have a literal name field.
2039 class BuiltinType : public Type {
2040 public:
2041   enum Kind {
2042 // OpenCL image types
2043 #define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) Id,
2044 #include "clang/Basic/OpenCLImageTypes.def"
2045 // All other builtin types
2046 #define BUILTIN_TYPE(Id, SingletonId) Id,
2047 #define LAST_BUILTIN_TYPE(Id) LastKind = Id
2048 #include "clang/AST/BuiltinTypes.def"
2049   };
2050 
2051 public:
2052   BuiltinType(Kind K)
2053     : Type(Builtin, QualType(), /*Dependent=*/(K == Dependent),
2054            /*InstantiationDependent=*/(K == Dependent),
2055            /*VariablyModified=*/false,
2056            /*Unexpanded paramter pack=*/false) {
2057     BuiltinTypeBits.Kind = K;
2058   }
2059 
2060   Kind getKind() const { return static_cast<Kind>(BuiltinTypeBits.Kind); }
2061   StringRef getName(const PrintingPolicy &Policy) const;
2062   const char *getNameAsCString(const PrintingPolicy &Policy) const {
2063     // The StringRef is null-terminated.
2064     StringRef str = getName(Policy);
2065     assert(!str.empty() && str.data()[str.size()] == '\0');
2066     return str.data();
2067   }
2068 
2069   bool isSugared() const { return false; }
2070   QualType desugar() const { return QualType(this, 0); }
2071 
2072   bool isInteger() const {
2073     return getKind() >= Bool && getKind() <= Int128;
2074   }
2075 
2076   bool isSignedInteger() const {
2077     return getKind() >= Char_S && getKind() <= Int128;
2078   }
2079 
2080   bool isUnsignedInteger() const {
2081     return getKind() >= Bool && getKind() <= UInt128;
2082   }
2083 
2084   bool isFloatingPoint() const {
2085     return getKind() >= Half && getKind() <= Float128;
2086   }
2087 
2088   /// Determines whether the given kind corresponds to a placeholder type.
2089   static bool isPlaceholderTypeKind(Kind K) {
2090     return K >= Overload;
2091   }
2092 
2093   /// Determines whether this type is a placeholder type, i.e. a type
2094   /// which cannot appear in arbitrary positions in a fully-formed
2095   /// expression.
2096   bool isPlaceholderType() const {
2097     return isPlaceholderTypeKind(getKind());
2098   }
2099 
2100   /// Determines whether this type is a placeholder type other than
2101   /// Overload.  Most placeholder types require only syntactic
2102   /// information about their context in order to be resolved (e.g.
2103   /// whether it is a call expression), which means they can (and
2104   /// should) be resolved in an earlier "phase" of analysis.
2105   /// Overload expressions sometimes pick up further information
2106   /// from their context, like whether the context expects a
2107   /// specific function-pointer type, and so frequently need
2108   /// special treatment.
2109   bool isNonOverloadPlaceholderType() const {
2110     return getKind() > Overload;
2111   }
2112 
2113   static bool classof(const Type *T) { return T->getTypeClass() == Builtin; }
2114 };
2115 
2116 /// Complex values, per C99 6.2.5p11.  This supports the C99 complex
2117 /// types (_Complex float etc) as well as the GCC integer complex extensions.
2118 ///
2119 class ComplexType : public Type, public llvm::FoldingSetNode {
2120   QualType ElementType;
2121   ComplexType(QualType Element, QualType CanonicalPtr) :
2122     Type(Complex, CanonicalPtr, Element->isDependentType(),
2123          Element->isInstantiationDependentType(),
2124          Element->isVariablyModifiedType(),
2125          Element->containsUnexpandedParameterPack()),
2126     ElementType(Element) {
2127   }
2128   friend class ASTContext;  // ASTContext creates these.
2129 
2130 public:
2131   QualType getElementType() const { return ElementType; }
2132 
2133   bool isSugared() const { return false; }
2134   QualType desugar() const { return QualType(this, 0); }
2135 
2136   void Profile(llvm::FoldingSetNodeID &ID) {
2137     Profile(ID, getElementType());
2138   }
2139   static void Profile(llvm::FoldingSetNodeID &ID, QualType Element) {
2140     ID.AddPointer(Element.getAsOpaquePtr());
2141   }
2142 
2143   static bool classof(const Type *T) { return T->getTypeClass() == Complex; }
2144 };
2145 
2146 /// Sugar for parentheses used when specifying types.
2147 ///
2148 class ParenType : public Type, public llvm::FoldingSetNode {
2149   QualType Inner;
2150 
2151   ParenType(QualType InnerType, QualType CanonType) :
2152     Type(Paren, CanonType, InnerType->isDependentType(),
2153          InnerType->isInstantiationDependentType(),
2154          InnerType->isVariablyModifiedType(),
2155          InnerType->containsUnexpandedParameterPack()),
2156     Inner(InnerType) {
2157   }
2158   friend class ASTContext;  // ASTContext creates these.
2159 
2160 public:
2161 
2162   QualType getInnerType() const { return Inner; }
2163 
2164   bool isSugared() const { return true; }
2165   QualType desugar() const { return getInnerType(); }
2166 
2167   void Profile(llvm::FoldingSetNodeID &ID) {
2168     Profile(ID, getInnerType());
2169   }
2170   static void Profile(llvm::FoldingSetNodeID &ID, QualType Inner) {
2171     Inner.Profile(ID);
2172   }
2173 
2174   static bool classof(const Type *T) { return T->getTypeClass() == Paren; }
2175 };
2176 
2177 /// PointerType - C99 6.7.5.1 - Pointer Declarators.
2178 ///
2179 class PointerType : public Type, public llvm::FoldingSetNode {
2180   QualType PointeeType;
2181 
2182   PointerType(QualType Pointee, QualType CanonicalPtr) :
2183     Type(Pointer, CanonicalPtr, Pointee->isDependentType(),
2184          Pointee->isInstantiationDependentType(),
2185          Pointee->isVariablyModifiedType(),
2186          Pointee->containsUnexpandedParameterPack()),
2187     PointeeType(Pointee) {
2188   }
2189   friend class ASTContext;  // ASTContext creates these.
2190 
2191 public:
2192 
2193   QualType getPointeeType() const { return PointeeType; }
2194 
2195   /// Returns true if address spaces of pointers overlap.
2196   /// OpenCL v2.0 defines conversion rules for pointers to different
2197   /// address spaces (OpenCLC v2.0 s6.5.5) and notion of overlapping
2198   /// address spaces.
2199   /// CL1.1 or CL1.2:
2200   ///   address spaces overlap iff they are they same.
2201   /// CL2.0 adds:
2202   ///   __generic overlaps with any address space except for __constant.
2203   bool isAddressSpaceOverlapping(const PointerType &other) const {
2204     Qualifiers thisQuals = PointeeType.getQualifiers();
2205     Qualifiers otherQuals = other.getPointeeType().getQualifiers();
2206     // Address spaces overlap if at least one of them is a superset of another
2207     return thisQuals.isAddressSpaceSupersetOf(otherQuals) ||
2208            otherQuals.isAddressSpaceSupersetOf(thisQuals);
2209   }
2210 
2211   bool isSugared() const { return false; }
2212   QualType desugar() const { return QualType(this, 0); }
2213 
2214   void Profile(llvm::FoldingSetNodeID &ID) {
2215     Profile(ID, getPointeeType());
2216   }
2217   static void Profile(llvm::FoldingSetNodeID &ID, QualType Pointee) {
2218     ID.AddPointer(Pointee.getAsOpaquePtr());
2219   }
2220 
2221   static bool classof(const Type *T) { return T->getTypeClass() == Pointer; }
2222 };
2223 
2224 /// Represents a type which was implicitly adjusted by the semantic
2225 /// engine for arbitrary reasons.  For example, array and function types can
2226 /// decay, and function types can have their calling conventions adjusted.
2227 class AdjustedType : public Type, public llvm::FoldingSetNode {
2228   QualType OriginalTy;
2229   QualType AdjustedTy;
2230 
2231 protected:
2232   AdjustedType(TypeClass TC, QualType OriginalTy, QualType AdjustedTy,
2233                QualType CanonicalPtr)
2234       : Type(TC, CanonicalPtr, OriginalTy->isDependentType(),
2235              OriginalTy->isInstantiationDependentType(),
2236              OriginalTy->isVariablyModifiedType(),
2237              OriginalTy->containsUnexpandedParameterPack()),
2238         OriginalTy(OriginalTy), AdjustedTy(AdjustedTy) {}
2239 
2240   friend class ASTContext;  // ASTContext creates these.
2241 
2242 public:
2243   QualType getOriginalType() const { return OriginalTy; }
2244   QualType getAdjustedType() const { return AdjustedTy; }
2245 
2246   bool isSugared() const { return true; }
2247   QualType desugar() const { return AdjustedTy; }
2248 
2249   void Profile(llvm::FoldingSetNodeID &ID) {
2250     Profile(ID, OriginalTy, AdjustedTy);
2251   }
2252   static void Profile(llvm::FoldingSetNodeID &ID, QualType Orig, QualType New) {
2253     ID.AddPointer(Orig.getAsOpaquePtr());
2254     ID.AddPointer(New.getAsOpaquePtr());
2255   }
2256 
2257   static bool classof(const Type *T) {
2258     return T->getTypeClass() == Adjusted || T->getTypeClass() == Decayed;
2259   }
2260 };
2261 
2262 /// Represents a pointer type decayed from an array or function type.
2263 class DecayedType : public AdjustedType {
2264 
2265   DecayedType(QualType OriginalType, QualType DecayedPtr, QualType CanonicalPtr)
2266       : AdjustedType(Decayed, OriginalType, DecayedPtr, CanonicalPtr) {
2267     assert(isa<PointerType>(getAdjustedType()));
2268   }
2269 
2270   friend class ASTContext;  // ASTContext creates these.
2271 
2272 public:
2273   QualType getDecayedType() const { return getAdjustedType(); }
2274 
2275   QualType getPointeeType() const {
2276     return cast<PointerType>(getDecayedType())->getPointeeType();
2277   }
2278 
2279   static bool classof(const Type *T) { return T->getTypeClass() == Decayed; }
2280 };
2281 
2282 /// Pointer to a block type.
2283 /// This type is to represent types syntactically represented as
2284 /// "void (^)(int)", etc. Pointee is required to always be a function type.
2285 ///
2286 class BlockPointerType : public Type, public llvm::FoldingSetNode {
2287   QualType PointeeType;  // Block is some kind of pointer type
2288   BlockPointerType(QualType Pointee, QualType CanonicalCls) :
2289     Type(BlockPointer, CanonicalCls, Pointee->isDependentType(),
2290          Pointee->isInstantiationDependentType(),
2291          Pointee->isVariablyModifiedType(),
2292          Pointee->containsUnexpandedParameterPack()),
2293     PointeeType(Pointee) {
2294   }
2295   friend class ASTContext;  // ASTContext creates these.
2296 
2297 public:
2298 
2299   // Get the pointee type. Pointee is required to always be a function type.
2300   QualType getPointeeType() const { return PointeeType; }
2301 
2302   bool isSugared() const { return false; }
2303   QualType desugar() const { return QualType(this, 0); }
2304 
2305   void Profile(llvm::FoldingSetNodeID &ID) {
2306       Profile(ID, getPointeeType());
2307   }
2308   static void Profile(llvm::FoldingSetNodeID &ID, QualType Pointee) {
2309       ID.AddPointer(Pointee.getAsOpaquePtr());
2310   }
2311 
2312   static bool classof(const Type *T) {
2313     return T->getTypeClass() == BlockPointer;
2314   }
2315 };
2316 
2317 /// Base for LValueReferenceType and RValueReferenceType
2318 ///
2319 class ReferenceType : public Type, public llvm::FoldingSetNode {
2320   QualType PointeeType;
2321 
2322 protected:
2323   ReferenceType(TypeClass tc, QualType Referencee, QualType CanonicalRef,
2324                 bool SpelledAsLValue) :
2325     Type(tc, CanonicalRef, Referencee->isDependentType(),
2326          Referencee->isInstantiationDependentType(),
2327          Referencee->isVariablyModifiedType(),
2328          Referencee->containsUnexpandedParameterPack()),
2329     PointeeType(Referencee)
2330   {
2331     ReferenceTypeBits.SpelledAsLValue = SpelledAsLValue;
2332     ReferenceTypeBits.InnerRef = Referencee->isReferenceType();
2333   }
2334 
2335 public:
2336   bool isSpelledAsLValue() const { return ReferenceTypeBits.SpelledAsLValue; }
2337   bool isInnerRef() const { return ReferenceTypeBits.InnerRef; }
2338 
2339   QualType getPointeeTypeAsWritten() const { return PointeeType; }
2340   QualType getPointeeType() const {
2341     // FIXME: this might strip inner qualifiers; okay?
2342     const ReferenceType *T = this;
2343     while (T->isInnerRef())
2344       T = T->PointeeType->castAs<ReferenceType>();
2345     return T->PointeeType;
2346   }
2347 
2348   void Profile(llvm::FoldingSetNodeID &ID) {
2349     Profile(ID, PointeeType, isSpelledAsLValue());
2350   }
2351   static void Profile(llvm::FoldingSetNodeID &ID,
2352                       QualType Referencee,
2353                       bool SpelledAsLValue) {
2354     ID.AddPointer(Referencee.getAsOpaquePtr());
2355     ID.AddBoolean(SpelledAsLValue);
2356   }
2357 
2358   static bool classof(const Type *T) {
2359     return T->getTypeClass() == LValueReference ||
2360            T->getTypeClass() == RValueReference;
2361   }
2362 };
2363 
2364 /// An lvalue reference type, per C++11 [dcl.ref].
2365 ///
2366 class LValueReferenceType : public ReferenceType {
2367   LValueReferenceType(QualType Referencee, QualType CanonicalRef,
2368                       bool SpelledAsLValue) :
2369     ReferenceType(LValueReference, Referencee, CanonicalRef, SpelledAsLValue)
2370   {}
2371   friend class ASTContext; // ASTContext creates these
2372 public:
2373   bool isSugared() const { return false; }
2374   QualType desugar() const { return QualType(this, 0); }
2375 
2376   static bool classof(const Type *T) {
2377     return T->getTypeClass() == LValueReference;
2378   }
2379 };
2380 
2381 /// An rvalue reference type, per C++11 [dcl.ref].
2382 ///
2383 class RValueReferenceType : public ReferenceType {
2384   RValueReferenceType(QualType Referencee, QualType CanonicalRef) :
2385     ReferenceType(RValueReference, Referencee, CanonicalRef, false) {
2386   }
2387   friend class ASTContext; // ASTContext creates these
2388 public:
2389   bool isSugared() const { return false; }
2390   QualType desugar() const { return QualType(this, 0); }
2391 
2392   static bool classof(const Type *T) {
2393     return T->getTypeClass() == RValueReference;
2394   }
2395 };
2396 
2397 /// A pointer to member type per C++ 8.3.3 - Pointers to members.
2398 ///
2399 /// This includes both pointers to data members and pointer to member functions.
2400 ///
2401 class MemberPointerType : public Type, public llvm::FoldingSetNode {
2402   QualType PointeeType;
2403   /// The class of which the pointee is a member. Must ultimately be a
2404   /// RecordType, but could be a typedef or a template parameter too.
2405   const Type *Class;
2406 
2407   MemberPointerType(QualType Pointee, const Type *Cls, QualType CanonicalPtr) :
2408     Type(MemberPointer, CanonicalPtr,
2409          Cls->isDependentType() || Pointee->isDependentType(),
2410          (Cls->isInstantiationDependentType() ||
2411           Pointee->isInstantiationDependentType()),
2412          Pointee->isVariablyModifiedType(),
2413          (Cls->containsUnexpandedParameterPack() ||
2414           Pointee->containsUnexpandedParameterPack())),
2415     PointeeType(Pointee), Class(Cls) {
2416   }
2417   friend class ASTContext; // ASTContext creates these.
2418 
2419 public:
2420   QualType getPointeeType() const { return PointeeType; }
2421 
2422   /// Returns true if the member type (i.e. the pointee type) is a
2423   /// function type rather than a data-member type.
2424   bool isMemberFunctionPointer() const {
2425     return PointeeType->isFunctionProtoType();
2426   }
2427 
2428   /// Returns true if the member type (i.e. the pointee type) is a
2429   /// data type rather than a function type.
2430   bool isMemberDataPointer() const {
2431     return !PointeeType->isFunctionProtoType();
2432   }
2433 
2434   const Type *getClass() const { return Class; }
2435   CXXRecordDecl *getMostRecentCXXRecordDecl() const;
2436 
2437   bool isSugared() const { return false; }
2438   QualType desugar() const { return QualType(this, 0); }
2439 
2440   void Profile(llvm::FoldingSetNodeID &ID) {
2441     Profile(ID, getPointeeType(), getClass());
2442   }
2443   static void Profile(llvm::FoldingSetNodeID &ID, QualType Pointee,
2444                       const Type *Class) {
2445     ID.AddPointer(Pointee.getAsOpaquePtr());
2446     ID.AddPointer(Class);
2447   }
2448 
2449   static bool classof(const Type *T) {
2450     return T->getTypeClass() == MemberPointer;
2451   }
2452 };
2453 
2454 /// Represents an array type, per C99 6.7.5.2 - Array Declarators.
2455 ///
2456 class ArrayType : public Type, public llvm::FoldingSetNode {
2457 public:
2458   /// Capture whether this is a normal array (e.g. int X[4])
2459   /// an array with a static size (e.g. int X[static 4]), or an array
2460   /// with a star size (e.g. int X[*]).
2461   /// 'static' is only allowed on function parameters.
2462   enum ArraySizeModifier {
2463     Normal, Static, Star
2464   };
2465 private:
2466   /// The element type of the array.
2467   QualType ElementType;
2468 
2469 protected:
2470   // C++ [temp.dep.type]p1:
2471   //   A type is dependent if it is...
2472   //     - an array type constructed from any dependent type or whose
2473   //       size is specified by a constant expression that is
2474   //       value-dependent,
2475   ArrayType(TypeClass tc, QualType et, QualType can,
2476             ArraySizeModifier sm, unsigned tq,
2477             bool ContainsUnexpandedParameterPack)
2478     : Type(tc, can, et->isDependentType() || tc == DependentSizedArray,
2479            et->isInstantiationDependentType() || tc == DependentSizedArray,
2480            (tc == VariableArray || et->isVariablyModifiedType()),
2481            ContainsUnexpandedParameterPack),
2482       ElementType(et) {
2483     ArrayTypeBits.IndexTypeQuals = tq;
2484     ArrayTypeBits.SizeModifier = sm;
2485   }
2486 
2487   friend class ASTContext;  // ASTContext creates these.
2488 
2489 public:
2490   QualType getElementType() const { return ElementType; }
2491   ArraySizeModifier getSizeModifier() const {
2492     return ArraySizeModifier(ArrayTypeBits.SizeModifier);
2493   }
2494   Qualifiers getIndexTypeQualifiers() const {
2495     return Qualifiers::fromCVRMask(getIndexTypeCVRQualifiers());
2496   }
2497   unsigned getIndexTypeCVRQualifiers() const {
2498     return ArrayTypeBits.IndexTypeQuals;
2499   }
2500 
2501   static bool classof(const Type *T) {
2502     return T->getTypeClass() == ConstantArray ||
2503            T->getTypeClass() == VariableArray ||
2504            T->getTypeClass() == IncompleteArray ||
2505            T->getTypeClass() == DependentSizedArray;
2506   }
2507 };
2508 
2509 /// Represents the canonical version of C arrays with a specified constant size.
2510 /// For example, the canonical type for 'int A[4 + 4*100]' is a
2511 /// ConstantArrayType where the element type is 'int' and the size is 404.
2512 class ConstantArrayType : public ArrayType {
2513   llvm::APInt Size; // Allows us to unique the type.
