1#!/usr/bin/env perl 2# 3# ==================================================================== 4# Written by Andy Polyakov <appro@fy.chalmers.se> for the OpenSSL 5# project. The module is, however, dual licensed under OpenSSL and 6# CRYPTOGAMS licenses depending on where you obtain it. For further 7# details see http://www.openssl.org/~appro/cryptogams/. 8# ==================================================================== 9# 10# Version 4.3. 11# 12# You might fail to appreciate this module performance from the first 13# try. If compared to "vanilla" linux-ia32-icc target, i.e. considered 14# to be *the* best Intel C compiler without -KPIC, performance appears 15# to be virtually identical... But try to re-configure with shared 16# library support... Aha! Intel compiler "suddenly" lags behind by 30% 17# [on P4, more on others]:-) And if compared to position-independent 18# code generated by GNU C, this code performs *more* than *twice* as 19# fast! Yes, all this buzz about PIC means that unlike other hand- 20# coded implementations, this one was explicitly designed to be safe 21# to use even in shared library context... This also means that this 22# code isn't necessarily absolutely fastest "ever," because in order 23# to achieve position independence an extra register has to be 24# off-loaded to stack, which affects the benchmark result. 25# 26# Special note about instruction choice. Do you recall RC4_INT code 27# performing poorly on P4? It might be the time to figure out why. 28# RC4_INT code implies effective address calculations in base+offset*4 29# form. Trouble is that it seems that offset scaling turned to be 30# critical path... At least eliminating scaling resulted in 2.8x RC4 31# performance improvement [as you might recall]. As AES code is hungry 32# for scaling too, I [try to] avoid the latter by favoring off-by-2 33# shifts and masking the result with 0xFF<<2 instead of "boring" 0xFF. 34# 35# As was shown by Dean Gaudet <dean@arctic.org>, the above note turned 36# void. Performance improvement with off-by-2 shifts was observed on 37# intermediate implementation, which was spilling yet another register 38# to stack... Final offset*4 code below runs just a tad faster on P4, 39# but exhibits up to 10% improvement on other cores. 40# 41# Second version is "monolithic" replacement for aes_core.c, which in 42# addition to AES_[de|en]crypt implements AES_set_[de|en]cryption_key. 43# This made it possible to implement little-endian variant of the 44# algorithm without modifying the base C code. Motivating factor for 45# the undertaken effort was that it appeared that in tight IA-32 46# register window little-endian flavor could achieve slightly higher 47# Instruction Level Parallelism, and it indeed resulted in up to 15% 48# better performance on most recent µ-archs... 49# 50# Third version adds AES_cbc_encrypt implementation, which resulted in 51# up to 40% performance imrovement of CBC benchmark results. 40% was 52# observed on P4 core, where "overall" imrovement coefficient, i.e. if 53# compared to PIC generated by GCC and in CBC mode, was observed to be 54# as large as 4x:-) CBC performance is virtually identical to ECB now 55# and on some platforms even better, e.g. 17.6 "small" cycles/byte on 56# Opteron, because certain function prologues and epilogues are 57# effectively taken out of the loop... 58# 59# Version 3.2 implements compressed tables and prefetch of these tables 60# in CBC[!] mode. Former means that 3/4 of table references are now 61# misaligned, which unfortunately has negative impact on elder IA-32 62# implementations, Pentium suffered 30% penalty, PIII - 10%. 63# 64# Version 3.3 avoids L1 cache aliasing between stack frame and 65# S-boxes, and 3.4 - L1 cache aliasing even between key schedule. The 66# latter is achieved by copying the key schedule to controlled place in 67# stack. This unfortunately has rather strong impact on small block CBC 68# performance, ~2x deterioration on 16-byte block if compared to 3.3. 69# 70# Version 3.5 checks if there is L1 cache aliasing between user-supplied 71# key schedule and S-boxes and abstains from copying the former if 72# there is no. This allows end-user to consciously retain small block 73# performance by aligning key schedule in specific manner. 74# 75# Version 3.6 compresses Td4 to 256 bytes and prefetches it in ECB. 76# 77# Current ECB performance numbers for 128-bit key in CPU cycles per 78# processed byte [measure commonly used by AES benchmarkers] are: 79# 80# small footprint fully unrolled 81# P4 24 22 82# AMD K8 20 19 83# PIII 25 23 84# Pentium 81 78 85# 86# Version 3.7 reimplements outer rounds as "compact." Meaning that 87# first and last rounds reference compact 256 bytes S-box. This means 88# that first round consumes a lot more CPU cycles and that encrypt 89# and decrypt performance becomes asymmetric. Encrypt performance 90# drops by 10-12%, while decrypt - by 20-25%:-( 256 bytes S-box is 91# aggressively pre-fetched. 92# 93# Version 4.0 effectively rolls back to 3.6 and instead implements 94# additional set of functions, _[x86|sse]_AES_[en|de]crypt_compact, 95# which use exclusively 256 byte S-box. These functions are to be 96# called in modes not concealing plain text, such as ECB, or when 97# we're asked to process smaller amount of data [or unconditionally 98# on hyper-threading CPU]. Currently it's called unconditionally from 99# AES_[en|de]crypt, which affects all modes, but CBC. CBC routine 100# still needs to be modified to switch between slower and faster 101# mode when appropriate... But in either case benchmark landscape 102# changes dramatically and below numbers are CPU cycles per processed 103# byte for 128-bit key. 104# 105# ECB encrypt ECB decrypt CBC large chunk 106# P4 52[54] 83[95] 23 107# AMD K8 46[41] 66[70] 18 108# PIII 41[50] 60[77] 24 109# Core 2 31[36] 45[64] 18.5 110# Atom 76[100] 96[138] 60 111# Pentium 115 150 77 112# 113# Version 4.1 switches to compact S-box even in key schedule setup. 114# 115# Version 4.2 prefetches compact S-box in every SSE round or in other 116# words every cache-line is *guaranteed* to be accessed within ~50 117# cycles window. Why just SSE? Because it's needed on hyper-threading 118# CPU! Which is also why it's prefetched with 64 byte stride. Best 119# part is that it has no negative effect on performance:-) 120# 121# Version 4.3 implements switch between compact and non-compact block 122# functions in AES_cbc_encrypt depending on how much data was asked 123# to be processed in one stroke. 124# 125###################################################################### 126# Timing attacks are classified in two classes: synchronous when 127# attacker consciously initiates cryptographic operation and collects 128# timing data of various character afterwards, and asynchronous when 129# malicious code is executed on same CPU simultaneously with AES, 130# instruments itself and performs statistical analysis of this data. 131# 132# As far as synchronous attacks go the root to the AES timing 133# vulnerability is twofold. Firstly, of 256 S-box elements at most 160 134# are referred to in single 128-bit block operation. Well, in C 135# implementation with 4 distinct tables it's actually as little as 40 136# references per 256 elements table, but anyway... Secondly, even 137# though S-box elements are clustered into smaller amount of cache- 138# lines, smaller than 160 and even 40, it turned out that for certain 139# plain-text pattern[s] or simply put chosen plain-text and given key 140# few cache-lines remain unaccessed during block operation. Now, if 141# attacker can figure out this access pattern, he can deduct the key 142# [or at least part of it]. The natural way to mitigate this kind of 143# attacks is to minimize the amount of cache-lines in S-box and/or 144# prefetch them to ensure that every one is accessed for more uniform 145# timing. But note that *if* plain-text was concealed in such way that 146# input to block function is distributed *uniformly*, then attack 147# wouldn't apply. Now note that some encryption modes, most notably 148# CBC, do mask the plain-text in this exact way [secure cipher output 149# is distributed uniformly]. Yes, one still might find input that 150# would reveal the information about given key, but if amount of 151# candidate inputs to be tried is larger than amount of possible key 152# combinations then attack becomes infeasible. This is why revised 153# AES_cbc_encrypt "dares" to switch to larger S-box when larger chunk 154# of data is to be processed in one stroke. The current size limit of 155# 512 bytes is chosen to provide same [diminishigly low] probability 156# for cache-line to remain untouched in large chunk operation with 157# large S-box as for single block operation with compact S-box and 158# surely needs more careful consideration... 159# 160# As for asynchronous attacks. There are two flavours: attacker code 161# being interleaved with AES on hyper-threading CPU at *instruction* 162# level, and two processes time sharing single core. As for latter. 163# Two vectors. 1. Given that attacker process has higher priority, 164# yield execution to process performing AES just before timer fires 165# off the scheduler, immediately regain control of CPU and analyze the 166# cache state. For this attack to be efficient attacker would have to 167# effectively slow down the operation by several *orders* of magnitute, 168# by ratio of time slice to duration of handful of AES rounds, which 169# unlikely to remain unnoticed. Not to mention that this also means 170# that he would spend correspondigly more time to collect enough 171# statistical data to mount the attack. It's probably appropriate to 172# say that if adeversary reckons that this attack is beneficial and 173# risks to be noticed, you probably have larger problems having him 174# mere opportunity. In other words suggested code design expects you 175# to preclude/mitigate this attack by overall system security design. 176# 2. Attacker manages to make his code interrupt driven. In order for 177# this kind of attack to be feasible, interrupt rate has to be high 178# enough, again comparable to duration of handful of AES rounds. But 179# is there interrupt source of such rate? Hardly, not even 1Gbps NIC 180# generates interrupts at such raging rate... 181# 182# And now back to the former, hyper-threading CPU or more specifically 183# Intel P4. Recall that asynchronous attack implies that malicious 184# code instruments itself. And naturally instrumentation granularity 185# has be noticeably lower than duration of codepath accessing S-box. 186# Given that all cache-lines are accessed during that time that is. 187# Current implementation accesses *all* cache-lines within ~50 cycles 188# window, which is actually *less* than RDTSC latency on Intel P4! 189 190$0 =~ m/(.*[\/\\])[^\/\\]+$/; $dir=$1; 191push(@INC,"${dir}","${dir}../../../perlasm"); 192require "x86asm.pl"; 193 194$output = pop; 195open OUT,">$output"; 196*STDOUT=*OUT; 197 198&asm_init($ARGV[0],$x86only = $ARGV[$#ARGV] eq "386"); 199&static_label("AES_Te"); 200&static_label("AES_Td"); 201 202$s0="eax"; 203$s1="ebx"; 204$s2="ecx"; 205$s3="edx"; 206$key="edi"; 207$acc="esi"; 208$tbl="ebp"; 209 210# stack frame layout in _[x86|sse]_AES_* routines, frame is allocated 211# by caller 212$__ra=&DWP(0,"esp"); # return address 213$__s0=&DWP(4,"esp"); # s0 backing store 214$__s1=&DWP(8,"esp"); # s1 backing store 215$__s2=&DWP(12,"esp"); # s2 backing store 216$__s3=&DWP(16,"esp"); # s3 backing store 217$__key=&DWP(20,"esp"); # pointer to key schedule 218$__end=&DWP(24,"esp"); # pointer to end of key schedule 219$__tbl=&DWP(28,"esp"); # %ebp backing store 220 221# stack frame layout in AES_[en|crypt] routines, which differs from 222# above by 4 and overlaps by %ebp backing store 223$_tbl=&DWP(24,"esp"); 224$_esp=&DWP(28,"esp"); 225 226sub _data_word() { my $i; while(defined($i=shift)) { &data_word($i,$i); } } 227 228$speed_limit=512; # chunks smaller than $speed_limit are 229 # processed with compact routine in CBC mode 230$small_footprint=1; # $small_footprint=1 code is ~5% slower [on 231 # recent µ-archs], but ~5 times smaller! 232 # I favor compact code to minimize cache 233 # contention and in hope to "collect" 5% back 234 # in real-life applications... 235 236$vertical_spin=0; # shift "verticaly" defaults to 0, because of 237 # its proof-of-concept status... 238# Note that there is no decvert(), as well as last encryption round is 239# performed with "horizontal" shifts. This is because this "vertical" 240# implementation [one which groups shifts on a given $s[i] to form a 241# "column," unlike "horizontal" one, which groups shifts on different 242# $s[i] to form a "row"] is work in progress. It was observed to run 243# few percents faster on Intel cores, but not AMD. On AMD K8 core it's 244# whole 12% slower:-( So we face a trade-off... Shall it be resolved 245# some day? Till then the code is considered experimental and by 246# default remains dormant... 247 248sub encvert() 249{ my ($te,@s) = @_; 250 my ($v0,$v1) = ($acc,$key); 251 252 &mov ($v0,$s[3]); # copy s3 253 &mov (&DWP(4,"esp"),$s[2]); # save s2 254 &mov ($v1,$s[0]); # copy s0 255 &mov (&DWP(8,"esp"),$s[1]); # save s1 256 257 &movz ($s[2],&HB($s[0])); 258 &and ($s[0],0xFF); 259 &mov ($s[0],&DWP(0,$te,$s[0],8)); # s0>>0 260 &shr ($v1,16); 261 &mov ($s[3],&DWP(3,$te,$s[2],8)); # s0>>8 262 &movz ($s[1],&HB($v1)); 263 &and ($v1,0xFF); 264 &mov ($s[2],&DWP(2,$te,$v1,8)); # s0>>16 265 &mov ($v1,$v0); 266 &mov ($s[1],&DWP(1,$te,$s[1],8)); # s0>>24 267 268 &and ($v0,0xFF); 269 &xor ($s[3],&DWP(0,$te,$v0,8)); # s3>>0 270 &movz ($v0,&HB($v1)); 271 &shr ($v1,16); 272 &xor ($s[2],&DWP(3,$te,$v0,8)); # s3>>8 273 &movz ($v0,&HB($v1)); 274 &and ($v1,0xFF); 275 &xor ($s[1],&DWP(2,$te,$v1,8)); # s3>>16 276 &mov ($v1,&DWP(4,"esp")); # restore s2 277 &xor ($s[0],&DWP(1,$te,$v0,8)); # s3>>24 278 279 &mov ($v0,$v1); 280 &and ($v1,0xFF); 281 &xor ($s[2],&DWP(0,$te,$v1,8)); # s2>>0 282 &movz ($v1,&HB($v0)); 283 &shr ($v0,16); 284 &xor ($s[1],&DWP(3,$te,$v1,8)); # s2>>8 285 &movz ($v1,&HB($v0)); 286 &and ($v0,0xFF); 287 &xor ($s[0],&DWP(2,$te,$v0,8)); # s2>>16 288 &mov ($v0,&DWP(8,"esp")); # restore s1 289 &xor ($s[3],&DWP(1,$te,$v1,8)); # s2>>24 290 291 &mov ($v1,$v0); 292 &and ($v0,0xFF); 293 &xor ($s[1],&DWP(0,$te,$v0,8)); # s1>>0 294 &movz ($v0,&HB($v1)); 295 &shr ($v1,16); 296 &xor ($s[0],&DWP(3,$te,$v0,8)); # s1>>8 297 &movz ($v0,&HB($v1)); 298 &and ($v1,0xFF); 299 &xor ($s[3],&DWP(2,$te,$v1,8)); # s1>>16 300 &mov ($key,$__key); # reincarnate v1 as key 301 &xor ($s[2],&DWP(1,$te,$v0,8)); # s1>>24 302} 303 304# Another experimental routine, which features "horizontal spin," but 305# eliminates one reference to stack. Strangely enough runs slower... 