1 // Copyright 2013 Google Inc. All Rights Reserved.
2 //
3 // Redistribution and use in source and binary forms, with or without
4 // modification, are permitted provided that the following conditions are
5 // met:
6 //
7 // * Redistributions of source code must retain the above copyright
8 // notice, this list of conditions and the following disclaimer.
9 // * Redistributions in binary form must reproduce the above
10 // copyright notice, this list of conditions and the following disclaimer
11 // in the documentation and/or other materials provided with the
12 // distribution.
13 // * Neither the name of Google Inc. nor the names of its
14 // contributors may be used to endorse or promote products derived from
15 // this software without specific prior written permission.
16 //
17 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
18 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
19 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
20 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
21 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
22 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
23 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
24 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
25 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
26 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
27 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
28
29 // Scopers help you manage ownership of a pointer, helping you easily manage the
30 // a pointer within a scope, and automatically destroying the pointer at the
31 // end of a scope. There are two main classes you will use, which correspond
32 // to the operators new/delete and new[]/delete[].
33 //
34 // Example usage (scoped_ptr):
35 // {
36 // scoped_ptr<Foo> foo(new Foo("wee"));
37 // } // foo goes out of scope, releasing the pointer with it.
38 //
39 // {
40 // scoped_ptr<Foo> foo; // No pointer managed.
41 // foo.reset(new Foo("wee")); // Now a pointer is managed.
42 // foo.reset(new Foo("wee2")); // Foo("wee") was destroyed.
43 // foo.reset(new Foo("wee3")); // Foo("wee2") was destroyed.
44 // foo->Method(); // Foo::Method() called.
45 // foo.get()->Method(); // Foo::Method() called.
46 // SomeFunc(foo.release()); // SomeFunc takes ownership, foo no longer
47 // // manages a pointer.
48 // foo.reset(new Foo("wee4")); // foo manages a pointer again.
49 // foo.reset(); // Foo("wee4") destroyed, foo no longer
50 // // manages a pointer.
51 // } // foo wasn't managing a pointer, so nothing was destroyed.
52 //
53 // Example usage (scoped_array):
54 // {
55 // scoped_array<Foo> foo(new Foo[100]);
56 // foo.get()->Method(); // Foo::Method on the 0th element.
57 // foo[10].Method(); // Foo::Method on the 10th element.
58 // }
59
60 #ifndef COMMON_SCOPED_PTR_H_
61 #define COMMON_SCOPED_PTR_H_
62
63 // This is an implementation designed to match the anticipated future TR2
64 // implementation of the scoped_ptr class, and its closely-related brethren,
65 // scoped_array, scoped_ptr_malloc.
66
67 #include <assert.h>
68 #include <stddef.h>
69 #include <stdlib.h>
70
71 namespace google_breakpad {
72
73 // A scoped_ptr<T> is like a T*, except that the destructor of scoped_ptr<T>
74 // automatically deletes the pointer it holds (if any).
75 // That is, scoped_ptr<T> owns the T object that it points to.
76 // Like a T*, a scoped_ptr<T> may hold either NULL or a pointer to a T object.
77 // Also like T*, scoped_ptr<T> is thread-compatible, and once you
78 // dereference it, you get the threadsafety guarantees of T.
79 //
80 // The size of a scoped_ptr is small:
81 // sizeof(scoped_ptr<C>) == sizeof(C*)
82 template <class C>
83 class scoped_ptr {
84 public:
85
86 // The element type
87 typedef C element_type;
88
89 // Constructor. Defaults to initializing with NULL.
90 // There is no way to create an uninitialized scoped_ptr.
91 // The input parameter must be allocated with new.
ptr_(p)92 explicit scoped_ptr(C* p = NULL) : ptr_(p) { }
93
94 // Destructor. If there is a C object, delete it.
95 // We don't need to test ptr_ == NULL because C++ does that for us.
~scoped_ptr()96 ~scoped_ptr() {
97 enum { type_must_be_complete = sizeof(C) };
98 delete ptr_;
99 }
100
101 // Reset. Deletes the current owned object, if any.
102 // Then takes ownership of a new object, if given.
103 // this->reset(this->get()) works.
104 void reset(C* p = NULL) {
105 if (p != ptr_) {
106 enum { type_must_be_complete = sizeof(C) };
107 delete ptr_;
108 ptr_ = p;
109 }
110 }
111
112 // Accessors to get the owned object.
113 // operator* and operator-> will assert() if there is no current object.
114 C& operator*() const {
115 assert(ptr_ != NULL);
116 return *ptr_;
117 }
118 C* operator->() const {
119 assert(ptr_ != NULL);
120 return ptr_;
121 }
get()122 C* get() const { return ptr_; }
123
124 // Comparison operators.
125 // These return whether two scoped_ptr refer to the same object, not just to
126 // two different but equal objects.