2514 
2515   ConstantArrayType(QualType et, QualType can, const llvm::APInt &size,
2516                     ArraySizeModifier sm, unsigned tq)
2517     : ArrayType(ConstantArray, et, can, sm, tq,
2518                 et->containsUnexpandedParameterPack()),
2519       Size(size) {}
2520 protected:
2521   ConstantArrayType(TypeClass tc, QualType et, QualType can,
2522                     const llvm::APInt &size, ArraySizeModifier sm, unsigned tq)
2523     : ArrayType(tc, et, can, sm, tq, et->containsUnexpandedParameterPack()),
2524       Size(size) {}
2525   friend class ASTContext;  // ASTContext creates these.
2526 public:
2527   const llvm::APInt &getSize() const { return Size; }
2528   bool isSugared() const { return false; }
2529   QualType desugar() const { return QualType(this, 0); }
2530 
2531 
2532   /// \brief Determine the number of bits required to address a member of
2533   // an array with the given element type and number of elements.
2534   static unsigned getNumAddressingBits(const ASTContext &Context,
2535                                        QualType ElementType,
2536                                        const llvm::APInt &NumElements);
2537 
2538   /// \brief Determine the maximum number of active bits that an array's size
2539   /// can require, which limits the maximum size of the array.
2540   static unsigned getMaxSizeBits(const ASTContext &Context);
2541 
2542   void Profile(llvm::FoldingSetNodeID &ID) {
2543     Profile(ID, getElementType(), getSize(),
2544             getSizeModifier(), getIndexTypeCVRQualifiers());
2545   }
2546   static void Profile(llvm::FoldingSetNodeID &ID, QualType ET,
2547                       const llvm::APInt &ArraySize, ArraySizeModifier SizeMod,
2548                       unsigned TypeQuals) {
2549     ID.AddPointer(ET.getAsOpaquePtr());
2550     ID.AddInteger(ArraySize.getZExtValue());
2551     ID.AddInteger(SizeMod);
2552     ID.AddInteger(TypeQuals);
2553   }
2554   static bool classof(const Type *T) {
2555     return T->getTypeClass() == ConstantArray;
2556   }
2557 };
2558 
2559 /// Represents a C array with an unspecified size.  For example 'int A[]' has
2560 /// an IncompleteArrayType where the element type is 'int' and the size is
2561 /// unspecified.
2562 class IncompleteArrayType : public ArrayType {
2563 
2564   IncompleteArrayType(QualType et, QualType can,
2565                       ArraySizeModifier sm, unsigned tq)
2566     : ArrayType(IncompleteArray, et, can, sm, tq,
2567                 et->containsUnexpandedParameterPack()) {}
2568   friend class ASTContext;  // ASTContext creates these.
2569 public:
2570   bool isSugared() const { return false; }
2571   QualType desugar() const { return QualType(this, 0); }
2572 
2573   static bool classof(const Type *T) {
2574     return T->getTypeClass() == IncompleteArray;
2575   }
2576 
2577   friend class StmtIteratorBase;
2578 
2579   void Profile(llvm::FoldingSetNodeID &ID) {
2580     Profile(ID, getElementType(), getSizeModifier(),
2581             getIndexTypeCVRQualifiers());
2582   }
2583 
2584   static void Profile(llvm::FoldingSetNodeID &ID, QualType ET,
2585                       ArraySizeModifier SizeMod, unsigned TypeQuals) {
2586     ID.AddPointer(ET.getAsOpaquePtr());
2587     ID.AddInteger(SizeMod);
2588     ID.AddInteger(TypeQuals);
2589   }
2590 };
2591 
2592 /// Represents a C array with a specified size that is not an
2593 /// integer-constant-expression.  For example, 'int s[x+foo()]'.
2594 /// Since the size expression is an arbitrary expression, we store it as such.
2595 ///
2596 /// Note: VariableArrayType's aren't uniqued (since the expressions aren't) and
2597 /// should not be: two lexically equivalent variable array types could mean
2598 /// different things, for example, these variables do not have the same type
2599 /// dynamically:
2600 ///
2601 /// void foo(int x) {
2602 ///   int Y[x];
2603 ///   ++x;
2604 ///   int Z[x];
2605 /// }
2606 ///
2607 class VariableArrayType : public ArrayType {
2608   /// An assignment-expression. VLA's are only permitted within
2609   /// a function block.
2610   Stmt *SizeExpr;
2611   /// The range spanned by the left and right array brackets.
2612   SourceRange Brackets;
2613 
2614   VariableArrayType(QualType et, QualType can, Expr *e,
2615                     ArraySizeModifier sm, unsigned tq,
2616                     SourceRange brackets)
2617     : ArrayType(VariableArray, et, can, sm, tq,
2618                 et->containsUnexpandedParameterPack()),
2619       SizeExpr((Stmt*) e), Brackets(brackets) {}
2620   friend class ASTContext;  // ASTContext creates these.
2621 
2622 public:
2623   Expr *getSizeExpr() const {
2624     // We use C-style casts instead of cast<> here because we do not wish
2625     // to have a dependency of Type.h on Stmt.h/Expr.h.
2626     return (Expr*) SizeExpr;
2627   }
2628   SourceRange getBracketsRange() const { return Brackets; }
2629   SourceLocation getLBracketLoc() const { return Brackets.getBegin(); }
2630   SourceLocation getRBracketLoc() const { return Brackets.getEnd(); }
2631 
2632   bool isSugared() const { return false; }
2633   QualType desugar() const { return QualType(this, 0); }
2634 
2635   static bool classof(const Type *T) {
2636     return T->getTypeClass() == VariableArray;
2637   }
2638 
2639   friend class StmtIteratorBase;
2640 
2641   void Profile(llvm::FoldingSetNodeID &ID) {
2642     llvm_unreachable("Cannot unique VariableArrayTypes.");
2643   }
2644 };
2645 
2646 /// Represents an array type in C++ whose size is a value-dependent expression.
2647 ///
2648 /// For example:
2649 /// \code
2650 /// template<typename T, int Size>
2651 /// class array {
2652 ///   T data[Size];
2653 /// };
2654 /// \endcode
2655 ///
2656 /// For these types, we won't actually know what the array bound is
2657 /// until template instantiation occurs, at which point this will
2658 /// become either a ConstantArrayType or a VariableArrayType.
2659 class DependentSizedArrayType : public ArrayType {
2660   const ASTContext &Context;
2661 
2662   /// \brief An assignment expression that will instantiate to the
2663   /// size of the array.
2664   ///
2665   /// The expression itself might be null, in which case the array
2666   /// type will have its size deduced from an initializer.
2667   Stmt *SizeExpr;
2668 
2669   /// The range spanned by the left and right array brackets.
2670   SourceRange Brackets;
2671 
2672   DependentSizedArrayType(const ASTContext &Context, QualType et, QualType can,
2673                           Expr *e, ArraySizeModifier sm, unsigned tq,
2674                           SourceRange brackets);
2675 
2676   friend class ASTContext;  // ASTContext creates these.
2677 
2678 public:
2679   Expr *getSizeExpr() const {
2680     // We use C-style casts instead of cast<> here because we do not wish
2681     // to have a dependency of Type.h on Stmt.h/Expr.h.
2682     return (Expr*) SizeExpr;
2683   }
2684   SourceRange getBracketsRange() const { return Brackets; }
2685   SourceLocation getLBracketLoc() const { return Brackets.getBegin(); }
2686   SourceLocation getRBracketLoc() const { return Brackets.getEnd(); }
2687 
2688   bool isSugared() const { return false; }
2689   QualType desugar() const { return QualType(this, 0); }
2690 
2691   static bool classof(const Type *T) {
2692     return T->getTypeClass() == DependentSizedArray;
2693   }
2694 
2695   friend class StmtIteratorBase;
2696 
2697 
2698   void Profile(llvm::FoldingSetNodeID &ID) {
2699     Profile(ID, Context, getElementType(),
2700             getSizeModifier(), getIndexTypeCVRQualifiers(), getSizeExpr());
2701   }
2702 
2703   static void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Context,
2704                       QualType ET, ArraySizeModifier SizeMod,
2705                       unsigned TypeQuals, Expr *E);
2706 };
2707 
2708 /// Represents an extended vector type where either the type or size is
2709 /// dependent.
2710 ///
2711 /// For example:
2712 /// \code
2713 /// template<typename T, int Size>
2714 /// class vector {
2715 ///   typedef T __attribute__((ext_vector_type(Size))) type;
2716 /// }
2717 /// \endcode
2718 class DependentSizedExtVectorType : public Type, public llvm::FoldingSetNode {
2719   const ASTContext &Context;
2720   Expr *SizeExpr;
2721   /// The element type of the array.
2722   QualType ElementType;
2723   SourceLocation loc;
2724 
2725   DependentSizedExtVectorType(const ASTContext &Context, QualType ElementType,
2726                               QualType can, Expr *SizeExpr, SourceLocation loc);
2727 
2728   friend class ASTContext;
2729 
2730 public:
2731   Expr *getSizeExpr() const { return SizeExpr; }
2732   QualType getElementType() const { return ElementType; }
2733   SourceLocation getAttributeLoc() const { return loc; }
2734 
2735   bool isSugared() const { return false; }
2736   QualType desugar() const { return QualType(this, 0); }
2737 
2738   static bool classof(const Type *T) {
2739     return T->getTypeClass() == DependentSizedExtVector;
2740   }
2741 
2742   void Profile(llvm::FoldingSetNodeID &ID) {
2743     Profile(ID, Context, getElementType(), getSizeExpr());
2744   }
2745 
2746   static void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Context,
2747                       QualType ElementType, Expr *SizeExpr);
2748 };
2749 
2750 
2751 /// Represents a GCC generic vector type. This type is created using
2752 /// __attribute__((vector_size(n)), where "n" specifies the vector size in
2753 /// bytes; or from an Altivec __vector or vector declaration.
2754 /// Since the constructor takes the number of vector elements, the
2755 /// client is responsible for converting the size into the number of elements.
2756 class VectorType : public Type, public llvm::FoldingSetNode {
2757 public:
2758   enum VectorKind {
2759     GenericVector,  ///< not a target-specific vector type
2760     AltiVecVector,  ///< is AltiVec vector
2761     AltiVecPixel,   ///< is AltiVec 'vector Pixel'
2762     AltiVecBool,    ///< is AltiVec 'vector bool ...'
2763     NeonVector,     ///< is ARM Neon vector
2764     NeonPolyVector  ///< is ARM Neon polynomial vector
2765   };
2766 protected:
2767   /// The element type of the vector.
2768   QualType ElementType;
2769 
2770   VectorType(QualType vecType, unsigned nElements, QualType canonType,
2771              VectorKind vecKind);
2772 
2773   VectorType(TypeClass tc, QualType vecType, unsigned nElements,
2774              QualType canonType, VectorKind vecKind);
2775 
2776   friend class ASTContext;  // ASTContext creates these.
2777 
2778 public:
2779 
2780   QualType getElementType() const { return ElementType; }
2781   unsigned getNumElements() const { return VectorTypeBits.NumElements; }
2782   static bool isVectorSizeTooLarge(unsigned NumElements) {
2783     return NumElements > VectorTypeBitfields::MaxNumElements;
2784   }
2785 
2786   bool isSugared() const { return false; }
2787   QualType desugar() const { return QualType(this, 0); }
2788 
2789   VectorKind getVectorKind() const {
2790     return VectorKind(VectorTypeBits.VecKind);
2791   }
2792 
2793   void Profile(llvm::FoldingSetNodeID &ID) {
2794     Profile(ID, getElementType(), getNumElements(),
2795             getTypeClass(), getVectorKind());
2796   }
2797   static void Profile(llvm::FoldingSetNodeID &ID, QualType ElementType,
2798                       unsigned NumElements, TypeClass TypeClass,
2799                       VectorKind VecKind) {
2800     ID.AddPointer(ElementType.getAsOpaquePtr());
2801     ID.AddInteger(NumElements);
2802     ID.AddInteger(TypeClass);
2803     ID.AddInteger(VecKind);
2804   }
2805 
2806   static bool classof(const Type *T) {
2807     return T->getTypeClass() == Vector || T->getTypeClass() == ExtVector;
2808   }
2809 };
2810 
2811 /// ExtVectorType - Extended vector type. This type is created using
2812 /// __attribute__((ext_vector_type(n)), where "n" is the number of elements.
2813 /// Unlike vector_size, ext_vector_type is only allowed on typedef's. This
2814 /// class enables syntactic extensions, like Vector Components for accessing
2815 /// points (as .xyzw), colors (as .rgba), and textures (modeled after OpenGL
2816 /// Shading Language).
2817 class ExtVectorType : public VectorType {
2818   ExtVectorType(QualType vecType, unsigned nElements, QualType canonType) :
2819     VectorType(ExtVector, vecType, nElements, canonType, GenericVector) {}
2820   friend class ASTContext;  // ASTContext creates these.
2821 public:
2822   static int getPointAccessorIdx(char c) {
2823     switch (c) {
2824     default: return -1;
2825     case 'x': case 'r': return 0;
2826     case 'y': case 'g': return 1;
2827     case 'z': case 'b': return 2;
2828     case 'w': case 'a': return 3;
2829     }
2830   }
2831   static int getNumericAccessorIdx(char c) {
2832     switch (c) {
2833       default: return -1;
2834       case '0': return 0;
2835       case '1': return 1;
2836       case '2': return 2;
2837       case '3': return 3;
2838       case '4': return 4;
2839       case '5': return 5;
2840       case '6': return 6;
2841       case '7': return 7;
2842       case '8': return 8;
2843       case '9': return 9;
2844       case 'A':
2845       case 'a': return 10;
2846       case 'B':
2847       case 'b': return 11;
2848       case 'C':
2849       case 'c': return 12;
2850       case 'D':
2851       case 'd': return 13;
2852       case 'E':
2853       case 'e': return 14;
2854       case 'F':
2855       case 'f': return 15;
2856     }
2857   }
2858 
2859   static int getAccessorIdx(char c, bool isNumericAccessor) {
2860     if (isNumericAccessor)
2861       return getNumericAccessorIdx(c);
2862     else
2863       return getPointAccessorIdx(c);
2864   }
2865 
2866   bool isAccessorWithinNumElements(char c, bool isNumericAccessor) const {
2867     if (int idx = getAccessorIdx(c, isNumericAccessor)+1)
2868       return unsigned(idx-1) < getNumElements();
2869     return false;
2870   }
2871   bool isSugared() const { return false; }
2872   QualType desugar() const { return QualType(this, 0); }
2873 
2874   static bool classof(const Type *T) {
2875     return T->getTypeClass() == ExtVector;
2876   }
2877 };
2878 
2879 /// FunctionType - C99 6.7.5.3 - Function Declarators.  This is the common base
2880 /// class of FunctionNoProtoType and FunctionProtoType.
2881 ///
2882 class FunctionType : public Type {
2883   // The type returned by the function.
2884   QualType ResultType;
2885 
2886  public:
2887   /// A class which abstracts out some details necessary for
2888   /// making a call.
2889   ///
2890   /// It is not actually used directly for storing this information in
2891   /// a FunctionType, although FunctionType does currently use the
2892   /// same bit-pattern.
2893   ///
2894   // If you add a field (say Foo), other than the obvious places (both,
2895   // constructors, compile failures), what you need to update is
2896   // * Operator==
2897   // * getFoo
2898   // * withFoo
2899   // * functionType. Add Foo, getFoo.
2900   // * ASTContext::getFooType
2901   // * ASTContext::mergeFunctionTypes
2902   // * FunctionNoProtoType::Profile
2903   // * FunctionProtoType::Profile
2904   // * TypePrinter::PrintFunctionProto
2905   // * AST read and write
2906   // * Codegen
2907   class ExtInfo {
2908     // Feel free to rearrange or add bits, but if you go over 9,
2909     // you'll need to adjust both the Bits field below and
2910     // Type::FunctionTypeBitfields.
2911 
2912     //   |  CC  |noreturn|produces|regparm|
2913     //   |0 .. 3|   4    |    5   | 6 .. 8|
2914     //
2915     // regparm is either 0 (no regparm attribute) or the regparm value+1.
2916     enum { CallConvMask = 0xF };
2917     enum { NoReturnMask = 0x10 };
2918     enum { ProducesResultMask = 0x20 };
2919     enum { RegParmMask = ~(CallConvMask | NoReturnMask | ProducesResultMask),
2920            RegParmOffset = 6 }; // Assumed to be the last field
2921 
2922     uint16_t Bits;
2923 
2924     ExtInfo(unsigned Bits) : Bits(static_cast<uint16_t>(Bits)) {}
2925 
2926     friend class FunctionType;
2927 
2928    public:
2929     // Constructor with no defaults. Use this when you know that you
2930     // have all the elements (when reading an AST file for example).
2931     ExtInfo(bool noReturn, bool hasRegParm, unsigned regParm, CallingConv cc,
2932             bool producesResult) {
2933       assert((!hasRegParm || regParm < 7) && "Invalid regparm value");
2934       Bits = ((unsigned) cc) |
2935              (noReturn ? NoReturnMask : 0) |
2936              (producesResult ? ProducesResultMask : 0) |
2937              (hasRegParm ? ((regParm + 1) << RegParmOffset) : 0);
2938     }
2939 
2940     // Constructor with all defaults. Use when for example creating a
2941     // function known to use defaults.
2942     ExtInfo() : Bits(CC_C) { }
2943 
2944     // Constructor with just the calling convention, which is an important part
2945     // of the canonical type.
2946     ExtInfo(CallingConv CC) : Bits(CC) { }
2947 
2948     bool getNoReturn() const { return Bits & NoReturnMask; }
2949     bool getProducesResult() const { return Bits & ProducesResultMask; }
2950     bool getHasRegParm() const { return (Bits >> RegParmOffset) != 0; }
2951     unsigned getRegParm() const {
2952       unsigned RegParm = Bits >> RegParmOffset;
2953       if (RegParm > 0)
2954         --RegParm;
2955       return RegParm;
2956     }
2957     CallingConv getCC() const { return CallingConv(Bits & CallConvMask); }
2958 
2959     bool operator==(ExtInfo Other) const {
2960       return Bits == Other.Bits;
2961     }
2962     bool operator!=(ExtInfo Other) const {
2963       return Bits != Other.Bits;
2964     }
2965 
2966     // Note that we don't have setters. That is by design, use
2967     // the following with methods instead of mutating these objects.
2968 
2969     ExtInfo withNoReturn(bool noReturn) const {
2970       if (noReturn)
2971         return ExtInfo(Bits | NoReturnMask);
2972       else
2973         return ExtInfo(Bits & ~NoReturnMask);
2974     }
2975 
2976     ExtInfo withProducesResult(bool producesResult) const {
2977       if (producesResult)
2978         return ExtInfo(Bits | ProducesResultMask);
2979       else
2980         return ExtInfo(Bits & ~ProducesResultMask);
2981     }
2982 
2983     ExtInfo withRegParm(unsigned RegParm) const {
2984       assert(RegParm < 7 && "Invalid regparm value");
2985       return ExtInfo((Bits & ~RegParmMask) |
2986                      ((RegParm + 1) << RegParmOffset));
2987     }
2988 
2989     ExtInfo withCallingConv(CallingConv cc) const {
2990       return ExtInfo((Bits & ~CallConvMask) | (unsigned) cc);
2991     }
2992 
2993     void Profile(llvm::FoldingSetNodeID &ID) const {
2994       ID.AddInteger(Bits);
2995     }
2996   };
2997 
2998 protected:
2999   FunctionType(TypeClass tc, QualType res,
3000                QualType Canonical, bool Dependent,
3001                bool InstantiationDependent,
3002                bool VariablyModified, bool ContainsUnexpandedParameterPack,
3003                ExtInfo Info)
3004     : Type(tc, Canonical, Dependent, InstantiationDependent, VariablyModified,
3005            ContainsUnexpandedParameterPack),
3006       ResultType(res) {
3007     FunctionTypeBits.ExtInfo = Info.Bits;
3008   }
3009   unsigned getTypeQuals() const { return FunctionTypeBits.TypeQuals; }
3010 
3011 public:
3012   QualType getReturnType() const { return ResultType; }
3013 
3014   bool getHasRegParm() const { return getExtInfo().getHasRegParm(); }
3015   unsigned getRegParmType() const { return getExtInfo().getRegParm(); }
3016   /// Determine whether this function type includes the GNU noreturn
3017   /// attribute. The C++11 [[noreturn]] attribute does not affect the function
3018   /// type.