306sub enchoriz() 307{ my ($v0,$v1) = ($key,$acc); 308 309 &movz ($v0,&LB($s0)); # 3, 2, 1, 0* 310 &rotr ($s2,8); # 8,11,10, 9 311 &mov ($v1,&DWP(0,$te,$v0,8)); # 0 312 &movz ($v0,&HB($s1)); # 7, 6, 5*, 4 313 &rotr ($s3,16); # 13,12,15,14 314 &xor ($v1,&DWP(3,$te,$v0,8)); # 5 315 &movz ($v0,&HB($s2)); # 8,11,10*, 9 316 &rotr ($s0,16); # 1, 0, 3, 2 317 &xor ($v1,&DWP(2,$te,$v0,8)); # 10 318 &movz ($v0,&HB($s3)); # 13,12,15*,14 319 &xor ($v1,&DWP(1,$te,$v0,8)); # 15, t[0] collected 320 &mov ($__s0,$v1); # t[0] saved 321 322 &movz ($v0,&LB($s1)); # 7, 6, 5, 4* 323 &shr ($s1,16); # -, -, 7, 6 324 &mov ($v1,&DWP(0,$te,$v0,8)); # 4 325 &movz ($v0,&LB($s3)); # 13,12,15,14* 326 &xor ($v1,&DWP(2,$te,$v0,8)); # 14 327 &movz ($v0,&HB($s0)); # 1, 0, 3*, 2 328 &and ($s3,0xffff0000); # 13,12, -, - 329 &xor ($v1,&DWP(1,$te,$v0,8)); # 3 330 &movz ($v0,&LB($s2)); # 8,11,10, 9* 331 &or ($s3,$s1); # 13,12, 7, 6 332 &xor ($v1,&DWP(3,$te,$v0,8)); # 9, t[1] collected 333 &mov ($s1,$v1); # s[1]=t[1] 334 335 &movz ($v0,&LB($s0)); # 1, 0, 3, 2* 336 &shr ($s2,16); # -, -, 8,11 337 &mov ($v1,&DWP(2,$te,$v0,8)); # 2 338 &movz ($v0,&HB($s3)); # 13,12, 7*, 6 339 &xor ($v1,&DWP(1,$te,$v0,8)); # 7 340 &movz ($v0,&HB($s2)); # -, -, 8*,11 341 &xor ($v1,&DWP(0,$te,$v0,8)); # 8 342 &mov ($v0,$s3); 343 &shr ($v0,24); # 13 344 &xor ($v1,&DWP(3,$te,$v0,8)); # 13, t[2] collected 345 346 &movz ($v0,&LB($s2)); # -, -, 8,11* 347 &shr ($s0,24); # 1* 348 &mov ($s2,&DWP(1,$te,$v0,8)); # 11 349 &xor ($s2,&DWP(3,$te,$s0,8)); # 1 350 &mov ($s0,$__s0); # s[0]=t[0] 351 &movz ($v0,&LB($s3)); # 13,12, 7, 6* 352 &shr ($s3,16); # , ,13,12 353 &xor ($s2,&DWP(2,$te,$v0,8)); # 6 354 &mov ($key,$__key); # reincarnate v0 as key 355 &and ($s3,0xff); # , ,13,12* 356 &mov ($s3,&DWP(0,$te,$s3,8)); # 12 357 &xor ($s3,$s2); # s[2]=t[3] collected 358 &mov ($s2,$v1); # s[2]=t[2] 359} 360 361# More experimental code... SSE one... Even though this one eliminates 362# *all* references to stack, it's not faster... 363sub sse_encbody() 364{ 365 &movz ($acc,&LB("eax")); # 0 366 &mov ("ecx",&DWP(0,$tbl,$acc,8)); # 0 367 &pshufw ("mm2","mm0",0x0d); # 7, 6, 3, 2 368 &movz ("edx",&HB("eax")); # 1 369 &mov ("edx",&DWP(3,$tbl,"edx",8)); # 1 370 &shr ("eax",16); # 5, 4 371 372 &movz ($acc,&LB("ebx")); # 10 373 &xor ("ecx",&DWP(2,$tbl,$acc,8)); # 10 374 &pshufw ("mm6","mm4",0x08); # 13,12, 9, 8 375 &movz ($acc,&HB("ebx")); # 11 376 &xor ("edx",&DWP(1,$tbl,$acc,8)); # 11 377 &shr ("ebx",16); # 15,14 378 379 &movz ($acc,&HB("eax")); # 5 380 &xor ("ecx",&DWP(3,$tbl,$acc,8)); # 5 381 &movq ("mm3",QWP(16,$key)); 382 &movz ($acc,&HB("ebx")); # 15 383 &xor ("ecx",&DWP(1,$tbl,$acc,8)); # 15 384 &movd ("mm0","ecx"); # t[0] collected 385 386 &movz ($acc,&LB("eax")); # 4 387 &mov ("ecx",&DWP(0,$tbl,$acc,8)); # 4 388 &movd ("eax","mm2"); # 7, 6, 3, 2 389 &movz ($acc,&LB("ebx")); # 14 390 &xor ("ecx",&DWP(2,$tbl,$acc,8)); # 14 391 &movd ("ebx","mm6"); # 13,12, 9, 8 392 393 &movz ($acc,&HB("eax")); # 3 394 &xor ("ecx",&DWP(1,$tbl,$acc,8)); # 3 395 &movz ($acc,&HB("ebx")); # 9 396 &xor ("ecx",&DWP(3,$tbl,$acc,8)); # 9 397 &movd ("mm1","ecx"); # t[1] collected 398 399 &movz ($acc,&LB("eax")); # 2 400 &mov ("ecx",&DWP(2,$tbl,$acc,8)); # 2 401 &shr ("eax",16); # 7, 6 402 &punpckldq ("mm0","mm1"); # t[0,1] collected 403 &movz ($acc,&LB("ebx")); # 8 404 &xor ("ecx",&DWP(0,$tbl,$acc,8)); # 8 405 &shr ("ebx",16); # 13,12 406 407 &movz ($acc,&HB("eax")); # 7 408 &xor ("ecx",&DWP(1,$tbl,$acc,8)); # 7 409 &pxor ("mm0","mm3"); 410 &movz ("eax",&LB("eax")); # 6 411 &xor ("edx",&DWP(2,$tbl,"eax",8)); # 6 412 &pshufw ("mm1","mm0",0x08); # 5, 4, 1, 0 413 &movz ($acc,&HB("ebx")); # 13 414 &xor ("ecx",&DWP(3,$tbl,$acc,8)); # 13 415 &xor ("ecx",&DWP(24,$key)); # t[2] 416 &movd ("mm4","ecx"); # t[2] collected 417 &movz ("ebx",&LB("ebx")); # 12 418 &xor ("edx",&DWP(0,$tbl,"ebx",8)); # 12 419 &shr ("ecx",16); 420 &movd ("eax","mm1"); # 5, 4, 1, 0 421 &mov ("ebx",&DWP(28,$key)); # t[3] 422 &xor ("ebx","edx"); 423 &movd ("mm5","ebx"); # t[3] collected 424 &and ("ebx",0xffff0000); 425 &or ("ebx","ecx"); 426 427 &punpckldq ("mm4","mm5"); # t[2,3] collected 428} 429 430###################################################################### 431# "Compact" block function 432###################################################################### 433 434sub enccompact() 435{ my $Fn = \&mov; 436 while ($#_>5) { pop(@_); $Fn=sub{}; } 437 my ($i,$te,@s)=@_; 438 my $tmp = $key; 439 my $out = $i==3?$s[0]:$acc; 440 441 # $Fn is used in first compact round and its purpose is to 442 # void restoration of some values from stack, so that after 443 # 4xenccompact with extra argument $key value is left there... 444 if ($i==3) { &$Fn ($key,$__key); }##%edx 445 else { &mov ($out,$s[0]); } 446 &and ($out,0xFF); 447 if ($i==1) { &shr ($s[0],16); }#%ebx[1] 448 if ($i==2) { &shr ($s[0],24); }#%ecx[2] 449 &movz ($out,&BP(-128,$te,$out,1)); 450 451 if ($i==3) { $tmp=$s[1]; }##%eax 452 &movz ($tmp,&HB($s[1])); 453 &movz ($tmp,&BP(-128,$te,$tmp,1)); 454 &shl ($tmp,8); 455 &xor ($out,$tmp); 456 457 if ($i==3) { $tmp=$s[2]; &mov ($s[1],$__s0); }##%ebx 458 else { &mov ($tmp,$s[2]); 459 &shr ($tmp,16); } 460 if ($i==2) { &and ($s[1],0xFF); }#%edx[2] 461 &and ($tmp,0xFF); 462 &movz ($tmp,&BP(-128,$te,$tmp,1)); 463 &shl ($tmp,16); 464 &xor ($out,$tmp); 465 466 if ($i==3) { $tmp=$s[3]; &mov ($s[2],$__s1); }##%ecx 467 elsif($i==2){ &movz ($tmp,&HB($s[3])); }#%ebx[2] 468 else { &mov ($tmp,$s[3]); 469 &shr ($tmp,24); } 470 &movz ($tmp,&BP(-128,$te,$tmp,1)); 471 &shl ($tmp,24); 472 &xor ($out,$tmp); 473 if ($i<2) { &mov (&DWP(4+4*$i,"esp"),$out); } 474 if ($i==3) { &mov ($s[3],$acc); } 475 &comment(); 476} 477 478sub enctransform() 479{ my @s = ($s0,$s1,$s2,$s3); 480 my $i = shift; 481 my $tmp = $tbl; 482 my $r2 = $key ; 483 484 &and ($tmp,$s[$i]); 485 &lea ($r2,&DWP(0,$s[$i],$s[$i])); 486 &mov ($acc,$tmp); 487 &shr ($tmp,7); 488 &and ($r2,0xfefefefe); 489 &sub ($acc,$tmp); 490 &mov ($tmp,$s[$i]); 491 &and ($acc,0x1b1b1b1b); 492 &rotr ($tmp,16); 493 &xor ($acc,$r2); # r2 494 &mov ($r2,$s[$i]); 495 496 &xor ($s[$i],$acc); # r0 ^ r2 497 &rotr ($r2,16+8); 498 &xor ($acc,$tmp); 499 &rotl ($s[$i],24); 500 &xor ($acc,$r2); 501 &mov ($tmp,0x80808080) if ($i!=1); 502 &xor ($s[$i],$acc); # ROTATE(r2^r0,24) ^ r2 503} 504 505&function_begin_B("_x86_AES_encrypt_compact"); 506 # note that caller is expected to allocate stack frame for me! 507 &mov ($__key,$key); # save key 508 509 &xor ($s0,&DWP(0,$key)); # xor with key 510 &xor ($s1,&DWP(4,$key)); 511 &xor ($s2,&DWP(8,$key)); 512 &xor ($s3,&DWP(12,$key)); 513 514 &mov ($acc,&DWP(240,$key)); # load key->rounds 515 &lea ($acc,&DWP(-2,$acc,$acc)); 516 &lea ($acc,&DWP(0,$key,$acc,8)); 517 &mov ($__end,$acc); # end of key schedule 518 519 # prefetch Te4 520 &mov ($key,&DWP(0-128,$tbl)); 521 &mov ($acc,&DWP(32-128,$tbl)); 522 &mov ($key,&DWP(64-128,$tbl)); 523 &mov ($acc,&DWP(96-128,$tbl)); 524 &mov ($key,&DWP(128-128,$tbl)); 525 &mov ($acc,&DWP(160-128,$tbl)); 526 &mov ($key,&DWP(192-128,$tbl)); 527 &mov ($acc,&DWP(224-128,$tbl)); 528 529 &set_label("loop",16); 530 531 &enccompact(0,$tbl,$s0,$s1,$s2,$s3,1); 532 &enccompact(1,$tbl,$s1,$s2,$s3,$s0,1); 533 &enccompact(2,$tbl,$s2,$s3,$s0,$s1,1); 534 &enccompact(3,$tbl,$s3,$s0,$s1,$s2,1); 535 &mov ($tbl,0x80808080); 536 &enctransform(2); 537 &enctransform(3); 538 &enctransform(0); 539 &enctransform(1); 540 &mov ($key,$__key); 541 &mov ($tbl,$__tbl); 542 &add ($key,16); # advance rd_key 543 &xor ($s0,&DWP(0,$key)); 544 &xor ($s1,&DWP(4,$key)); 545 &xor ($s2,&DWP(8,$key)); 546 &xor ($s3,&DWP(12,$key)); 547 548 &cmp ($key,$__end); 549 &mov ($__key,$key); 550 &jb (&label("loop")); 551 552 &enccompact(0,$tbl,$s0,$s1,$s2,$s3); 553 &enccompact(1,$tbl,$s1,$s2,$s3,$s0); 554 &enccompact(2,$tbl,$s2,$s3,$s0,$s1); 555 &enccompact(3,$tbl,$s3,$s0,$s1,$s2); 556 557 &xor ($s0,&DWP(16,$key)); 558 &xor ($s1,&DWP(20,$key)); 559 &xor ($s2,&DWP(24,$key)); 560 &xor ($s3,&DWP(28,$key)); 561 562 &ret (); 563&function_end_B("_x86_AES_encrypt_compact"); 564 565###################################################################### 566# "Compact" SSE block function. 567###################################################################### 568# 569# Performance is not actually extraordinary in comparison to pure 570# x86 code. In particular encrypt performance is virtually the same. 571# Decrypt performance on the other hand is 15-20% better on newer 572# µ-archs [but we're thankful for *any* improvement here], and ~50% 573# better on PIII:-) And additionally on the pros side this code 574# eliminates redundant references to stack and thus relieves/ 575# minimizes the pressure on the memory bus. 576# 577# MMX register layout lsb 578# +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ 579# | mm4 | mm0 | 580# +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ 581# | s3 | s2 | s1 | s0 | 582# +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ 583# |15|14|13|12|11|10| 9| 8| 7| 6| 5| 4| 3| 2| 1| 0| 584# +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ 585# 586# Indexes translate as s[N/4]>>(8*(N%4)), e.g. 5 means s1>>8. 587# In this terms encryption and decryption "compact" permutation 588# matrices can be depicted as following: 589# 590# encryption lsb # decryption lsb 591# +----++----+----+----+----+ # +----++----+----+----+----+ 592# | t0 || 15 | 10 | 5 | 0 | # | t0 || 7 | 10 | 13 | 0 | 593# +----++----+----+----+----+ # +----++----+----+----+----+ 594# | t1 || 3 | 14 | 9 | 4 | # | t1 || 11 | 14 | 1 | 4 | 595# +----++----+----+----+----+ # +----++----+----+----+----+ 596# | t2 || 7 | 2 | 13 | 8 | # | t2 || 15 | 2 | 5 | 8 | 597# +----++----+----+----+----+ # +----++----+----+----+----+ 598# | t3 || 11 | 6 | 1 | 12 | # | t3 || 3 | 6 | 9 | 12 | 599# +----++----+----+----+----+ # +----++----+----+----+----+ 600# 601###################################################################### 602# Why not xmm registers? Short answer. It was actually tested and 603# was not any faster, but *contrary*, most notably on Intel CPUs. 604# Longer answer. Main advantage of using mm registers is that movd 605# latency is lower, especially on Intel P4. While arithmetic 606# instructions are twice as many, they can be scheduled every cycle 607# and not every second one when they are operating on xmm register, 608# so that "arithmetic throughput" remains virtually the same. And 609# finally the code can be executed even on elder SSE-only CPUs:-) 610 611sub sse_enccompact() 612{ 613 &pshufw ("mm1","mm0",0x08); # 5, 4, 1, 0 614 &pshufw ("mm5","mm4",0x0d); # 15,14,11,10 615 &movd ("eax","mm1"); # 5, 4, 1, 0 616 &movd ("ebx","mm5"); # 15,14,11,10 617 &mov ($__key,$key); 618 619 &movz ($acc,&LB("eax")); # 0 620 &movz ("edx",&HB("eax")); # 1 621 &pshufw ("mm2","mm0",0x0d); # 7, 6, 3, 2 622 &movz ("ecx",&BP(-128,$tbl,$acc,1)); # 0 623 &movz ($key,&LB("ebx")); # 10 624 &movz ("edx",&BP(-128,$tbl,"edx",1)); # 1 625 &shr ("eax",16); # 5, 4 626 &shl ("edx",8); # 1 627 628 &movz ($acc,&BP(-128,$tbl,$key,1)); # 10 629 &movz ($key,&HB("ebx")); # 11 630 &shl ($acc,16); # 10 631 &pshufw ("mm6","mm4",0x08); # 13,12, 9, 8 632 &or ("ecx",$acc); # 10 633 &movz ($acc,&BP(-128,$tbl,$key,1)); # 11 634 &movz ($key,&HB("eax")); # 5 635 &shl ($acc,24); # 11 636 &shr ("ebx",16); # 15,14 637 &or ("edx",$acc); # 11 638 639 &movz ($acc,&BP(-128,$tbl,$key,1)); # 5 640 &movz ($key,&HB("ebx")); # 15 641 &shl ($acc,8); # 5 642 &or ("ecx",$acc); # 5 643 &movz ($acc,&BP(-128,$tbl,$key,1)); # 15 644 &movz ($key,&LB("eax")); # 4 645 &shl ($acc,24); # 15 646 &or ("ecx",$acc); # 15 647 648 &movz ($acc,&BP(-128,$tbl,$key,1)); # 4 649 &movz ($key,&LB("ebx")); # 14 650 &movd ("eax","mm2"); # 7, 6, 3, 2 651 &movd ("mm0","ecx"); # t[0] collected 652 &movz ("ecx",&BP(-128,$tbl,$key,1)); # 14 653 &movz ($key,&HB("eax")); # 3 654 &shl ("ecx",16); # 14 655 &movd ("ebx","mm6"); # 13,12, 9, 8 656 &or ("ecx",$acc); # 14 657 658 &movz ($acc,&BP(-128,$tbl,$key,1)); # 3 659 &movz ($key,&HB("ebx")); # 9 660 &shl ($acc,24); # 3 661 &or ("ecx",$acc); # 3 662 &movz ($acc,&BP(-128,$tbl,$key,1)); # 9 663 &movz ($key,&LB("ebx")); # 8 664 &shl ($acc,8); # 9 665 &shr ("ebx",16); # 13,12 666 &or ("ecx",$acc); # 9 667 668 &movz ($acc,&BP(-128,$tbl,$key,1)); # 8 669 &movz ($key,&LB("eax")); # 2 670 &shr ("eax",16); # 7, 6 671 &movd ("mm1","ecx"); # t[1] collected 672 &movz ("ecx",&BP(-128,$tbl,$key,1)); # 2 673 &movz ($key,&HB("eax")); # 7 674 &shl ("ecx",16); # 2 675 &and ("eax",0xff); # 6 676 &or ("ecx",$acc); # 2 677 678 &punpckldq ("mm0","mm1"); # t[0,1] collected 679 680 &movz ($acc,&BP(-128,$tbl,$key,1)); # 7 681 &movz ($key,&HB("ebx")); # 13 682 &shl ($acc,24); # 7 683 &and ("ebx",0xff); # 12 684 &movz ("eax",&BP(-128,$tbl,"eax",1)); # 6 685 &or ("ecx",$acc); # 7 686 &shl ("eax",16); # 6 687 &movz ($acc,&BP(-128,$tbl,$key,1)); # 13 688 &or ("edx","eax"); # 6 689 &shl ($acc,8); # 13 690 &movz ("ebx",&BP(-128,$tbl,"ebx",1)); # 12 691 &or ("ecx",$acc); # 13 692 &or ("edx","ebx"); # 12 693 &mov ($key,$__key); 694 &movd ("mm4","ecx"); # t[2] collected 695 &movd ("mm5","edx"); # t[3] collected 696 697 &punpckldq ("mm4","mm5"); # t[2,3] collected 698} 699 700 if (!