127 bool operator==(C* p) const { return ptr_ == p; }
128 bool operator!=(C* p) const { return ptr_ != p; }
129
130 // Swap two scoped pointers.
swap(scoped_ptr & p2)131 void swap(scoped_ptr& p2) {
132 C* tmp = ptr_;
133 ptr_ = p2.ptr_;
134 p2.ptr_ = tmp;
135 }
136
137 // Release a pointer.
138 // The return value is the current pointer held by this object.
139 // If this object holds a NULL pointer, the return value is NULL.
140 // After this operation, this object will hold a NULL pointer,
141 // and will not own the object any more.
release()142 C* release() {
143 C* retVal = ptr_;
144 ptr_ = NULL;
145 return retVal;
146 }
147
148 private:
149 C* ptr_;
150
151 // Forbid comparison of scoped_ptr types. If C2 != C, it totally doesn't
152 // make sense, and if C2 == C, it still doesn't make sense because you should
153 // never have the same object owned by two different scoped_ptrs.
154 template <class C2> bool operator==(scoped_ptr<C2> const& p2) const;
155 template <class C2> bool operator!=(scoped_ptr<C2> const& p2) const;
156
157 // Disallow evil constructors
158 scoped_ptr(const scoped_ptr&);
159 void operator=(const scoped_ptr&);
160 };
161
162 // Free functions
163 template <class C>
swap(scoped_ptr<C> & p1,scoped_ptr<C> & p2)164 void swap(scoped_ptr<C>& p1, scoped_ptr<C>& p2) {
165 p1.swap(p2);
166 }
167
168 template <class C>
169 bool operator==(C* p1, const scoped_ptr<C>& p2) {
170 return p1 == p2.get();
171 }
172
173 template <class C>
174 bool operator!=(C* p1, const scoped_ptr<C>& p2) {
175 return p1 != p2.get();
176 }
177
178 // scoped_array<C> is like scoped_ptr<C>, except that the caller must allocate
179 // with new [] and the destructor deletes objects with delete [].
180 //
181 // As with scoped_ptr<C>, a scoped_array<C> either points to an object
182 // or is NULL. A scoped_array<C> owns the object that it points to.
183 // scoped_array<T> is thread-compatible, and once you index into it,
184 // the returned objects have only the threadsafety guarantees of T.
185 //
186 // Size: sizeof(scoped_array<C>) == sizeof(C*)
187 template <class C>
188 class scoped_array {
189 public:
190
191 // The element type
192 typedef C element_type;
193
194 // Constructor. Defaults to intializing with NULL.
195 // There is no way to create an uninitialized scoped_array.
196 // The input parameter must be allocated with new [].
array_(p)197 explicit scoped_array(C* p = NULL) : array_(p) { }
198
199 // Destructor. If there is a C object, delete it.
200 // We don't need to test ptr_ == NULL because C++ does that for us.
~scoped_array()201 ~scoped_array() {
202 enum { type_must_be_complete = sizeof(C) };
203 delete[] array_;
204 }
205
206 // Reset. Deletes the current owned object, if any.
207 // Then takes ownership of a new object, if given.
208 // this->reset(this->get()) works.
209 void reset(C* p = NULL) {
210 if (p != array_) {
211 enum { type_must_be_complete = sizeof(C) };
212 delete[] array_;
213 array_ = p;
214 }
215 }
216
217 // Get one element of the current object.
218 // Will assert() if there is no current object, or index i is negative.
219 C& operator[](ptrdiff_t i) const {
220 assert(i >= 0);
221 assert(array_ != NULL);
222 return array_[i];
223 }
224
225 // Get a pointer to the zeroth element of the current object.
226 // If there is no current object, return NULL.
get()227 C* get() const {
228 return array_;
229 }
230
231 // Comparison operators.
232 // These return whether two scoped_array refer to the same object, not just to
233 // two different but equal objects.
234 bool operator==(C* p) const { return array_ == p; }
235 bool operator!=(C* p) const { return array_ != p; }
236
237 // Swap two scoped arrays.
swap(scoped_array & p2)238 void swap(scoped_array& p2) {
239 C* tmp = array_;
240 array_ = p2.array_;
241 p2.array_ = tmp;
242 }
243
244 // Release an array.
245 // The return value is the current pointer held by this object.
246 // If this object holds a NULL pointer, the return value is NULL.
247 // After this operation, this object will hold a NULL pointer,
248 // and will not own the object any more.
release()249 C* release() {
250 C* retVal = array_;
251 array_ = NULL;
252 return retVal;
253 }
254
255 private:
256 C* array_;
257
258 // Forbid comparison of different scoped_array types.