3019   bool getNoReturnAttr() const { return getExtInfo().getNoReturn(); }
3020   CallingConv getCallConv() const { return getExtInfo().getCC(); }
3021   ExtInfo getExtInfo() const { return ExtInfo(FunctionTypeBits.ExtInfo); }
3022   bool isConst() const { return getTypeQuals() & Qualifiers::Const; }
3023   bool isVolatile() const { return getTypeQuals() & Qualifiers::Volatile; }
3024   bool isRestrict() const { return getTypeQuals() & Qualifiers::Restrict; }
3025 
3026   /// \brief Determine the type of an expression that calls a function of
3027   /// this type.
3028   QualType getCallResultType(const ASTContext &Context) const {
3029     return getReturnType().getNonLValueExprType(Context);
3030   }
3031 
3032   static StringRef getNameForCallConv(CallingConv CC);
3033 
3034   static bool classof(const Type *T) {
3035     return T->getTypeClass() == FunctionNoProto ||
3036            T->getTypeClass() == FunctionProto;
3037   }
3038 };
3039 
3040 /// Represents a K&R-style 'int foo()' function, which has
3041 /// no information available about its arguments.
3042 class FunctionNoProtoType : public FunctionType, public llvm::FoldingSetNode {
3043   FunctionNoProtoType(QualType Result, QualType Canonical, ExtInfo Info)
3044     : FunctionType(FunctionNoProto, Result, Canonical,
3045                    /*Dependent=*/false, /*InstantiationDependent=*/false,
3046                    Result->isVariablyModifiedType(),
3047                    /*ContainsUnexpandedParameterPack=*/false, Info) {}
3048 
3049   friend class ASTContext;  // ASTContext creates these.
3050 
3051 public:
3052   // No additional state past what FunctionType provides.
3053 
3054   bool isSugared() const { return false; }
3055   QualType desugar() const { return QualType(this, 0); }
3056 
3057   void Profile(llvm::FoldingSetNodeID &ID) {
3058     Profile(ID, getReturnType(), getExtInfo());
3059   }
3060   static void Profile(llvm::FoldingSetNodeID &ID, QualType ResultType,
3061                       ExtInfo Info) {
3062     Info.Profile(ID);
3063     ID.AddPointer(ResultType.getAsOpaquePtr());
3064   }
3065 
3066   static bool classof(const Type *T) {
3067     return T->getTypeClass() == FunctionNoProto;
3068   }
3069 };
3070 
3071 /// Represents a prototype with parameter type info, e.g.
3072 /// 'int foo(int)' or 'int foo(void)'.  'void' is represented as having no
3073 /// parameters, not as having a single void parameter. Such a type can have an
3074 /// exception specification, but this specification is not part of the canonical
3075 /// type.
3076 class FunctionProtoType : public FunctionType, public llvm::FoldingSetNode {
3077 public:
3078   /// Interesting information about a specific parameter that can't simply
3079   /// be reflected in parameter's type.
3080   ///
3081   /// It makes sense to model language features this way when there's some
3082   /// sort of parameter-specific override (such as an attribute) that
3083   /// affects how the function is called.  For example, the ARC ns_consumed
3084   /// attribute changes whether a parameter is passed at +0 (the default)
3085   /// or +1 (ns_consumed).  This must be reflected in the function type,
3086   /// but isn't really a change to the parameter type.
3087   ///
3088   /// One serious disadvantage of modelling language features this way is
3089   /// that they generally do not work with language features that attempt
3090   /// to destructure types.  For example, template argument deduction will
3091   /// not be able to match a parameter declared as
3092   ///   T (*)(U)
3093   /// against an argument of type
3094   ///   void (*)(__attribute__((ns_consumed)) id)
3095   /// because the substitution of T=void, U=id into the former will
3096   /// not produce the latter.
3097   class ExtParameterInfo {
3098     enum {
3099       ABIMask         = 0x0F,
3100       IsConsumed      = 0x10
3101     };
3102     unsigned char Data;
3103   public:
3104     ExtParameterInfo() : Data(0) {}
3105 
3106     /// Return the ABI treatment of this parameter.
3107     ParameterABI getABI() const {
3108       return ParameterABI(Data & ABIMask);
3109     }
3110     ExtParameterInfo withABI(ParameterABI kind) const {
3111       ExtParameterInfo copy = *this;
3112       copy.Data = (copy.Data & ~ABIMask) | unsigned(kind);
3113       return copy;
3114     }
3115 
3116     /// Is this parameter considered "consumed" by Objective-C ARC?
3117     /// Consumed parameters must have retainable object type.
3118     bool isConsumed() const {
3119       return (Data & IsConsumed);
3120     }
3121     ExtParameterInfo withIsConsumed(bool consumed) const {
3122       ExtParameterInfo copy = *this;
3123       if (consumed) {
3124         copy.Data |= IsConsumed;
3125       } else {
3126         copy.Data &= ~IsConsumed;
3127       }
3128       return copy;
3129     }
3130 
3131     unsigned char getOpaqueValue() const { return Data; }
3132     static ExtParameterInfo getFromOpaqueValue(unsigned char data) {
3133       ExtParameterInfo result;
3134       result.Data = data;
3135       return result;
3136     }
3137 
3138     friend bool operator==(ExtParameterInfo lhs, ExtParameterInfo rhs) {
3139       return lhs.Data == rhs.Data;
3140     }
3141     friend bool operator!=(ExtParameterInfo lhs, ExtParameterInfo rhs) {
3142       return lhs.Data != rhs.Data;
3143     }
3144   };
3145 
3146   struct ExceptionSpecInfo {
3147     ExceptionSpecInfo()
3148         : Type(EST_None), NoexceptExpr(nullptr),
3149           SourceDecl(nullptr), SourceTemplate(nullptr) {}
3150 
3151     ExceptionSpecInfo(ExceptionSpecificationType EST)
3152         : Type(EST), NoexceptExpr(nullptr), SourceDecl(nullptr),
3153           SourceTemplate(nullptr) {}
3154 
3155     /// The kind of exception specification this is.
3156     ExceptionSpecificationType Type;
3157     /// Explicitly-specified list of exception types.
3158     ArrayRef<QualType> Exceptions;
3159     /// Noexcept expression, if this is EST_ComputedNoexcept.
3160     Expr *NoexceptExpr;
3161     /// The function whose exception specification this is, for
3162     /// EST_Unevaluated and EST_Uninstantiated.
3163     FunctionDecl *SourceDecl;
3164     /// The function template whose exception specification this is instantiated
3165     /// from, for EST_Uninstantiated.
3166     FunctionDecl *SourceTemplate;
3167   };
3168 
3169   /// Extra information about a function prototype.
3170   struct ExtProtoInfo {
3171     ExtProtoInfo()
3172         : Variadic(false), HasTrailingReturn(false), TypeQuals(0),
3173           RefQualifier(RQ_None), ExtParameterInfos(nullptr) {}
3174 
3175     ExtProtoInfo(CallingConv CC)
3176         : ExtInfo(CC), Variadic(false), HasTrailingReturn(false), TypeQuals(0),
3177           RefQualifier(RQ_None), ExtParameterInfos(nullptr) {}
3178 
3179     ExtProtoInfo withExceptionSpec(const ExceptionSpecInfo &O) {
3180       ExtProtoInfo Result(*this);
3181       Result.ExceptionSpec = O;
3182       return Result;
3183     }
3184 
3185     FunctionType::ExtInfo ExtInfo;
3186     bool Variadic : 1;
3187     bool HasTrailingReturn : 1;
3188     unsigned char TypeQuals;
3189     RefQualifierKind RefQualifier;
3190     ExceptionSpecInfo ExceptionSpec;
3191     const ExtParameterInfo *ExtParameterInfos;
3192   };
3193 
3194 private:
3195   /// \brief Determine whether there are any argument types that
3196   /// contain an unexpanded parameter pack.
3197   static bool containsAnyUnexpandedParameterPack(const QualType *ArgArray,
3198                                                  unsigned numArgs) {
3199     for (unsigned Idx = 0; Idx < numArgs; ++Idx)
3200       if (ArgArray[Idx]->containsUnexpandedParameterPack())
3201         return true;
3202 
3203     return false;
3204   }
3205 
3206   FunctionProtoType(QualType result, ArrayRef<QualType> params,
3207                     QualType canonical, const ExtProtoInfo &epi);
3208 
3209   /// The number of parameters this function has, not counting '...'.
3210   unsigned NumParams : 15;
3211 
3212   /// The number of types in the exception spec, if any.
3213   unsigned NumExceptions : 9;
3214 
3215   /// The type of exception specification this function has.
3216   unsigned ExceptionSpecType : 4;
3217 
3218   /// Whether this function has extended parameter information.
3219   unsigned HasExtParameterInfos : 1;
3220 
3221   /// Whether the function is variadic.
3222   unsigned Variadic : 1;
3223 
3224   /// Whether this function has a trailing return type.
3225   unsigned HasTrailingReturn : 1;
3226 
3227   // ParamInfo - There is an variable size array after the class in memory that
3228   // holds the parameter types.
3229 
3230   // Exceptions - There is another variable size array after ArgInfo that
3231   // holds the exception types.
3232 
3233   // NoexceptExpr - Instead of Exceptions, there may be a single Expr* pointing
3234   // to the expression in the noexcept() specifier.
3235 
3236   // ExceptionSpecDecl, ExceptionSpecTemplate - Instead of Exceptions, there may
3237   // be a pair of FunctionDecl* pointing to the function which should be used to
3238   // instantiate this function type's exception specification, and the function
3239   // from which it should be instantiated.
3240 
3241   // ExtParameterInfos - A variable size array, following the exception
3242   // specification and of length NumParams, holding an ExtParameterInfo
3243   // for each of the parameters.  This only appears if HasExtParameterInfos
3244   // is true.
3245 
3246   friend class ASTContext;  // ASTContext creates these.
3247 
3248   const ExtParameterInfo *getExtParameterInfosBuffer() const {
3249     assert(hasExtParameterInfos());
3250 
3251     // Find the end of the exception specification.
3252     const char *ptr = reinterpret_cast<const char *>(exception_begin());
3253     ptr += getExceptionSpecSize();
3254 
3255     return reinterpret_cast<const ExtParameterInfo *>(ptr);
3256   }
3257 
3258   size_t getExceptionSpecSize() const {
3259     switch (getExceptionSpecType()) {
3260     case EST_None:             return 0;
3261     case EST_DynamicNone:      return 0;
3262     case EST_MSAny:            return 0;
3263     case EST_BasicNoexcept:    return 0;
3264     case EST_Unparsed:         return 0;
3265     case EST_Dynamic:          return getNumExceptions() * sizeof(QualType);
3266     case EST_ComputedNoexcept: return sizeof(Expr*);
3267     case EST_Uninstantiated:   return 2 * sizeof(FunctionDecl*);
3268     case EST_Unevaluated:      return sizeof(FunctionDecl*);
3269     }
3270     llvm_unreachable("bad exception specification kind");
3271   }
3272 
3273 public:
3274   unsigned getNumParams() const { return NumParams; }
3275   QualType getParamType(unsigned i) const {
3276     assert(i < NumParams && "invalid parameter index");
3277     return param_type_begin()[i];
3278   }
3279   ArrayRef<QualType> getParamTypes() const {
3280     return llvm::makeArrayRef(param_type_begin(), param_type_end());
3281   }
3282 
3283   ExtProtoInfo getExtProtoInfo() const {
3284     ExtProtoInfo EPI;
3285     EPI.ExtInfo = getExtInfo();
3286     EPI.Variadic = isVariadic();
3287     EPI.HasTrailingReturn = hasTrailingReturn();
3288     EPI.ExceptionSpec.Type = getExceptionSpecType();
3289     EPI.TypeQuals = static_cast<unsigned char>(getTypeQuals());
3290     EPI.RefQualifier = getRefQualifier();
3291     if (EPI.ExceptionSpec.Type == EST_Dynamic) {
3292       EPI.ExceptionSpec.Exceptions = exceptions();
3293     } else if (EPI.ExceptionSpec.Type == EST_ComputedNoexcept) {
3294       EPI.ExceptionSpec.NoexceptExpr = getNoexceptExpr();
3295     } else if (EPI.ExceptionSpec.Type == EST_Uninstantiated) {
3296       EPI.ExceptionSpec.SourceDecl = getExceptionSpecDecl();
3297       EPI.ExceptionSpec.SourceTemplate = getExceptionSpecTemplate();
3298     } else if (EPI.ExceptionSpec.Type == EST_Unevaluated) {
3299       EPI.ExceptionSpec.SourceDecl = getExceptionSpecDecl();
3300     }
3301     if (hasExtParameterInfos())
3302       EPI.ExtParameterInfos = getExtParameterInfosBuffer();
3303     return EPI;
3304   }
3305 
3306   /// Get the kind of exception specification on this function.
3307   ExceptionSpecificationType getExceptionSpecType() const {
3308     return static_cast<ExceptionSpecificationType>(ExceptionSpecType);
3309   }
3310   /// Return whether this function has any kind of exception spec.
3311   bool hasExceptionSpec() const {
3312     return getExceptionSpecType() != EST_None;
3313   }
3314   /// Return whether this function has a dynamic (throw) exception spec.
3315   bool hasDynamicExceptionSpec() const {
3316     return isDynamicExceptionSpec(getExceptionSpecType());
3317   }
3318   /// Return whether this function has a noexcept exception spec.
3319   bool hasNoexceptExceptionSpec() const {
3320     return isNoexceptExceptionSpec(getExceptionSpecType());
3321   }
3322   /// Return whether this function has a dependent exception spec.
3323   bool hasDependentExceptionSpec() const;
3324   /// Result type of getNoexceptSpec().
3325   enum NoexceptResult {
3326     NR_NoNoexcept,  ///< There is no noexcept specifier.
3327     NR_BadNoexcept, ///< The noexcept specifier has a bad expression.
3328     NR_Dependent,   ///< The noexcept specifier is dependent.
3329     NR_Throw,       ///< The noexcept specifier evaluates to false.
3330     NR_Nothrow      ///< The noexcept specifier evaluates to true.
3331   };
3332   /// Get the meaning of the noexcept spec on this function, if any.
3333   NoexceptResult getNoexceptSpec(const ASTContext &Ctx) const;
3334   unsigned getNumExceptions() const { return NumExceptions; }
3335   QualType getExceptionType(unsigned i) const {
3336     assert(i < NumExceptions && "Invalid exception number!");
3337     return exception_begin()[i];
3338   }
3339   Expr *getNoexceptExpr() const {
3340     if (getExceptionSpecType() != EST_ComputedNoexcept)
3341       return nullptr;
3342     // NoexceptExpr sits where the arguments end.
3343     return *reinterpret_cast<Expr *const *>(param_type_end());
3344   }
3345   /// \brief If this function type has an exception specification which hasn't
3346   /// been determined yet (either because it has not been evaluated or because
3347   /// it has not been instantiated), this is the function whose exception
3348   /// specification is represented by this type.
3349   FunctionDecl *getExceptionSpecDecl() const {
3350     if (getExceptionSpecType() != EST_Uninstantiated &&
3351         getExceptionSpecType() != EST_Unevaluated)
3352       return nullptr;
3353     return reinterpret_cast<FunctionDecl *const *>(param_type_end())[0];
3354   }
3355   /// \brief If this function type has an uninstantiated exception
3356   /// specification, this is the function whose exception specification
3357   /// should be instantiated to find the exception specification for
3358   /// this type.
3359   FunctionDecl *getExceptionSpecTemplate() const {
3360     if (getExceptionSpecType() != EST_Uninstantiated)
3361       return nullptr;
3362     return reinterpret_cast<FunctionDecl *const *>(param_type_end())[1];
3363   }
3364   /// Determine whether this function type has a non-throwing exception
3365   /// specification. If this depends on template arguments, returns
3366   /// \c ResultIfDependent.
3367   bool isNothrow(const ASTContext &Ctx, bool ResultIfDependent = false) const;
3368 
3369   bool isVariadic() const { return Variadic; }
3370 
3371   /// Determines whether this function prototype contains a
3372   /// parameter pack at the end.
3373   ///
3374   /// A function template whose last parameter is a parameter pack can be
3375   /// called with an arbitrary number of arguments, much like a variadic
3376   /// function.
3377   bool isTemplateVariadic() const;
3378 
3379   bool hasTrailingReturn() const { return HasTrailingReturn; }
3380 
3381   unsigned getTypeQuals() const { return FunctionType::getTypeQuals(); }
3382 
3383 
3384   /// Retrieve the ref-qualifier associated with this function type.
3385   RefQualifierKind getRefQualifier() const {
3386     return static_cast<RefQualifierKind>(FunctionTypeBits.RefQualifier);
3387   }
3388 
3389   typedef const QualType *param_type_iterator;
3390   typedef llvm::iterator_range<param_type_iterator> param_type_range;
3391 
3392   param_type_range param_types() const {
3393     return param_type_range(param_type_begin(), param_type_end());
3394   }
3395   param_type_iterator param_type_begin() const {
3396     return reinterpret_cast<const QualType *>(this+1);
3397   }
3398   param_type_iterator param_type_end() const {
3399     return param_type_begin() + NumParams;
3400   }
3401 
3402   typedef const QualType *exception_iterator;
3403 
3404   ArrayRef<QualType> exceptions() const {
3405     return llvm::makeArrayRef(exception_begin(), exception_end());
3406   }
3407   exception_iterator exception_begin() const {
3408     // exceptions begin where arguments end
3409     return param_type_end();
3410   }
3411   exception_iterator exception_end() const {
3412     if (getExceptionSpecType() != EST_Dynamic)
3413       return exception_begin();
3414     return exception_begin() + NumExceptions;
3415   }
3416 
3417   /// Is there any interesting extra information for any of the parameters
3418   /// of this function type?
3419   bool hasExtParameterInfos() const { return HasExtParameterInfos; }
3420   ArrayRef<ExtParameterInfo> getExtParameterInfos() const {
3421     assert(hasExtParameterInfos());
3422     return ArrayRef<ExtParameterInfo>(getExtParameterInfosBuffer(),
3423                                       getNumParams());
3424   }
3425   /// Return a pointer to the beginning of the array of extra parameter
3426   /// information, if present, or else null if none of the parameters
3427   /// carry it.  This is equivalent to getExtProtoInfo().ExtParameterInfos.
3428   const ExtParameterInfo *getExtParameterInfosOrNull() const {
3429     if (!hasExtParameterInfos())
3430       return nullptr;
3431     return getExtParameterInfosBuffer();
3432   }
3433 
3434   ExtParameterInfo getExtParameterInfo(unsigned I) const {
3435     assert(I < getNumParams() && "parameter index out of range");
3436     if (hasExtParameterInfos())
3437       return getExtParameterInfosBuffer()[I];
3438     return ExtParameterInfo();
3439   }
3440 
3441   ParameterABI getParameterABI(unsigned I) const {
3442     assert(I < getNumParams() && "parameter index out of range");
3443     if (hasExtParameterInfos())
3444       return getExtParameterInfosBuffer()[I].getABI();
3445     return ParameterABI::Ordinary;
3446   }
3447 
3448   bool isParamConsumed(unsigned I) const {
3449     assert(I < getNumParams() && "parameter index out of range");
3450     if (hasExtParameterInfos())
3451       return getExtParameterInfosBuffer()[I].isConsumed();
3452     return false;
3453   }
3454 
3455   bool isSugared() const { return false; }
3456   QualType desugar() const { return QualType(this, 0); }
3457 
3458   void printExceptionSpecification(raw_ostream &OS,
3459                                    const PrintingPolicy &Policy) const;
3460 
3461   static bool classof(const Type *T) {
3462     return T->getTypeClass() == FunctionProto;
3463   }
3464 
3465   void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Ctx);
3466   static void Profile(llvm::FoldingSetNodeID &ID, QualType Result,
3467                       param_type_iterator ArgTys, unsigned NumArgs,
3468                       const ExtProtoInfo &EPI, const ASTContext &Context);
3469 };
3470 
3471 /// \brief Represents the dependent type named by a dependently-scoped
3472 /// typename using declaration, e.g.