$x86only) { 701&function_begin_B("_sse_AES_encrypt_compact"); 702 &pxor ("mm0",&QWP(0,$key)); # 7, 6, 5, 4, 3, 2, 1, 0 703 &pxor ("mm4",&QWP(8,$key)); # 15,14,13,12,11,10, 9, 8 704 705 # note that caller is expected to allocate stack frame for me! 706 &mov ($acc,&DWP(240,$key)); # load key->rounds 707 &lea ($acc,&DWP(-2,$acc,$acc)); 708 &lea ($acc,&DWP(0,$key,$acc,8)); 709 &mov ($__end,$acc); # end of key schedule 710 711 &mov ($s0,0x1b1b1b1b); # magic constant 712 &mov (&DWP(8,"esp"),$s0); 713 &mov (&DWP(12,"esp"),$s0); 714 715 # prefetch Te4 716 &mov ($s0,&DWP(0-128,$tbl)); 717 &mov ($s1,&DWP(32-128,$tbl)); 718 &mov ($s2,&DWP(64-128,$tbl)); 719 &mov ($s3,&DWP(96-128,$tbl)); 720 &mov ($s0,&DWP(128-128,$tbl)); 721 &mov ($s1,&DWP(160-128,$tbl)); 722 &mov ($s2,&DWP(192-128,$tbl)); 723 &mov ($s3,&DWP(224-128,$tbl)); 724 725 &set_label("loop",16); 726 &sse_enccompact(); 727 &add ($key,16); 728 &cmp ($key,$__end); 729 &ja (&label("out")); 730 731 &movq ("mm2",&QWP(8,"esp")); 732 &pxor ("mm3","mm3"); &pxor ("mm7","mm7"); 733 &movq ("mm1","mm0"); &movq ("mm5","mm4"); # r0 734 &pcmpgtb("mm3","mm0"); &pcmpgtb("mm7","mm4"); 735 &pand ("mm3","mm2"); &pand ("mm7","mm2"); 736 &pshufw ("mm2","mm0",0xb1); &pshufw ("mm6","mm4",0xb1);# ROTATE(r0,16) 737 &paddb ("mm0","mm0"); &paddb ("mm4","mm4"); 738 &pxor ("mm0","mm3"); &pxor ("mm4","mm7"); # = r2 739 &pshufw ("mm3","mm2",0xb1); &pshufw ("mm7","mm6",0xb1);# r0 740 &pxor ("mm1","mm0"); &pxor ("mm5","mm4"); # r0^r2 741 &pxor ("mm0","mm2"); &pxor ("mm4","mm6"); # ^= ROTATE(r0,16) 742 743 &movq ("mm2","mm3"); &movq ("mm6","mm7"); 744 &pslld ("mm3",8); &pslld ("mm7",8); 745 &psrld ("mm2",24); &psrld ("mm6",24); 746 &pxor ("mm0","mm3"); &pxor ("mm4","mm7"); # ^= r0<<8 747 &pxor ("mm0","mm2"); &pxor ("mm4","mm6"); # ^= r0>>24 748 749 &movq ("mm3","mm1"); &movq ("mm7","mm5"); 750 &movq ("mm2",&QWP(0,$key)); &movq ("mm6",&QWP(8,$key)); 751 &psrld ("mm1",8); &psrld ("mm5",8); 752 &mov ($s0,&DWP(0-128,$tbl)); 753 &pslld ("mm3",24); &pslld ("mm7",24); 754 &mov ($s1,&DWP(64-128,$tbl)); 755 &pxor ("mm0","mm1"); &pxor ("mm4","mm5"); # ^= (r2^r0)<<8 756 &mov ($s2,&DWP(128-128,$tbl)); 757 &pxor ("mm0","mm3"); &pxor ("mm4","mm7"); # ^= (r2^r0)>>24 758 &mov ($s3,&DWP(192-128,$tbl)); 759 760 &pxor ("mm0","mm2"); &pxor ("mm4","mm6"); 761 &jmp (&label("loop")); 762 763 &set_label("out",16); 764 &pxor ("mm0",&QWP(0,$key)); 765 &pxor ("mm4",&QWP(8,$key)); 766 767 &ret (); 768&function_end_B("_sse_AES_encrypt_compact"); 769 } 770 771###################################################################### 772# Vanilla block function. 773###################################################################### 774 775sub encstep() 776{ my ($i,$te,@s) = @_; 777 my $tmp = $key; 778 my $out = $i==3?$s[0]:$acc; 779 780 # lines marked with #%e?x[i] denote "reordered" instructions... 781 if ($i==3) { &mov ($key,$__key); }##%edx 782 else { &mov ($out,$s[0]); 783 &and ($out,0xFF); } 784 if ($i==1) { &shr ($s[0],16); }#%ebx[1] 785 if ($i==2) { &shr ($s[0],24); }#%ecx[2] 786 &mov ($out,&DWP(0,$te,$out,8)); 787 788 if ($i==3) { $tmp=$s[1]; }##%eax 789 &movz ($tmp,&HB($s[1])); 790 &xor ($out,&DWP(3,$te,$tmp,8)); 791 792 if ($i==3) { $tmp=$s[2]; &mov ($s[1],$__s0); }##%ebx 793 else { &mov ($tmp,$s[2]); 794 &shr ($tmp,16); } 795 if ($i==2) { &and ($s[1],0xFF); }#%edx[2] 796 &and ($tmp,0xFF); 797 &xor ($out,&DWP(2,$te,$tmp,8)); 798 799 if ($i==3) { $tmp=$s[3]; &mov ($s[2],$__s1); }##%ecx 800 elsif($i==2){ &movz ($tmp,&HB($s[3])); }#%ebx[2] 801 else { &mov ($tmp,$s[3]); 802 &shr ($tmp,24) } 803 &xor ($out,&DWP(1,$te,$tmp,8)); 804 if ($i<2) { &mov (&DWP(4+4*$i,"esp"),$out); } 805 if ($i==3) { &mov ($s[3],$acc); } 806 &comment(); 807} 808 809sub enclast() 810{ my ($i,$te,@s)=@_; 811 my $tmp = $key; 812 my $out = $i==3?$s[0]:$acc; 813 814 if ($i==3) { &mov ($key,$__key); }##%edx 815 else { &mov ($out,$s[0]); } 816 &and ($out,0xFF); 817 if ($i==1) { &shr ($s[0],16); }#%ebx[1] 818 if ($i==2) { &shr ($s[0],24); }#%ecx[2] 819 &mov ($out,&DWP(2,$te,$out,8)); 820 &and ($out,0x000000ff); 821 822 if ($i==3) { $tmp=$s[1]; }##%eax 823 &movz ($tmp,&HB($s[1])); 824 &mov ($tmp,&DWP(0,$te,$tmp,8)); 825 &and ($tmp,0x0000ff00); 826 &xor ($out,$tmp); 827 828 if ($i==3) { $tmp=$s[2]; &mov ($s[1],$__s0); }##%ebx 829 else { &mov ($tmp,$s[2]); 830 &shr ($tmp,16); } 831 if ($i==2) { &and ($s[1],0xFF); }#%edx[2] 832 &and ($tmp,0xFF); 833 &mov ($tmp,&DWP(0,$te,$tmp,8)); 834 &and ($tmp,0x00ff0000); 835 &xor ($out,$tmp); 836 837 if ($i==3) { $tmp=$s[3]; &mov ($s[2],$__s1); }##%ecx 838 elsif($i==2){ &movz ($tmp,&HB($s[3])); }#%ebx[2] 839 else { &mov ($tmp,$s[3]); 840 &shr ($tmp,24); } 841 &mov ($tmp,&DWP(2,$te,$tmp,8)); 842 &and ($tmp,0xff000000); 843 &xor ($out,$tmp); 844 if ($i<2) { &mov (&DWP(4+4*$i,"esp"),$out); } 845 if ($i==3) { &mov ($s[3],$acc); } 846} 847 848&function_begin_B("_x86_AES_encrypt"); 849 if ($vertical_spin) { 850 # I need high parts of volatile registers to be accessible... 851 &exch ($s1="edi",$key="ebx"); 852 &mov ($s2="esi",$acc="ecx"); 853 } 854 855 # note that caller is expected to allocate stack frame for me! 856 &mov ($__key,$key); # save key 857 858 &xor ($s0,&DWP(0,$key)); # xor with key 859 &xor ($s1,&DWP(4,$key)); 860 &xor ($s2,&DWP(8,$key)); 861 &xor ($s3,&DWP(12,$key)); 862 863 &mov ($acc,&DWP(240,$key)); # load key->rounds 864 865 if ($small_footprint) { 866 &lea ($acc,&DWP(-2,$acc,$acc)); 867 &lea ($acc,&DWP(0,$key,$acc,8)); 868 &mov ($__end,$acc); # end of key schedule 869 870 &set_label("loop",16); 871 if ($vertical_spin) { 872 &encvert($tbl,$s0,$s1,$s2,$s3); 873 } else { 874 &encstep(0,$tbl,$s0,$s1,$s2,$s3); 875 &encstep(1,$tbl,$s1,$s2,$s3,$s0); 876 &encstep(2,$tbl,$s2,$s3,$s0,$s1); 877 &encstep(3,$tbl,$s3,$s0,$s1,$s2); 878 } 879 &add ($key,16); # advance rd_key 880 &xor ($s0,&DWP(0,$key)); 881 &xor ($s1,&DWP(4,$key)); 882 &xor ($s2,&DWP(8,$key)); 883 &xor ($s3,&DWP(12,$key)); 884 &cmp ($key,$__end); 885 &mov ($__key,$key); 886 &jb (&label("loop")); 887 } 888 else { 889 &cmp ($acc,10); 890 &jle (&label("10rounds")); 891 &cmp ($acc,12); 892 &jle (&label("12rounds")); 893 894 &set_label("14rounds",4); 895 for ($i=1;$i<3;$i++) { 896 if ($vertical_spin) { 897 &encvert($tbl,$s0,$s1,$s2,$s3); 898 } else { 899 &encstep(0,$tbl,$s0,$s1,$s2,$s3); 900 &encstep(1,$tbl,$s1,$s2,$s3,$s0); 901 &encstep(2,$tbl,$s2,$s3,$s0,$s1); 902 &encstep(3,$tbl,$s3,$s0,$s1,$s2); 903 } 904 &xor ($s0,&DWP(16*$i+0,$key)); 905 &xor ($s1,&DWP(16*$i+4,$key)); 906 &xor ($s2,&DWP(16*$i+8,$key)); 907 &xor ($s3,&DWP(16*$i+12,$key)); 908 } 909 &add ($key,32); 910 &mov ($__key,$key); # advance rd_key 911 &set_label("12rounds",4); 912 for ($i=1;$i<3;$i++) { 913 if ($vertical_spin) { 914 &encvert($tbl,$s0,$s1,$s2,$s3); 915 } else { 916 &encstep(0,$tbl,$s0,$s1,$s2,$s3); 917 &encstep(1,$tbl,$s1,$s2,$s3,$s0); 918 &encstep(2,$tbl,$s2,$s3,$s0,$s1); 919 &encstep(3,$tbl,$s3,$s0,$s1,$s2); 920 } 921 &xor ($s0,&DWP(16*$i+0,$key)); 922 &xor ($s1,&DWP(16*$i+4,$key)); 923 &xor ($s2,&DWP(16*$i+8,$key)); 924 &xor ($s3,&DWP(16*$i+12,$key)); 925 } 926 &add ($key,32); 927 &mov ($__key,$key); # advance rd_key 928 &set_label("10rounds",4); 929 for ($i=1;$i<10;$i++) { 930 if ($vertical_spin) { 931 &encvert($tbl,$s0,$s1,$s2,$s3); 932 } else { 933 &encstep(0,$tbl,$s0,$s1,$s2,$s3); 934 &encstep(1,$tbl,$s1,$s2,$s3,$s0); 935 &encstep(2,$tbl,$s2,$s3,$s0,$s1); 936 &encstep(3,$tbl,$s3,$s0,$s1,$s2); 937 } 938 &xor ($s0,&DWP(16*$i+0,$key)); 939 &xor ($s1,&DWP(16*$i+4,$key)); 940 &xor ($s2,&DWP(16*$i+8,$key)); 941 &xor ($s3,&DWP(16*$i+12,$key)); 942 } 943 } 944 945 if ($vertical_spin) { 946 # "reincarnate" some registers for "horizontal" spin... 947 &mov ($s1="ebx",$key="edi"); 948 &mov ($s2="ecx",$acc="esi"); 949 } 950 &enclast(0,$tbl,$s0,$s1,$s2,$s3); 951 &enclast(1,$tbl,$s1,$s2,$s3,$s0); 952 &enclast(2,$tbl,$s2,$s3,$s0,$s1); 953 &enclast(3,$tbl,$s3,$s0,$s1,$s2); 954 955 &add ($key,$small_footprint?16:160); 956 &xor ($s0,&DWP(0,$key)); 957 &xor ($s1,&DWP(4,$key)); 958 &xor ($s2,&DWP(8,$key)); 959 &xor ($s3,&DWP(12,$key)); 960 961 &ret (); 962 963&set_label("AES_Te",64); # Yes! I keep it in the code segment! 964 &_data_word(0xa56363c6, 0x847c7cf8, 0x997777ee, 0x8d7b7bf6); 965 &_data_word(0x0df2f2ff, 0xbd6b6bd6, 0xb16f6fde, 0x54c5c591); 966 &_data_word(0x50303060, 0x03010102, 0xa96767ce, 0x7d2b2b56); 967 &_data_word(0x19fefee7, 0x62d7d7b5, 0xe6abab4d, 0x9a7676ec); 968 &_data_word(0x45caca8f, 0x9d82821f, 0x40c9c989, 0x877d7dfa); 969 &_data_word(0x15fafaef, 0xeb5959b2, 0xc947478e, 0x0bf0f0fb); 970 &_data_word(0xecadad41, 0x67d4d4b3, 0xfda2a25f, 0xeaafaf45); 971 &_data_word(0xbf9c9c23, 0xf7a4a453, 0x967272e4, 0x5bc0c09b); 972 &_data_word(0xc2b7b775, 0x1cfdfde1, 0xae93933d, 0x6a26264c); 973 &_data_word(0x5a36366c, 0x413f3f7e, 0x02f7f7f5, 0x4fcccc83); 974 &_data_word(0x5c343468, 0xf4a5a551, 0x34e5e5d1, 0x08f1f1f9); 975 &_data_word(0x937171e2, 0x73d8d8ab, 0x53313162, 0x3f15152a); 976 &_data_word(0x0c040408, 0x52c7c795, 0x65232346, 0x5ec3c39d); 977 &_data_word(0x28181830, 0xa1969637, 0x0f05050a, 0xb59a9a2f); 978 &_data_word(0x0907070e, 0x36121224, 0x9b80801b, 0x3de2e2df); 979 &_data_word(0x26ebebcd, 0x6927274e, 0xcdb2b27f, 0x9f7575ea); 980 &_data_word(0x1b090912, 0x9e83831d, 0x742c2c58, 0x2e1a1a34); 981 &_data_word(0x2d1b1b36, 0xb26e6edc, 0xee5a5ab4, 0xfba0a05b); 982 &_data_word(0xf65252a4, 0x4d3b3b76, 0x61d6d6b7, 0xceb3b37d); 983 &_data_word(0x7b292952, 0x3ee3e3dd, 0x712f2f5e, 0x97848413); 984 &_data_word(0xf55353a6, 0x68d1d1b9, 0x00000000, 0x2cededc1); 985 &_data_word(0x60202040, 0x1ffcfce3, 0xc8b1b179, 0xed5b5bb6); 986 &_data_word(0xbe6a6ad4, 0x46cbcb8d, 0xd9bebe67, 0x4b393972); 987 &_data_word(0xde4a4a94, 0xd44c4c98, 0xe85858b0, 0x4acfcf85); 988 &_data_word(0x6bd0d0bb, 0x2aefefc5, 0xe5aaaa4f, 0x16fbfbed); 989 &_data_word(0xc5434386, 0xd74d4d9a, 0x55333366, 0x94858511); 990 &_data_word(0xcf45458a, 0x10f9f9e9, 0x06020204, 0x817f7ffe); 991 &_data_word(0xf05050a0, 0x443c3c78, 0xba9f9f25, 0xe3a8a84b); 992 &_data_word(0xf35151a2, 0xfea3a35d, 0xc0404080, 0x8a8f8f05); 993 &_data_word(0xad92923f, 0xbc9d9d21, 0x48383870, 0x04f5f5f1); 994 &_data_word(0xdfbcbc63, 0xc1b6b677, 0x75dadaaf, 0x63212142); 995 &_data_word(0x30101020, 0x1affffe5, 0x0ef3f3fd, 0x6dd2d2bf); 996 &_data_word(0x4ccdcd81, 0x140c0c18, 0x35131326, 0x2fececc3); 997 &_data_word(0xe15f5fbe, 0xa2979735, 0xcc444488, 0x3917172e); 998 &_data_word(0x57c4c493, 0xf2a7a755, 0x827e7efc, 0x473d3d7a); 999 &_data_word(0xac6464c8, 0xe75d5dba, 0x2b191932, 0x957373e6); 1000 &_data_word(0xa06060c0, 0x98818119, 0xd14f4f9e, 0x7fdcdca3); 1001 &_data_word(0x66222244, 0x7e2a2a54, 0xab90903b, 0x8388880b); 1002 &_data_word(0xca46468c, 0x29eeeec7, 0xd3b8b86b, 0x3c141428); 1003 &_data_word(0x79dedea7, 0xe25e5ebc, 0x1d0b0b16, 0x76dbdbad); 1004 &_data_word(0x3be0e0db, 0x56323264, 0x4e3a3a74, 0x1e0a0a14); 1005 &_data_word(0xdb494992, 0x0a06060c, 0x6c242448, 0xe45c5cb8); 1006 &_data_word(0x5dc2c29f, 0x6ed3d3bd, 0xefacac43, 0xa66262c4); 1007 &_data_word(0xa8919139, 0xa4959531, 0x37e4e4d3, 0x8b7979f2); 1008 &_data_word(0x32e7e7d5, 0x43c8c88b, 0x5937376e, 0xb76d6dda); 1009 &_data_word(0x8c8d8d01, 0x64d5d5b1, 0xd24e4e9c, 0xe0a9a949); 1010 &_data_word(0xb46c6cd8, 0xfa5656ac, 0x07f4f4f3, 0x25eaeacf); 1011 &_data_word(0xaf6565ca, 0x8e7a7af4, 0xe9aeae47, 0x18080810); 1012 &_data_word(0xd5baba6f, 0x887878f0, 0x6f25254a, 0x722e2e5c); 1013 &_data_word(0x241c1c38, 0xf1a6a657, 0xc7b4b473, 0x51c6c697); 1014 &_data_word(0x23e8e8cb, 0x7cdddda1, 0x9c7474e8, 0x211f1f3e); 1015 &_data_word(0xdd4b4b96, 0xdcbdbd61, 0x868b8b0d, 0x858a8a0f); 1016 &_data_word(0x907070e0, 0x423e3e7c, 0xc4b5b571, 0xaa6666cc); 1017 &_data_word(0xd8484890, 0x05030306, 0x01f6f6f7, 0x120e0e1c); 1018 &_data_word(0xa36161c2, 0x5f35356a, 0xf95757ae, 0xd0b9b969); 1019 &_data_word(0x91868617, 0x58c1c199, 0x271d1d3a, 0xb99e9e27); 1020 &_data_word(0x38e1e1d9, 0x13f8f8eb, 0xb398982b, 0x33111122); 1021 &_data_word(0xbb6969d2, 0x70d9d9a9, 0x898e8e07, 0xa7949433); 1022 &_data_word(0xb69b9b2d, 0x221e1e3c, 0x92878715, 0x20e9e9c9); 1023 &_data_word(0x49cece87, 0xff5555aa, 0x78282850, 0x7adfdfa5); 1024 &_data_word(0x8f8c8c03, 0xf8a1a159, 0x80898909, 0x170d0d1a); 1025 &_data_word(0xdabfbf65, 0x31e6e6d7, 0xc6424284, 0xb86868d0); 1026 &_data_word(0xc3414182, 0xb0999929, 0x772d2d5a, 0x110f0f1e); 1027 &_data_word(0xcbb0b07b, 0xfc5454a8, 0xd6bbbb6d, 0x3a16162c); 1028 1029#Te4 # four copies of Te4 to choose from to avoid L1 aliasing 1030 &data_byte(0x63, 0x7c, 0x77, 0x7b, 0xf2, 0x6b, 0x6f, 0xc5); 1031 &data_byte(0x30, 0x01, 0x67, 0x2b, 0xfe, 0xd7, 0xab, 0x76); 1032 &data_byte(0xca, 0x82, 0xc9, 0x7d, 0xfa, 0x59, 0x47, 0xf0); 1033 &data_byte(0xad, 0xd4, 0xa2, 0xaf, 0x9c, 0xa4, 0x72, 0xc0); 1034 &data_byte(0xb7, 0xfd, 0x93, 0x26, 0x36, 0x3f, 0xf7, 0xcc); 1035 &data_byte(0x34, 0xa5, 0xe5, 0xf1, 0x71, 0xd8, 0x31, 0x15); 1036 &data_byte(0x04, 0xc7, 0x23, 0xc3, 0x18, 0x96, 0x05, 0x9a); 1037 &data_byte(0x07, 0x12, 0x80, 0xe2, 0xeb, 0x27, 0xb2, 0x75); 1038 &data_byte(0x09, 0x83, 0x2c, 0x1a, 0x1b, 0x6e, 0x5a, 0xa0); 1039 &data_byte(0x52, 0x3b, 0xd6, 0xb3, 0x29, 0xe3, 0x2f, 0x84); 1040 &data_byte(0x53, 0xd1, 0x00, 0xed, 0x20, 0xfc, 0xb1, 0x5b); 1041 &data_byte(0x6a, 0xcb, 0xbe, 0x39, 0x4a, 0x4c, 0x58, 0xcf); 1042 &data_byte(0xd0, 0xef, 0xaa, 0xfb, 0x43, 0x4d, 0x33, 0x85); 1043 &data_byte(0x45, 0xf9, 0x02, 0x7f, 0x50, 0x3c, 0x9f, 0xa8); 1044 &data_byte(0x51, 0xa3, 0x40, 0x8f, 0x92, 0x9d, 0x38, 0xf5); 1045 &data_byte(0xbc, 0xb6, 0xda, 0x21, 0x10, 0xff, 0xf3, 0xd2); 1046 &data_byte(0xcd, 0x0c, 0x13, 0xec, 0x5f, 0x97, 0x44, 0x17); 1047 &data_byte(0xc4, 0xa7, 0x7e, 0x3d, 0x64, 0x5d, 0x19, 0x73); 1048 &data_byte(0x60, 0x81, 0x4f, 0xdc, 0x22, 0x2a, 0x90, 0x88); 1049 &data_byte(0x46, 0xee, 0xb8, 0x14, 0xde, 0x5e, 0x0b, 0xdb); 1050 &data_byte(0xe0, 0x32, 0x3a, 0x0a, 0x49, 0x06, 0x24, 0x5c); 1051 &data_byte(0xc2, 0xd3, 0xac, 0x62, 0x91, 0x95, 0xe4, 0x79); 1052 &data_byte(0xe7, 0xc8, 0x37, 0x6d, 0x8d, 0xd5, 0x4e, 0xa9); 1053 &data_byte(0x6c, 0x56, 0xf4, 0xea, 0x65, 0x7a, 0xae, 0x08); 1054 &data_byte(0xba, 0x78, 0x25, 0x2e, 0x1c, 0xa6, 0xb4, 0xc6); 1055 &data_byte(0xe8, 0xdd, 0x74, 0x1f, 0x4b, 0xbd, 0x8b, 0x8a); 1056 &data_byte(0x70, 0x3e, 0xb5, 0x66, 0x48, 0x03, 0xf6, 0x0e); 1057 &data_byte(0x61, 0x35, 0x57, 0xb9, 0x86, 0xc1, 0x1d, 0x9e); 1058 &data_byte(0xe1, 0xf8, 0x98, 0x11, 0x69, 0xd9, 0x8e, 0x94); 1059 &data_byte(0x9b, 0x1e, 0x87, 0xe9, 0xce, 0x55, 0x28, 0xdf); 1060 &data_byte(0x8c, 0xa1, 0x89, 0x0d, 0xbf, 0xe6, 0x42, 0x68); 1061 &data_byte(0x41, 0x99, 0x2d, 0x0f, 0xb0, 0x54, 0xbb, 0x16); 1062 1063 &data_byte(0x63, 0x7c, 0x77, 0x7b, 0xf2, 0x6b, 0x6f, 0xc5); 1064 &data_byte(0x30, 0x01, 0x67, 0x2b, 0xfe, 0xd7, 0xab, 0x76); 1065 &data_byte(0xca, 0x82, 0xc9, 0x7d, 0xfa, 0x59, 0x47, 0xf0); 1066 &data_byte(0xad, 0xd4, 0xa2, 0xaf, 0x9c, 0xa4, 0x72, 0xc0); 1067 &data_byte(0xb7, 0xfd, 0x93, 0x26, 0x36, 0x3f, 0xf7, 0xcc); 1068 &data_byte(0x34, 0xa5, 0xe5, 0xf1, 0x71, 0xd8, 0x31, 0x15); 1069 &data_byte(0x04, 0xc7, 0x23, 0xc3, 0x18, 0x96, 0x05, 0x9a); 1070 &data_byte(0x07, 0x12, 0x80, 0xe2, 0xeb, 0x27, 0xb2, 0x75); 1071 &data_byte(0x09, 0x83, 0x2c, 0x1a, 0x1b, 0x6e, 0x5a, 0xa0); 1072 &data_byte(0x52, 0x3b, 0xd6, 0xb3, 0x29, 0xe3, 0x2f, 0x84); 1073 &data_byte(0x53, 0xd1, 0x00, 0xed, 0x20, 0xfc, 0xb1, 0x5b); 1074 &data_byte(0x6a, 0xcb, 0xbe, 0x39, 0x4a, 0x4c, 0x58, 0xcf); 1075 &data_byte(0xd0, 0xef, 0xaa, 0xfb, 0x43, 0x4d, 0x33, 0x85); 1076 &data_byte(0x45, 0xf9, 0x02, 0x7f, 0x50, 0x3c, 0x9f, 0xa8); 1077 &data_byte(0x51, 0xa3, 0x40, 0x8f, 0x92, 0x9d, 0x38, 0xf5); 1078 &data_byte(0xbc, 0xb6, 0xda, 0x21, 0x10, 0xff, 0xf3, 0xd2); 1079 &data_byte(0xcd, 0x0c, 0x13, 0xec, 0x5f, 0x97, 0x44, 0x17); 1080 &data_byte(0xc4, 0xa7, 0x7e, 0x3d, 0x64, 0x5d, 0x19, 0x73); 1081 &data_byte(0x60, 0x81, 0x4f, 0xdc, 0x22, 0x2a, 0x90, 0x88); 1082 &data_byte(0x46, 0xee, 0xb8, 0x14, 0xde, 0x5e, 0x0b, 0xdb); 1083 &data_byte(0xe0, 0x32, 0x3a, 0x0a, 0x49, 0x06, 0x24, 0x5c); 1084 &data_byte(0xc2, 0xd3, 0xac, 0x62, 0x91, 0x95, 0xe4, 0x79); 1085 &data_byte(0xe7, 0xc8, 0x37, 0x6d, 0x8d, 0xd5, 0x4e, 0xa9); 1086 &data_byte(0x6c, 0x56, 0xf4, 0xea, 0x65, 0x7a, 0xae, 0x08); 1087 &data_byte(0xba, 0x78, 0x25, 0x2e, 0x1c, 0xa6, 0xb4, 0xc6); 1088 &data_byte(0xe8, 0xdd, 0x74, 0x1f, 0x4b, 0xbd, 0x8b, 0x8a); 1089 &data_byte(0x70, 0x3e, 0xb5, 0x66, 0x48, 0x03, 0xf6, 0x0e); 1090 &data_byte(0x61, 0x35, 0x57, 0xb9, 0x86, 0xc1, 0x1d, 0x9e); 1091 &data_byte(0xe1, 0xf8, 0x98, 0x11, 0x69, 0xd9, 0x8e, 0x94); 1092 &data_byte(0x9b, 0x1e, 0x87, 0xe9, 0xce, 0x55, 0x28, 0xdf); 1093 &data_byte(0x8c, 0xa1, 0x89, 0x0d, 0xbf, 0xe6, 0x42, 0x68); 1094 &data_byte(0x41, 0x99, 0x2d, 0x0f, 0xb0, 0x54, 0xbb, 0x16); 1095 1096 &data_byte(0x63, 0x7c, 0x77, 0x7b, 0xf2, 0x6b, 0x6f, 0xc5); 1097 &data_byte(0x30, 0x01, 0x67, 0x2b, 0xfe, 0xd7, 0xab, 0x76); 1098 &data_byte(0xca, 0x82, 0xc9, 0x7d, 0xfa, 0x59, 0x47, 0xf0); 1099 &data_byte(0xad, 0xd4, 0xa2, 0xaf, 0x9c, 0xa4, 0x72, 0xc0); 1100 &data_byte(0xb7, 0xfd, 0x93, 0x26, 0x36, 0x3f, 0xf7, 0xcc); 1101 &data_byte(0x34, 0xa5, 0xe5, 0xf1, 0x71, 0xd8, 0x31, 0x15); 1102 &data_byte(0x04, 0xc7, 0x23, 0xc3, 0x18, 0x96, 0x05, 0x9a); 1103 &data_byte(0x07, 0x12, 0x80, 0xe2, 0xeb, 0x27, 0xb2, 0x75); 1104 &data_byte(0x09, 0x83, 0x2c, 0x1a, 0x1b, 0x6e, 0x5a, 0xa0); 1105 &data_byte(0x52, 0x3b, 0xd6, 0xb3, 0x29, 0xe3, 0x2f, 0x84); 1106 &data_byte(0x53, 0xd1, 0x00, 0xed, 0x20, 0xfc, 0xb1, 0x5b); 1107 &data_byte(0x6a, 0xcb, 0xbe, 0x39, 0x4a, 0x4c, 0x58, 0xcf); 1108 &data_byte(0xd0, 0xef, 0xaa, 0xfb, 0x43, 0x4d, 0x33, 0x85); 1109 &data_byte(0x45, 0xf9, 0x02, 0x7f, 0x50, 0x3c, 0x9f, 0xa8); 1110 &data_byte(0x51, 0xa3, 0x40, 0x8f, 0x92, 0x9d, 0x38, 0xf5); 1111 &data_byte(0xbc, 0xb6, 0xda, 0x21, 0x10, 0xff, 0xf3, 0xd2); 1112 &data_byte(0xcd, 0x0c, 0x13, 0xec, 0x5f, 0x97, 0x44, 0x17); 1113 &data_byte(0xc4, 0xa7, 0x7e, 0x3d, 0x64, 0x5d, 0x19, 0x73); 1114 &data_byte(0x60, 0x81, 0x4f, 0xdc, 0x22, 0x2a, 0x90, 0x88); 1115 &data_byte(0x46, 0xee, 0xb8, 0x14, 0xde, 0x5e, 0x0b, 0xdb); 1116 &data_byte(0xe0, 0x32, 0x3a, 0x0a, 0x49, 0x06, 0x24, 0x5c); 1117 &data_byte(0xc2, 0xd3, 0xac, 0x62, 0x91, 0x95, 0xe4, 0x79); 1118 &data_byte(0xe7, 0xc8, 0x37, 0x6d, 0x8d, 0xd5, 0x4e, 0xa9); 1119 &data_byte(0x6c, 0x56, 0xf4, 0xea, 0x65, 0x7a, 0xae, 0x08); 1120 &data_byte(0xba, 0x78, 0x25, 0x2e, 0x1c, 0xa6, 0xb4, 0xc6); 1121 &data_byte(0xe8, 0xdd, 0x74, 0x1f, 0x4b, 0xbd, 0x8b, 0x8a); 1122 &data_byte(0x70, 0x3e, 0xb5, 0x66, 0x48, 0x03, 0xf6, 0x0e); 1123 &data_byte(0x61, 0x35, 0x57, 0xb9, 0x86, 0xc1, 0x1d, 0x9e); 1124 &data_byte(0xe1, 0xf8, 0x98, 0x11, 0x69, 0xd9, 0x8e, 0x94); 1125 &data_byte(0x9b, 0x1e, 0x87, 0xe9, 0xce, 0x55, 0x28, 0xdf); 1126 &data_byte(0x8c, 0xa1, 0x89, 0x0d, 0xbf, 0xe6, 0x42, 0x68); 1127 &data_byte(0x41, 0x99, 0x2d, 0x0f, 0xb0, 0x54, 0xbb, 0x16); 1128 1129 &data_byte(0x63, 0x7c, 0x77, 0x7b, 0xf2, 0x6b, 0x6f, 0xc5); 1130 &data_byte(0x30, 0x01, 0x67, 0x2b, 0xfe, 0xd7, 0xab, 0x76); 1131 &data_byte(0xca, 0x82, 0xc9, 0x7d, 0xfa, 0x59, 0x47, 0xf0); 1132 &data_byte(0xad, 0xd4, 0xa2, 0xaf, 0x9c, 0xa4, 0x72, 0xc0); 1133 &data_byte(0xb7, 0xfd, 0x93, 0x26, 0x36, 0x3f, 0xf7, 0xcc); 1134 &data_byte(0x34, 0xa5, 0xe5, 0xf1, 0x71, 0xd8, 0x31, 0x15); 1135 &data_byte(0x04, 0xc7, 0x23, 0xc3, 0x18, 0x96, 0x05, 0x9a); 1136 &data_byte(0x07, 0x12, 0x80, 0xe2, 0xeb, 0x27, 0xb2, 0x75); 1137 &data_byte(0x09, 0x83, 0x2c, 0x1a, 0x1b, 0x6e, 0x5a, 0xa0); 1138 &data_byte(0x52, 0x3b, 0xd6, 0xb3, 0x29, 0xe3, 0x2f, 0x84); 1139 &data_byte(0x53, 0xd1, 0x00, 0xed, 0x20, 0xfc, 0xb1, 0x5b); 1140 &data_byte(0x6a, 0xcb, 0xbe, 0x39, 0x4a, 0x4c, 0x58, 0xcf); 1141 &data_byte(0xd0, 0xef, 0xaa, 0xfb, 0x43, 0x4d, 0x33, 0x85); 1142 &data_byte(0x45, 0xf9, 0x02, 0x7f, 0x50, 0x3c, 0x9f, 0xa8); 1143 &data_byte(0x51, 0xa3, 0x40, 0x8f, 0x92, 0x9d, 0x38, 0xf5); 1144 &data_byte(0xbc, 0xb6, 0xda, 0x21, 0x10, 0xff, 0xf3, 0xd2); 1145 &data_byte(0xcd, 0x0c, 0x13, 0xec, 0x5f, 0x97, 0x44, 0x17); 1146 &data_byte(0xc4, 0xa7, 0x7e, 0x3d, 0x64, 0x5d, 0x19, 0x73); 1147 &data_byte(0x60, 0x81, 0x4f, 0xdc, 0x22, 0x2a, 0x90, 0x88); 1148 &data_byte(0x46, 0xee, 0xb8, 0x14, 0xde, 0x5e, 0x0b, 0xdb); 1149 &data_byte(0xe0, 0x32, 0x3a, 0x0a, 0x49, 0x06, 0x24, 0x5c); 1150 &data_byte(0xc2, 0xd3, 0xac, 0x62, 0x91, 0x95, 0xe4, 0x79); 1151 &data_byte(0xe7, 0xc8, 0x37, 0x6d, 0x8d, 0xd5, 0x4e, 0xa9); 1152 &data_byte(0x6c, 0x56, 0xf4, 0xea, 0x65, 0x7a, 0xae, 0x08); 1153 &data_byte(0xba, 0x78, 0x25, 0x2e, 0x1c, 0xa6, 0xb4, 0xc6); 1154 &data_byte(0xe8, 0xdd, 0x74, 0x1f, 0x4b, 0xbd, 0x8b, 0x8a); 1155 &data_byte(0x70, 0x3e, 0xb5, 0x66, 0x48, 0x03, 0xf6, 0x0e); 1156 &data_byte(0x61, 0x35, 0x57, 0xb9, 0x86, 0xc1, 0x1d, 0x9e); 1157 &data_byte(0xe1, 0xf8, 0x98, 0x11, 0x69, 0xd9, 0x8e, 0x94); 1158 &data_byte(0x9b, 0x1e, 0x87, 0xe9, 0xce, 0x55, 0x28, 0xdf); 1159 &data_byte(0x8c, 0xa1, 0x89, 0x0d, 0xbf, 0xe6, 0x42, 0x68); 1160 &data_byte(0x41, 0x99, 0x2d, 0x0f, 0xb0, 0x54, 0xbb, 0x16); 1161#rcon: 1162 &data_word(0x00000001, 0x00000002, 0x00000004, 0x00000008); 1163 &data_word(0x00000010, 0x00000020, 0x00000040, 0x00000080); 1164 &data_word(0x0000001b, 0x00000036, 0x00000000, 0x00000000); 1165 &data_word(0x00000000, 0x00000000, 0x00000000, 0x00000000); 1166&function_end_B("_x86_AES_encrypt"); 1167 1168# void asm_AES_encrypt (const void *inp,void *out,const AES_KEY *key); 1169&function_begin("asm_AES_encrypt"); 1170 &mov ($acc,&wparam(0)); # load inp 1171 &mov ($key,&wparam(2)); # load key 1172 1173 &mov ($s0,"esp"); 1174 &sub ("esp",36); 1175 &and ("esp",-64); # align to cache-line 1176 1177 # place stack frame just "above" the key schedule 1178 &lea ($s1,&DWP(-64-63,$key)); 1179 &sub ($s1,"esp"); 1180 &neg ($s1); 1181 &and ($s1,0x3C0); # modulo 1024, but aligned to cache-line 1182 &sub ("esp",$s1); 1183 &add ("esp",4); # 4 is reserved for caller's return address 1184 &mov ($_esp,$s0); # save stack pointer 1185 1186 &call (&label("pic_point")); # make it PIC! 1187 &set_label("pic_point"); 1188 &blindpop($tbl); 1189 &picmeup($s0,"OPENSSL_ia32cap_P",$tbl,&label("pic_point")) if (!$x86only); 1190 &lea ($tbl,&DWP(&label("AES_Te")."-".&label("pic_point"),$tbl)); 1191 1192 # pick Te4 copy which can't "overlap" with stack frame or key schedule 1193 &lea ($s1,&DWP(768-4,"esp")); 1194 &sub ($s1,$tbl); 1195 &and ($s1,0x300); 1196 &lea ($tbl,&DWP(2048+128,$tbl,$s1)); 1197 1198 if (!$x86only) { 1199 &bt (&DWP(0,$s0),25); # check for SSE bit 1200 &jnc (&label("x86")); 1201 1202 &movq ("mm0",&QWP(0,$acc)); 1203 &movq ("mm4",&QWP(8,$acc)); 1204 &call ("_sse_AES_encrypt_compact"); 1205 &mov ("esp",$_esp); # restore stack pointer 1206 &mov ($acc,&wparam(1)); # load out 1207 &movq (&QWP(0,$acc),"mm0"); # write output data 1208 &movq (&QWP(8,$acc),"mm4"); 1209 &emms (); 1210 &function_end_A(); 1211 } 1212 &set_label("x86",16); 1213 &mov ($_tbl,$tbl); 1214 &mov ($s0,&DWP(0,$acc)); # load input data 1215 &mov ($s1,&DWP(4,$acc)); 1216 &mov ($s2,&DWP(8,$acc)); 1217 &mov ($s3,&DWP(12,$acc)); 1218 &call ("_x86_AES_encrypt_compact"); 1219 &mov ("esp",$_esp); # restore stack pointer 1220 &mov ($acc,&wparam(1)); # load out 1221 &mov (&DWP(0,$acc),$s0); # write output data 1222 &mov (&DWP(4,$acc),$s1); 1223 &mov (&DWP(8,$acc),$s2); 1224 &mov (&DWP(12,$acc),$s3); 1225&function_end("asm_AES_encrypt"); 1226 1227#--------------------------------------------------------------------# 1228 1229###################################################################### 1230# "Compact" block function 1231###################################################################### 1232 1233sub deccompact() 1234{ my $Fn = \&mov; 1235 while ($#_>5) { pop(@_); $Fn=sub{}; } 1236 my ($i,$td,@s)=@_; 1237 my $tmp = $key; 1238 my $out = $i==3?$s[0]:$acc; 1239 1240 # $Fn is used in first compact round and its purpose is to 1241 # void restoration of some values from stack, so that after 1242 # 4xdeccompact with extra argument $key, $s0 and $s1 values 1243 # are left there... 1244 if($i==3) { &$Fn ($key,$__key); } 1245 else { &mov ($out,$s[0]); } 1246 &and ($out,0xFF); 1247 &movz ($out,&BP(-128,$td,$out,1)); 1248 1249 if ($i==3) { $tmp=$s[1]; } 1250 &movz ($tmp,&HB($s[1])); 1251 &movz ($tmp,&BP(-128,$td,$tmp,1)); 1252 &shl ($tmp,8); 1253 &xor ($out,$tmp); 1254 1255 if ($i==3) { $tmp=$s[2]; &mov ($s[1],$acc); } 1256 else { mov ($tmp,$s[2]); } 1257 &shr ($tmp,16); 1258 &and ($tmp,0xFF); 1259 &movz ($tmp,&BP(-128,$td,$tmp,1)); 1260 &shl ($tmp,16); 1261 &xor ($out,$tmp); 1262 1263 if ($i==3) { $tmp=$s[3]; &$Fn ($s[2],$__s1); } 1264 else { &mov ($tmp,$s[3]); } 1265 &shr ($tmp,24); 1266 &movz ($tmp,&BP(-128,$td,$tmp,1)); 1267 &shl ($tmp,24); 1268 &xor ($out,$tmp); 1269 if ($i<2) { &mov (&DWP(4+4*$i,"esp"),$out); } 1270 if ($i==3) { &$Fn ($s[3],$__s0); } 1271} 1272 1273# must be called with 2,3,0,1 as argument sequence!!! 1274sub dectransform() 1275{ my @s = ($s0,$s1,$s2,$s3); 1276 my $i = shift; 1277 my $tmp = $key; 1278 my $tp2 = @s[($i+2)%4]; $tp2 = @s[2] if ($i==1); 1279 my $tp4 = @s[($i+3)%4]; $tp4 = @s[3] if ($i==1); 1280 my $tp8 = $tbl; 1281 1282 &mov ($tmp,0x80808080); 1283 &and ($tmp,$s[$i]); 1284 &mov ($acc,$tmp); 1285 &shr ($tmp,7); 1286 &lea ($tp2,&DWP(0,$s[$i],$s[$i])); 1287 &sub ($acc,$tmp); 1288 &and ($tp2,0xfefefefe); 1289 &and ($acc,0x1b1b1b1b); 1290 &xor ($tp2,$acc); 1291 &mov ($tmp,0x80808080); 1292 1293 &and ($tmp,$tp2); 1294 &mov ($acc,$tmp); 1295 &shr ($tmp,7); 1296 &lea ($tp4,&DWP(0,$tp2,$tp2)); 1297 &sub ($acc,$tmp); 1298 &and ($tp4,0xfefefefe); 1299 &and ($acc,0x1b1b1b1b); 1300 &xor ($tp2,$s[$i]); # tp2^tp1 1301 &xor ($tp4,$acc); 1302 &mov ($tmp,0x80808080); 1303 1304 &and ($tmp,$tp4); 1305 &mov ($acc,$tmp); 1306 &shr ($tmp,7); 1307 &lea ($tp8,&DWP(0,$tp4,$tp4)); 1308 &sub ($acc,$tmp); 1309 &and ($tp8,0xfefefefe); 1310 &and ($acc,0x1b1b1b1b); 1311 &xor ($tp4,$s[$i]); # tp4^tp1 1312 &rotl ($s[$i],8); # = ROTATE(tp1,8) 1313 &xor ($tp8,$acc); 1314 1315 &xor ($s[$i],$tp2); 1316 &xor ($tp2,$tp8); 1317 &xor ($s[$i],$tp4); 1318 &xor ($tp4,$tp8); 1319 &rotl ($tp2,24); 1320 &xor ($s[$i],$tp8); # ^= tp8^(tp4^tp1)^(tp2^tp1) 1321 &rotl ($tp4,16); 1322 &xor ($s[$i],$tp2); # ^= ROTATE(tp8^tp2^tp1,24) 1323 &rotl ($tp8,8); 1324 &xor ($s[$i],$tp4); # ^= ROTATE(tp8^tp4^tp1,16) 1325 &mov ($s[0],$__s0) if($i==2); #prefetch $s0 1326 &mov ($s[1],$__s1) if($i==3); #prefetch $s1 1327 &mov ($s[2],$__s2) if($i==1); 1328 &xor ($s[$i],$tp8); # ^= ROTATE(tp8,8) 1329 1330 &mov ($s[3],$__s3) if($i==1); 1331 &mov (&DWP(4+4*$i,"esp"),$s[$i]) if($i>=2); 1332} 1333 1334&function_begin_B("_x86_AES_decrypt_compact"); 1335 # note that caller is expected to allocate stack frame for me! 1336 &mov ($__key,$key); # save key 1337 1338 &xor ($s0,&DWP(0,$key)); # xor with key 1339 &xor ($s1,&DWP(4,$key)); 1340 &xor ($s2,&DWP(8,$key)); 1341 &xor ($s3,&DWP(12,$key)); 1342 1343 &mov ($acc,&DWP(240,$key)); # load key->rounds 1344 1345 &lea ($acc,&DWP(-2,$acc,$acc)); 1346 &lea ($acc,&DWP(0,$key,$acc,8)); 1347 &mov ($__end,$acc); # end of key schedule 1348 1349 # prefetch Td4 1350 &mov ($key,&DWP(0-128,$tbl)); 1351 &mov ($acc,&DWP(32-128,$tbl)); 1352 &mov ($key,&DWP(64-128,$tbl)); 1353 &mov ($acc,&DWP(96-128,$tbl)); 1354 &mov ($key,&DWP(128-128,$tbl)); 1355 &mov ($acc,&DWP(160-128,$tbl)); 1356 &mov ($key,&DWP(192-128,$tbl)); 1357 &mov ($acc,&DWP(224-128,$tbl)); 1358 1359 &set_label("loop",16); 1360 1361 &deccompact(0,$tbl,$s0,$s3,$s2,$s1,1); 1362 &deccompact(1,$tbl,$s1,$s0,$s3,$s2,1); 1363 &deccompact(2,$tbl,$s2,$s1,$s0,$s3,1); 1364 &deccompact(3,$tbl,$s3,$s2,$s1,$s0,1); 1365 &dectransform(2); 1366 &dectransform(3); 1367 &dectransform(0); 1368 &dectransform(1); 1369 &mov ($key,$__key); 1370 &mov ($tbl,$__tbl); 1371 &add ($key,16); # advance rd_key 1372 &xor ($s0,&DWP(0,$key)); 1373 &xor ($s1,&DWP(4,$key)); 1374 &xor ($s2,&DWP(8,$key)); 1375 &xor ($s3,&DWP(12,$key)); 1376 1377 &cmp ($key,$__end); 1378 &mov ($__key,$key); 1379 &jb (&label("loop")); 1380 1381 &deccompact(0,$tbl,$s0,$s3,$s2,$s1); 1382 &deccompact(1,$tbl,$s1,$s0,$s3,$s2); 1383 &deccompact(2,$tbl,$s2,$s1,$s0,$s3); 1384 &deccompact(3,$tbl,$s3,$s2,$s1,$s0); 1385 1386 &xor ($s0,&DWP(16,$key)); 1387 &xor ($s1,&DWP(20,$key)); 1388 &xor ($s2,&DWP(24,$key)); 1389 &xor ($s3,&DWP(28,$key)); 1390 1391 &ret (); 1392&function_end_B("_x86_AES_decrypt_compact"); 1393 1394###################################################################### 1395# "Compact" SSE block function. 