259 template <class C2> bool operator==(scoped_array<C2> const& p2) const;
260 template <class C2> bool operator!=(scoped_array<C2> const& p2) const;
261
262 // Disallow evil constructors
263 scoped_array(const scoped_array&);
264 void operator=(const scoped_array&);
265 };
266
267 // Free functions
268 template <class C>
swap(scoped_array<C> & p1,scoped_array<C> & p2)269 void swap(scoped_array<C>& p1, scoped_array<C>& p2) {
270 p1.swap(p2);
271 }
272
273 template <class C>
274 bool operator==(C* p1, const scoped_array<C>& p2) {
275 return p1 == p2.get();
276 }
277
278 template <class C>
279 bool operator!=(C* p1, const scoped_array<C>& p2) {
280 return p1 != p2.get();
281 }
282
283 // This class wraps the c library function free() in a class that can be
284 // passed as a template argument to scoped_ptr_malloc below.
285 class ScopedPtrMallocFree {
286 public:
operator()287 inline void operator()(void* x) const {
288 free(x);
289 }
290 };
291
292 // scoped_ptr_malloc<> is similar to scoped_ptr<>, but it accepts a
293 // second template argument, the functor used to free the object.
294
295 template<class C, class FreeProc = ScopedPtrMallocFree>
296 class scoped_ptr_malloc {
297 public:
298
299 // The element type
300 typedef C element_type;
301
302 // Constructor. Defaults to initializing with NULL.
303 // There is no way to create an uninitialized scoped_ptr.
304 // The input parameter must be allocated with an allocator that matches the
305 // Free functor. For the default Free functor, this is malloc, calloc, or
306 // realloc.
ptr_(p)307 explicit scoped_ptr_malloc(C* p = NULL): ptr_(p) {}
308
309 // Destructor. If there is a C object, call the Free functor.
~scoped_ptr_malloc()310 ~scoped_ptr_malloc() {
311 reset();
312 }
313
314 // Reset. Calls the Free functor on the current owned object, if any.
315 // Then takes ownership of a new object, if given.
316 // this->reset(this->get()) works.
317 void reset(C* p = NULL) {
318 if (ptr_ != p) {
319 FreeProc free_proc;
320 free_proc(ptr_);
321 ptr_ = p;
322 }
323 }
324
325 // Get the current object.
326 // operator* and operator-> will cause an assert() failure if there is
327 // no current object.
328 C& operator*() const {
329 assert(ptr_ != NULL);
330 return *ptr_;
331 }
332
333 C* operator->() const {
334 assert(ptr_ != NULL);
335 return ptr_;
336 }
337
get()338 C* get() const {
339 return ptr_;
340 }
341
342 // Comparison operators.
343 // These return whether a scoped_ptr_malloc and a plain pointer refer
344 // to the same object, not just to two different but equal objects.
345 // For compatibility with the boost-derived implementation, these
346 // take non-const arguments.
347 bool operator==(C* p) const {
348 return ptr_ == p;
349 }
350
351 bool operator!=(C* p) const {
352 return ptr_ != p;
353 }
354
355 // Swap two scoped pointers.
swap(scoped_ptr_malloc & b)356 void swap(scoped_ptr_malloc & b) {
357 C* tmp = b.ptr_;
358 b.ptr_ = ptr_;
359 ptr_ = tmp;
360 }
361
362 // Release a pointer.
363 // The return value is the current pointer held by this object.
364 // If this object holds a NULL pointer, the return value is NULL.
365 // After this operation, this object will hold a NULL pointer,
366 // and will not own the object any more.
release()367 C* release() {
368 C* tmp = ptr_;
369 ptr_ = NULL;
370 return tmp;
371 }
372
373 private:
374 C* ptr_;
375
376 // no reason to use these: each scoped_ptr_malloc should have its own object
377 template <class C2, class GP>
378 bool operator==(scoped_ptr_malloc<C2, GP> const& p) const;
379 template <class C2, class GP>
380 bool operator!=(scoped_ptr_malloc<C2, GP> const& p) const;
381
382 // Disallow evil constructors
383 scoped_ptr_malloc(const scoped_ptr_malloc&);
384 void operator=(const scoped_ptr_malloc&);
385 };
386
387 template<class C, class FP> inline
swap(scoped_ptr_malloc<C,FP> & a,scoped_ptr_malloc<C,FP> & b)388 void swap(scoped_ptr_malloc<C, FP>& a, scoped_ptr_malloc<C, FP>& b) {
389 a.swap(b);
390 }
391
392 template<class C, class FP> inline
393 bool operator==(C* p, const scoped_ptr_malloc<C, FP>& b) {
394 return p == b.get();
395 }
396
397 template<class C, class FP> inline
398 bool operator!=(C* p, const scoped_ptr_malloc<C, FP>& b) {
399 return p != b.get();
400 }
401
402 } // namespace google_breakpad
403
404 #endif // COMMON_SCOPED_PTR_H_
405