3473 ///   using typename Base<T>::foo;
3474 ///
3475 /// Template instantiation turns these into the underlying type.
3476 class UnresolvedUsingType : public Type {
3477   UnresolvedUsingTypenameDecl *Decl;
3478 
3479   UnresolvedUsingType(const UnresolvedUsingTypenameDecl *D)
3480     : Type(UnresolvedUsing, QualType(), true, true, false,
3481            /*ContainsUnexpandedParameterPack=*/false),
3482       Decl(const_cast<UnresolvedUsingTypenameDecl*>(D)) {}
3483   friend class ASTContext; // ASTContext creates these.
3484 public:
3485 
3486   UnresolvedUsingTypenameDecl *getDecl() const { return Decl; }
3487 
3488   bool isSugared() const { return false; }
3489   QualType desugar() const { return QualType(this, 0); }
3490 
3491   static bool classof(const Type *T) {
3492     return T->getTypeClass() == UnresolvedUsing;
3493   }
3494 
3495   void Profile(llvm::FoldingSetNodeID &ID) {
3496     return Profile(ID, Decl);
3497   }
3498   static void Profile(llvm::FoldingSetNodeID &ID,
3499                       UnresolvedUsingTypenameDecl *D) {
3500     ID.AddPointer(D);
3501   }
3502 };
3503 
3504 
3505 class TypedefType : public Type {
3506   TypedefNameDecl *Decl;
3507 protected:
3508   TypedefType(TypeClass tc, const TypedefNameDecl *D, QualType can)
3509     : Type(tc, can, can->isDependentType(),
3510            can->isInstantiationDependentType(),
3511            can->isVariablyModifiedType(),
3512            /*ContainsUnexpandedParameterPack=*/false),
3513       Decl(const_cast<TypedefNameDecl*>(D)) {
3514     assert(!isa<TypedefType>(can) && "Invalid canonical type");
3515   }
3516   friend class ASTContext;  // ASTContext creates these.
3517 public:
3518 
3519   TypedefNameDecl *getDecl() const { return Decl; }
3520 
3521   bool isSugared() const { return true; }
3522   QualType desugar() const;
3523 
3524   static bool classof(const Type *T) { return T->getTypeClass() == Typedef; }
3525 };
3526 
3527 /// Represents a `typeof` (or __typeof__) expression (a GCC extension).
3528 class TypeOfExprType : public Type {
3529   Expr *TOExpr;
3530 
3531 protected:
3532   TypeOfExprType(Expr *E, QualType can = QualType());
3533   friend class ASTContext;  // ASTContext creates these.
3534 public:
3535   Expr *getUnderlyingExpr() const { return TOExpr; }
3536 
3537   /// \brief Remove a single level of sugar.
3538   QualType desugar() const;
3539 
3540   /// \brief Returns whether this type directly provides sugar.
3541   bool isSugared() const;
3542 
3543   static bool classof(const Type *T) { return T->getTypeClass() == TypeOfExpr; }
3544 };
3545 
3546 /// \brief Internal representation of canonical, dependent
3547 /// `typeof(expr)` types.
3548 ///
3549 /// This class is used internally by the ASTContext to manage
3550 /// canonical, dependent types, only. Clients will only see instances
3551 /// of this class via TypeOfExprType nodes.
3552 class DependentTypeOfExprType
3553   : public TypeOfExprType, public llvm::FoldingSetNode {
3554   const ASTContext &Context;
3555 
3556 public:
3557   DependentTypeOfExprType(const ASTContext &Context, Expr *E)
3558     : TypeOfExprType(E), Context(Context) { }
3559 
3560   void Profile(llvm::FoldingSetNodeID &ID) {
3561     Profile(ID, Context, getUnderlyingExpr());
3562   }
3563 
3564   static void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Context,
3565                       Expr *E);
3566 };
3567 
3568 /// Represents `typeof(type)`, a GCC extension.
3569 class TypeOfType : public Type {
3570   QualType TOType;
3571   TypeOfType(QualType T, QualType can)
3572     : Type(TypeOf, can, T->isDependentType(),
3573            T->isInstantiationDependentType(),
3574            T->isVariablyModifiedType(),
3575            T->containsUnexpandedParameterPack()),
3576       TOType(T) {
3577     assert(!isa<TypedefType>(can) && "Invalid canonical type");
3578   }
3579   friend class ASTContext;  // ASTContext creates these.
3580 public:
3581   QualType getUnderlyingType() const { return TOType; }
3582 
3583   /// \brief Remove a single level of sugar.
3584   QualType desugar() const { return getUnderlyingType(); }
3585 
3586   /// \brief Returns whether this type directly provides sugar.
3587   bool isSugared() const { return true; }
3588 
3589   static bool classof(const Type *T) { return T->getTypeClass() == TypeOf; }
3590 };
3591 
3592 /// Represents the type `decltype(expr)` (C++11).
3593 class DecltypeType : public Type {
3594   Expr *E;
3595   QualType UnderlyingType;
3596 
3597 protected:
3598   DecltypeType(Expr *E, QualType underlyingType, QualType can = QualType());
3599   friend class ASTContext;  // ASTContext creates these.
3600 public:
3601   Expr *getUnderlyingExpr() const { return E; }
3602   QualType getUnderlyingType() const { return UnderlyingType; }
3603 
3604   /// \brief Remove a single level of sugar.
3605   QualType desugar() const;
3606 
3607   /// \brief Returns whether this type directly provides sugar.
3608   bool isSugared() const;
3609 
3610   static bool classof(const Type *T) { return T->getTypeClass() == Decltype; }
3611 };
3612 
3613 /// \brief Internal representation of canonical, dependent
3614 /// decltype(expr) types.
3615 ///
3616 /// This class is used internally by the ASTContext to manage
3617 /// canonical, dependent types, only. Clients will only see instances
3618 /// of this class via DecltypeType nodes.
3619 class DependentDecltypeType : public DecltypeType, public llvm::FoldingSetNode {
3620   const ASTContext &Context;
3621 
3622 public:
3623   DependentDecltypeType(const ASTContext &Context, Expr *E);
3624 
3625   void Profile(llvm::FoldingSetNodeID &ID) {
3626     Profile(ID, Context, getUnderlyingExpr());
3627   }
3628 
3629   static void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Context,
3630                       Expr *E);
3631 };
3632 
3633 /// A unary type transform, which is a type constructed from another.
3634 class UnaryTransformType : public Type {
3635 public:
3636   enum UTTKind {
3637     EnumUnderlyingType
3638   };
3639 
3640 private:
3641   /// The untransformed type.
3642   QualType BaseType;
3643   /// The transformed type if not dependent, otherwise the same as BaseType.
3644   QualType UnderlyingType;
3645 
3646   UTTKind UKind;
3647 protected:
3648   UnaryTransformType(QualType BaseTy, QualType UnderlyingTy, UTTKind UKind,
3649                      QualType CanonicalTy);
3650   friend class ASTContext;
3651 public:
3652   bool isSugared() const { return !isDependentType(); }
3653   QualType desugar() const { return UnderlyingType; }
3654 
3655   QualType getUnderlyingType() const { return UnderlyingType; }
3656   QualType getBaseType() const { return BaseType; }
3657 
3658   UTTKind getUTTKind() const { return UKind; }
3659 
3660   static bool classof(const Type *T) {
3661     return T->getTypeClass() == UnaryTransform;
3662   }
3663 };
3664 
3665 /// \brief Internal representation of canonical, dependent
3666 /// __underlying_type(type) types.
3667 ///
3668 /// This class is used internally by the ASTContext to manage
3669 /// canonical, dependent types, only. Clients will only see instances
3670 /// of this class via UnaryTransformType nodes.
3671 class DependentUnaryTransformType : public UnaryTransformType,
3672                                     public llvm::FoldingSetNode {
3673 public:
3674   DependentUnaryTransformType(const ASTContext &C, QualType BaseType,
3675                               UTTKind UKind);
3676   void Profile(llvm::FoldingSetNodeID &ID) {
3677     Profile(ID, getBaseType(), getUTTKind());
3678   }
3679 
3680   static void Profile(llvm::FoldingSetNodeID &ID, QualType BaseType,
3681                       UTTKind UKind) {
3682     ID.AddPointer(BaseType.getAsOpaquePtr());
3683     ID.AddInteger((unsigned)UKind);
3684   }
3685 };
3686 
3687 class TagType : public Type {
3688   /// Stores the TagDecl associated with this type. The decl may point to any
3689   /// TagDecl that declares the entity.
3690   TagDecl * decl;
3691 
3692   friend class ASTReader;
3693 
3694 protected:
3695   TagType(TypeClass TC, const TagDecl *D, QualType can);
3696 
3697 public:
3698   TagDecl *getDecl() const;
3699 
3700   /// Determines whether this type is in the process of being defined.
3701   bool isBeingDefined() const;
3702 
3703   static bool classof(const Type *T) {
3704     return T->getTypeClass() >= TagFirst && T->getTypeClass() <= TagLast;
3705   }
3706 };
3707 
3708 /// A helper class that allows the use of isa/cast/dyncast
3709 /// to detect TagType objects of structs/unions/classes.
3710 class RecordType : public TagType {
3711 protected:
3712   explicit RecordType(const RecordDecl *D)
3713     : TagType(Record, reinterpret_cast<const TagDecl*>(D), QualType()) { }
3714   explicit RecordType(TypeClass TC, RecordDecl *D)
3715     : TagType(TC, reinterpret_cast<const TagDecl*>(D), QualType()) { }
3716   friend class ASTContext;   // ASTContext creates these.
3717 public:
3718 
3719   RecordDecl *getDecl() const {
3720     return reinterpret_cast<RecordDecl*>(TagType::getDecl());
3721   }
3722 
3723   // FIXME: This predicate is a helper to QualType/Type. It needs to
3724   // recursively check all fields for const-ness. If any field is declared
3725   // const, it needs to return false.
3726   bool hasConstFields() const { return false; }
3727 
3728   bool isSugared() const { return false; }
3729   QualType desugar() const { return QualType(this, 0); }
3730 
3731   static bool classof(const Type *T) { return T->getTypeClass() == Record; }
3732 };
3733 
3734 /// A helper class that allows the use of isa/cast/dyncast
3735 /// to detect TagType objects of enums.
3736 class EnumType : public TagType {
3737   explicit EnumType(const EnumDecl *D)
3738     : TagType(Enum, reinterpret_cast<const TagDecl*>(D), QualType()) { }
3739   friend class ASTContext;   // ASTContext creates these.
3740 public:
3741 
3742   EnumDecl *getDecl() const {
3743     return reinterpret_cast<EnumDecl*>(TagType::getDecl());
3744   }
3745 
3746   bool isSugared() const { return false; }
3747   QualType desugar() const { return QualType(this, 0); }
3748 
3749   static bool classof(const Type *T) { return T->getTypeClass() == Enum; }
3750 };
3751 
3752 /// An attributed type is a type to which a type attribute has been applied.
3753 ///
3754 /// The "modified type" is the fully-sugared type to which the attributed
3755 /// type was applied; generally it is not canonically equivalent to the
3756 /// attributed type. The "equivalent type" is the minimally-desugared type
3757 /// which the type is canonically equivalent to.
3758 ///
3759 /// For example, in the following attributed type:
3760 ///     int32_t __attribute__((vector_size(16)))
3761 ///   - the modified type is the TypedefType for int32_t
3762 ///   - the equivalent type is VectorType(16, int32_t)
3763 ///   - the canonical type is VectorType(16, int)
3764 class AttributedType : public Type, public llvm::FoldingSetNode {
3765 public:
3766   // It is really silly to have yet another attribute-kind enum, but
3767   // clang::attr::Kind doesn't currently cover the pure type attrs.
3768   enum Kind {
3769     // Expression operand.
3770     attr_address_space,
3771     attr_regparm,
3772     attr_vector_size,
3773     attr_neon_vector_type,
3774     attr_neon_polyvector_type,
3775 
3776     FirstExprOperandKind = attr_address_space,
3777     LastExprOperandKind = attr_neon_polyvector_type,
3778 
3779     // Enumerated operand (string or keyword).
3780     attr_objc_gc,
3781     attr_objc_ownership,
3782     attr_pcs,
3783     attr_pcs_vfp,
3784 
3785     FirstEnumOperandKind = attr_objc_gc,
3786     LastEnumOperandKind = attr_pcs_vfp,
3787 
3788     // No operand.
3789     attr_noreturn,
3790     attr_cdecl,
3791     attr_fastcall,
3792     attr_stdcall,
3793     attr_thiscall,
3794     attr_pascal,
3795     attr_swiftcall,
3796     attr_vectorcall,
3797     attr_inteloclbicc,
3798     attr_ms_abi,
3799     attr_sysv_abi,
3800     attr_preserve_most,
3801     attr_preserve_all,
3802     attr_ptr32,
3803     attr_ptr64,
3804     attr_sptr,
3805     attr_uptr,
3806     attr_nonnull,
3807     attr_nullable,
3808     attr_null_unspecified,
3809     attr_objc_kindof,
3810     attr_objc_inert_unsafe_unretained,
3811   };
3812 
3813 private:
3814   QualType ModifiedType;
3815   QualType EquivalentType;
3816 
3817   friend class ASTContext; // creates these
3818 
3819   AttributedType(QualType canon, Kind attrKind,
3820                  QualType modified, QualType equivalent)
3821     : Type(Attributed, canon, canon->isDependentType(),
3822            canon->isInstantiationDependentType(),
3823            canon->isVariablyModifiedType(),
3824            canon->containsUnexpandedParameterPack()),
3825       ModifiedType(modified), EquivalentType(equivalent) {
3826     AttributedTypeBits.AttrKind = attrKind;
3827   }
3828 
3829 public:
3830   Kind getAttrKind() const {
3831     return static_cast<Kind>(AttributedTypeBits.AttrKind);
3832   }
3833 
3834   QualType getModifiedType() const { return ModifiedType; }
3835   QualType getEquivalentType() const { return EquivalentType; }
3836 
3837   bool isSugared() const { return true; }
3838   QualType desugar() const { return getEquivalentType(); }
3839 
3840   /// Does this attribute behave like a type qualifier?
3841   ///
3842   /// A type qualifier adjusts a type to provide specialized rules for
3843   /// a specific object, like the standard const and volatile qualifiers.
3844   /// This includes attributes controlling things like nullability,
3845   /// address spaces, and ARC ownership.  The value of the object is still
3846   /// largely described by the modified type.
3847   ///
3848   /// In contrast, many type attributes "rewrite" their modified type to
3849   /// produce a fundamentally different type, not necessarily related in any
3850   /// formalizable way to the original type.  For example, calling convention
3851   /// and vector attributes are not simple type qualifiers.
3852   ///
3853   /// Type qualifiers are often, but not always, reflected in the canonical
3854   /// type.
3855   bool isQualifier() const;
3856 
3857   bool isMSTypeSpec() const;
3858 
3859   bool isCallingConv() const;
3860 
3861   llvm::Optional<NullabilityKind> getImmediateNullability() const;
3862 
3863   /// Retrieve the attribute kind corresponding to the given
3864   /// nullability kind.
3865   static Kind getNullabilityAttrKind(NullabilityKind kind) {
3866     switch (kind) {
3867     case NullabilityKind::NonNull:
3868       return attr_nonnull;
3869 
3870     case NullabilityKind::Nullable:
3871       return attr_nullable;
3872 
3873     case NullabilityKind::Unspecified:
3874       return attr_null_unspecified;
3875     }
3876     llvm_unreachable("Unknown nullability kind.");
3877   }
3878 
3879   /// Strip off the top-level nullability annotation on the given
3880   /// type, if it's there.
3881   ///
3882   /// \param T The type to strip. If the type is exactly an
3883   /// AttributedType specifying nullability (without looking through
3884   /// type sugar), the nullability is returned and this type changed
3885   /// to the underlying modified type.
3886   ///
3887   /// \returns the top-level nullability, if present.
3888   static Optional<NullabilityKind> stripOuterNullability(QualType &T);
3889 
3890   void Profile(llvm::FoldingSetNodeID &ID) {
3891     Profile(ID, getAttrKind(), ModifiedType, EquivalentType);
3892   }
3893 
3894   static void Profile(llvm::FoldingSetNodeID &ID, Kind attrKind,
3895                       QualType modified, QualType equivalent) {
3896     ID.AddInteger(attrKind);
3897     ID.AddPointer(modified.getAsOpaquePtr());
3898     ID.AddPointer(equivalent.getAsOpaquePtr());
3899   }
3900 
3901   static bool classof(const Type *T) {
3902     return T->getTypeClass() == Attributed;
3903   }
3904 };
3905 
3906 class TemplateTypeParmType : public Type, public llvm::FoldingSetNode {
3907   // Helper data collector for canonical types.
3908   struct CanonicalTTPTInfo {
3909     unsigned Depth : 15;
3910     unsigned ParameterPack : 1;
3911     unsigned Index : 16;
3912   };
3913 
3914   union {
3915     // Info for the canonical type.
3916     CanonicalTTPTInfo CanTTPTInfo;
3917     // Info for the non-canonical type.
3918     TemplateTypeParmDecl *TTPDecl;
3919   };
3920 
3921   /// Build a non-canonical type.
3922   TemplateTypeParmType(TemplateTypeParmDecl *TTPDecl, QualType Canon)
3923     : Type(TemplateTypeParm, Canon, /*Dependent=*/true,
3924            /*InstantiationDependent=*/true,
3925            /*VariablyModified=*/false,
3926            Canon->containsUnexpandedParameterPack()),
3927       TTPDecl(TTPDecl) { }
3928 
3929   /// Build the canonical type.
3930   TemplateTypeParmType(unsigned D, unsigned I, bool PP)
3931     : Type(TemplateTypeParm, QualType(this, 0),
3932            /*Dependent=*/true,
3933            /*InstantiationDependent=*/true,
3934            /*VariablyModified=*/false, PP) {
3935     CanTTPTInfo.Depth = D;
3936     CanTTPTInfo.Index = I;
3937     CanTTPTInfo.ParameterPack = PP;
3938   }
3939 
3940   friend class ASTContext;  // ASTContext creates these
3941 
3942   const CanonicalTTPTInfo& getCanTTPTInfo() const {
3943     QualType Can = getCanonicalTypeInternal();
3944     return Can->castAs<TemplateTypeParmType>()->CanTTPTInfo;
3945   }
3946 
3947 public:
3948   unsigned getDepth() const { return getCanTTPTInfo().Depth; }
3949   unsigned getIndex() const { return getCanTTPTInfo().Index; }
3950   bool isParameterPack() const { return getCanTTPTInfo().ParameterPack; }
3951 
3952   TemplateTypeParmDecl *getDecl() const {
3953     return isCanonicalUnqualified() ? nullptr : TTPDecl;
3954   }
3955 
3956   IdentifierInfo *getIdentifier() const;
3957 
3958   bool isSugared() const { return false; }
3959   QualType desugar() const { return QualType(this, 0); }
3960 
3961   void Profile(llvm::FoldingSetNodeID &ID) {
3962     Profile(ID, getDepth(), getIndex(), isParameterPack(), getDecl());
3963   }
3964 
3965   static void Profile(llvm::FoldingSetNodeID &ID, unsigned Depth,
3966                       unsigned Index, bool ParameterPack,
3967                       TemplateTypeParmDecl *TTPDecl) {
3968     ID.AddInteger(Depth);
3969     ID.AddInteger(Index);
3970     ID.AddBoolean(ParameterPack);
3971     ID.AddPointer(TTPDecl);
3972   }
3973 
3974   static bool classof(const Type *T) {
3975     return T->getTypeClass() == TemplateTypeParm;
3976   }
3977 };
3978 
3979 /// \brief Represents the result of substituting a type for a template
3980 /// type parameter.
3981 ///
3982 /// Within an instantiated template, all template type parameters have
3983 /// been replaced with these.  They are used solely to record that a
3984 /// type was originally written as a template type parameter;
3985 /// therefore they are never canonical.