1396###################################################################### 1397 1398sub sse_deccompact() 1399{ 1400 &pshufw ("mm1","mm0",0x0c); # 7, 6, 1, 0 1401 &pshufw ("mm5","mm4",0x09); # 13,12,11,10 1402 &movd ("eax","mm1"); # 7, 6, 1, 0 1403 &movd ("ebx","mm5"); # 13,12,11,10 1404 &mov ($__key,$key); 1405 1406 &movz ($acc,&LB("eax")); # 0 1407 &movz ("edx",&HB("eax")); # 1 1408 &pshufw ("mm2","mm0",0x06); # 3, 2, 5, 4 1409 &movz ("ecx",&BP(-128,$tbl,$acc,1)); # 0 1410 &movz ($key,&LB("ebx")); # 10 1411 &movz ("edx",&BP(-128,$tbl,"edx",1)); # 1 1412 &shr ("eax",16); # 7, 6 1413 &shl ("edx",8); # 1 1414 1415 &movz ($acc,&BP(-128,$tbl,$key,1)); # 10 1416 &movz ($key,&HB("ebx")); # 11 1417 &shl ($acc,16); # 10 1418 &pshufw ("mm6","mm4",0x03); # 9, 8,15,14 1419 &or ("ecx",$acc); # 10 1420 &movz ($acc,&BP(-128,$tbl,$key,1)); # 11 1421 &movz ($key,&HB("eax")); # 7 1422 &shl ($acc,24); # 11 1423 &shr ("ebx",16); # 13,12 1424 &or ("edx",$acc); # 11 1425 1426 &movz ($acc,&BP(-128,$tbl,$key,1)); # 7 1427 &movz ($key,&HB("ebx")); # 13 1428 &shl ($acc,24); # 7 1429 &or ("ecx",$acc); # 7 1430 &movz ($acc,&BP(-128,$tbl,$key,1)); # 13 1431 &movz ($key,&LB("eax")); # 6 1432 &shl ($acc,8); # 13 1433 &movd ("eax","mm2"); # 3, 2, 5, 4 1434 &or ("ecx",$acc); # 13 1435 1436 &movz ($acc,&BP(-128,$tbl,$key,1)); # 6 1437 &movz ($key,&LB("ebx")); # 12 1438 &shl ($acc,16); # 6 1439 &movd ("ebx","mm6"); # 9, 8,15,14 1440 &movd ("mm0","ecx"); # t[0] collected 1441 &movz ("ecx",&BP(-128,$tbl,$key,1)); # 12 1442 &movz ($key,&LB("eax")); # 4 1443 &or ("ecx",$acc); # 12 1444 1445 &movz ($acc,&BP(-128,$tbl,$key,1)); # 4 1446 &movz ($key,&LB("ebx")); # 14 1447 &or ("edx",$acc); # 4 1448 &movz ($acc,&BP(-128,$tbl,$key,1)); # 14 1449 &movz ($key,&HB("eax")); # 5 1450 &shl ($acc,16); # 14 1451 &shr ("eax",16); # 3, 2 1452 &or ("edx",$acc); # 14 1453 1454 &movz ($acc,&BP(-128,$tbl,$key,1)); # 5 1455 &movz ($key,&HB("ebx")); # 15 1456 &shr ("ebx",16); # 9, 8 1457 &shl ($acc,8); # 5 1458 &movd ("mm1","edx"); # t[1] collected 1459 &movz ("edx",&BP(-128,$tbl,$key,1)); # 15 1460 &movz ($key,&HB("ebx")); # 9 1461 &shl ("edx",24); # 15 1462 &and ("ebx",0xff); # 8 1463 &or ("edx",$acc); # 15 1464 1465 &punpckldq ("mm0","mm1"); # t[0,1] collected 1466 1467 &movz ($acc,&BP(-128,$tbl,$key,1)); # 9 1468 &movz ($key,&LB("eax")); # 2 1469 &shl ($acc,8); # 9 1470 &movz ("eax",&HB("eax")); # 3 1471 &movz ("ebx",&BP(-128,$tbl,"ebx",1)); # 8 1472 &or ("ecx",$acc); # 9 1473 &movz ($acc,&BP(-128,$tbl,$key,1)); # 2 1474 &or ("edx","ebx"); # 8 1475 &shl ($acc,16); # 2 1476 &movz ("eax",&BP(-128,$tbl,"eax",1)); # 3 1477 &or ("edx",$acc); # 2 1478 &shl ("eax",24); # 3 1479 &or ("ecx","eax"); # 3 1480 &mov ($key,$__key); 1481 &movd ("mm4","edx"); # t[2] collected 1482 &movd ("mm5","ecx"); # t[3] collected 1483 1484 &punpckldq ("mm4","mm5"); # t[2,3] collected 1485} 1486 1487 if (!$x86only) { 1488&function_begin_B("_sse_AES_decrypt_compact"); 1489 &pxor ("mm0",&QWP(0,$key)); # 7, 6, 5, 4, 3, 2, 1, 0 1490 &pxor ("mm4",&QWP(8,$key)); # 15,14,13,12,11,10, 9, 8 1491 1492 # note that caller is expected to allocate stack frame for me! 1493 &mov ($acc,&DWP(240,$key)); # load key->rounds 1494 &lea ($acc,&DWP(-2,$acc,$acc)); 1495 &lea ($acc,&DWP(0,$key,$acc,8)); 1496 &mov ($__end,$acc); # end of key schedule 1497 1498 &mov ($s0,0x1b1b1b1b); # magic constant 1499 &mov (&DWP(8,"esp"),$s0); 1500 &mov (&DWP(12,"esp"),$s0); 1501 1502 # prefetch Td4 1503 &mov ($s0,&DWP(0-128,$tbl)); 1504 &mov ($s1,&DWP(32-128,$tbl)); 1505 &mov ($s2,&DWP(64-128,$tbl)); 1506 &mov ($s3,&DWP(96-128,$tbl)); 1507 &mov ($s0,&DWP(128-128,$tbl)); 1508 &mov ($s1,&DWP(160-128,$tbl)); 1509 &mov ($s2,&DWP(192-128,$tbl)); 1510 &mov ($s3,&DWP(224-128,$tbl)); 1511 1512 &set_label("loop",16); 1513 &sse_deccompact(); 1514 &add ($key,16); 1515 &cmp ($key,$__end); 1516 &ja (&label("out")); 1517 1518 # ROTATE(x^y,N) == ROTATE(x,N)^ROTATE(y,N) 1519 &movq ("mm3","mm0"); &movq ("mm7","mm4"); 1520 &movq ("mm2","mm0",1); &movq ("mm6","mm4",1); 1521 &movq ("mm1","mm0"); &movq ("mm5","mm4"); 1522 &pshufw ("mm0","mm0",0xb1); &pshufw ("mm4","mm4",0xb1);# = ROTATE(tp0,16) 1523 &pslld ("mm2",8); &pslld ("mm6",8); 1524 &psrld ("mm3",8); &psrld ("mm7",8); 1525 &pxor ("mm0","mm2"); &pxor ("mm4","mm6"); # ^= tp0<<8 1526 &pxor ("mm0","mm3"); &pxor ("mm4","mm7"); # ^= tp0>>8 1527 &pslld ("mm2",16); &pslld ("mm6",16); 1528 &psrld ("mm3",16); &psrld ("mm7",16); 1529 &pxor ("mm0","mm2"); &pxor ("mm4","mm6"); # ^= tp0<<24 1530 &pxor ("mm0","mm3"); &pxor ("mm4","mm7"); # ^= tp0>>24 1531 1532 &movq ("mm3",&QWP(8,"esp")); 1533 &pxor ("mm2","mm2"); &pxor ("mm6","mm6"); 1534 &pcmpgtb("mm2","mm1"); &pcmpgtb("mm6","mm5"); 1535 &pand ("mm2","mm3"); &pand ("mm6","mm3"); 1536 &paddb ("mm1","mm1"); &paddb ("mm5","mm5"); 1537 &pxor ("mm1","mm2"); &pxor ("mm5","mm6"); # tp2 1538 &movq ("mm3","mm1"); &movq ("mm7","mm5"); 1539 &movq ("mm2","mm1"); &movq ("mm6","mm5"); 1540 &pxor ("mm0","mm1"); &pxor ("mm4","mm5"); # ^= tp2 1541 &pslld ("mm3",24); &pslld ("mm7",24); 1542 &psrld ("mm2",8); &psrld ("mm6",8); 1543 &pxor ("mm0","mm3"); &pxor ("mm4","mm7"); # ^= tp2<<24 1544 &pxor ("mm0","mm2"); &pxor ("mm4","mm6"); # ^= tp2>>8 1545 1546 &movq ("mm2",&QWP(8,"esp")); 1547 &pxor ("mm3","mm3"); &pxor ("mm7","mm7"); 1548 &pcmpgtb("mm3","mm1"); &pcmpgtb("mm7","mm5"); 1549 &pand ("mm3","mm2"); &pand ("mm7","mm2"); 1550 &paddb ("mm1","mm1"); &paddb ("mm5","mm5"); 1551 &pxor ("mm1","mm3"); &pxor ("mm5","mm7"); # tp4 1552 &pshufw ("mm3","mm1",0xb1); &pshufw ("mm7","mm5",0xb1); 1553 &pxor ("mm0","mm1"); &pxor ("mm4","mm5"); # ^= tp4 1554 &pxor ("mm0","mm3"); &pxor ("mm4","mm7"); # ^= ROTATE(tp4,16) 1555 1556 &pxor ("mm3","mm3"); &pxor ("mm7","mm7"); 1557 &pcmpgtb("mm3","mm1"); &pcmpgtb("mm7","mm5"); 1558 &pand ("mm3","mm2"); &pand ("mm7","mm2"); 1559 &paddb ("mm1","mm1"); &paddb ("mm5","mm5"); 1560 &pxor ("mm1","mm3"); &pxor ("mm5","mm7"); # tp8 1561 &pxor ("mm0","mm1"); &pxor ("mm4","mm5"); # ^= tp8 1562 &movq ("mm3","mm1"); &movq ("mm7","mm5"); 1563 &pshufw ("mm2","mm1",0xb1); &pshufw ("mm6","mm5",0xb1); 1564 &pxor ("mm0","mm2"); &pxor ("mm4","mm6"); # ^= ROTATE(tp8,16) 1565 &pslld ("mm1",8); &pslld ("mm5",8); 1566 &psrld ("mm3",8); &psrld ("mm7",8); 1567 &movq ("mm2",&QWP(0,$key)); &movq ("mm6",&QWP(8,$key)); 1568 &pxor ("mm0","mm1"); &pxor ("mm4","mm5"); # ^= tp8<<8 1569 &pxor ("mm0","mm3"); &pxor ("mm4","mm7"); # ^= tp8>>8 1570 &mov ($s0,&DWP(0-128,$tbl)); 1571 &pslld ("mm1",16); &pslld ("mm5",16); 1572 &mov ($s1,&DWP(64-128,$tbl)); 1573 &psrld ("mm3",16); &psrld ("mm7",16); 1574 &mov ($s2,&DWP(128-128,$tbl)); 1575 &pxor ("mm0","mm1"); &pxor ("mm4","mm5"); # ^= tp8<<24 1576 &mov ($s3,&DWP(192-128,$tbl)); 1577 &pxor ("mm0","mm3"); &pxor ("mm4","mm7"); # ^= tp8>>24 1578 1579 &pxor ("mm0","mm2"); &pxor ("mm4","mm6"); 1580 &jmp (&label("loop")); 1581 1582 &set_label("out",16); 1583 &pxor ("mm0",&QWP(0,$key)); 1584 &pxor ("mm4",&QWP(8,$key)); 1585 1586 &ret (); 1587&function_end_B("_sse_AES_decrypt_compact"); 1588 } 1589 1590###################################################################### 1591# Vanilla block function. 1592###################################################################### 1593 1594sub decstep() 1595{ my ($i,$td,@s) = @_; 1596 my $tmp = $key; 1597 my $out = $i==3?$s[0]:$acc; 1598 1599 # no instructions are reordered, as performance appears 1600 # optimal... or rather that all attempts to reorder didn't 1601 # result in better performance [which by the way is not a 1602 # bit lower than ecryption]. 1603 if($i==3) { &mov ($key,$__key); } 1604 else { &mov ($out,$s[0]); } 1605 &and ($out,0xFF); 1606 &mov ($out,&DWP(0,$td,$out,8)); 1607 1608 if ($i==3) { $tmp=$s[1]; } 1609 &movz ($tmp,&HB($s[1])); 1610 &xor ($out,&DWP(3,$td,$tmp,8)); 1611 1612 if ($i==3) { $tmp=$s[2]; &mov ($s[1],$acc); } 1613 else { &mov ($tmp,$s[2]); } 1614 &shr ($tmp,16); 1615 &and ($tmp,0xFF); 1616 &xor ($out,&DWP(2,$td,$tmp,8)); 1617 1618 if ($i==3) { $tmp=$s[3]; &mov ($s[2],$__s1); } 1619 else { &mov ($tmp,$s[3]); } 1620 &shr ($tmp,24); 1621 &xor ($out,&DWP(1,$td,$tmp,8)); 1622 if ($i<2) { &mov (&DWP(4+4*$i,"esp"),$out); } 1623 if ($i==3) { &mov ($s[3],$__s0); } 1624 &comment(); 1625} 1626 1627sub declast() 1628{ my ($i,$td,@s)=@_; 1629 my $tmp = $key; 1630 my $out = $i==3?$s[0]:$acc; 1631 1632 if($i==0) { &lea ($td,&DWP(2048+128,$td)); 1633 &mov ($tmp,&DWP(0-128,$td)); 1634 &mov ($acc,&DWP(32-128,$td)); 1635 &mov ($tmp,&DWP(64-128,$td)); 1636 &mov ($acc,&DWP(96-128,$td)); 1637 &mov ($tmp,&DWP(128-128,$td)); 1638 &mov ($acc,&DWP(160-128,$td)); 1639 &mov ($tmp,&DWP(192-128,$td)); 1640 &mov ($acc,&DWP(224-128,$td)); 1641 &lea ($td,&DWP(-128,$td)); } 1642 if($i==3) { &mov ($key,$__key); } 1643 else { &mov ($out,$s[0]); } 1644 &and ($out,0xFF); 1645 &movz ($out,&BP(0,$td,$out,1)); 1646 1647 if ($i==3) { $tmp=$s[1]; } 1648 &movz ($tmp,&HB($s[1])); 1649 &movz ($tmp,&BP(0,$td,$tmp,1)); 1650 &shl ($tmp,8); 1651 &xor ($out,$tmp); 1652 1653 if ($i==3) { $tmp=$s[2]; &mov ($s[1],$acc); } 1654 else { mov ($tmp,$s[2]); } 1655 &shr ($tmp,16); 1656 &and ($tmp,0xFF); 1657 &movz ($tmp,&BP(0,$td,$tmp,1)); 1658 &shl ($tmp,16); 1659 &xor ($out,$tmp); 1660 1661 if ($i==3) { $tmp=$s[3]; &mov ($s[2],$__s1); } 1662 else { &mov ($tmp,$s[3]); } 1663 &shr ($tmp,24); 1664 &movz ($tmp,&BP(0,$td,$tmp,1)); 1665 &shl ($tmp,24); 1666 &xor ($out,$tmp); 1667 if ($i<2) { &mov (&DWP(4+4*$i,"esp"),$out); } 1668 if ($i==3) { &mov ($s[3],$__s0); 1669 &lea ($td,&DWP(-2048,$td)); } 1670} 1671 1672&function_begin_B("_x86_AES_decrypt"); 1673 # note that caller is expected to allocate stack frame for me! 1674 &mov ($__key,$key); # save key 1675 1676 &xor ($s0,&DWP(0,$key)); # xor with key 1677 &xor ($s1,&DWP(4,$key)); 1678 &xor ($s2,&DWP(8,$key)); 1679 &xor ($s3,&DWP(12,$key)); 1680 1681 &mov ($acc,&DWP(240,$key)); # load key->rounds 1682 1683 if ($small_footprint) { 1684 &lea ($acc,&DWP(-2,$acc,$acc)); 1685 &lea ($acc,&DWP(0,$key,$acc,8)); 1686 &mov ($__end,$acc); # end of key schedule 1687 &set_label("loop",16); 1688 &decstep(0,$tbl,$s0,$s3,$s2,$s1); 1689 &decstep(1,$tbl,$s1,$s0,$s3,$s2); 1690 &decstep(2,$tbl,$s2,$s1,$s0,$s3); 1691 &decstep(3,$tbl,$s3,$s2,$s1,$s0); 1692 &add ($key,16); # advance rd_key 1693 &xor ($s0,&DWP(0,$key)); 1694 &xor ($s1,&DWP(4,$key)); 1695 &xor ($s2,&DWP(8,$key)); 1696 &xor ($s3,&DWP(12,$key)); 1697 &cmp ($key,$__end); 1698 &mov ($__key,$key); 1699 &jb (&label("loop")); 1700 } 1701 else { 1702 &cmp ($acc,10); 1703 &jle (&label("10rounds")); 1704 &cmp ($acc,12); 1705 &jle (&label("12rounds")); 1706 1707 &set_label("14rounds",4); 1708 for ($i=1;$i<3;$i++) { 1709 &decstep(0,$tbl,$s0,$s3,$s2,$s1); 1710 &decstep(1,$tbl,$s1,$s0,$s3,$s2); 1711 &decstep(2,$tbl,$s2,$s1,$s0,$s3); 1712 &decstep(3,$tbl,$s3,$s2,$s1,$s0); 1713 &xor ($s0,&DWP(16*$i+0,$key)); 1714 &xor ($s1,&DWP(16*$i+4,$key)); 1715 &xor ($s2,&DWP(16*$i+8,$key)); 1716 &xor ($s3,&DWP(16*$i+12,$key)); 1717 } 1718 &add ($key,32); 1719 &mov ($__key,$key); # advance rd_key 1720 &set_label("12rounds",4); 1721 for ($i=1;$i<3;$i++) { 1722 &decstep(0,$tbl,$s0,$s3,$s2,$s1); 1723 &decstep(1,$tbl,$s1,$s0,$s3,$s2); 1724 &decstep(2,$tbl,$s2,$s1,$s0,$s3); 1725 &decstep(3,$tbl,$s3,$s2,$s1,$s0); 1726 &xor ($s0,&DWP(16*$i+0,$key)); 1727 &xor ($s1,&DWP(16*$i+4,$key)); 1728 &xor ($s2,&DWP(16*$i+8,$key)); 1729 &xor ($s3,&DWP(16*$i+12,$key)); 1730 } 1731 &add ($key,32); 1732 &mov ($__key,$key); # advance rd_key 1733 &set_label("10rounds",4); 1734 for ($i=1;$i<10;$i++) { 1735 &decstep(0,$tbl,$s0,$s3,$s2,$s1); 1736 &decstep(1,$tbl,$s1,$s0,$s3,$s2); 1737 &decstep(2,$tbl,$s2,$s1,$s0,$s3); 1738 &decstep(3,$tbl,$s3,$s2,$s1,$s0); 1739 &xor ($s0,&DWP(16*$i+0,$key)); 1740 &xor ($s1,&DWP(16*$i+4,$key)); 1741 &xor ($s2,&DWP(16*$i+8,$key)); 1742 &xor ($s3,&DWP(16*$i+12,$key)); 1743 } 1744 } 1745 1746 &declast(0,$tbl,$s0,$s3,$s2,$s1); 1747 &declast(1,$tbl,$s1,$s0,$s3,$s2); 1748 &declast(2,$tbl,$s2,$s1,$s0,$s3); 1749 &declast(3,$tbl,$s3,$s2,$s1,$s0); 1750 1751 &add ($key,$small_footprint?16:160); 1752 &xor ($s0,&DWP(0,$key)); 1753 &xor ($s1,&DWP(4,$key)); 1754 &xor ($s2,&DWP(8,$key)); 1755 &xor ($s3,&DWP(12,$key)); 1756 1757 &ret (); 1758 1759&set_label("AES_Td",64); # Yes! I keep it in the code segment! 