3986 class SubstTemplateTypeParmType : public Type, public llvm::FoldingSetNode {
3987   // The original type parameter.
3988   const TemplateTypeParmType *Replaced;
3989 
3990   SubstTemplateTypeParmType(const TemplateTypeParmType *Param, QualType Canon)
3991     : Type(SubstTemplateTypeParm, Canon, Canon->isDependentType(),
3992            Canon->isInstantiationDependentType(),
3993            Canon->isVariablyModifiedType(),
3994            Canon->containsUnexpandedParameterPack()),
3995       Replaced(Param) { }
3996 
3997   friend class ASTContext;
3998 
3999 public:
4000   /// Gets the template parameter that was substituted for.
4001   const TemplateTypeParmType *getReplacedParameter() const {
4002     return Replaced;
4003   }
4004 
4005   /// Gets the type that was substituted for the template
4006   /// parameter.
4007   QualType getReplacementType() const {
4008     return getCanonicalTypeInternal();
4009   }
4010 
4011   bool isSugared() const { return true; }
4012   QualType desugar() const { return getReplacementType(); }
4013 
4014   void Profile(llvm::FoldingSetNodeID &ID) {
4015     Profile(ID, getReplacedParameter(), getReplacementType());
4016   }
4017   static void Profile(llvm::FoldingSetNodeID &ID,
4018                       const TemplateTypeParmType *Replaced,
4019                       QualType Replacement) {
4020     ID.AddPointer(Replaced);
4021     ID.AddPointer(Replacement.getAsOpaquePtr());
4022   }
4023 
4024   static bool classof(const Type *T) {
4025     return T->getTypeClass() == SubstTemplateTypeParm;
4026   }
4027 };
4028 
4029 /// \brief Represents the result of substituting a set of types for a template
4030 /// type parameter pack.
4031 ///
4032 /// When a pack expansion in the source code contains multiple parameter packs
4033 /// and those parameter packs correspond to different levels of template
4034 /// parameter lists, this type node is used to represent a template type
4035 /// parameter pack from an outer level, which has already had its argument pack
4036 /// substituted but that still lives within a pack expansion that itself
4037 /// could not be instantiated. When actually performing a substitution into
4038 /// that pack expansion (e.g., when all template parameters have corresponding
4039 /// arguments), this type will be replaced with the \c SubstTemplateTypeParmType
4040 /// at the current pack substitution index.
4041 class SubstTemplateTypeParmPackType : public Type, public llvm::FoldingSetNode {
4042   /// \brief The original type parameter.
4043   const TemplateTypeParmType *Replaced;
4044 
4045   /// \brief A pointer to the set of template arguments that this
4046   /// parameter pack is instantiated with.
4047   const TemplateArgument *Arguments;
4048 
4049   /// \brief The number of template arguments in \c Arguments.
4050   unsigned NumArguments;
4051 
4052   SubstTemplateTypeParmPackType(const TemplateTypeParmType *Param,
4053                                 QualType Canon,
4054                                 const TemplateArgument &ArgPack);
4055 
4056   friend class ASTContext;
4057 
4058 public:
4059   IdentifierInfo *getIdentifier() const { return Replaced->getIdentifier(); }
4060 
4061   /// Gets the template parameter that was substituted for.
4062   const TemplateTypeParmType *getReplacedParameter() const {
4063     return Replaced;
4064   }
4065 
4066   bool isSugared() const { return false; }
4067   QualType desugar() const { return QualType(this, 0); }
4068 
4069   TemplateArgument getArgumentPack() const;
4070 
4071   void Profile(llvm::FoldingSetNodeID &ID);
4072   static void Profile(llvm::FoldingSetNodeID &ID,
4073                       const TemplateTypeParmType *Replaced,
4074                       const TemplateArgument &ArgPack);
4075 
4076   static bool classof(const Type *T) {
4077     return T->getTypeClass() == SubstTemplateTypeParmPack;
4078   }
4079 };
4080 
4081 /// \brief Represents a C++11 auto or C++14 decltype(auto) type.
4082 ///
4083 /// These types are usually a placeholder for a deduced type. However, before
4084 /// the initializer is attached, or if the initializer is type-dependent, there
4085 /// is no deduced type and an auto type is canonical. In the latter case, it is
4086 /// also a dependent type.
4087 class AutoType : public Type, public llvm::FoldingSetNode {
4088   AutoType(QualType DeducedType, AutoTypeKeyword Keyword, bool IsDependent)
4089     : Type(Auto, DeducedType.isNull() ? QualType(this, 0) : DeducedType,
4090            /*Dependent=*/IsDependent, /*InstantiationDependent=*/IsDependent,
4091            /*VariablyModified=*/false,
4092            /*ContainsParameterPack=*/DeducedType.isNull()
4093                ? false : DeducedType->containsUnexpandedParameterPack()) {
4094     assert((DeducedType.isNull() || !IsDependent) &&
4095            "auto deduced to dependent type");
4096     AutoTypeBits.Keyword = (unsigned)Keyword;
4097   }
4098 
4099   friend class ASTContext;  // ASTContext creates these
4100 
4101 public:
4102   bool isDecltypeAuto() const {
4103     return getKeyword() == AutoTypeKeyword::DecltypeAuto;
4104   }
4105   AutoTypeKeyword getKeyword() const {
4106     return (AutoTypeKeyword)AutoTypeBits.Keyword;
4107   }
4108 
4109   bool isSugared() const { return !isCanonicalUnqualified(); }
4110   QualType desugar() const { return getCanonicalTypeInternal(); }
4111 
4112   /// \brief Get the type deduced for this auto type, or null if it's either
4113   /// not been deduced or was deduced to a dependent type.
4114   QualType getDeducedType() const {
4115     return !isCanonicalUnqualified() ? getCanonicalTypeInternal() : QualType();
4116   }
4117   bool isDeduced() const {
4118     return !isCanonicalUnqualified() || isDependentType();
4119   }
4120 
4121   void Profile(llvm::FoldingSetNodeID &ID) {
4122     Profile(ID, getDeducedType(), getKeyword(), isDependentType());
4123   }
4124 
4125   static void Profile(llvm::FoldingSetNodeID &ID, QualType Deduced,
4126                       AutoTypeKeyword Keyword, bool IsDependent) {
4127     ID.AddPointer(Deduced.getAsOpaquePtr());
4128     ID.AddInteger((unsigned)Keyword);
4129     ID.AddBoolean(IsDependent);
4130   }
4131 
4132   static bool classof(const Type *T) {
4133     return T->getTypeClass() == Auto;
4134   }
4135 };
4136 
4137 /// \brief Represents a type template specialization; the template
4138 /// must be a class template, a type alias template, or a template
4139 /// template parameter.  A template which cannot be resolved to one of
4140 /// these, e.g. because it is written with a dependent scope
4141 /// specifier, is instead represented as a
4142 /// @c DependentTemplateSpecializationType.
4143 ///
4144 /// A non-dependent template specialization type is always "sugar",
4145 /// typically for a \c RecordType.  For example, a class template
4146 /// specialization type of \c vector<int> will refer to a tag type for
4147 /// the instantiation \c std::vector<int, std::allocator<int>>
4148 ///
4149 /// Template specializations are dependent if either the template or
4150 /// any of the template arguments are dependent, in which case the
4151 /// type may also be canonical.
4152 ///
4153 /// Instances of this type are allocated with a trailing array of
4154 /// TemplateArguments, followed by a QualType representing the
4155 /// non-canonical aliased type when the template is a type alias
4156 /// template.
4157 class LLVM_ALIGNAS(/*alignof(uint64_t)*/ 8) TemplateSpecializationType
4158     : public Type,
4159       public llvm::FoldingSetNode {
4160   /// The name of the template being specialized.  This is
4161   /// either a TemplateName::Template (in which case it is a
4162   /// ClassTemplateDecl*, a TemplateTemplateParmDecl*, or a
4163   /// TypeAliasTemplateDecl*), a
4164   /// TemplateName::SubstTemplateTemplateParmPack, or a
4165   /// TemplateName::SubstTemplateTemplateParm (in which case the
4166   /// replacement must, recursively, be one of these).
4167   TemplateName Template;
4168 
4169   /// The number of template arguments named in this class template
4170   /// specialization.
4171   unsigned NumArgs : 31;
4172 
4173   /// Whether this template specialization type is a substituted type alias.
4174   unsigned TypeAlias : 1;
4175 
4176   TemplateSpecializationType(TemplateName T,
4177                              ArrayRef<TemplateArgument> Args,
4178                              QualType Canon,
4179                              QualType Aliased);
4180 
4181   friend class ASTContext;  // ASTContext creates these
4182 
4183 public:
4184   /// Determine whether any of the given template arguments are dependent.
4185   static bool anyDependentTemplateArguments(ArrayRef<TemplateArgumentLoc> Args,
4186                                             bool &InstantiationDependent);
4187 
4188   static bool anyDependentTemplateArguments(const TemplateArgumentListInfo &,
4189                                             bool &InstantiationDependent);
4190 
4191   /// \brief Print a template argument list, including the '<' and '>'
4192   /// enclosing the template arguments.
4193   static void PrintTemplateArgumentList(raw_ostream &OS,
4194                                         ArrayRef<TemplateArgument> Args,
4195                                         const PrintingPolicy &Policy,
4196                                         bool SkipBrackets = false);
4197 
4198   static void PrintTemplateArgumentList(raw_ostream &OS,
4199                                         ArrayRef<TemplateArgumentLoc> Args,
4200                                         const PrintingPolicy &Policy);
4201 
4202   static void PrintTemplateArgumentList(raw_ostream &OS,
4203                                         const TemplateArgumentListInfo &,
4204                                         const PrintingPolicy &Policy);
4205 
4206   /// True if this template specialization type matches a current
4207   /// instantiation in the context in which it is found.
4208   bool isCurrentInstantiation() const {
4209     return isa<InjectedClassNameType>(getCanonicalTypeInternal());
4210   }
4211 
4212   /// \brief Determine if this template specialization type is for a type alias
4213   /// template that has been substituted.
4214   ///
4215   /// Nearly every template specialization type whose template is an alias
4216   /// template will be substituted. However, this is not the case when
4217   /// the specialization contains a pack expansion but the template alias
4218   /// does not have a corresponding parameter pack, e.g.,
4219   ///
4220   /// \code
4221   /// template<typename T, typename U, typename V> struct S;
4222   /// template<typename T, typename U> using A = S<T, int, U>;
4223   /// template<typename... Ts> struct X {
4224   ///   typedef A<Ts...> type; // not a type alias
4225   /// };
4226   /// \endcode
4227   bool isTypeAlias() const { return TypeAlias; }
4228 
4229   /// Get the aliased type, if this is a specialization of a type alias
4230   /// template.
4231   QualType getAliasedType() const {
4232     assert(isTypeAlias() && "not a type alias template specialization");
4233     return *reinterpret_cast<const QualType*>(end());
4234   }
4235 
4236   typedef const TemplateArgument * iterator;
4237 
4238   iterator begin() const { return getArgs(); }
4239   iterator end() const; // defined inline in TemplateBase.h
4240 
4241   /// Retrieve the name of the template that we are specializing.
4242   TemplateName getTemplateName() const { return Template; }
4243 
4244   /// Retrieve the template arguments.
4245   const TemplateArgument *getArgs() const {
4246     return reinterpret_cast<const TemplateArgument *>(this + 1);
4247   }
4248 
4249   /// Retrieve the number of template arguments.
4250   unsigned getNumArgs() const { return NumArgs; }
4251 
4252   /// Retrieve a specific template argument as a type.
4253   /// \pre \c isArgType(Arg)
4254   const TemplateArgument &getArg(unsigned Idx) const; // in TemplateBase.h
4255 
4256   ArrayRef<TemplateArgument> template_arguments() const {
4257     return {getArgs(), NumArgs};
4258   }
4259 
4260   bool isSugared() const {
4261     return !isDependentType() || isCurrentInstantiation() || isTypeAlias();
4262   }
4263   QualType desugar() const { return getCanonicalTypeInternal(); }
4264 
4265   void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Ctx) {
4266     Profile(ID, Template, template_arguments(), Ctx);
4267     if (isTypeAlias())
4268       getAliasedType().Profile(ID);
4269   }
4270 
4271   static void Profile(llvm::FoldingSetNodeID &ID, TemplateName T,
4272                       ArrayRef<TemplateArgument> Args,
4273                       const ASTContext &Context);
4274 
4275   static bool classof(const Type *T) {
4276     return T->getTypeClass() == TemplateSpecialization;
4277   }
4278 };
4279 
4280 /// The injected class name of a C++ class template or class
4281 /// template partial specialization.  Used to record that a type was
4282 /// spelled with a bare identifier rather than as a template-id; the
4283 /// equivalent for non-templated classes is just RecordType.
4284 ///
4285 /// Injected class name types are always dependent.  Template
4286 /// instantiation turns these into RecordTypes.
4287 ///
4288 /// Injected class name types are always canonical.  This works
4289 /// because it is impossible to compare an injected class name type
4290 /// with the corresponding non-injected template type, for the same
4291 /// reason that it is impossible to directly compare template
4292 /// parameters from different dependent contexts: injected class name
4293 /// types can only occur within the scope of a particular templated
4294 /// declaration, and within that scope every template specialization
4295 /// will canonicalize to the injected class name (when appropriate
4296 /// according to the rules of the language).
4297 class InjectedClassNameType : public Type {
4298   CXXRecordDecl *Decl;
4299 
4300   /// The template specialization which this type represents.
4301   /// For example, in
4302   ///   template <class T> class A { ... };
4303   /// this is A<T>, whereas in
4304   ///   template <class X, class Y> class A<B<X,Y> > { ... };
4305   /// this is A<B<X,Y> >.
4306   ///
4307   /// It is always unqualified, always a template specialization type,
4308   /// and always dependent.
4309   QualType InjectedType;
4310 
4311   friend class ASTContext; // ASTContext creates these.
4312   friend class ASTReader; // FIXME: ASTContext::getInjectedClassNameType is not
4313                           // currently suitable for AST reading, too much
4314                           // interdependencies.
4315   friend class ASTNodeImporter;
4316 
4317   InjectedClassNameType(CXXRecordDecl *D, QualType TST)
4318     : Type(InjectedClassName, QualType(), /*Dependent=*/true,
4319            /*InstantiationDependent=*/true,
4320            /*VariablyModified=*/false,
4321            /*ContainsUnexpandedParameterPack=*/false),
4322       Decl(D), InjectedType(TST) {
4323     assert(isa<TemplateSpecializationType>(TST));
4324     assert(!TST.hasQualifiers());
4325     assert(TST->isDependentType());
4326   }
4327 
4328 public:
4329   QualType getInjectedSpecializationType() const { return InjectedType; }
4330   const TemplateSpecializationType *getInjectedTST() const {
4331     return cast<TemplateSpecializationType>(InjectedType.getTypePtr());
4332   }
4333 
4334   CXXRecordDecl *getDecl() const;
4335 
4336   bool isSugared() const { return false; }
4337   QualType desugar() const { return QualType(this, 0); }
4338 
4339   static bool classof(const Type *T) {
4340     return T->getTypeClass() == InjectedClassName;
4341   }
4342 };
4343 
4344 /// \brief The kind of a tag type.
4345 enum TagTypeKind {
4346   /// \brief The "struct" keyword.
4347   TTK_Struct,
4348   /// \brief The "__interface" keyword.
4349   TTK_Interface,
4350   /// \brief The "union" keyword.
4351   TTK_Union,
4352   /// \brief The "class" keyword.
4353   TTK_Class,
4354   /// \brief The "enum" keyword.
4355   TTK_Enum
4356 };
4357 
4358 /// \brief The elaboration keyword that precedes a qualified type name or
4359 /// introduces an elaborated-type-specifier.
4360 enum ElaboratedTypeKeyword {
4361   /// \brief The "struct" keyword introduces the elaborated-type-specifier.
4362   ETK_Struct,
4363   /// \brief The "__interface" keyword introduces the elaborated-type-specifier.
4364   ETK_Interface,
4365   /// \brief The "union" keyword introduces the elaborated-type-specifier.
4366   ETK_Union,
4367   /// \brief The "class" keyword introduces the elaborated-type-specifier.
4368   ETK_Class,
4369   /// \brief The "enum" keyword introduces the elaborated-type-specifier.
4370   ETK_Enum,
4371   /// \brief The "typename" keyword precedes the qualified type name, e.g.,
4372   /// \c typename T::type.
4373   ETK_Typename,
4374   /// \brief No keyword precedes the qualified type name.
4375   ETK_None
4376 };
4377 
4378 /// A helper class for Type nodes having an ElaboratedTypeKeyword.
4379 /// The keyword in stored in the free bits of the base class.
4380 /// Also provides a few static helpers for converting and printing
4381 /// elaborated type keyword and tag type kind enumerations.
4382 class TypeWithKeyword : public Type {
4383 protected:
4384   TypeWithKeyword(ElaboratedTypeKeyword Keyword, TypeClass tc,
4385                   QualType Canonical, bool Dependent,
4386                   bool InstantiationDependent, bool VariablyModified,
4387                   bool ContainsUnexpandedParameterPack)
4388   : Type(tc, Canonical, Dependent, InstantiationDependent, VariablyModified,
4389          ContainsUnexpandedParameterPack) {
4390     TypeWithKeywordBits.Keyword = Keyword;
4391   }
4392 
4393 public:
4394   ElaboratedTypeKeyword getKeyword() const {
4395     return static_cast<ElaboratedTypeKeyword>(TypeWithKeywordBits.Keyword);
4396   }
4397 
4398   /// Converts a type specifier (DeclSpec::TST) into an elaborated type keyword.
4399   static ElaboratedTypeKeyword getKeywordForTypeSpec(unsigned TypeSpec);
4400 
4401   /// Converts a type specifier (DeclSpec::TST) into a tag type kind.
4402   /// It is an error to provide a type specifier which *isn't* a tag kind here.
4403   static TagTypeKind getTagTypeKindForTypeSpec(unsigned TypeSpec);
4404 
4405   /// Converts a TagTypeKind into an elaborated type keyword.
4406   static ElaboratedTypeKeyword getKeywordForTagTypeKind(TagTypeKind Tag);
4407 
4408   /// Converts an elaborated type keyword into a TagTypeKind.
4409   /// It is an error to provide an elaborated type keyword
4410   /// which *isn't* a tag kind here.
4411   static TagTypeKind getTagTypeKindForKeyword(ElaboratedTypeKeyword Keyword);
4412 
4413   static bool KeywordIsTagTypeKind(ElaboratedTypeKeyword Keyword);
4414 
4415   static StringRef getKeywordName(ElaboratedTypeKeyword Keyword);
4416 
4417   static StringRef getTagTypeKindName(TagTypeKind Kind) {
4418     return getKeywordName(getKeywordForTagTypeKind(Kind));
4419   }
4420 
4421   class CannotCastToThisType {};
4422   static CannotCastToThisType classof(const Type *);
4423 };
4424 
4425 /// \brief Represents a type that was referred to using an elaborated type
4426 /// keyword, e.g., struct S, or via a qualified name, e.g., N::M::type,
4427 /// or both.
4428 ///
4429 /// This type is used to keep track of a type name as written in the
4430 /// source code, including tag keywords and any nested-name-specifiers.
4431 /// The type itself is always "sugar", used to express what was written
4432 /// in the source code but containing no additional semantic information.
4433 class ElaboratedType : public TypeWithKeyword, public llvm::FoldingSetNode {
4434 
4435   /// The nested name specifier containing the qualifier.
4436   NestedNameSpecifier *NNS;
4437 
4438   /// The type that this qualified name refers to.
4439   QualType NamedType;
4440 
4441   ElaboratedType(ElaboratedTypeKeyword Keyword, NestedNameSpecifier *NNS,
4442                  QualType NamedType, QualType CanonType)
4443     : TypeWithKeyword(Keyword, Elaborated, CanonType,
4444                       NamedType->isDependentType(),
4445                       NamedType->isInstantiationDependentType(),
4446                       NamedType->isVariablyModifiedType(),
4447                       NamedType->containsUnexpandedParameterPack()),
4448       NNS(NNS), NamedType(NamedType) {
4449     assert(!(Keyword == ETK_None && NNS == nullptr) &&
4450            "ElaboratedType cannot have elaborated type keyword "
4451            "and name qualifier both null.");
4452   }
4453 
4454   friend class ASTContext;  // ASTContext creates these
4455 
4456 public:
4457   ~ElaboratedType();
4458 
4459   /// Retrieve the qualification on this type.