1760 &_data_word(0x50a7f451, 0x5365417e, 0xc3a4171a, 0x965e273a); 1761 &_data_word(0xcb6bab3b, 0xf1459d1f, 0xab58faac, 0x9303e34b); 1762 &_data_word(0x55fa3020, 0xf66d76ad, 0x9176cc88, 0x254c02f5); 1763 &_data_word(0xfcd7e54f, 0xd7cb2ac5, 0x80443526, 0x8fa362b5); 1764 &_data_word(0x495ab1de, 0x671bba25, 0x980eea45, 0xe1c0fe5d); 1765 &_data_word(0x02752fc3, 0x12f04c81, 0xa397468d, 0xc6f9d36b); 1766 &_data_word(0xe75f8f03, 0x959c9215, 0xeb7a6dbf, 0xda595295); 1767 &_data_word(0x2d83bed4, 0xd3217458, 0x2969e049, 0x44c8c98e); 1768 &_data_word(0x6a89c275, 0x78798ef4, 0x6b3e5899, 0xdd71b927); 1769 &_data_word(0xb64fe1be, 0x17ad88f0, 0x66ac20c9, 0xb43ace7d); 1770 &_data_word(0x184adf63, 0x82311ae5, 0x60335197, 0x457f5362); 1771 &_data_word(0xe07764b1, 0x84ae6bbb, 0x1ca081fe, 0x942b08f9); 1772 &_data_word(0x58684870, 0x19fd458f, 0x876cde94, 0xb7f87b52); 1773 &_data_word(0x23d373ab, 0xe2024b72, 0x578f1fe3, 0x2aab5566); 1774 &_data_word(0x0728ebb2, 0x03c2b52f, 0x9a7bc586, 0xa50837d3); 1775 &_data_word(0xf2872830, 0xb2a5bf23, 0xba6a0302, 0x5c8216ed); 1776 &_data_word(0x2b1ccf8a, 0x92b479a7, 0xf0f207f3, 0xa1e2694e); 1777 &_data_word(0xcdf4da65, 0xd5be0506, 0x1f6234d1, 0x8afea6c4); 1778 &_data_word(0x9d532e34, 0xa055f3a2, 0x32e18a05, 0x75ebf6a4); 1779 &_data_word(0x39ec830b, 0xaaef6040, 0x069f715e, 0x51106ebd); 1780 &_data_word(0xf98a213e, 0x3d06dd96, 0xae053edd, 0x46bde64d); 1781 &_data_word(0xb58d5491, 0x055dc471, 0x6fd40604, 0xff155060); 1782 &_data_word(0x24fb9819, 0x97e9bdd6, 0xcc434089, 0x779ed967); 1783 &_data_word(0xbd42e8b0, 0x888b8907, 0x385b19e7, 0xdbeec879); 1784 &_data_word(0x470a7ca1, 0xe90f427c, 0xc91e84f8, 0x00000000); 1785 &_data_word(0x83868009, 0x48ed2b32, 0xac70111e, 0x4e725a6c); 1786 &_data_word(0xfbff0efd, 0x5638850f, 0x1ed5ae3d, 0x27392d36); 1787 &_data_word(0x64d90f0a, 0x21a65c68, 0xd1545b9b, 0x3a2e3624); 1788 &_data_word(0xb1670a0c, 0x0fe75793, 0xd296eeb4, 0x9e919b1b); 1789 &_data_word(0x4fc5c080, 0xa220dc61, 0x694b775a, 0x161a121c); 1790 &_data_word(0x0aba93e2, 0xe52aa0c0, 0x43e0223c, 0x1d171b12); 1791 &_data_word(0x0b0d090e, 0xadc78bf2, 0xb9a8b62d, 0xc8a91e14); 1792 &_data_word(0x8519f157, 0x4c0775af, 0xbbdd99ee, 0xfd607fa3); 1793 &_data_word(0x9f2601f7, 0xbcf5725c, 0xc53b6644, 0x347efb5b); 1794 &_data_word(0x7629438b, 0xdcc623cb, 0x68fcedb6, 0x63f1e4b8); 1795 &_data_word(0xcadc31d7, 0x10856342, 0x40229713, 0x2011c684); 1796 &_data_word(0x7d244a85, 0xf83dbbd2, 0x1132f9ae, 0x6da129c7); 1797 &_data_word(0x4b2f9e1d, 0xf330b2dc, 0xec52860d, 0xd0e3c177); 1798 &_data_word(0x6c16b32b, 0x99b970a9, 0xfa489411, 0x2264e947); 1799 &_data_word(0xc48cfca8, 0x1a3ff0a0, 0xd82c7d56, 0xef903322); 1800 &_data_word(0xc74e4987, 0xc1d138d9, 0xfea2ca8c, 0x360bd498); 1801 &_data_word(0xcf81f5a6, 0x28de7aa5, 0x268eb7da, 0xa4bfad3f); 1802 &_data_word(0xe49d3a2c, 0x0d927850, 0x9bcc5f6a, 0x62467e54); 1803 &_data_word(0xc2138df6, 0xe8b8d890, 0x5ef7392e, 0xf5afc382); 1804 &_data_word(0xbe805d9f, 0x7c93d069, 0xa92dd56f, 0xb31225cf); 1805 &_data_word(0x3b99acc8, 0xa77d1810, 0x6e639ce8, 0x7bbb3bdb); 1806 &_data_word(0x097826cd, 0xf418596e, 0x01b79aec, 0xa89a4f83); 1807 &_data_word(0x656e95e6, 0x7ee6ffaa, 0x08cfbc21, 0xe6e815ef); 1808 &_data_word(0xd99be7ba, 0xce366f4a, 0xd4099fea, 0xd67cb029); 1809 &_data_word(0xafb2a431, 0x31233f2a, 0x3094a5c6, 0xc066a235); 1810 &_data_word(0x37bc4e74, 0xa6ca82fc, 0xb0d090e0, 0x15d8a733); 1811 &_data_word(0x4a9804f1, 0xf7daec41, 0x0e50cd7f, 0x2ff69117); 1812 &_data_word(0x8dd64d76, 0x4db0ef43, 0x544daacc, 0xdf0496e4); 1813 &_data_word(0xe3b5d19e, 0x1b886a4c, 0xb81f2cc1, 0x7f516546); 1814 &_data_word(0x04ea5e9d, 0x5d358c01, 0x737487fa, 0x2e410bfb); 1815 &_data_word(0x5a1d67b3, 0x52d2db92, 0x335610e9, 0x1347d66d); 1816 &_data_word(0x8c61d79a, 0x7a0ca137, 0x8e14f859, 0x893c13eb); 1817 &_data_word(0xee27a9ce, 0x35c961b7, 0xede51ce1, 0x3cb1477a); 1818 &_data_word(0x59dfd29c, 0x3f73f255, 0x79ce1418, 0xbf37c773); 1819 &_data_word(0xeacdf753, 0x5baafd5f, 0x146f3ddf, 0x86db4478); 1820 &_data_word(0x81f3afca, 0x3ec468b9, 0x2c342438, 0x5f40a3c2); 1821 &_data_word(0x72c31d16, 0x0c25e2bc, 0x8b493c28, 0x41950dff); 1822 &_data_word(0x7101a839, 0xdeb30c08, 0x9ce4b4d8, 0x90c15664); 1823 &_data_word(0x6184cb7b, 0x70b632d5, 0x745c6c48, 0x4257b8d0); 1824 1825#Td4: # four copies of Td4 to choose from to avoid L1 aliasing 1826 &data_byte(0x52, 0x09, 0x6a, 0xd5, 0x30, 0x36, 0xa5, 0x38); 1827 &data_byte(0xbf, 0x40, 0xa3, 0x9e, 0x81, 0xf3, 0xd7, 0xfb); 1828 &data_byte(0x7c, 0xe3, 0x39, 0x82, 0x9b, 0x2f, 0xff, 0x87); 1829 &data_byte(0x34, 0x8e, 0x43, 0x44, 0xc4, 0xde, 0xe9, 0xcb); 1830 &data_byte(0x54, 0x7b, 0x94, 0x32, 0xa6, 0xc2, 0x23, 0x3d); 1831 &data_byte(0xee, 0x4c, 0x95, 0x0b, 0x42, 0xfa, 0xc3, 0x4e); 1832 &data_byte(0x08, 0x2e, 0xa1, 0x66, 0x28, 0xd9, 0x24, 0xb2); 1833 &data_byte(0x76, 0x5b, 0xa2, 0x49, 0x6d, 0x8b, 0xd1, 0x25); 1834 &data_byte(0x72, 0xf8, 0xf6, 0x64, 0x86, 0x68, 0x98, 0x16); 1835 &data_byte(0xd4, 0xa4, 0x5c, 0xcc, 0x5d, 0x65, 0xb6, 0x92); 1836 &data_byte(0x6c, 0x70, 0x48, 0x50, 0xfd, 0xed, 0xb9, 0xda); 1837 &data_byte(0x5e, 0x15, 0x46, 0x57, 0xa7, 0x8d, 0x9d, 0x84); 1838 &data_byte(0x90, 0xd8, 0xab, 0x00, 0x8c, 0xbc, 0xd3, 0x0a); 1839 &data_byte(0xf7, 0xe4, 0x58, 0x05, 0xb8, 0xb3, 0x45, 0x06); 1840 &data_byte(0xd0, 0x2c, 0x1e, 0x8f, 0xca, 0x3f, 0x0f, 0x02); 1841 &data_byte(0xc1, 0xaf, 0xbd, 0x03, 0x01, 0x13, 0x8a, 0x6b); 1842 &data_byte(0x3a, 0x91, 0x11, 0x41, 0x4f, 0x67, 0xdc, 0xea); 1843 &data_byte(0x97, 0xf2, 0xcf, 0xce, 0xf0, 0xb4, 0xe6, 0x73); 1844 &data_byte(0x96, 0xac, 0x74, 0x22, 0xe7, 0xad, 0x35, 0x85); 1845 &data_byte(0xe2, 0xf9, 0x37, 0xe8, 0x1c, 0x75, 0xdf, 0x6e); 1846 &data_byte(0x47, 0xf1, 0x1a, 0x71, 0x1d, 0x29, 0xc5, 0x89); 1847 &data_byte(0x6f, 0xb7, 0x62, 0x0e, 0xaa, 0x18, 0xbe, 0x1b); 1848 &data_byte(0xfc, 0x56, 0x3e, 0x4b, 0xc6, 0xd2, 0x79, 0x20); 1849 &data_byte(0x9a, 0xdb, 0xc0, 0xfe, 0x78, 0xcd, 0x5a, 0xf4); 1850 &data_byte(0x1f, 0xdd, 0xa8, 0x33, 0x88, 0x07, 0xc7, 0x31); 1851 &data_byte(0xb1, 0x12, 0x10, 0x59, 0x27, 0x80, 0xec, 0x5f); 1852 &data_byte(0x60, 0x51, 0x7f, 0xa9, 0x19, 0xb5, 0x4a, 0x0d); 1853 &data_byte(0x2d, 0xe5, 0x7a, 0x9f, 0x93, 0xc9, 0x9c, 0xef); 1854 &data_byte(0xa0, 0xe0, 0x3b, 0x4d, 0xae, 0x2a, 0xf5, 0xb0); 1855 &data_byte(0xc8, 0xeb, 0xbb, 0x3c, 0x83, 0x53, 0x99, 0x61); 1856 &data_byte(0x17, 0x2b, 0x04, 0x7e, 0xba, 0x77, 0xd6, 0x26); 1857 &data_byte(0xe1, 0x69, 0x14, 0x63, 0x55, 0x21, 0x0c, 0x7d); 1858 1859 &data_byte(0x52, 0x09, 0x6a, 0xd5, 0x30, 0x36, 0xa5, 0x38); 1860 &data_byte(0xbf, 0x40, 0xa3, 0x9e, 0x81, 0xf3, 0xd7, 0xfb); 1861 &data_byte(0x7c, 0xe3, 0x39, 0x82, 0x9b, 0x2f, 0xff, 0x87); 1862 &data_byte(0x34, 0x8e, 0x43, 0x44, 0xc4, 0xde, 0xe9, 0xcb); 1863 &data_byte(0x54, 0x7b, 0x94, 0x32, 0xa6, 0xc2, 0x23, 0x3d); 1864 &data_byte(0xee, 0x4c, 0x95, 0x0b, 0x42, 0xfa, 0xc3, 0x4e); 1865 &data_byte(0x08, 0x2e, 0xa1, 0x66, 0x28, 0xd9, 0x24, 0xb2); 1866 &data_byte(0x76, 0x5b, 0xa2, 0x49, 0x6d, 0x8b, 0xd1, 0x25); 1867 &data_byte(0x72, 0xf8, 0xf6, 0x64, 0x86, 0x68, 0x98, 0x16); 1868 &data_byte(0xd4, 0xa4, 0x5c, 0xcc, 0x5d, 0x65, 0xb6, 0x92); 1869 &data_byte(0x6c, 0x70, 0x48, 0x50, 0xfd, 0xed, 0xb9, 0xda); 1870 &data_byte(0x5e, 0x15, 0x46, 0x57, 0xa7, 0x8d, 0x9d, 0x84); 1871 &data_byte(0x90, 0xd8, 0xab, 0x00, 0x8c, 0xbc, 0xd3, 0x0a); 1872 &data_byte(0xf7, 0xe4, 0x58, 0x05, 0xb8, 0xb3, 0x45, 0x06); 1873 &data_byte(0xd0, 0x2c, 0x1e, 0x8f, 0xca, 0x3f, 0x0f, 0x02); 1874 &data_byte(0xc1, 0xaf, 0xbd, 0x03, 0x01, 0x13, 0x8a, 0x6b); 1875 &data_byte(0x3a, 0x91, 0x11, 0x41, 0x4f, 0x67, 0xdc, 0xea); 1876 &data_byte(0x97, 0xf2, 0xcf, 0xce, 0xf0, 0xb4, 0xe6, 0x73); 1877 &data_byte(0x96, 0xac, 0x74, 0x22, 0xe7, 0xad, 0x35, 0x85); 1878 &data_byte(0xe2, 0xf9, 0x37, 0xe8, 0x1c, 0x75, 0xdf, 0x6e); 1879 &data_byte(0x47, 0xf1, 0x1a, 0x71, 0x1d, 0x29, 0xc5, 0x89); 1880 &data_byte(0x6f, 0xb7, 0x62, 0x0e, 0xaa, 0x18, 0xbe, 0x1b); 1881 &data_byte(0xfc, 0x56, 0x3e, 0x4b, 0xc6, 0xd2, 0x79, 0x20); 1882 &data_byte(0x9a, 0xdb, 0xc0, 0xfe, 0x78, 0xcd, 0x5a, 0xf4); 1883 &data_byte(0x1f, 0xdd, 0xa8, 0x33, 0x88, 0x07, 0xc7, 0x31); 1884 &data_byte(0xb1, 0x12, 0x10, 0x59, 0x27, 0x80, 0xec, 0x5f); 1885 &data_byte(0x60, 0x51, 0x7f, 0xa9, 0x19, 0xb5, 0x4a, 0x0d); 1886 &data_byte(0x2d, 0xe5, 0x7a, 0x9f, 0x93, 0xc9, 0x9c, 0xef); 1887 &data_byte(0xa0, 0xe0, 0x3b, 0x4d, 0xae, 0x2a, 0xf5, 0xb0); 1888 &data_byte(0xc8, 0xeb, 0xbb, 0x3c, 0x83, 0x53, 0x99, 0x61); 1889 &data_byte(0x17, 0x2b, 0x04, 0x7e, 0xba, 0x77, 0xd6, 0x26); 1890 &data_byte(0xe1, 0x69, 0x14, 0x63, 0x55, 0x21, 0x0c, 0x7d); 1891 1892 &data_byte(0x52, 0x09, 0x6a, 0xd5, 0x30, 0x36, 0xa5, 0x38); 1893 &data_byte(0xbf, 0x40, 0xa3, 0x9e, 0x81, 0xf3, 0xd7, 0xfb); 1894 &data_byte(0x7c, 0xe3, 0x39, 0x82, 0x9b, 0x2f, 0xff, 0x87); 1895 &data_byte(0x34, 0x8e, 0x43, 0x44, 0xc4, 0xde, 0xe9, 0xcb); 1896 &data_byte(0x54, 0x7b, 0x94, 0x32, 0xa6, 0xc2, 0x23, 0x3d); 1897 &data_byte(0xee, 0x4c, 0x95, 0x0b, 0x42, 0xfa, 0xc3, 0x4e); 1898 &data_byte(0x08, 0x2e, 0xa1, 0x66, 0x28, 0xd9, 0x24, 0xb2); 1899 &data_byte(0x76, 0x5b, 0xa2, 0x49, 0x6d, 0x8b, 0xd1, 0x25); 1900 &data_byte(0x72, 0xf8, 0xf6, 0x64, 0x86, 0x68, 0x98, 0x16); 1901 &data_byte(0xd4, 0xa4, 0x5c, 0xcc, 0x5d, 0x65, 0xb6, 0x92); 1902 &data_byte(0x6c, 0x70, 0x48, 0x50, 0xfd, 0xed, 0xb9, 0xda); 1903 &data_byte(0x5e, 0x15, 0x46, 0x57, 0xa7, 0x8d, 0x9d, 0x84); 1904 &data_byte(0x90, 0xd8, 0xab, 0x00, 0x8c, 0xbc, 0xd3, 0x0a); 1905 &data_byte(0xf7, 0xe4, 0x58, 0x05, 0xb8, 0xb3, 0x45, 0x06); 1906 &data_byte(0xd0, 0x2c, 0x1e, 0x8f, 0xca, 0x3f, 0x0f, 0x02); 1907 &data_byte(0xc1, 0xaf, 0xbd, 0x03, 0x01, 0x13, 0x8a, 0x6b); 1908 &data_byte(0x3a, 0x91, 0x11, 0x41, 0x4f, 0x67, 0xdc, 0xea); 1909 &data_byte(0x97, 0xf2, 0xcf, 0xce, 0xf0, 0xb4, 0xe6, 0x73); 1910 &data_byte(0x96, 0xac, 0x74, 0x22, 0xe7, 0xad, 0x35, 0x85); 1911 &data_byte(0xe2, 0xf9, 0x37, 0xe8, 0x1c, 0x75, 0xdf, 0x6e); 1912 &data_byte(0x47, 0xf1, 0x1a, 0x71, 0x1d, 0x29, 0xc5, 0x89); 1913 &data_byte(0x6f, 0xb7, 0x62, 0x0e, 0xaa, 0x18, 0xbe, 0x1b); 1914 &data_byte(0xfc, 0x56, 0x3e, 0x4b, 0xc6, 0xd2, 0x79, 0x20); 1915 &data_byte(0x9a, 0xdb, 0xc0, 0xfe, 0x78, 0xcd, 0x5a, 0xf4); 1916 &data_byte(0x1f, 0xdd, 0xa8, 0x33, 0x88, 0x07, 0xc7, 0x31); 1917 &data_byte(0xb1, 0x12, 0x10, 0x59, 0x27, 0x80, 0xec, 0x5f); 1918 &data_byte(0x60, 0x51, 0x7f, 0xa9, 0x19, 0xb5, 0x4a, 0x0d); 1919 &data_byte(0x2d, 0xe5, 0x7a, 0x9f, 0x93, 0xc9, 0x9c, 0xef); 1920 &data_byte(0xa0, 0xe0, 0x3b, 0x4d, 0xae, 0x2a, 0xf5, 0xb0); 1921 &data_byte(0xc8, 0xeb, 0xbb, 0x3c, 0x83, 0x53, 0x99, 0x61); 1922 &data_byte(0x17, 0x2b, 0x04, 0x7e, 0xba, 0x77, 0xd6, 0x26); 1923 &data_byte(0xe1, 0x69, 0x14, 0x63, 0x55, 0x21, 0x0c, 0x7d); 1924 1925 &data_byte(0x52, 0x09, 0x6a, 0xd5, 0x30, 0x36, 0xa5, 0x38); 1926 &data_byte(0xbf, 0x40, 0xa3, 0x9e, 0x81, 0xf3, 0xd7, 0xfb); 1927 &data_byte(0x7c, 0xe3, 0x39, 0x82, 0x9b, 0x2f, 0xff, 0x87); 1928 &data_byte(0x34, 0x8e, 0x43, 0x44, 0xc4, 0xde, 0xe9, 0xcb); 1929 &data_byte(0x54, 0x7b, 0x94, 0x32, 0xa6, 0xc2, 0x23, 0x3d); 1930 &data_byte(0xee, 0x4c, 0x95, 0x0b, 0x42, 0xfa, 0xc3, 0x4e); 1931 &data_byte(0x08, 0x2e, 0xa1, 0x66, 0x28, 0xd9, 0x24, 0xb2); 1932 &data_byte(0x76, 0x5b, 0xa2, 0x49, 0x6d, 0x8b, 0xd1, 0x25); 1933 &data_byte(0x72, 0xf8, 0xf6, 0x64, 0x86, 0x68, 0x98, 0x16); 1934 &data_byte(0xd4, 0xa4, 0x5c, 0xcc, 0x5d, 0x65, 0xb6, 0x92); 1935 &data_byte(0x6c, 0x70, 0x48, 0x50, 0xfd, 0xed, 0xb9, 0xda); 1936 &data_byte(0x5e, 0x15, 0x46, 0x57, 0xa7, 0x8d, 0x9d, 0x84); 1937 &data_byte(0x90, 0xd8, 0xab, 0x00, 0x8c, 0xbc, 0xd3, 0x0a); 1938 &data_byte(0xf7, 0xe4, 0x58, 0x05, 0xb8, 0xb3, 0x45, 0x06); 1939 &data_byte(0xd0, 0x2c, 0x1e, 0x8f, 0xca, 0x3f, 0x0f, 0x02); 1940 &data_byte(0xc1, 0xaf, 0xbd, 0x03, 0x01, 0x13, 0x8a, 0x6b); 1941 &data_byte(0x3a, 0x91, 0x11, 0x41, 0x4f, 0x67, 0xdc, 0xea); 1942 &data_byte(0x97, 0xf2, 0xcf, 0xce, 0xf0, 0xb4, 0xe6, 0x73); 1943 &data_byte(0x96, 0xac, 0x74, 0x22, 0xe7, 0xad, 0x35, 0x85); 1944 &data_byte(0xe2, 0xf9, 0x37, 0xe8, 0x1c, 0x75, 0xdf, 0x6e); 1945 &data_byte(0x47, 0xf1, 0x1a, 0x71, 0x1d, 0x29, 0xc5, 0x89); 1946 &data_byte(0x6f, 0xb7, 0x62, 0x0e, 0xaa, 0x18, 0xbe, 0x1b); 1947 &data_byte(0xfc, 0x56, 0x3e, 0x4b, 0xc6, 0xd2, 0x79, 0x20); 1948 &data_byte(0x9a, 0xdb, 0xc0, 0xfe, 0x78, 0xcd, 0x5a, 0xf4); 1949 &data_byte(0x1f, 0xdd, 0xa8, 0x33, 0x88, 0x07, 0xc7, 0x31); 1950 &data_byte(0xb1, 0x12, 0x10, 0x59, 0x27, 0x80, 0xec, 0x5f); 1951 &data_byte(0x60, 0x51, 0x7f, 0xa9, 0x19, 0xb5, 0x4a, 0x0d); 1952 &data_byte(0x2d, 0xe5, 0x7a, 0x9f, 0x93, 0xc9, 0x9c, 0xef); 1953 &data_byte(0xa0, 0xe0, 0x3b, 0x4d, 0xae, 0x2a, 0xf5, 0xb0); 1954 &data_byte(0xc8, 0xeb, 0xbb, 0x3c, 0x83, 0x53, 0x99, 0x61); 1955 &data_byte(0x17, 0x2b, 0x04, 0x7e, 0xba, 0x77, 0xd6, 0x26); 1956 &data_byte(0xe1, 0x69, 0x14, 0x63, 0x55, 0x21, 0x0c, 0x7d); 1957&function_end_B("_x86_AES_decrypt"); 1958 1959# void asm_AES_decrypt (const void *inp,void *out,const AES_KEY *key); 1960&function_begin("asm_AES_decrypt"); 1961 &mov ($acc,&wparam(0)); # load inp 1962 &mov ($key,&wparam(2)); # load key 1963 1964 &mov ($s0,"esp"); 1965 &sub ("esp",36); 1966 &and ("esp",-64); # align to cache-line 1967 1968 # place stack frame just "above" the key schedule 1969 &lea ($s1,&DWP(-64-63,$key)); 1970 &sub ($s1,"esp"); 1971 &neg ($s1); 1972 &and ($s1,0x3C0); # modulo 1024, but aligned to cache-line 1973 &sub ("esp",$s1); 1974 &add ("esp",4); # 4 is reserved for caller's return address 1975 &mov ($_esp,$s0); # save stack pointer 1976 1977 &call (&label("pic_point")); # make it PIC! 1978 &set_label("pic_point"); 1979 &blindpop($tbl); 1980 &picmeup($s0,"OPENSSL_ia32cap_P",$tbl,&label("pic_point")) if(!$x86only); 1981 &lea ($tbl,&DWP(&label("AES_Td")."-".&label("pic_point"),$tbl)); 1982 1983 # pick Td4 copy which can't "overlap" with stack frame or key schedule 1984 &lea ($s1,&DWP(768-4,"esp")); 1985 &sub ($s1,$tbl); 1986 &and ($s1,0x300); 1987 &lea ($tbl,&DWP(2048+128,$tbl,$s1)); 1988 1989 if (!$x86only) { 1990 &bt (&DWP(0,$s0),25); # check for SSE bit 1991 &jnc (&label("x86")); 1992 1993 &movq ("mm0",&QWP(0,$acc)); 1994 &movq ("mm4",&QWP(8,$acc)); 1995 &call ("_sse_AES_decrypt_compact"); 1996 &mov ("esp",$_esp); # restore stack pointer 1997 &mov ($acc,&wparam(1)); # load out 1998 &movq (&QWP(0,$acc),"mm0"); # write output data 1999 &movq (&QWP(8,$acc),"mm4"); 2000 &emms (); 2001 &function_end_A(); 2002 } 2003 &set_label("x86",16); 2004 &mov ($_tbl,$tbl); 2005 &mov ($s0,&DWP(0,$acc)); # load input data 2006 &mov ($s1,&DWP(4,$acc)); 2007 &mov ($s2,&DWP(8,$acc)); 2008 &mov ($s3,&DWP(12,$acc)); 2009 &call ("_x86_AES_decrypt_compact"); 2010 &mov ("esp",$_esp); # restore stack pointer 2011 &mov ($acc,&wparam(1)); # load out 2012 &mov (&DWP(0,$acc),$s0); # write output data 2013 &mov (&DWP(4,$acc),$s1); 2014 &mov (&DWP(8,$acc),$s2); 2015 &mov (&DWP(12,$acc),$s3); 2016&function_end("asm_AES_decrypt"); 2017 2018# void asm_AES_cbc_encrypt (const void char *inp, unsigned char *out, 2019# size_t length, const AES_KEY *key, 2020# unsigned char *ivp,const int enc); 2021{ 2022# stack frame layout 2023# -4(%esp) # return address 0(%esp) 2024# 0(%esp) # s0 backing store 4(%esp) 2025# 4(%esp) # s1 backing store 8(%esp) 2026# 8(%esp) # s2 backing store 12(%esp) 2027# 12(%esp) # s3 backing store 16(%esp) 2028# 16(%esp) # key backup 20(%esp) 2029# 20(%esp) # end of key schedule 24(%esp) 2030# 24(%esp) # %ebp backup 28(%esp) 2031# 28(%esp) # %esp backup 2032my $_inp=&DWP(32,"esp"); # copy of wparam(0) 2033my $_out=&DWP(36,"esp"); # copy of wparam(1) 2034my $_len=&DWP(40,"esp"); # copy of wparam(2) 2035my $_key=&DWP(44,"esp"); # copy of wparam(3) 2036my $_ivp=&DWP(48,"esp"); # copy of wparam(4) 2037my $_tmp=&DWP(52,"esp"); # volatile variable 2038# 2039my $ivec=&DWP(60,"esp"); # ivec[16] 2040my $aes_key=&DWP(76,"esp"); # copy of aes_key 2041my $mark=&DWP(76+240,"esp"); # copy of aes_key->rounds 2042 2043&function_begin("asm_AES_cbc_encrypt"); 2044 &mov ($s2 eq "ecx"? $s2 : "",&wparam(2)); # load len 2045 &cmp ($s2,0); 2046 &je (&label("drop_out")); 2047 2048 &call (&label("pic_point")); # make it PIC! 2049 &set_label("pic_point"); 2050 &blindpop($tbl); 2051 &picmeup($s0,"OPENSSL_ia32cap_P",$tbl,&label("pic_point")) if(!$x86only); 2052 2053 &cmp (&wparam(5),0); 2054 &lea ($tbl,&DWP(&label("AES_Te")."-".&label("pic_point"),$tbl)); 2055 &jne (&label("picked_te")); 2056 &lea ($tbl,&DWP(&label("AES_Td")."-".&label("AES_Te"),$tbl)); 2057 &set_label("picked_te"); 2058 2059 # one can argue if this is required 2060 &pushf (); 2061 &cld (); 2062 2063 &cmp ($s2,$speed_limit); 2064 &jb (&label("slow_way")); 2065 &test ($s2,15); 2066 &jnz (&label("slow_way")); 2067 if (!$x86only) { 2068 &bt (&DWP(0,$s0),28); # check for hyper-threading bit 2069 &jc (&label("slow_way")); 2070 } 2071 # pre-allocate aligned stack frame... 2072 &lea ($acc,&DWP(-80-244,"esp")); 2073 &and ($acc,-64); 2074 2075 # ... and make sure it doesn't alias with $tbl modulo 4096 2076 &mov ($s0,$tbl); 2077 &lea ($s1,&DWP(2048+256,$tbl)); 2078 &mov ($s3,$acc); 2079 &and ($s0,0xfff); # s = %ebp&0xfff 2080 &and ($s1,0xfff); # e = (%ebp+2048+256)&0xfff 2081 &and ($s3,0xfff); # p = %esp&0xfff 2082 2083 &cmp ($s3,$s1); # if (p>=e) %esp =- (p-e); 2084 &jb (&label("tbl_break_out")); 2085 &sub ($s3,$s1); 2086 &sub ($acc,$s3); 2087 &jmp (&label("tbl_ok")); 2088 &set_label("tbl_break_out",4); # else %esp -= (p-s)&0xfff + framesz; 2089 &sub ($s3,$s0); 2090 &and ($s3,0xfff); 2091 &add ($s3,384); 2092 &sub ($acc,$s3); 2093 &set_label("tbl_ok",4); 2094 2095 &lea ($s3,&wparam(0)); # obtain pointer to parameter block 2096 &exch ("esp",$acc); # allocate stack frame 2097 &add ("esp",4); # reserve for return address! 2098 &mov ($_tbl,$tbl); # save %ebp 2099 &mov ($_esp,$acc); # save %esp 2100 2101 &mov ($s0,&DWP(0,$s3)); # load inp 2102 &mov ($s1,&DWP(4,$s3)); # load out 2103 #&mov ($s2,&DWP(8,$s3)); # load len 2104 &mov ($key,&DWP(12,$s3)); # load key 2105 &mov ($acc,&DWP(16,$s3)); # load ivp 2106 &mov ($s3,&DWP(20,$s3)); # load enc flag 2107 2108 &mov ($_inp,$s0); # save copy of inp 2109 &mov ($_out,$s1); # save copy of out 2110 &mov ($_len,$s2); # save copy of len 2111 &mov ($_key,$key); # save copy of key 2112 &mov ($_ivp,$acc); # save copy of ivp 2113 2114 &mov ($mark,0); # copy of aes_key->rounds = 0; 2115 # do we copy key schedule to stack? 2116 &mov ($s1 eq "ebx" ? $s1 : "",$key); 2117 &mov ($s2 eq "ecx" ? $s2 : "",244/4); 2118 &sub ($s1,$tbl); 2119 &mov ("esi",$key); 2120 &and ($s1,0xfff); 2121 &lea ("edi",$aes_key); 2122 &cmp ($s1,2048+256); 2123 &jb (&label("do_copy")); 2124 &cmp ($s1,4096-244); 2125 &jb (&label("skip_copy")); 2126 &set_label("do_copy",4); 2127 &mov ($_key,"edi"); 2128 &data_word(0xA5F3F689); # rep movsd 2129 &set_label("skip_copy"); 2130 2131 &mov ($key,16); 2132 &set_label("prefetch_tbl",4); 2133 &mov ($s0,&DWP(0,$tbl)); 2134 &mov ($s1,&DWP(32,$tbl)); 2135 &mov ($s2,&DWP(64,$tbl)); 2136 &mov ($acc,&DWP(96,$tbl)); 2137 &lea ($tbl,&DWP(128,$tbl)); 2138 &sub ($key,1); 2139 &jnz (&label("prefetch_tbl")); 2140 &sub ($tbl,2048); 2141 2142 &mov ($acc,$_inp); 2143 &mov ($key,$_ivp); 2144 2145 &cmp ($s3,0); 2146 &je (&label("fast_decrypt")); 2147 2148#----------------------------- ENCRYPT -----------------------------# 2149 &mov ($s0,&DWP(0,$key)); # load iv 2150 &mov ($s1,&DWP(4,$key)); 2151 2152 &set_label("fast_enc_loop",16); 2153 &mov ($s2,&DWP(8,$key)); 2154 &mov ($s3,&DWP(12,$key)); 2155 2156 &xor ($s0,&DWP(0,$acc)); # xor input data 2157 &xor ($s1,&DWP(4,$acc)); 2158 &xor ($s2,&DWP(8,$acc)); 2159 &xor ($s3,&DWP(12,$acc)); 2160 2161 &mov ($key,$_key); # load key 2162 &call ("_x86_AES_encrypt"); 2163 2164 &mov ($acc,$_inp); # load inp 2165 &mov ($key,$_out); # load out 2166 2167 &mov (&DWP(0,$key),$s0); # save output data 2168 &mov (&DWP(4,$key),$s1); 2169 &mov (&DWP(8,$key),$s2); 2170 &mov (&DWP(12,$key),$s3); 2171 2172 &lea ($acc,&DWP(16,$acc)); # advance inp 2173 &mov ($s2,$_len); # load len 2174 &mov ($_inp,$acc); # save inp 2175 &lea ($s3,&DWP(16,$key)); # advance out 2176 &mov ($_out,$s3); # save out 2177 &sub ($s2,16); # decrease len 2178 &mov ($_len,$s2); # save len 2179 &jnz (&label("fast_enc_loop")); 2180 &mov ($acc,$_ivp); # load ivp 2181 &mov ($s2,&DWP(8,$key)); # restore last 2 dwords 2182 &mov ($s3,&DWP(12,$key)); 2183 &mov (&DWP(0,$acc),$s0); # save ivec 2184 &mov (&DWP(4,$acc),$s1); 2185 &mov (&DWP(8,$acc),$s2); 2186 &mov (&DWP(12,$acc),$s3); 2187 2188 &cmp ($mark,0); # was the key schedule copied? 2189 &mov ("edi",$_key); 2190 &je (&label("skip_ezero")); 2191 # zero copy of key schedule 2192 &mov ("ecx",240/4); 2193 &xor ("eax","eax"); 2194 &align (4); 2195 &data_word(0xABF3F689); # rep stosd 2196 &set_label("skip_ezero"); 2197 &mov ("esp",$_esp); 2198 &popf (); 2199 &set_label("drop_out"); 2200 &function_end_A(); 2201 &pushf (); # kludge, never executed 2202 2203#----------------------------- DECRYPT -----------------------------# 2204&set_label("fast_decrypt",16); 2205 2206 &cmp ($acc,$_out); 2207 &je (&label("fast_dec_in_place")); # in-place processing... 2208 2209 &mov ($_tmp,$key); 2210 2211 &align (4); 2212 &set_label("fast_dec_loop",16); 2213 &mov ($s0,&DWP(0,$acc)); # read input 2214 &mov ($s1,&DWP(4,$acc)); 2215 &mov ($s2,&DWP(8,$acc)); 2216 &mov ($s3,&DWP(12,$acc)); 2217 2218 &mov ($key,$_key); # load key 2219 &call ("_x86_AES_decrypt"); 2220 2221 &mov ($key,$_tmp); # load ivp 2222 &mov ($acc,$_len); # load len 2223 &xor ($s0,&DWP(0,$key)); # xor iv 2224 &xor ($s1,&DWP(4,$key)); 2225 &xor ($s2,&DWP(8,$key)); 2226 &xor ($s3,&DWP(12,$key)); 2227 2228 &mov ($key,$_out); # load out 2229 &mov ($acc,$_inp); # load inp 2230 2231 &mov (&DWP(0,$key),$s0); # write output 2232 &mov (&DWP(4,$key),$s1); 2233 &mov (&DWP(8,$key),$s2); 2234 &mov (&DWP(12,$key),$s3); 2235 2236 &mov ($s2,$_len); # load len 2237 &mov ($_tmp,$acc); # save ivp 2238 &lea ($acc,&DWP(16,$acc)); # advance inp 2239 &mov ($_inp,$acc); # save inp 2240 &lea ($key,&DWP(16,$key)); # advance out 2241 &mov ($_out,$key); # save out 2242 &sub ($s2,16); # decrease len 2243 &mov ($_len,$s2); # save len 2244 &jnz (&label("fast_dec_loop")); 2245 &mov ($key,$_tmp); # load temp ivp 2246 &mov ($acc,$_ivp); # load user ivp 2247 &mov ($s0,&DWP(0,$key)); # load iv 2248 &mov ($s1,&DWP(4,$key)); 2249 &mov ($s2,&DWP(8,$key)); 2250 &mov ($s3,&DWP(12,$key)); 2251 &mov (&DWP(0,$acc),$s0); # copy back to user 2252 &mov (&DWP(4,$acc),$s1); 2253 &mov (&DWP(8,$acc),$s2); 2254 &mov (&DWP(12,$acc),$s3); 2255 &jmp (&label("fast_dec_out")); 2256 2257 &set_label("fast_dec_in_place",16); 2258 &set_label("fast_dec_in_place_loop"); 2259 &mov ($s0,&DWP(0,$acc)); # read input 2260 &mov ($s1,&DWP(4,$acc)); 2261 &mov ($s2,&DWP(8,$acc)); 2262 &mov ($s3,&DWP(12,$acc)); 2263 2264 &lea ($key,$ivec); 2265 &mov (&DWP(0,$key),$s0); # copy to temp 2266 &mov (&DWP(4,$key),$s1); 2267 &mov (&DWP(8,$key),$s2); 2268 &mov (&DWP(12,$key),$s3); 2269 2270 &mov ($key,$_key); # load key 2271 &call ("_x86_AES_decrypt"); 2272 2273 &mov ($key,$_ivp); # load ivp 2274 &mov ($acc,$_out); # load out 2275 &xor ($s0,&DWP(0,$key)); # xor iv 2276 &xor ($s1,&DWP(4,$key)); 2277 &xor ($s2,&DWP(8,$key)); 2278 &xor ($s3,&DWP(12,$key)); 2279 2280 &mov (&DWP(0,$acc),$s0); # write output 2281 &mov (&DWP(4,$acc),$s1); 2282 &mov (&DWP(8,$acc),$s2); 2283 &mov (&DWP(12,$acc),$s3); 2284 2285 &lea ($acc,&DWP(16,$acc)); # advance out 2286 &mov ($_out,$acc); # save out 2287 2288 &lea ($acc,$ivec); 2289 &mov ($s0,&DWP(0,$acc)); # read temp 2290 &mov ($s1,&DWP(4,$acc)); 2291 &mov ($s2,&DWP(8,$acc)); 2292 &mov ($s3,&DWP(12,$acc)); 2293 2294 &mov (&DWP(0,$key),$s0); # copy iv 2295 &mov (&DWP(4,$key),$s1); 2296 &mov (&DWP(8,$key),$s2); 2297 &mov (&DWP(12,$key),$s3); 2298 2299 &mov ($acc,$_inp); # load inp 2300 &mov ($s2,$_len); # load len 2301 &lea ($acc,&DWP(16,$acc)); # advance inp 2302 &mov ($_inp,$acc); # save inp 2303 &sub ($s2,16); # decrease len 2304 &mov ($_len,$s2); # save len 2305 &jnz (&label("fast_dec_in_place_loop")); 2306 2307 &set_label("fast_dec_out",4); 2308 &cmp ($mark,0); # was the key schedule copied? 2309 &mov ("edi",$_key); 2310 &je (&label("skip_dzero")); 2311 # zero copy of key schedule 2312 &mov ("ecx",240/4); 2313 &xor ("eax","eax"); 2314 &align (4); 2315 &data_word(0xABF3F689); # rep stosd 2316 &set_label("skip_dzero"); 2317 &mov ("esp",$_esp); 2318 &popf (); 2319 &function_end_A(); 2320 &pushf (); # kludge, never executed 2321 2322#--------------------------- SLOW ROUTINE ---------------------------# 2323&set_label("slow_way",16); 2324 2325 &mov ($s0,&DWP(0,$s0)) if (!$x86only);# load OPENSSL_ia32cap 2326 &mov ($key,&wparam(3)); # load key 2327 2328 # pre-allocate aligned stack frame... 2329 &lea ($acc,&DWP(-80,"esp")); 2330 &and ($acc,-64); 2331 2332 # ... and make sure it doesn't alias with $key modulo 1024 2333 &lea ($s1,&DWP(-80-63,$key)); 2334 &sub ($s1,$acc); 2335 &neg ($s1); 2336 &and ($s1,0x3C0); # modulo 1024, but aligned to cache-line 2337 &sub ($acc,$s1); 2338 2339 # pick S-box copy which can't overlap with stack frame or $key 2340 &lea ($s1,&DWP(768,$acc)); 2341 &sub ($s1,$tbl); 2342 &and ($s1,0x300); 2343 &lea ($tbl,&DWP(2048+128,$tbl,$s1)); 2344 2345 &lea ($s3,&wparam(0)); # pointer to parameter block 2346 2347 &exch ("esp",$acc); 2348 &add ("esp",4); # reserve for return address! 2349 &mov ($_tbl,$tbl); # save %ebp 2350 &mov ($_esp,$acc); # save %esp 2351 &mov ($_tmp,$s0); # save OPENSSL_ia32cap 2352 2353 &mov ($s0,&DWP(0,$s3)); # load inp 2354 &mov ($s1,&DWP(4,$s3)); # load out 2355 #&mov ($s2,&DWP(8,$s3)); # load len 2356 #&mov ($key,&DWP(12,$s3)); # load key 2357 &mov ($acc,&DWP(16,$s3)); # load ivp 2358 &mov ($s3,&DWP(20,$s3)); # load enc flag 2359 2360 &mov ($_inp,$s0); # save copy of inp 2361 &mov ($_out,$s1); # save copy of out 2362 &mov ($_len,$s2); # save copy of len 2363 &mov ($_key,$key); # save copy of key 2364 &mov ($_ivp,$acc); # save copy of ivp 2365 2366 &mov ($key,$acc); 2367 &mov ($acc,$s0); 2368 2369 &cmp ($s3,0); 2370 &je (&label("slow_decrypt")); 2371 2372#--------------------------- SLOW ENCRYPT ---------------------------# 2373 &cmp ($s2,16); 2374 &mov ($s3,$s1); 2375 &jb (&label("slow_enc_tail")); 2376 2377 if (!$x86only) { 2378 &bt ($_tmp,25); # check for SSE bit 2379 &jnc (&label("slow_enc_x86")); 2380 2381 &movq ("mm0",&QWP(0,$key)); # load iv 2382 &movq ("mm4",&QWP(8,$key)); 2383 2384 &set_label("slow_enc_loop_sse",16); 2385 &pxor ("mm0",&QWP(0,$acc)); # xor input data 2386 &pxor ("mm4",&QWP(8,$acc)); 2387 2388 &mov ($key,$_key); 2389 &call ("_sse_AES_encrypt_compact"); 2390 2391 &mov ($acc,$_inp); # load inp 2392 &mov ($key,$_out); # load out 2393 &mov ($s2,$_len); # load len 2394 2395 &movq (&QWP(0,$key),"mm0"); # save output data 2396 &movq (&QWP(8,$key),"mm4"); 2397 2398 &lea ($acc,&DWP(16,$acc)); # advance inp 2399 &mov ($_inp,$acc); # save inp 2400 &lea ($s3,&DWP(16,$key)); # advance out 2401 &mov ($_out,$s3); # save out 2402 &sub ($s2,16); # decrease len 2403 &cmp ($s2,16); 2404 &mov ($_len,$s2); # save len 2405 &jae (&label("slow_enc_loop_sse")); 2406 &test ($s2,15); 2407 &jnz (&label("slow_enc_tail")); 2408 &mov ($acc,$_ivp); # load ivp 2409 &movq (&QWP(0,$acc),"mm0"); # save ivec 2410 &movq (&QWP(8,$acc),"mm4"); 2411 &emms (); 2412 &mov ("esp",$_esp); 2413 &popf (); 2414 &function_end_A(); 2415 &pushf (); # kludge, never executed 2416 } 2417 &set_label("slow_enc_x86",16); 2418 &mov ($s0,&DWP(0,$key)); # load iv 2419 &mov ($s1,&DWP(4,$key)); 2420 2421 &set_label("slow_enc_loop_x86",4); 2422 &mov ($s2,&DWP(8,$key)); 2423 &mov ($s3,&DWP(12,$key)); 2424 2425 &xor ($s0,&DWP(0,$acc)); # xor input data 2426 &xor ($s1,&DWP(4,$acc)); 2427 &xor ($s2,&DWP(8,$acc)); 2428 &xor ($s3,&DWP(12,$acc)); 2429 2430 &mov ($key,$_key); # load key 2431 &call ("_x86_AES_encrypt_compact"); 2432 2433 &mov ($acc,$_inp); # load inp 2434 &mov ($key,$_out); # load out 2435 2436 &mov (&DWP(0,$key),$s0); # save output data 2437 &mov (&DWP(4,$key),$s1); 2438 &mov (&DWP(8,$key),$s2); 2439 &mov (&DWP(12,$key),$s3); 2440 2441 &mov ($s2,$_len); # load len 2442 &lea ($acc,&DWP(16,$acc)); # advance inp 2443 &mov ($_inp,$acc); # save inp 2444 &lea ($s3,&DWP(16,$key)); # advance out 2445 &mov ($_out,$s3); # save out 2446 &sub ($s2,16); # decrease len 2447 &cmp ($s2,16); 2448 &mov ($_len,$s2); # save len 2449 &jae (&label("slow_enc_loop_x86")); 2450 &test ($s2,15); 2451 &jnz (&label("slow_enc_tail")); 2452 &mov ($acc,$_ivp); # load ivp 2453 &mov ($s2,&DWP(8,$key)); # restore last dwords 2454 &mov ($s3,&DWP(12,$key)); 2455 &mov (&DWP(0,$acc),$s0); # save ivec 2456 &mov (&DWP(4,$acc),$s1); 2457 &mov (&DWP(8,$acc),$s2); 2458 &mov (&DWP(12,$acc),$s3); 2459 2460 &mov ("esp",$_esp); 2461 &popf (); 2462 &function_end_A(); 2463 &pushf (); # kludge, never executed 2464 2465 &set_label("slow_enc_tail",16); 2466 &emms () if (!$x86only); 2467 &mov ($key eq "edi"? $key:"",$s3); # load out to edi 2468 &mov ($s1,16); 2469 &sub ($s1,$s2); 2470 &cmp ($key,$acc eq "esi"? $acc:""); # compare with inp 2471 &je (&label("enc_in_place")); 2472 &align (4); 2473 &data_word(0xA4F3F689); # rep movsb # copy input 2474 &jmp (&label("enc_skip_in_place")); 2475 &set_label("enc_in_place"); 2476 &lea ($key,&DWP(0,$key,$s2)); 2477 &set_label("enc_skip_in_place"); 2478 &mov ($s2,$s1); 2479 &xor ($s0,$s0); 2480 &align (4); 2481 &data_word(0xAAF3F689); # rep stosb # zero tail 2482 2483 &mov ($key,$_ivp); # restore ivp 2484 &mov ($acc,$s3); # output as input 2485 &mov ($s0,&DWP(0,$key)); 2486 &mov ($s1,&DWP(4,$key)); 2487 &mov ($_len,16); # len=16 2488 &jmp (&label("slow_enc_loop_x86")); # one more spin... 2489 2490#--------------------------- SLOW DECRYPT ---------------------------# 2491&set_label("slow_decrypt",16); 2492 if (!