4460   NestedNameSpecifier *getQualifier() const { return NNS; }
4461 
4462   /// Retrieve the type named by the qualified-id.
4463   QualType getNamedType() const { return NamedType; }
4464 
4465   /// Remove a single level of sugar.
4466   QualType desugar() const { return getNamedType(); }
4467 
4468   /// Returns whether this type directly provides sugar.
4469   bool isSugared() const { return true; }
4470 
4471   void Profile(llvm::FoldingSetNodeID &ID) {
4472     Profile(ID, getKeyword(), NNS, NamedType);
4473   }
4474 
4475   static void Profile(llvm::FoldingSetNodeID &ID, ElaboratedTypeKeyword Keyword,
4476                       NestedNameSpecifier *NNS, QualType NamedType) {
4477     ID.AddInteger(Keyword);
4478     ID.AddPointer(NNS);
4479     NamedType.Profile(ID);
4480   }
4481 
4482   static bool classof(const Type *T) {
4483     return T->getTypeClass() == Elaborated;
4484   }
4485 };
4486 
4487 /// \brief Represents a qualified type name for which the type name is
4488 /// dependent.
4489 ///
4490 /// DependentNameType represents a class of dependent types that involve a
4491 /// possibly dependent nested-name-specifier (e.g., "T::") followed by a
4492 /// name of a type. The DependentNameType may start with a "typename" (for a
4493 /// typename-specifier), "class", "struct", "union", or "enum" (for a
4494 /// dependent elaborated-type-specifier), or nothing (in contexts where we
4495 /// know that we must be referring to a type, e.g., in a base class specifier).
4496 /// Typically the nested-name-specifier is dependent, but in MSVC compatibility
4497 /// mode, this type is used with non-dependent names to delay name lookup until
4498 /// instantiation.
4499 class DependentNameType : public TypeWithKeyword, public llvm::FoldingSetNode {
4500 
4501   /// \brief The nested name specifier containing the qualifier.
4502   NestedNameSpecifier *NNS;
4503 
4504   /// \brief The type that this typename specifier refers to.
4505   const IdentifierInfo *Name;
4506 
4507   DependentNameType(ElaboratedTypeKeyword Keyword, NestedNameSpecifier *NNS,
4508                     const IdentifierInfo *Name, QualType CanonType)
4509     : TypeWithKeyword(Keyword, DependentName, CanonType, /*Dependent=*/true,
4510                       /*InstantiationDependent=*/true,
4511                       /*VariablyModified=*/false,
4512                       NNS->containsUnexpandedParameterPack()),
4513       NNS(NNS), Name(Name) {}
4514 
4515   friend class ASTContext;  // ASTContext creates these
4516 
4517 public:
4518   /// Retrieve the qualification on this type.
4519   NestedNameSpecifier *getQualifier() const { return NNS; }
4520 
4521   /// Retrieve the type named by the typename specifier as an identifier.
4522   ///
4523   /// This routine will return a non-NULL identifier pointer when the
4524   /// form of the original typename was terminated by an identifier,
4525   /// e.g., "typename T::type".
4526   const IdentifierInfo *getIdentifier() const {
4527     return Name;
4528   }
4529 
4530   bool isSugared() const { return false; }
4531   QualType desugar() const { return QualType(this, 0); }
4532 
4533   void Profile(llvm::FoldingSetNodeID &ID) {
4534     Profile(ID, getKeyword(), NNS, Name);
4535   }
4536 
4537   static void Profile(llvm::FoldingSetNodeID &ID, ElaboratedTypeKeyword Keyword,
4538                       NestedNameSpecifier *NNS, const IdentifierInfo *Name) {
4539     ID.AddInteger(Keyword);
4540     ID.AddPointer(NNS);
4541     ID.AddPointer(Name);
4542   }
4543 
4544   static bool classof(const Type *T) {
4545     return T->getTypeClass() == DependentName;
4546   }
4547 };
4548 
4549 /// Represents a template specialization type whose template cannot be
4550 /// resolved, e.g.
4551 ///   A<T>::template B<T>
4552 class LLVM_ALIGNAS(/*alignof(uint64_t)*/ 8) DependentTemplateSpecializationType
4553     : public TypeWithKeyword,
4554       public llvm::FoldingSetNode {
4555 
4556   /// The nested name specifier containing the qualifier.
4557   NestedNameSpecifier *NNS;
4558 
4559   /// The identifier of the template.
4560   const IdentifierInfo *Name;
4561 
4562   /// \brief The number of template arguments named in this class template
4563   /// specialization.
4564   unsigned NumArgs;
4565 
4566   const TemplateArgument *getArgBuffer() const {
4567     return reinterpret_cast<const TemplateArgument*>(this+1);
4568   }
4569   TemplateArgument *getArgBuffer() {
4570     return reinterpret_cast<TemplateArgument*>(this+1);
4571   }
4572 
4573   DependentTemplateSpecializationType(ElaboratedTypeKeyword Keyword,
4574                                       NestedNameSpecifier *NNS,
4575                                       const IdentifierInfo *Name,
4576                                       ArrayRef<TemplateArgument> Args,
4577                                       QualType Canon);
4578 
4579   friend class ASTContext;  // ASTContext creates these
4580 
4581 public:
4582   NestedNameSpecifier *getQualifier() const { return NNS; }
4583   const IdentifierInfo *getIdentifier() const { return Name; }
4584 
4585   /// \brief Retrieve the template arguments.
4586   const TemplateArgument *getArgs() const {
4587     return getArgBuffer();
4588   }
4589 
4590   /// \brief Retrieve the number of template arguments.
4591   unsigned getNumArgs() const { return NumArgs; }
4592 
4593   const TemplateArgument &getArg(unsigned Idx) const; // in TemplateBase.h
4594 
4595   ArrayRef<TemplateArgument> template_arguments() const {
4596     return {getArgs(), NumArgs};
4597   }
4598 
4599   typedef const TemplateArgument * iterator;
4600   iterator begin() const { return getArgs(); }
4601   iterator end() const; // inline in TemplateBase.h
4602 
4603   bool isSugared() const { return false; }
4604   QualType desugar() const { return QualType(this, 0); }
4605 
4606   void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Context) {
4607     Profile(ID, Context, getKeyword(), NNS, Name, {getArgs(), NumArgs});
4608   }
4609 
4610   static void Profile(llvm::FoldingSetNodeID &ID,
4611                       const ASTContext &Context,
4612                       ElaboratedTypeKeyword Keyword,
4613                       NestedNameSpecifier *Qualifier,
4614                       const IdentifierInfo *Name,
4615                       ArrayRef<TemplateArgument> Args);
4616 
4617   static bool classof(const Type *T) {
4618     return T->getTypeClass() == DependentTemplateSpecialization;
4619   }
4620 };
4621 
4622 /// \brief Represents a pack expansion of types.
4623 ///
4624 /// Pack expansions are part of C++11 variadic templates. A pack
4625 /// expansion contains a pattern, which itself contains one or more
4626 /// "unexpanded" parameter packs. When instantiated, a pack expansion
4627 /// produces a series of types, each instantiated from the pattern of
4628 /// the expansion, where the Ith instantiation of the pattern uses the
4629 /// Ith arguments bound to each of the unexpanded parameter packs. The
4630 /// pack expansion is considered to "expand" these unexpanded
4631 /// parameter packs.
4632 ///
4633 /// \code
4634 /// template<typename ...Types> struct tuple;
4635 ///
4636 /// template<typename ...Types>
4637 /// struct tuple_of_references {
4638 ///   typedef tuple<Types&...> type;
4639 /// };
4640 /// \endcode
4641 ///
4642 /// Here, the pack expansion \c Types&... is represented via a
4643 /// PackExpansionType whose pattern is Types&.
4644 class PackExpansionType : public Type, public llvm::FoldingSetNode {
4645   /// \brief The pattern of the pack expansion.
4646   QualType Pattern;
4647 
4648   /// \brief The number of expansions that this pack expansion will
4649   /// generate when substituted (+1), or indicates that
4650   ///
4651   /// This field will only have a non-zero value when some of the parameter
4652   /// packs that occur within the pattern have been substituted but others have
4653   /// not.
4654   unsigned NumExpansions;
4655 
4656   PackExpansionType(QualType Pattern, QualType Canon,
4657                     Optional<unsigned> NumExpansions)
4658     : Type(PackExpansion, Canon, /*Dependent=*/Pattern->isDependentType(),
4659            /*InstantiationDependent=*/true,
4660            /*VariablyModified=*/Pattern->isVariablyModifiedType(),
4661            /*ContainsUnexpandedParameterPack=*/false),
4662       Pattern(Pattern),
4663       NumExpansions(NumExpansions? *NumExpansions + 1: 0) { }
4664 
4665   friend class ASTContext;  // ASTContext creates these
4666 
4667 public:
4668   /// \brief Retrieve the pattern of this pack expansion, which is the
4669   /// type that will be repeatedly instantiated when instantiating the
4670   /// pack expansion itself.
4671   QualType getPattern() const { return Pattern; }
4672 
4673   /// \brief Retrieve the number of expansions that this pack expansion will
4674   /// generate, if known.
4675   Optional<unsigned> getNumExpansions() const {
4676     if (NumExpansions)
4677       return NumExpansions - 1;
4678 
4679     return None;
4680   }
4681 
4682   bool isSugared() const { return !Pattern->isDependentType(); }
4683   QualType desugar() const { return isSugared() ? Pattern : QualType(this, 0); }
4684 
4685   void Profile(llvm::FoldingSetNodeID &ID) {
4686     Profile(ID, getPattern(), getNumExpansions());
4687   }
4688 
4689   static void Profile(llvm::FoldingSetNodeID &ID, QualType Pattern,
4690                       Optional<unsigned> NumExpansions) {
4691     ID.AddPointer(Pattern.getAsOpaquePtr());
4692     ID.AddBoolean(NumExpansions.hasValue());
4693     if (NumExpansions)
4694       ID.AddInteger(*NumExpansions);
4695   }
4696 
4697   static bool classof(const Type *T) {
4698     return T->getTypeClass() == PackExpansion;
4699   }
4700 };
4701 
4702 /// Represents a class type in Objective C.
4703 ///
4704 /// Every Objective C type is a combination of a base type, a set of
4705 /// type arguments (optional, for parameterized classes) and a list of
4706 /// protocols.
4707 ///
4708 /// Given the following declarations:
4709 /// \code
4710 ///   \@class C<T>;
4711 ///   \@protocol P;
4712 /// \endcode
4713 ///
4714 /// 'C' is an ObjCInterfaceType C.  It is sugar for an ObjCObjectType
4715 /// with base C and no protocols.
4716 ///
4717 /// 'C<P>' is an unspecialized ObjCObjectType with base C and protocol list [P].
4718 /// 'C<C*>' is a specialized ObjCObjectType with type arguments 'C*' and no
4719 /// protocol list.
4720 /// 'C<C*><P>' is a specialized ObjCObjectType with base C, type arguments 'C*',
4721 /// and protocol list [P].
4722 ///
4723 /// 'id' is a TypedefType which is sugar for an ObjCObjectPointerType whose
4724 /// pointee is an ObjCObjectType with base BuiltinType::ObjCIdType
4725 /// and no protocols.
4726 ///
4727 /// 'id<P>' is an ObjCObjectPointerType whose pointee is an ObjCObjectType
4728 /// with base BuiltinType::ObjCIdType and protocol list [P].  Eventually
4729 /// this should get its own sugar class to better represent the source.
4730 class ObjCObjectType : public Type {
4731   // ObjCObjectType.NumTypeArgs - the number of type arguments stored
4732   // after the ObjCObjectPointerType node.
4733   // ObjCObjectType.NumProtocols - the number of protocols stored
4734   // after the type arguments of ObjCObjectPointerType node.
4735   //
4736   // These protocols are those written directly on the type.  If
4737   // protocol qualifiers ever become additive, the iterators will need
4738   // to get kindof complicated.
4739   //
4740   // In the canonical object type, these are sorted alphabetically
4741   // and uniqued.
4742 
4743   /// Either a BuiltinType or an InterfaceType or sugar for either.
4744   QualType BaseType;
4745 
4746   /// Cached superclass type.
4747   mutable llvm::PointerIntPair<const ObjCObjectType *, 1, bool>
4748     CachedSuperClassType;
4749 
4750   ObjCProtocolDecl * const *getProtocolStorage() const {
4751     return const_cast<ObjCObjectType*>(this)->getProtocolStorage();
4752   }
4753 
4754   QualType *getTypeArgStorage();
4755   const QualType *getTypeArgStorage() const {
4756     return const_cast<ObjCObjectType *>(this)->getTypeArgStorage();
4757   }
4758 
4759   ObjCProtocolDecl **getProtocolStorage();
4760 
4761 protected:
4762   ObjCObjectType(QualType Canonical, QualType Base,
4763                  ArrayRef<QualType> typeArgs,
4764                  ArrayRef<ObjCProtocolDecl *> protocols,
4765                  bool isKindOf);
4766 
4767   enum Nonce_ObjCInterface { Nonce_ObjCInterface };
4768   ObjCObjectType(enum Nonce_ObjCInterface)
4769         : Type(ObjCInterface, QualType(), false, false, false, false),
4770       BaseType(QualType(this_(), 0)) {
4771     ObjCObjectTypeBits.NumProtocols = 0;
4772     ObjCObjectTypeBits.NumTypeArgs = 0;
4773     ObjCObjectTypeBits.IsKindOf = 0;
4774   }
4775 
4776   void computeSuperClassTypeSlow() const;
4777 
4778 public:
4779   /// Gets the base type of this object type.  This is always (possibly
4780   /// sugar for) one of:
4781   ///  - the 'id' builtin type (as opposed to the 'id' type visible to the
4782   ///    user, which is a typedef for an ObjCObjectPointerType)
4783   ///  - the 'Class' builtin type (same caveat)
4784   ///  - an ObjCObjectType (currently always an ObjCInterfaceType)
4785   QualType getBaseType() const { return BaseType; }
4786 
4787   bool isObjCId() const {
4788     return getBaseType()->isSpecificBuiltinType(BuiltinType::ObjCId);
4789   }
4790   bool isObjCClass() const {
4791     return getBaseType()->isSpecificBuiltinType(BuiltinType::ObjCClass);
4792   }
4793   bool isObjCUnqualifiedId() const { return qual_empty() && isObjCId(); }
4794   bool isObjCUnqualifiedClass() const { return qual_empty() && isObjCClass(); }
4795   bool isObjCUnqualifiedIdOrClass() const {
4796     if (!qual_empty()) return false;
4797     if (const BuiltinType *T = getBaseType()->getAs<BuiltinType>())
4798       return T->getKind() == BuiltinType::ObjCId ||
4799              T->getKind() == BuiltinType::ObjCClass;
4800     return false;
4801   }
4802   bool isObjCQualifiedId() const { return !qual_empty() && isObjCId(); }
4803   bool isObjCQualifiedClass() const { return !qual_empty() && isObjCClass(); }
4804 
4805   /// Gets the interface declaration for this object type, if the base type
4806   /// really is an interface.
4807   ObjCInterfaceDecl *getInterface() const;
4808 
4809   /// Determine whether this object type is "specialized", meaning
4810   /// that it has type arguments.
4811   bool isSpecialized() const;
4812 
4813   /// Determine whether this object type was written with type arguments.
4814   bool isSpecializedAsWritten() const {
4815     return ObjCObjectTypeBits.NumTypeArgs > 0;
4816   }
4817 
4818   /// Determine whether this object type is "unspecialized", meaning
4819   /// that it has no type arguments.
4820   bool isUnspecialized() const { return !isSpecialized(); }
4821 
4822   /// Determine whether this object type is "unspecialized" as
4823   /// written, meaning that it has no type arguments.
4824   bool isUnspecializedAsWritten() const { return !isSpecializedAsWritten(); }
4825 
4826   /// Retrieve the type arguments of this object type (semantically).
4827   ArrayRef<QualType> getTypeArgs() const;
4828 
4829   /// Retrieve the type arguments of this object type as they were
4830   /// written.
4831   ArrayRef<QualType> getTypeArgsAsWritten() const {
4832     return llvm::makeArrayRef(getTypeArgStorage(),
4833                               ObjCObjectTypeBits.NumTypeArgs);
4834   }
4835 
4836   typedef ObjCProtocolDecl * const *qual_iterator;
4837   typedef llvm::iterator_range<qual_iterator> qual_range;
4838 
4839   qual_range quals() const { return qual_range(qual_begin(), qual_end()); }
4840   qual_iterator qual_begin() const { return getProtocolStorage(); }
4841   qual_iterator qual_end() const { return qual_begin() + getNumProtocols(); }
4842 
4843   bool qual_empty() const { return getNumProtocols() == 0; }
4844 
4845   /// Return the number of qualifying protocols in this interface type,
4846   /// or 0 if there are none.
4847   unsigned getNumProtocols() const { return ObjCObjectTypeBits.NumProtocols; }
4848 
4849   /// Fetch a protocol by index.
4850   ObjCProtocolDecl *getProtocol(unsigned I) const {
4851     assert(I < getNumProtocols() && "Out-of-range protocol access");
4852     return qual_begin()[I];
4853   }
4854 
4855   /// Retrieve all of the protocol qualifiers.
4856   ArrayRef<ObjCProtocolDecl *> getProtocols() const {
4857     return ArrayRef<ObjCProtocolDecl *>(qual_begin(), getNumProtocols());
4858   }
4859 
4860   /// Whether this is a "__kindof" type as written.
4861   bool isKindOfTypeAsWritten() const { return ObjCObjectTypeBits.IsKindOf; }
4862 
4863   /// Whether this ia a "__kindof" type (semantically).
4864   bool isKindOfType() const;
4865 
4866   /// Retrieve the type of the superclass of this object type.
4867   ///
4868   /// This operation substitutes any type arguments into the
4869   /// superclass of the current class type, potentially producing a
4870   /// specialization of the superclass type. Produces a null type if
4871   /// there is no superclass.
4872   QualType getSuperClassType() const {
4873     if (!CachedSuperClassType.getInt())
4874       computeSuperClassTypeSlow();
4875 
4876     assert(CachedSuperClassType.getInt() && "Superclass not set?");
4877     return QualType(CachedSuperClassType.getPointer(), 0);
4878   }
4879 
4880   /// Strip off the Objective-C "kindof" type and (with it) any
4881   /// protocol qualifiers.
4882   QualType stripObjCKindOfTypeAndQuals(const ASTContext &ctx) const;
4883 
4884   bool isSugared() const { return false; }
4885   QualType desugar() const { return QualType(this, 0); }
4886 
4887   static bool classof(const Type *T) {
4888     return T->getTypeClass() == ObjCObject ||
4889            T->getTypeClass() == ObjCInterface;
4890   }
4891 };
4892 
4893 /// A class providing a concrete implementation
4894 /// of ObjCObjectType, so as to not increase the footprint of
4895 /// ObjCInterfaceType.  Code outside of ASTContext and the core type
4896 /// system should not reference this type.
4897 class ObjCObjectTypeImpl : public ObjCObjectType, public llvm::FoldingSetNode {
4898   friend class ASTContext;
4899 
4900   // If anyone adds fields here, ObjCObjectType::getProtocolStorage()
4901   // will need to be modified.