$x86only) { 2493 &bt ($_tmp,25); # check for SSE bit 2494 &jnc (&label("slow_dec_loop_x86")); 2495 2496 &set_label("slow_dec_loop_sse",4); 2497 &movq ("mm0",&QWP(0,$acc)); # read input 2498 &movq ("mm4",&QWP(8,$acc)); 2499 2500 &mov ($key,$_key); 2501 &call ("_sse_AES_decrypt_compact"); 2502 2503 &mov ($acc,$_inp); # load inp 2504 &lea ($s0,$ivec); 2505 &mov ($s1,$_out); # load out 2506 &mov ($s2,$_len); # load len 2507 &mov ($key,$_ivp); # load ivp 2508 2509 &movq ("mm1",&QWP(0,$acc)); # re-read input 2510 &movq ("mm5",&QWP(8,$acc)); 2511 2512 &pxor ("mm0",&QWP(0,$key)); # xor iv 2513 &pxor ("mm4",&QWP(8,$key)); 2514 2515 &movq (&QWP(0,$key),"mm1"); # copy input to iv 2516 &movq (&QWP(8,$key),"mm5"); 2517 2518 &sub ($s2,16); # decrease len 2519 &jc (&label("slow_dec_partial_sse")); 2520 2521 &movq (&QWP(0,$s1),"mm0"); # write output 2522 &movq (&QWP(8,$s1),"mm4"); 2523 2524 &lea ($s1,&DWP(16,$s1)); # advance out 2525 &mov ($_out,$s1); # save out 2526 &lea ($acc,&DWP(16,$acc)); # advance inp 2527 &mov ($_inp,$acc); # save inp 2528 &mov ($_len,$s2); # save len 2529 &jnz (&label("slow_dec_loop_sse")); 2530 &emms (); 2531 &mov ("esp",$_esp); 2532 &popf (); 2533 &function_end_A(); 2534 &pushf (); # kludge, never executed 2535 2536 &set_label("slow_dec_partial_sse",16); 2537 &movq (&QWP(0,$s0),"mm0"); # save output to temp 2538 &movq (&QWP(8,$s0),"mm4"); 2539 &emms (); 2540 2541 &add ($s2 eq "ecx" ? "ecx":"",16); 2542 &mov ("edi",$s1); # out 2543 &mov ("esi",$s0); # temp 2544 &align (4); 2545 &data_word(0xA4F3F689); # rep movsb # copy partial output 2546 2547 &mov ("esp",$_esp); 2548 &popf (); 2549 &function_end_A(); 2550 &pushf (); # kludge, never executed 2551 } 2552 &set_label("slow_dec_loop_x86",16); 2553 &mov ($s0,&DWP(0,$acc)); # read input 2554 &mov ($s1,&DWP(4,$acc)); 2555 &mov ($s2,&DWP(8,$acc)); 2556 &mov ($s3,&DWP(12,$acc)); 2557 2558 &lea ($key,$ivec); 2559 &mov (&DWP(0,$key),$s0); # copy to temp 2560 &mov (&DWP(4,$key),$s1); 2561 &mov (&DWP(8,$key),$s2); 2562 &mov (&DWP(12,$key),$s3); 2563 2564 &mov ($key,$_key); # load key 2565 &call ("_x86_AES_decrypt_compact"); 2566 2567 &mov ($key,$_ivp); # load ivp 2568 &mov ($acc,$_len); # load len 2569 &xor ($s0,&DWP(0,$key)); # xor iv 2570 &xor ($s1,&DWP(4,$key)); 2571 &xor ($s2,&DWP(8,$key)); 2572 &xor ($s3,&DWP(12,$key)); 2573 2574 &sub ($acc,16); 2575 &jc (&label("slow_dec_partial_x86")); 2576 2577 &mov ($_len,$acc); # save len 2578 &mov ($acc,$_out); # load out 2579 2580 &mov (&DWP(0,$acc),$s0); # write output 2581 &mov (&DWP(4,$acc),$s1); 2582 &mov (&DWP(8,$acc),$s2); 2583 &mov (&DWP(12,$acc),$s3); 2584 2585 &lea ($acc,&DWP(16,$acc)); # advance out 2586 &mov ($_out,$acc); # save out 2587 2588 &lea ($acc,$ivec); 2589 &mov ($s0,&DWP(0,$acc)); # read temp 2590 &mov ($s1,&DWP(4,$acc)); 2591 &mov ($s2,&DWP(8,$acc)); 2592 &mov ($s3,&DWP(12,$acc)); 2593 2594 &mov (&DWP(0,$key),$s0); # copy it to iv 2595 &mov (&DWP(4,$key),$s1); 2596 &mov (&DWP(8,$key),$s2); 2597 &mov (&DWP(12,$key),$s3); 2598 2599 &mov ($acc,$_inp); # load inp 2600 &lea ($acc,&DWP(16,$acc)); # advance inp 2601 &mov ($_inp,$acc); # save inp 2602 &jnz (&label("slow_dec_loop_x86")); 2603 &mov ("esp",$_esp); 2604 &popf (); 2605 &function_end_A(); 2606 &pushf (); # kludge, never executed 2607 2608 &set_label("slow_dec_partial_x86",16); 2609 &lea ($acc,$ivec); 2610 &mov (&DWP(0,$acc),$s0); # save output to temp 2611 &mov (&DWP(4,$acc),$s1); 2612 &mov (&DWP(8,$acc),$s2); 2613 &mov (&DWP(12,$acc),$s3); 2614 2615 &mov ($acc,$_inp); 2616 &mov ($s0,&DWP(0,$acc)); # re-read input 2617 &mov ($s1,&DWP(4,$acc)); 2618 &mov ($s2,&DWP(8,$acc)); 2619 &mov ($s3,&DWP(12,$acc)); 2620 2621 &mov (&DWP(0,$key),$s0); # copy it to iv 2622 &mov (&DWP(4,$key),$s1); 2623 &mov (&DWP(8,$key),$s2); 2624 &mov (&DWP(12,$key),$s3); 2625 2626 &mov ("ecx",$_len); 2627 &mov ("edi",$_out); 2628 &lea ("esi",$ivec); 2629 &align (4); 2630 &data_word(0xA4F3F689); # rep movsb # copy partial output 2631 2632 &mov ("esp",$_esp); 2633 &popf (); 2634&function_end("asm_AES_cbc_encrypt"); 2635} 2636 2637#------------------------------------------------------------------# 2638 2639sub enckey() 2640{ 2641 &movz ("esi",&LB("edx")); # rk[i]>>0 2642 &movz ("ebx",&BP(-128,$tbl,"esi",1)); 2643 &movz ("esi",&HB("edx")); # rk[i]>>8 2644 &shl ("ebx",24); 2645 &xor ("eax","ebx"); 2646 2647 &movz ("ebx",&BP(-128,$tbl,"esi",1)); 2648 &shr ("edx",16); 2649 &movz ("esi",&LB("edx")); # rk[i]>>16 2650 &xor ("eax","ebx"); 2651 2652 &movz ("ebx",&BP(-128,$tbl,"esi",1)); 2653 &movz ("esi",&HB("edx")); # rk[i]>>24 2654 &shl ("ebx",8); 2655 &xor ("eax","ebx"); 2656 2657 &movz ("ebx",&BP(-128,$tbl,"esi",1)); 2658 &shl ("ebx",16); 2659 &xor ("eax","ebx"); 2660 2661 &xor ("eax",&DWP(1024-128,$tbl,"ecx",4)); # rcon 2662} 2663 2664&function_begin("_x86_AES_set_encrypt_key"); 2665 &mov ("esi",&wparam(1)); # user supplied key 2666 &mov ("edi",&wparam(3)); # private key schedule 2667 2668 &test ("esi",-1); 2669 &jz (&label("badpointer")); 2670 &test ("edi",-1); 2671 &jz (&label("badpointer")); 2672 2673 &call (&label("pic_point")); 2674 &set_label("pic_point"); 2675 &blindpop($tbl); 2676 &lea ($tbl,&DWP(&label("AES_Te")."-".&label("pic_point"),$tbl)); 2677 &lea ($tbl,&DWP(2048+128,$tbl)); 2678 2679 # prefetch Te4 2680 &mov ("eax",&DWP(0-128,$tbl)); 2681 &mov ("ebx",&DWP(32-128,$tbl)); 2682 &mov ("ecx",&DWP(64-128,$tbl)); 2683 &mov ("edx",&DWP(96-128,$tbl)); 2684 &mov ("eax",&DWP(128-128,$tbl)); 2685 &mov ("ebx",&DWP(160-128,$tbl)); 2686 &mov ("ecx",&DWP(192-128,$tbl)); 2687 &mov ("edx",&DWP(224-128,$tbl)); 2688 2689 &mov ("ecx",&wparam(2)); # number of bits in key 2690 &cmp ("ecx",128); 2691 &je (&label("10rounds")); 2692 &cmp ("ecx",192); 2693 &je (&label("12rounds")); 2694 &cmp ("ecx",256); 2695 &je (&label("14rounds")); 2696 &mov ("eax",-2); # invalid number of bits 2697 &jmp (&label("exit")); 2698 2699 &set_label("10rounds"); 2700 &mov ("eax",&DWP(0,"esi")); # copy first 4 dwords 2701 &mov ("ebx",&DWP(4,"esi")); 2702 &mov ("ecx",&DWP(8,"esi")); 2703 &mov ("edx",&DWP(12,"esi")); 2704 &mov (&DWP(0,"edi"),"eax"); 2705 &mov (&DWP(4,"edi"),"ebx"); 2706 &mov (&DWP(8,"edi"),"ecx"); 2707 &mov (&DWP(12,"edi"),"edx"); 2708 2709 &xor ("ecx","ecx"); 2710 &jmp (&label("10shortcut")); 2711 2712 &align (4); 2713 &set_label("10loop"); 2714 &mov ("eax",&DWP(0,"edi")); # rk[0] 2715 &mov ("edx",&DWP(12,"edi")); # rk[3] 2716 &set_label("10shortcut"); 2717 &enckey (); 2718 2719 &mov (&DWP(16,"edi"),"eax"); # rk[4] 2720 &xor ("eax",&DWP(4,"edi")); 2721 &mov (&DWP(20,"edi"),"eax"); # rk[5] 2722 &xor ("eax",&DWP(8,"edi")); 2723 &mov (&DWP(24,"edi"),"eax"); # rk[6] 2724 &xor ("eax",&DWP(12,"edi")); 2725 &mov (&DWP(28,"edi"),"eax"); # rk[7] 2726 &inc ("ecx"); 2727 &add ("edi",16); 2728 &cmp ("ecx",10); 2729 &jl (&label("10loop")); 2730 2731 &mov (&DWP(80,"edi"),10); # setup number of rounds 2732 &xor ("eax","eax"); 2733 &jmp (&label("exit")); 2734 2735 &set_label("12rounds"); 2736 &mov ("eax",&DWP(0,"esi")); # copy first 6 dwords 2737 &mov ("ebx",&DWP(4,"esi")); 2738 &mov ("ecx",&DWP(8,"esi")); 2739 &mov ("edx",&DWP(12,"esi")); 2740 &mov (&DWP(0,"edi"),"eax"); 2741 &mov (&DWP(4,"edi"),"ebx"); 2742 &mov (&DWP(8,"edi"),"ecx"); 2743 &mov (&DWP(12,"edi"),"edx"); 2744 &mov ("ecx",&DWP(16,"esi")); 2745 &mov ("edx",&DWP(20,"esi")); 2746 &mov (&DWP(16,"edi"),"ecx"); 2747 &mov (&DWP(20,"edi"),"edx"); 2748 2749 &xor ("ecx","ecx"); 2750 &jmp (&label("12shortcut")); 2751 2752 &align (4); 2753 &set_label("12loop"); 2754 &mov ("eax",&DWP(0,"edi")); # rk[0] 2755 &mov ("edx",&DWP(20,"edi")); # rk[5] 2756 &set_label("12shortcut"); 2757 &enckey (); 2758 2759 &mov (&DWP(24,"edi"),"eax"); # rk[6] 2760 &xor ("eax",&DWP(4,"edi")); 2761 &mov (&DWP(28,"edi"),"eax"); # rk[7] 2762 &xor ("eax",&DWP(8,"edi")); 2763 &mov (&DWP(32,"edi"),"eax"); # rk[8] 2764 &xor ("eax",&DWP(12,"edi")); 2765 &mov (&DWP(36,"edi"),"eax"); # rk[9] 2766 2767 &cmp ("ecx",7); 2768 &je (&label("12break")); 2769 &inc ("ecx"); 2770 2771 &xor ("eax",&DWP(16,"edi")); 2772 &mov (&DWP(40,"edi"),"eax"); # rk[10] 2773 &xor ("eax",&DWP(20,"edi")); 2774 &mov (&DWP(44,"edi"),"eax"); # rk[11] 2775 2776 &add ("edi",24); 2777 &jmp (&label("12loop")); 2778 2779 &set_label("12break"); 2780 &mov (&DWP(72,"edi"),12); # setup number of rounds 2781 &xor ("eax","eax"); 2782 &jmp (&label("exit")); 2783 2784 &set_label("14rounds"); 2785 &mov ("eax",&DWP(0,"esi")); # copy first 8 dwords 2786 &mov ("ebx",&DWP(4,"esi")); 2787 &mov ("ecx",&DWP(8,"esi")); 2788 &mov ("edx",&DWP(12,"esi")); 2789 &mov (&DWP(0,"edi"),"eax"); 2790 &mov (&DWP(4,"edi"),"ebx"); 2791 &mov (&DWP(8,"edi"),"ecx"); 2792 &mov (&DWP(12,"edi"),"edx"); 2793 &mov ("eax",&DWP(16,"esi")); 2794 &mov ("ebx",&DWP(20,"esi")); 2795 &mov ("ecx",&DWP(24,"esi")); 2796 &mov ("edx",&DWP(28,"esi")); 2797 &mov (&DWP(16,"edi"),"eax"); 2798 &mov (&DWP(20,"edi"),"ebx"); 2799 &mov (&DWP(24,"edi"),"ecx"); 2800 &mov (&DWP(28,"edi"),"edx"); 2801 2802 &xor ("ecx","ecx"); 2803 &jmp (&label("14shortcut")); 2804 2805 &align (4); 2806 &set_label("14loop"); 2807 &mov ("edx",&DWP(28,"edi")); # rk[7] 2808 &set_label("14shortcut"); 2809 &mov ("eax",&DWP(0,"edi")); # rk[0] 2810 2811 &enckey (); 2812 2813 &mov (&DWP(32,"edi"),"eax"); # rk[8] 2814 &xor ("eax",&DWP(4,"edi")); 2815 &mov (&DWP(36,"edi"),"eax"); # rk[9] 2816 &xor ("eax",&DWP(8,"edi")); 2817 &mov (&DWP(40,"edi"),"eax"); # rk[10] 2818 &xor ("eax",&DWP(12,"edi")); 2819 &mov (&DWP(44,"edi"),"eax"); # rk[11] 2820 2821 &cmp ("ecx",6); 2822 &je (&label("14break")); 2823 &inc ("ecx"); 2824 2825 &mov ("edx","eax"); 2826 &mov ("eax",&DWP(16,"edi")); # rk[4] 2827 &movz ("esi",&LB("edx")); # rk[11]>>0 2828 &movz ("ebx",&BP(-128,$tbl,"esi",1)); 2829 &movz ("esi",&HB("edx")); # rk[11]>>8 2830 &xor ("eax","ebx"); 2831 2832 &movz ("ebx",&BP(-128,$tbl,"esi",1)); 2833 &shr ("edx",16); 2834 &shl ("ebx",8); 2835 &movz ("esi",&LB("edx")); # rk[11]>>16 2836 &xor ("eax","ebx"); 2837 2838 &movz ("ebx",&BP(-128,$tbl,"esi",1)); 2839 &movz ("esi",&HB("edx")); # rk[11]>>24 2840 &shl ("ebx",16); 2841 &xor ("eax","ebx"); 2842 2843 &movz ("ebx",&BP(-128,$tbl,"esi",1)); 2844 &shl ("ebx",24); 2845 &xor ("eax","ebx"); 2846 2847 &mov (&DWP(48,"edi"),"eax"); # rk[12] 2848 &xor ("eax",&DWP(20,"edi")); 2849 &mov (&DWP(52,"edi"),"eax"); # rk[13] 2850 &xor ("eax",&DWP(24,"edi")); 2851 &mov (&DWP(56,"edi"),"eax"); # rk[14] 2852 &xor ("eax",&DWP(28,"edi")); 2853 &mov (&DWP(60,"edi"),"eax"); # rk[15] 2854 2855 &add ("edi",32); 2856 &jmp (&label("14loop")); 2857 2858 &set_label("14break"); 2859 &mov (&DWP(48,"edi"),14); # setup number of rounds 2860 &xor ("eax","eax"); 2861 &jmp (&label("exit")); 2862 2863 &set_label("badpointer"); 2864 &mov ("eax",-1); 2865 &set_label("exit"); 2866&function_end("_x86_AES_set_encrypt_key"); 2867 2868# int asm_AES_set_encrypt_key(const unsigned char *userKey, const int bits, 2869# AES_KEY *key) 2870&function_begin_B("asm_AES_set_encrypt_key"); 2871 &call ("_x86_AES_set_encrypt_key"); 2872 &ret (); 2873&function_end_B("asm_AES_set_encrypt_key"); 2874 2875sub deckey() 2876{ my ($i,$key,$tp1,$tp2,$tp4,$tp8) = @_; 2877 my $tmp = $tbl; 2878 2879 &mov ($tmp,0x80808080); 2880 &and ($tmp,$tp1); 2881 &lea ($tp2,&DWP(0,$tp1,$tp1)); 2882 &mov ($acc,$tmp); 2883 &shr ($tmp,7); 2884 &sub ($acc,$tmp); 2885 &and ($tp2,0xfefefefe); 2886 &and ($acc,0x1b1b1b1b); 2887 &xor ($tp2,$acc); 2888 &mov ($tmp,0x80808080); 2889 2890 &and ($tmp,$tp2); 2891 &lea ($tp4,&DWP(0,$tp2,$tp2)); 2892 &mov ($acc,$tmp); 2893 &shr ($tmp,7); 2894 &sub ($acc,$tmp); 2895 &and ($tp4,0xfefefefe); 2896 &and ($acc,0x1b1b1b1b); 2897 &xor ($tp2,$tp1); # tp2^tp1 2898 &xor ($tp4,$acc); 2899 &mov ($tmp,0x80808080); 2900 2901 &and ($tmp,$tp4); 2902 &lea ($tp8,&DWP(0,$tp4,$tp4)); 2903 &mov ($acc,$tmp); 2904 &shr ($tmp,7); 2905 &xor ($tp4,$tp1); # tp4^tp1 2906 &sub ($acc,$tmp); 2907 &and ($tp8,0xfefefefe); 2908 &and ($acc,0x1b1b1b1b); 2909 &rotl ($tp1,8); # = ROTATE(tp1,8) 2910 &xor ($tp8,$acc); 2911 2912 &mov ($tmp,&DWP(4*($i+1),$key)); # modulo-scheduled load 2913 2914 &xor ($tp1,$tp2); 2915 &xor ($tp2,$tp8); 2916 &xor ($tp1,$tp4); 2917 &rotl ($tp2,24); 2918 &xor ($tp4,$tp8); 2919 &xor ($tp1,$tp8); # ^= tp8^(tp4^tp1)^(tp2^tp1) 2920 &rotl ($tp4,16); 2921 &xor ($tp1,$tp2); # ^= ROTATE(tp8^tp2^tp1,24) 2922 &rotl ($tp8,8); 2923 &xor ($tp1,$tp4); # ^= ROTATE(tp8^tp4^tp1,16) 2924 &mov ($tp2,$tmp); 2925 &xor ($tp1,$tp8); # ^= ROTATE(tp8,8) 2926 2927 &mov (&DWP(4*$i,$key),$tp1); 2928} 2929 2930# int asm_AES_set_decrypt_key(const unsigned char *userKey, const int bits, 2931# AES_KEY *key) 2932&function_begin_B("asm_AES_set_decrypt_key"); 2933 &call ("_x86_AES_set_encrypt_key"); 2934 &cmp ("eax",0); 2935 &je (&label("proceed")); 2936 &ret (); 2937 2938 &set_label("proceed"); 2939 &push ("ebp"); 2940 &push ("ebx"); 2941 &push ("esi"); 2942 &push ("edi"); 2943 2944 &mov ("esi",&wparam(2)); 2945 &mov ("ecx",&DWP(240,"esi")); # pull number of rounds 2946 &lea ("ecx",&DWP(0,"","ecx",4)); 2947 &lea ("edi",&DWP(0,"esi","ecx",4)); # pointer to last chunk 2948 2949 &set_label("invert",4); # invert order of chunks 2950 &mov ("eax",&DWP(0,"esi")); 2951 &mov ("ebx",&DWP(4,"esi")); 2952 &mov ("ecx",&DWP(0,"edi")); 2953 &mov ("edx",&DWP(4,"edi")); 2954 &mov (&DWP(0,"edi"),"eax"); 2955 &mov (&DWP(4,"edi"),"ebx"); 2956 &mov (&DWP(0,"esi"),"ecx"); 2957 &mov (&DWP(4,"esi"),"edx"); 2958 &mov ("eax",&DWP(8,"esi")); 2959 &mov ("ebx",&DWP(12,"esi")); 2960 &mov ("ecx",&DWP(8,"edi")); 2961 &mov ("edx",&DWP(12,"edi")); 2962 &mov (&DWP(8,"edi"),"eax"); 2963 &mov (&DWP(12,"edi"),"ebx"); 2964 &mov (&DWP(8,"esi"),"ecx"); 2965 &mov (&DWP(12,"esi"),"edx"); 2966 &add ("esi",16); 2967 &sub ("edi",16); 2968 &cmp ("esi","edi"); 2969 &jne (&label("invert")); 2970 2971 &mov ($key,&wparam(2)); 2972 &mov ($acc,&DWP(240,$key)); # pull number of rounds 2973 &lea ($acc,&DWP(-2,$acc,$acc)); 2974 &lea ($acc,&DWP(0,$key,$acc,8)); 2975 &mov (&wparam(2),$acc); 2976 2977 &mov ($s0,&DWP(16,$key)); # modulo-scheduled load 2978 &set_label("permute",4); # permute the key schedule 2979 &add ($key,16); 2980 &deckey (0,$key,$s0,$s1,$s2,$s3); 2981 &deckey (1,$key,$s1,$s2,$s3,$s0); 2982 &deckey (2,$key,$s2,$s3,$s0,$s1); 2983 &deckey (3,$key,$s3,$s0,$s1,$s2); 2984 &cmp ($key,&wparam(2)); 2985 &jb (&label("permute")); 2986 2987 &xor ("eax","eax"); # return success 2988&function_end("asm_AES_set_decrypt_key"); 2989&asciz("AES for x86, CRYPTOGAMS by <appro\@openssl.org>"); 2990 2991&asm_finish(); 2992 2993close STDOUT; 2994