4902 
4903   ObjCObjectTypeImpl(QualType Canonical, QualType Base,
4904                      ArrayRef<QualType> typeArgs,
4905                      ArrayRef<ObjCProtocolDecl *> protocols,
4906                      bool isKindOf)
4907     : ObjCObjectType(Canonical, Base, typeArgs, protocols, isKindOf) {}
4908 
4909 public:
4910   void Profile(llvm::FoldingSetNodeID &ID);
4911   static void Profile(llvm::FoldingSetNodeID &ID,
4912                       QualType Base,
4913                       ArrayRef<QualType> typeArgs,
4914                       ArrayRef<ObjCProtocolDecl *> protocols,
4915                       bool isKindOf);
4916 };
4917 
4918 inline QualType *ObjCObjectType::getTypeArgStorage() {
4919   return reinterpret_cast<QualType *>(static_cast<ObjCObjectTypeImpl*>(this)+1);
4920 }
4921 
4922 inline ObjCProtocolDecl **ObjCObjectType::getProtocolStorage() {
4923     return reinterpret_cast<ObjCProtocolDecl**>(
4924              getTypeArgStorage() + ObjCObjectTypeBits.NumTypeArgs);
4925 }
4926 
4927 /// Interfaces are the core concept in Objective-C for object oriented design.
4928 /// They basically correspond to C++ classes.  There are two kinds of interface
4929 /// types: normal interfaces like `NSString`, and qualified interfaces, which
4930 /// are qualified with a protocol list like `NSString<NSCopyable, NSAmazing>`.
4931 ///
4932 /// ObjCInterfaceType guarantees the following properties when considered
4933 /// as a subtype of its superclass, ObjCObjectType:
4934 ///   - There are no protocol qualifiers.  To reinforce this, code which
4935 ///     tries to invoke the protocol methods via an ObjCInterfaceType will
4936 ///     fail to compile.
4937 ///   - It is its own base type.  That is, if T is an ObjCInterfaceType*,
4938 ///     T->getBaseType() == QualType(T, 0).
4939 class ObjCInterfaceType : public ObjCObjectType {
4940   mutable ObjCInterfaceDecl *Decl;
4941 
4942   ObjCInterfaceType(const ObjCInterfaceDecl *D)
4943     : ObjCObjectType(Nonce_ObjCInterface),
4944       Decl(const_cast<ObjCInterfaceDecl*>(D)) {}
4945   friend class ASTContext;  // ASTContext creates these.
4946   friend class ASTReader;
4947   friend class ObjCInterfaceDecl;
4948 
4949 public:
4950   /// Get the declaration of this interface.
4951   ObjCInterfaceDecl *getDecl() const { return Decl; }
4952 
4953   bool isSugared() const { return false; }
4954   QualType desugar() const { return QualType(this, 0); }
4955 
4956   static bool classof(const Type *T) {
4957     return T->getTypeClass() == ObjCInterface;
4958   }
4959 
4960   // Nonsense to "hide" certain members of ObjCObjectType within this
4961   // class.  People asking for protocols on an ObjCInterfaceType are
4962   // not going to get what they want: ObjCInterfaceTypes are
4963   // guaranteed to have no protocols.
4964   enum {
4965     qual_iterator,
4966     qual_begin,
4967     qual_end,
4968     getNumProtocols,
4969     getProtocol
4970   };
4971 };
4972 
4973 inline ObjCInterfaceDecl *ObjCObjectType::getInterface() const {
4974   QualType baseType = getBaseType();
4975   while (const ObjCObjectType *ObjT = baseType->getAs<ObjCObjectType>()) {
4976     if (const ObjCInterfaceType *T = dyn_cast<ObjCInterfaceType>(ObjT))
4977       return T->getDecl();
4978 
4979     baseType = ObjT->getBaseType();
4980   }
4981 
4982   return nullptr;
4983 }
4984 
4985 /// Represents a pointer to an Objective C object.
4986 ///
4987 /// These are constructed from pointer declarators when the pointee type is
4988 /// an ObjCObjectType (or sugar for one).  In addition, the 'id' and 'Class'
4989 /// types are typedefs for these, and the protocol-qualified types 'id<P>'
4990 /// and 'Class<P>' are translated into these.
4991 ///
4992 /// Pointers to pointers to Objective C objects are still PointerTypes;
4993 /// only the first level of pointer gets it own type implementation.
4994 class ObjCObjectPointerType : public Type, public llvm::FoldingSetNode {
4995   QualType PointeeType;
4996 
4997   ObjCObjectPointerType(QualType Canonical, QualType Pointee)
4998     : Type(ObjCObjectPointer, Canonical,
4999            Pointee->isDependentType(),
5000            Pointee->isInstantiationDependentType(),
5001            Pointee->isVariablyModifiedType(),
5002            Pointee->containsUnexpandedParameterPack()),
5003       PointeeType(Pointee) {}
5004   friend class ASTContext;  // ASTContext creates these.
5005 
5006 public:
5007   /// Gets the type pointed to by this ObjC pointer.
5008   /// The result will always be an ObjCObjectType or sugar thereof.
5009   QualType getPointeeType() const { return PointeeType; }
5010 
5011   /// Gets the type pointed to by this ObjC pointer.  Always returns non-null.
5012   ///
5013   /// This method is equivalent to getPointeeType() except that
5014   /// it discards any typedefs (or other sugar) between this
5015   /// type and the "outermost" object type.  So for:
5016   /// \code
5017   ///   \@class A; \@protocol P; \@protocol Q;
5018   ///   typedef A<P> AP;
5019   ///   typedef A A1;
5020   ///   typedef A1<P> A1P;
5021   ///   typedef A1P<Q> A1PQ;
5022   /// \endcode
5023   /// For 'A*', getObjectType() will return 'A'.
5024   /// For 'A<P>*', getObjectType() will return 'A<P>'.
5025   /// For 'AP*', getObjectType() will return 'A<P>'.
5026   /// For 'A1*', getObjectType() will return 'A'.
5027   /// For 'A1<P>*', getObjectType() will return 'A1<P>'.
5028   /// For 'A1P*', getObjectType() will return 'A1<P>'.
5029   /// For 'A1PQ*', getObjectType() will return 'A1<Q>', because
5030   ///   adding protocols to a protocol-qualified base discards the
5031   ///   old qualifiers (for now).  But if it didn't, getObjectType()
5032   ///   would return 'A1P<Q>' (and we'd have to make iterating over
5033   ///   qualifiers more complicated).
5034   const ObjCObjectType *getObjectType() const {
5035     return PointeeType->castAs<ObjCObjectType>();
5036   }
5037 
5038   /// If this pointer points to an Objective C
5039   /// \@interface type, gets the type for that interface.  Any protocol
5040   /// qualifiers on the interface are ignored.
5041   ///
5042   /// \return null if the base type for this pointer is 'id' or 'Class'
5043   const ObjCInterfaceType *getInterfaceType() const;
5044 
5045   /// If this pointer points to an Objective \@interface
5046   /// type, gets the declaration for that interface.
5047   ///
5048   /// \return null if the base type for this pointer is 'id' or 'Class'
5049   ObjCInterfaceDecl *getInterfaceDecl() const {
5050     return getObjectType()->getInterface();
5051   }
5052 
5053   /// True if this is equivalent to the 'id' type, i.e. if
5054   /// its object type is the primitive 'id' type with no protocols.
5055   bool isObjCIdType() const {
5056     return getObjectType()->isObjCUnqualifiedId();
5057   }
5058 
5059   /// True if this is equivalent to the 'Class' type,
5060   /// i.e. if its object tive is the primitive 'Class' type with no protocols.
5061   bool isObjCClassType() const {
5062     return getObjectType()->isObjCUnqualifiedClass();
5063   }
5064 
5065   /// True if this is equivalent to the 'id' or 'Class' type,
5066   bool isObjCIdOrClassType() const {
5067     return getObjectType()->isObjCUnqualifiedIdOrClass();
5068   }
5069 
5070   /// True if this is equivalent to 'id<P>' for some non-empty set of
5071   /// protocols.
5072   bool isObjCQualifiedIdType() const {
5073     return getObjectType()->isObjCQualifiedId();
5074   }
5075 
5076   /// True if this is equivalent to 'Class<P>' for some non-empty set of
5077   /// protocols.
5078   bool isObjCQualifiedClassType() const {
5079     return getObjectType()->isObjCQualifiedClass();
5080   }
5081 
5082   /// Whether this is a "__kindof" type.
5083   bool isKindOfType() const { return getObjectType()->isKindOfType(); }
5084 
5085   /// Whether this type is specialized, meaning that it has type arguments.
5086   bool isSpecialized() const { return getObjectType()->isSpecialized(); }
5087 
5088   /// Whether this type is specialized, meaning that it has type arguments.
5089   bool isSpecializedAsWritten() const {
5090     return getObjectType()->isSpecializedAsWritten();
5091   }
5092 
5093   /// Whether this type is unspecialized, meaning that is has no type arguments.
5094   bool isUnspecialized() const { return getObjectType()->isUnspecialized(); }
5095 
5096   /// Determine whether this object type is "unspecialized" as
5097   /// written, meaning that it has no type arguments.
5098   bool isUnspecializedAsWritten() const { return !isSpecializedAsWritten(); }
5099 
5100   /// Retrieve the type arguments for this type.
5101   ArrayRef<QualType> getTypeArgs() const {
5102     return getObjectType()->getTypeArgs();
5103   }
5104 
5105   /// Retrieve the type arguments for this type.
5106   ArrayRef<QualType> getTypeArgsAsWritten() const {
5107     return getObjectType()->getTypeArgsAsWritten();
5108   }
5109 
5110   /// An iterator over the qualifiers on the object type.  Provided
5111   /// for convenience.  This will always iterate over the full set of
5112   /// protocols on a type, not just those provided directly.
5113   typedef ObjCObjectType::qual_iterator qual_iterator;
5114   typedef llvm::iterator_range<qual_iterator> qual_range;
5115 
5116   qual_range quals() const { return qual_range(qual_begin(), qual_end()); }
5117   qual_iterator qual_begin() const {
5118     return getObjectType()->qual_begin();
5119   }
5120   qual_iterator qual_end() const {
5121     return getObjectType()->qual_end();
5122   }
5123   bool qual_empty() const { return getObjectType()->qual_empty(); }
5124 
5125   /// Return the number of qualifying protocols on the object type.
5126   unsigned getNumProtocols() const {
5127     return getObjectType()->getNumProtocols();
5128   }
5129 
5130   /// Retrieve a qualifying protocol by index on the object type.
5131   ObjCProtocolDecl *getProtocol(unsigned I) const {
5132     return getObjectType()->getProtocol(I);
5133   }
5134 
5135   bool isSugared() const { return false; }
5136   QualType desugar() const { return QualType(this, 0); }
5137 
5138   /// Retrieve the type of the superclass of this object pointer type.
5139   ///
5140   /// This operation substitutes any type arguments into the
5141   /// superclass of the current class type, potentially producing a
5142   /// pointer to a specialization of the superclass type. Produces a
5143   /// null type if there is no superclass.
5144   QualType getSuperClassType() const;
5145 
5146   /// Strip off the Objective-C "kindof" type and (with it) any
5147   /// protocol qualifiers.
5148   const ObjCObjectPointerType *stripObjCKindOfTypeAndQuals(
5149                                  const ASTContext &ctx) const;
5150 
5151   void Profile(llvm::FoldingSetNodeID &ID) {
5152     Profile(ID, getPointeeType());
5153   }
5154   static void Profile(llvm::FoldingSetNodeID &ID, QualType T) {
5155     ID.AddPointer(T.getAsOpaquePtr());
5156   }
5157   static bool classof(const Type *T) {
5158     return T->getTypeClass() == ObjCObjectPointer;
5159   }
5160 };
5161 
5162 class AtomicType : public Type, public llvm::FoldingSetNode {
5163   QualType ValueType;
5164 
5165   AtomicType(QualType ValTy, QualType Canonical)
5166     : Type(Atomic, Canonical, ValTy->isDependentType(),
5167            ValTy->isInstantiationDependentType(),
5168            ValTy->isVariablyModifiedType(),
5169            ValTy->containsUnexpandedParameterPack()),
5170       ValueType(ValTy) {}
5171   friend class ASTContext;  // ASTContext creates these.
5172 
5173   public:
5174   /// Gets the type contained by this atomic type, i.e.
5175   /// the type returned by performing an atomic load of this atomic type.
5176   QualType getValueType() const { return ValueType; }
5177 
5178   bool isSugared() const { return false; }
5179   QualType desugar() const { return QualType(this, 0); }
5180 
5181   void Profile(llvm::FoldingSetNodeID &ID) {
5182     Profile(ID, getValueType());
5183   }
5184   static void Profile(llvm::FoldingSetNodeID &ID, QualType T) {
5185     ID.AddPointer(T.getAsOpaquePtr());
5186   }
5187   static bool classof(const Type *T) {
5188     return T->getTypeClass() == Atomic;
5189   }
5190 };
5191 
5192 /// PipeType - OpenCL20.
5193 class PipeType : public Type, public llvm::FoldingSetNode {
5194   QualType ElementType;
5195 
5196   PipeType(QualType elemType, QualType CanonicalPtr) :
5197     Type(Pipe, CanonicalPtr, elemType->isDependentType(),
5198          elemType->isInstantiationDependentType(),
5199          elemType->isVariablyModifiedType(),
5200          elemType->containsUnexpandedParameterPack()),
5201     ElementType(elemType) {}
5202   friend class ASTContext;  // ASTContext creates these.
5203 
5204 public:
5205 
5206   QualType getElementType() const { return ElementType; }
5207 
5208   bool isSugared() const { return false; }
5209 
5210   QualType desugar() const { return QualType(this, 0); }
5211 
5212   void Profile(llvm::FoldingSetNodeID &ID) {
5213     Profile(ID, getElementType());
5214   }
5215 
5216   static void Profile(llvm::FoldingSetNodeID &ID, QualType T) {
5217     ID.AddPointer(T.getAsOpaquePtr());
5218   }
5219 
5220 
5221   static bool classof(const Type *T) {
5222     return T->getTypeClass() == Pipe;
5223   }
5224 
5225 };
5226 
5227 /// A qualifier set is used to build a set of qualifiers.
5228 class QualifierCollector : public Qualifiers {
5229 public:
5230   QualifierCollector(Qualifiers Qs = Qualifiers()) : Qualifiers(Qs) {}
5231 
5232   /// Collect any qualifiers on the given type and return an
5233   /// unqualified type.  The qualifiers are assumed to be consistent
5234   /// with those already in the type.
5235   const Type *strip(QualType type) {
5236     addFastQualifiers(type.getLocalFastQualifiers());
5237     if (!type.hasLocalNonFastQualifiers())
5238       return type.getTypePtrUnsafe();
5239 
5240     const ExtQuals *extQuals = type.getExtQualsUnsafe();
5241     addConsistentQualifiers(extQuals->getQualifiers());
5242     return extQuals->getBaseType();
5243   }
5244 
5245   /// Apply the collected qualifiers to the given type.
5246   QualType apply(const ASTContext &Context, QualType QT) const;
5247 
5248   /// Apply the collected qualifiers to the given type.
5249   QualType apply(const ASTContext &Context, const Type* T) const;
5250 };
5251 
5252 
5253 // Inline function definitions.
5254 
5255 inline SplitQualType SplitQualType::getSingleStepDesugaredType() const {
5256   SplitQualType desugar =
5257     Ty->getLocallyUnqualifiedSingleStepDesugaredType().split();
5258   desugar.Quals.addConsistentQualifiers(Quals);
5259   return desugar;
5260 }
5261 
5262 inline const Type *QualType::getTypePtr() const {
5263   return getCommonPtr()->BaseType;
5264 }
5265 
5266 inline const Type *QualType::getTypePtrOrNull() const {
5267   return (isNull() ? nullptr : getCommonPtr()->BaseType);
5268 }
5269 
5270 inline SplitQualType QualType::split() const {
5271   if (!hasLocalNonFastQualifiers())
5272     return SplitQualType(getTypePtrUnsafe(),
5273                          Qualifiers::fromFastMask(getLocalFastQualifiers()));
5274 
5275   const ExtQuals *eq = getExtQualsUnsafe();
5276   Qualifiers qs = eq->getQualifiers();
5277   qs.addFastQualifiers(getLocalFastQualifiers());
5278   return SplitQualType(eq->getBaseType(), qs);
5279 }
5280 
5281 inline Qualifiers QualType::getLocalQualifiers() const {
5282   Qualifiers Quals;
5283   if (hasLocalNonFastQualifiers())
5284     Quals = getExtQualsUnsafe()->getQualifiers();
5285   Quals.addFastQualifiers(getLocalFastQualifiers());
5286   return Quals;
5287 }
5288 
5289 inline Qualifiers QualType::getQualifiers() const {
5290   Qualifiers quals = getCommonPtr()->CanonicalType.getLocalQualifiers();
5291   quals.addFastQualifiers(getLocalFastQualifiers());
5292   return quals;
5293 }
5294 
5295 inline unsigned QualType::getCVRQualifiers() const {
5296   unsigned cvr = getCommonPtr()->CanonicalType.getLocalCVRQualifiers();
5297   cvr |= getLocalCVRQualifiers();
5298   return cvr;
5299 }
5300 
5301 inline QualType QualType::getCanonicalType() const {
5302   QualType canon = getCommonPtr()->CanonicalType;
5303   return canon.withFastQualifiers(getLocalFastQualifiers());
5304 }
5305 
5306 inline bool QualType::isCanonical() const {
5307   return getTypePtr()->isCanonicalUnqualified();
5308 }
5309 
5310 inline bool QualType::isCanonicalAsParam() const {
5311   if (!isCanonical()) return false;
5312   if (hasLocalQualifiers()) return false;
5313 
5314   const Type *T = getTypePtr();
5315   if (T->isVariablyModifiedType() && T->hasSizedVLAType())
5316     return false;
5317 
5318   return !isa<FunctionType>(T) && !isa<ArrayType>(T);
5319 }
5320 
5321 inline bool QualType::isConstQualified() const {
5322   return isLocalConstQualified() ||
5323          getCommonPtr()->CanonicalType.isLocalConstQualified();
5324 }
5325 
5326 inline bool QualType::isRestrictQualified() const {
5327   return isLocalRestrictQualified() ||
5328          getCommonPtr()->CanonicalType.isLocalRestrictQualified();
5329 }
5330 
5331 
5332 inline bool QualType::isVolatileQualified() const {
5333   return isLocalVolatileQualified() ||
5334          getCommonPtr()->CanonicalType.isLocalVolatileQualified();
5335 }
5336 
5337 inline bool QualType::hasQualifiers() const {
5338   return hasLocalQualifiers() ||
5339          getCommonPtr()->CanonicalType.hasLocalQualifiers();
5340 }
5341 
5342 inline QualType QualType::getUnqualifiedType() const {
5343   if (!getTypePtr()->getCanonicalTypeInternal().hasLocalQualifiers())
5344     return QualType(getTypePtr(), 0);
5345 
5346   return QualType(getSplitUnqualifiedTypeImpl(*this).Ty, 0);
5347 }
5348 
5349 inline SplitQualType QualType::getSplitUnqualifiedType() const {
5350   if (!getTypePtr()->getCanonicalTypeInternal().hasLocalQualifiers())
5351     return split();
5352 
5353   return getSplitUnqualifiedTypeImpl(*this);
5354 }
5355 
5356 inline void QualType::removeLocalConst() {
5357   removeLocalFastQualifiers(Qualifiers::Const);
5358 }
5359 
5360 inline void QualType::removeLocalRestrict() {
5361   removeLocalFastQualifiers(Qualifiers::Restrict);
5362 }
5363 
5364 inline void QualType::removeLocalVolatile() {
5365   removeLocalFastQualifiers(Qualifiers::Volatile);
5366 }
5367 
5368 inline void QualType::removeLocalCVRQualifiers(unsigned Mask) {
5369   assert(!(Mask & ~Qualifiers::CVRMask) && "mask has non-CVR bits");
5370   static_assert((int)Qualifiers::CVRMask == (int)Qualifiers::FastMask,
5371                 "Fast bits differ from CVR bits!");
5372 
5373   // Fast path: we don't need to touch the slow qualifiers.
5374   removeLocalFastQualifiers(Mask);
5375 }
5376 
5377 /// Return the address space of this type.
5378 inline unsigned QualType::getAddressSpace() const {
5379   return getQualifiers().getAddressSpace();
5380 }
5381 
5382 /// Return the gc attribute of this type.
5383 inline Qualifiers::GC QualType::getObjCGCAttr() const {
5384   return getQualifiers().getObjCGCAttr();
5385 }
5386 
5387 inline FunctionType::ExtInfo getFunctionExtInfo(const Type &t) {
5388   if (const PointerType *PT = t.getAs<PointerType>()) {
5389     if (const FunctionType *FT = PT->getPointeeType()->getAs<FunctionType>())
5390       return FT->getExtInfo();
5391   } else if (const FunctionType *FT = t.getAs<FunctionType>())
5392     return FT->getExtInfo();
5393 
5394   return FunctionType::ExtInfo();
5395 }
5396 
5397 inline FunctionType::ExtInfo getFunctionExtInfo(QualType t) {
5398   return getFunctionExtInfo(*t);
5399 }
5400 
5401 /// Determine whether this type is more
5402 /// qualified than the Other type. For example, "const volatile int"
5403 /// is more qualified than "const int", "volatile int", and
5404 /// "int". However, it is not more qualified than "const volatile
5405 /// int".
5406 inline bool QualType::isMoreQualifiedThan(QualType other) const {
5407   Qualifiers MyQuals = getQualifiers();
5408   Qualifiers OtherQuals = other.getQualifiers();
5409   return (MyQuals != OtherQuals && MyQuals.compatiblyIncludes(OtherQuals));
5410 }
5411 
5412 /// Determine whether this type is at last
5413 /// as qualified as the Other type. For example, "const volatile
5414 /// int" is at least as qualified as "const int", "volatile int",
5415 /// "int", and "const volatile int".
5416 inline bool QualType::isAtLeastAsQualifiedAs(QualType other) const {
5417   Qualifiers OtherQuals = other.getQualifiers();
5418 
5419   // Ignore __unaligned qualifier if this type is a void.
5420   if (getUnqualifiedType()->isVoidType())
5421     OtherQuals.removeUnaligned();
5422 
5423   return getQualifiers().compatiblyIncludes(OtherQuals);
5424 }
5425 
5426 /// If Type is a reference type (e.g., const
5427 /// int&), returns the type that the reference refers to ("const
5428 /// int"). Otherwise, returns the type itself. This routine is used
5429 /// throughout Sema to implement C++ 5p6:
5430 ///
5431 ///   If an expression initially has the type "reference to T" (8.3.2,
5432 ///   8.5.3), the type is adjusted to "T" prior to any further
5433 ///   analysis, the expression designates the object or function
5434 ///   denoted by the reference, and the expression is an lvalue.
5435 inline QualType QualType::getNonReferenceType() const {
5436   if (const ReferenceType *RefType = (*this)->getAs<ReferenceType>())
5437     return RefType->getPointeeType();
5438   else
5439     return *this;
5440 }
5441 
5442 inline bool QualType::isCForbiddenLValueType() const {
5443   return ((getTypePtr()->isVoidType() && !hasQualifiers()) ||
5444           getTypePtr()->isFunctionType());
5445 }
5446 
5447 /// Tests whether the type is categorized as a fundamental type.
5448 ///
5449 /// \returns True for types specified in C++0x [basic.fundamental].
5450 inline bool Type::isFundamentalType() const {
5451   return isVoidType() ||
5452          // FIXME: It's really annoying that we don't have an
5453          // 'isArithmeticType()' which agrees with the standard definition.
5454          (isArithmeticType() && !isEnumeralType());
5455 }
5456 
5457 /// Tests whether the type is categorized as a compound type.
5458 ///
5459 /// \returns True for types specified in C++0x [basic.compound].
5460 inline bool Type::isCompoundType() const {
5461   // C++0x [basic.compound]p1:
5462   //   Compound types can be constructed in the following ways:
5463   //    -- arrays of objects of a given type [...];
5464   return isArrayType() ||
5465   //    -- functions, which have parameters of given types [...];
5466          isFunctionType() ||
5467   //    -- pointers to void or objects or functions [...];
5468          isPointerType() ||
5469   //    -- references to objects or functions of a given type. [...]
5470          isReferenceType() ||
5471   //    -- classes containing a sequence of objects of various types, [...];
5472          isRecordType() ||
5473   //    -- unions, which are classes capable of containing objects of different
5474   //               types at different times;
5475          isUnionType() ||
5476   //    -- enumerations, which comprise a set of named constant values. [...];
5477          isEnumeralType() ||
5478   //    -- pointers to non-static class members, [...].
5479          isMemberPointerType();
5480 }
5481 
5482 inline bool Type::isFunctionType() const {
5483   return isa<FunctionType>(CanonicalType);
5484 }
5485 inline bool Type::isPointerType() const {
5486   return isa<PointerType>(CanonicalType);
5487 }
5488 inline bool Type::isAnyPointerType() const {
5489   return isPointerType() || isObjCObjectPointerType();
5490 }
5491 inline bool Type::isBlockPointerType() const {
5492   return isa<BlockPointerType>(CanonicalType);
5493 }
5494 inline bool Type::isReferenceType() const {
5495   return isa<ReferenceType>(CanonicalType);
5496 }
5497 inline bool Type::isLValueReferenceType() const {
5498   return isa<LValueReferenceType>(CanonicalType);
5499 }
5500 inline bool Type::isRValueReferenceType() const {
5501   return isa<RValueReferenceType>(CanonicalType);
5502 }
5503 inline bool Type::isFunctionPointerType() const {
5504   if (const PointerType *T = getAs<PointerType>())
5505     return T->getPointeeType()->isFunctionType();
5506   else
5507     return false;
5508 }
5509 inline bool Type::isMemberPointerType() const {
5510   return isa<MemberPointerType>(CanonicalType);
5511 }
5512 inline bool Type::isMemberFunctionPointerType() const {
5513   if (const MemberPointerType* T = getAs<MemberPointerType>())
5514     return T->isMemberFunctionPointer();
5515   else
5516     return false;
5517 }
5518 inline bool Type::isMemberDataPointerType() const {
5519   if (const MemberPointerType* T = getAs<MemberPointerType>())
5520     return T->isMemberDataPointer();
5521   else
5522     return false;
5523 }
5524 inline bool Type::isArrayType() const {
5525   return isa<ArrayType>(CanonicalType);
5526 }
5527 inline bool Type::isConstantArrayType() const {
5528   return isa<ConstantArrayType>(CanonicalType);
5529 }
5530 inline bool Type::isIncompleteArrayType() const {
5531   return isa<IncompleteArrayType>(CanonicalType);
5532 }
5533 inline bool Type::isVariableArrayType() const {
5534   return isa<VariableArrayType>(CanonicalType);
5535 }
5536 inline bool Type::isDependentSizedArrayType() const {
5537   return isa<DependentSizedArrayType>(CanonicalType);
5538 }
5539 inline bool Type::isBuiltinType() const {
5540   return isa<BuiltinType>(CanonicalType);
5541 }
5542 inline bool Type::isRecordType() const {
5543   return isa<RecordType>(CanonicalType);
5544 }
5545 inline bool Type::isEnumeralType() const {
5546   return isa<EnumType>(CanonicalType);
5547 }
5548 inline bool Type::isAnyComplexType() const {
5549   return isa<ComplexType>(CanonicalType);
5550 }
5551 inline bool Type::isVectorType() const {
5552   return isa<VectorType>(CanonicalType);
5553 }
5554 inline bool Type::isExtVectorType() const {
5555   return isa<ExtVectorType>(CanonicalType);
5556 }
5557 inline bool Type::isObjCObjectPointerType() const {
5558   return isa<ObjCObjectPointerType>(CanonicalType);
5559 }
5560 inline bool Type::isObjCObjectType() const {
5561   return isa<ObjCObjectType>(CanonicalType);
5562 }
5563 inline bool Type::isObjCObjectOrInterfaceType() const {
5564   return isa<ObjCInterfaceType>(CanonicalType) ||
5565     isa<ObjCObjectType>(CanonicalType);
5566 }
5567 inline bool Type::isAtomicType() const {
5568   return isa<AtomicType>(CanonicalType);
5569 }
5570 
5571 inline bool Type::isObjCQualifiedIdType() const {
5572   if (const ObjCObjectPointerType *OPT = getAs<ObjCObjectPointerType>())
5573     return OPT->isObjCQualifiedIdType();
5574   return false;
5575 }
5576 inline bool Type::isObjCQualifiedClassType() const {
5577   if (const ObjCObjectPointerType *OPT = getAs<ObjCObjectPointerType>())
5578     return OPT->isObjCQualifiedClassType();
5579   return false;
5580 }
5581 inline bool Type::isObjCIdType() const {
5582   if (const ObjCObjectPointerType *OPT = getAs<ObjCObjectPointerType>())
5583     return OPT->isObjCIdType();
5584   return false;
5585 }
5586 inline bool Type::isObjCClassType() const {
5587   if (const ObjCObjectPointerType *OPT = getAs<ObjCObjectPointerType>())
5588     return OPT->isObjCClassType();
5589   return false;
5590 }
5591 inline bool Type::isObjCSelType() const {
5592   if (const PointerType *OPT = getAs<PointerType>())
5593     return OPT->getPointeeType()->isSpecificBuiltinType(BuiltinType::ObjCSel);
5594   return false;
5595 }
5596 inline bool Type::isObjCBuiltinType() const {
5597   return isObjCIdType() || isObjCClassType() || isObjCSelType();
5598 }
5599 
5600 #define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) \
5601   inline bool Type::is##Id##Type() const { \
5602     return isSpecificBuiltinType(BuiltinType::Id); \
5603   }
5604 #include "clang/Basic/OpenCLImageTypes.def"
5605 
5606 inline bool Type::isSamplerT() const {
5607   return isSpecificBuiltinType(BuiltinType::OCLSampler);
5608 }
5609 
5610 inline bool Type::isEventT() const {
5611   return isSpecificBuiltinType(BuiltinType::OCLEvent);
5612 }
5613 
5614 inline bool Type::isClkEventT() const {
5615   return isSpecificBuiltinType(BuiltinType::OCLClkEvent);
5616 }
5617 
5618 inline bool Type::isQueueT() const {
5619   return isSpecificBuiltinType(BuiltinType::OCLQueue);
5620 }
5621 
5622 inline bool Type::isNDRangeT() const {
5623   return isSpecificBuiltinType(BuiltinType::OCLNDRange);
5624 }
5625 
5626 inline bool Type::isReserveIDT() const {
5627   return isSpecificBuiltinType(BuiltinType::OCLReserveID);
5628 }
5629 
5630 inline bool Type::isImageType() const {
5631 #define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) is##Id##Type() ||
5632   return
5633 #include "clang/Basic/OpenCLImageTypes.def"
5634       0; // end boolean or operation
5635 }
5636 
5637 inline bool Type::isPipeType() const {
5638   return isa<PipeType>(CanonicalType);
5639 }
5640 
5641 inline bool Type::isOpenCLSpecificType() const {
5642   return isSamplerT() || isEventT() || isImageType() || isClkEventT() ||
5643          isQueueT() || isNDRangeT() || isReserveIDT() || isPipeType();
5644 }
5645 
5646 inline bool Type::isTemplateTypeParmType() const {
5647   return isa<TemplateTypeParmType>(CanonicalType);
5648 }
5649 
5650 inline bool Type::isSpecificBuiltinType(unsigned K) const {
5651   if (const BuiltinType *BT = getAs<BuiltinType>())
5652     if (BT->getKind() == (BuiltinType::Kind) K)
5653       return true;
5654   return false;
5655 }
5656 
5657 inline bool Type::isPlaceholderType() const {
5658   if (const BuiltinType *BT = dyn_cast<BuiltinType>(this))
5659     return BT->isPlaceholderType();
5660   return false;
5661 }
5662 
5663 inline const BuiltinType *Type::getAsPlaceholderType() const {
5664   if (const BuiltinType *BT = dyn_cast<BuiltinType>(this))
5665     if (BT->isPlaceholderType())
5666       return BT;
5667   return nullptr;
5668 }
5669 
5670 inline bool Type::isSpecificPlaceholderType(unsigned K) const {
5671   assert(BuiltinType::isPlaceholderTypeKind((BuiltinType::Kind) K));
5672   if (const BuiltinType *BT = dyn_cast<BuiltinType>(this))
5673     return (BT->getKind() == (BuiltinType::Kind) K);
5674   return false;
5675 }
5676 
5677 inline bool Type::isNonOverloadPlaceholderType() const {
5678   if (const BuiltinType *BT = dyn_cast<BuiltinType>(this))
5679     return BT->isNonOverloadPlaceholderType();
5680   return false;
5681 }
5682 
5683 inline bool Type::isVoidType() const {
5684   if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType))
5685     return BT->getKind() == BuiltinType::Void;
5686   return false;
5687 }
5688 
5689 inline bool Type::isHalfType() const {
5690   if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType))
5691     return BT->getKind() == BuiltinType::Half;
5692   // FIXME: Should we allow complex __fp16? Probably not.
5693   return false;
5694 }
5695 
5696 inline bool Type::isNullPtrType() const {
5697   if (const BuiltinType *BT = getAs<BuiltinType>())
5698     return BT->getKind() == BuiltinType::NullPtr;
5699   return false;
5700 }
5701 
5702 extern bool IsEnumDeclComplete(EnumDecl *);
5703 extern bool IsEnumDeclScoped(EnumDecl *);
5704 
5705 inline bool Type::isIntegerType() const {
5706   if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType))
5707     return BT->getKind() >= BuiltinType::Bool &&
5708            BT->getKind() <= BuiltinType::Int128;
5709   if (const EnumType *ET = dyn_cast<EnumType>(CanonicalType)) {
5710     // Incomplete enum types are not treated as integer types.
5711     // FIXME: In C++, enum types are never integer types.
5712     return IsEnumDeclComplete(ET->getDecl()) &&
5713       !IsEnumDeclScoped(ET->getDecl());
5714   }
5715   return false;
5716 }
5717 
5718 inline bool Type::isScalarType() const {
5719   if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType))
5720     return BT->getKind() > BuiltinType::Void &&
5721            BT->getKind() <= BuiltinType::NullPtr;
5722   if (const EnumType *ET = dyn_cast<EnumType>(CanonicalType))
5723     // Enums are scalar types, but only if they are defined.  Incomplete enums
5724     // are not treated as scalar types.
5725     return IsEnumDeclComplete(ET->getDecl());
5726   return isa<PointerType>(CanonicalType) ||
5727          isa<BlockPointerType>(CanonicalType) ||
5728          isa<MemberPointerType>(CanonicalType) ||
5729          isa<ComplexType>(CanonicalType) ||
5730          isa<ObjCObjectPointerType>(CanonicalType);
5731 }
5732 
5733 inline bool Type::isIntegralOrEnumerationType() const {
5734   if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType))
5735     return BT->getKind() >= BuiltinType::Bool &&
5736            BT->getKind() <= BuiltinType::Int128;
5737 
5738   // Check for a complete enum type; incomplete enum types are not properly an
5739   // enumeration type in the sense required here.
5740   if (const EnumType *ET = dyn_cast<EnumType>(CanonicalType))
5741     return IsEnumDeclComplete(ET->getDecl());
5742 
5743   return false;
5744 }
5745 
5746 inline bool Type::isBooleanType() const {
5747   if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType))
5748     return BT->getKind() == BuiltinType::Bool;
5749   return false;
5750 }
5751 
5752 inline bool Type::isUndeducedType() const {
5753   const AutoType *AT = getContainedAutoType();
5754   return AT && !AT->isDeduced();
5755 }
5756 
5757 /// \brief Determines whether this is a type for which one can define
5758 /// an overloaded operator.
5759 inline bool Type::isOverloadableType() const {
5760   return isDependentType() || isRecordType() || isEnumeralType();
5761 }
5762 
5763 /// \brief Determines whether this type can decay to a pointer type.
5764 inline bool Type::canDecayToPointerType() const {
5765   return isFunctionType() || isArrayType();
5766 }
5767 
5768 inline bool Type::hasPointerRepresentation() const {
5769   return (isPointerType() || isReferenceType() || isBlockPointerType() ||
5770           isObjCObjectPointerType() || isNullPtrType());
5771 }
5772 
5773 inline bool Type::hasObjCPointerRepresentation() const {
5774   return isObjCObjectPointerType();
5775 }
5776 
5777 inline const Type *Type::getBaseElementTypeUnsafe() const {
5778   const Type *type = this;
5779   while (const ArrayType *arrayType = type->getAsArrayTypeUnsafe())
5780     type = arrayType->getElementType().getTypePtr();
5781   return type;
5782 }
5783 
5784 inline const Type *Type::getPointeeOrArrayElementType() const {
5785   const Type *type = this;
5786   if (type->isAnyPointerType())
5787     return type->getPointeeType().getTypePtr();
5788   else if (type->isArrayType())
5789     return type->getBaseElementTypeUnsafe();
5790   return type;
5791 }
5792 
5793 /// Insertion operator for diagnostics.  This allows sending QualType's into a
5794 /// diagnostic with <<.
5795 inline const DiagnosticBuilder &operator<<(const DiagnosticBuilder &DB,
5796                                            QualType T) {
5797   DB.AddTaggedVal(reinterpret_cast<intptr_t>(T.getAsOpaquePtr()),
5798                   DiagnosticsEngine::ak_qualtype);
5799   return DB;
5800 }
5801 
5802 /// Insertion operator for partial diagnostics.  This allows sending QualType's
5803 /// into a diagnostic with <<.
5804 inline const PartialDiagnostic &operator<<(const PartialDiagnostic &PD,
5805                                            QualType T) {
5806   PD.AddTaggedVal(reinterpret_cast<intptr_t>(T.getAsOpaquePtr()),
5807                   DiagnosticsEngine::ak_qualtype);
5808   return PD;
5809 }
5810 
5811 // Helper class template that is used by Type::getAs to ensure that one does
5812 // not try to look through a qualified type to get to an array type.
5813 template <typename T, bool isArrayType = (std::is_same<T, ArrayType>::value ||
5814                                           std::is_base_of<ArrayType, T>::value)>
5815 struct ArrayType_cannot_be_used_with_getAs {};
5816 
5817 template<typename T>
5818 struct ArrayType_cannot_be_used_with_getAs<T, true>;
5819 
5820 // Member-template getAs<specific type>'.
5821 template <typename T> const T *Type::getAs() const {
5822   ArrayType_cannot_be_used_with_getAs<T> at;
5823   (void)at;
5824 
5825   // If this is directly a T type, return it.
5826   if (const T *Ty = dyn_cast<T>(this))
5827     return Ty;
5828 
5829   // If the canonical form of this type isn't the right kind, reject it.
5830   if (!isa<T>(CanonicalType))
5831     return nullptr;
5832 
5833   // If this is a typedef for the type, strip the typedef off without
5834   // losing all typedef information.
5835   return cast<T>(getUnqualifiedDesugaredType());
5836 }
5837 
5838 inline const ArrayType *Type::getAsArrayTypeUnsafe() const {
5839   // If this is directly an array type, return it.
5840   if (const ArrayType *arr = dyn_cast<ArrayType>(this))
5841     return arr;
5842 
5843   // If the canonical form of this type isn't the right kind, reject it.
5844   if (!isa<ArrayType>(CanonicalType))
5845     return nullptr;
5846 
5847   // If this is a typedef for the type, strip the typedef off without
5848   // losing all typedef information.
5849   return cast<ArrayType>(getUnqualifiedDesugaredType());
5850 }
5851 
5852 template <typename T> const T *Type::castAs() const {
5853   ArrayType_cannot_be_used_with_getAs<T> at;
5854   (void) at;
5855 
5856   if (const T *ty = dyn_cast<T>(this)) return ty;
5857   assert(isa<T>(CanonicalType));
5858   return cast<T>(getUnqualifiedDesugaredType());
5859 }
5860 
5861 inline const ArrayType *Type::castAsArrayTypeUnsafe() const {
5862   assert(isa<ArrayType>(CanonicalType));
5863   if (const ArrayType *arr = dyn_cast<ArrayType>(this)) return arr;
5864   return cast<ArrayType>(getUnqualifiedDesugaredType());
5865 }
5866 
5867 }  // end namespace clang
5868 
5869 #endif
5870