• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (C) 2007 The Android Open Source Project
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  *      http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16 
17 #define TRACE_TAG USB
18 
19 #include "sysdeps.h"
20 
21 #include <dirent.h>
22 #include <errno.h>
23 #include <linux/usb/ch9.h>
24 #include <linux/usb/functionfs.h>
25 #include <stdio.h>
26 #include <stdlib.h>
27 #include <string.h>
28 #include <sys/ioctl.h>
29 #include <sys/types.h>
30 #include <unistd.h>
31 
32 #include <algorithm>
33 #include <atomic>
34 #include <chrono>
35 #include <condition_variable>
36 #include <mutex>
37 #include <thread>
38 
39 #include <android-base/logging.h>
40 #include <android-base/properties.h>
41 
42 #include "adb.h"
43 #include "daemon/usb.h"
44 #include "transport.h"
45 
46 using namespace std::chrono_literals;
47 
48 #define MAX_PACKET_SIZE_FS 64
49 #define MAX_PACKET_SIZE_HS 512
50 #define MAX_PACKET_SIZE_SS 1024
51 
52 // Kernels before 3.3 have a 16KiB transfer limit  That limit was replaced
53 // with a 16MiB global limit in 3.3, but each URB submitted required a
54 // contiguous kernel allocation, so you would get ENOMEM if you tried to
55 // send something larger than the biggest available contiguous kernel
56 // memory region. Large contiguous allocations could be unreliable
57 // on a device kernel that has been running for a while fragmenting its
58 // memory so we start with a larger allocation, and shrink the amount if
59 // necessary.
60 #define USB_FFS_BULK_SIZE 16384
61 
62 #define cpu_to_le16(x) htole16(x)
63 #define cpu_to_le32(x) htole32(x)
64 
65 #define FUNCTIONFS_ENDPOINT_ALLOC       _IOR('g', 231, __u32)
66 
67 static constexpr size_t ENDPOINT_ALLOC_RETRIES = 10;
68 
69 static int dummy_fd = -1;
70 
71 struct func_desc {
72     struct usb_interface_descriptor intf;
73     struct usb_endpoint_descriptor_no_audio source;
74     struct usb_endpoint_descriptor_no_audio sink;
75 } __attribute__((packed));
76 
77 struct ss_func_desc {
78     struct usb_interface_descriptor intf;
79     struct usb_endpoint_descriptor_no_audio source;
80     struct usb_ss_ep_comp_descriptor source_comp;
81     struct usb_endpoint_descriptor_no_audio sink;
82     struct usb_ss_ep_comp_descriptor sink_comp;
83 } __attribute__((packed));
84 
85 struct desc_v1 {
86     struct usb_functionfs_descs_head_v1 {
87         __le32 magic;
88         __le32 length;
89         __le32 fs_count;
90         __le32 hs_count;
91     } __attribute__((packed)) header;
92     struct func_desc fs_descs, hs_descs;
93 } __attribute__((packed));
94 
95 struct desc_v2 {
96     struct usb_functionfs_descs_head_v2 header;
97     // The rest of the structure depends on the flags in the header.
98     __le32 fs_count;
99     __le32 hs_count;
100     __le32 ss_count;
101     __le32 os_count;
102     struct func_desc fs_descs, hs_descs;
103     struct ss_func_desc ss_descs;
104     struct usb_os_desc_header os_header;
105     struct usb_ext_compat_desc os_desc;
106 } __attribute__((packed));
107 
108 static struct func_desc fs_descriptors = {
109     .intf = {
110         .bLength = sizeof(fs_descriptors.intf),
111         .bDescriptorType = USB_DT_INTERFACE,
112         .bInterfaceNumber = 0,
113         .bNumEndpoints = 2,
114         .bInterfaceClass = ADB_CLASS,
115         .bInterfaceSubClass = ADB_SUBCLASS,
116         .bInterfaceProtocol = ADB_PROTOCOL,
117         .iInterface = 1, /* first string from the provided table */
118     },
119     .source = {
120         .bLength = sizeof(fs_descriptors.source),
121         .bDescriptorType = USB_DT_ENDPOINT,
122         .bEndpointAddress = 1 | USB_DIR_OUT,
123         .bmAttributes = USB_ENDPOINT_XFER_BULK,
124         .wMaxPacketSize = MAX_PACKET_SIZE_FS,
125     },
126     .sink = {
127         .bLength = sizeof(fs_descriptors.sink),
128         .bDescriptorType = USB_DT_ENDPOINT,
129         .bEndpointAddress = 2 | USB_DIR_IN,
130         .bmAttributes = USB_ENDPOINT_XFER_BULK,
131         .wMaxPacketSize = MAX_PACKET_SIZE_FS,
132     },
133 };
134 
135 static struct func_desc hs_descriptors = {
136     .intf = {
137         .bLength = sizeof(hs_descriptors.intf),
138         .bDescriptorType = USB_DT_INTERFACE,
139         .bInterfaceNumber = 0,
140         .bNumEndpoints = 2,
141         .bInterfaceClass = ADB_CLASS,
142         .bInterfaceSubClass = ADB_SUBCLASS,
143         .bInterfaceProtocol = ADB_PROTOCOL,
144         .iInterface = 1, /* first string from the provided table */
145     },
146     .source = {
147         .bLength = sizeof(hs_descriptors.source),
148         .bDescriptorType = USB_DT_ENDPOINT,
149         .bEndpointAddress = 1 | USB_DIR_OUT,
150         .bmAttributes = USB_ENDPOINT_XFER_BULK,
151         .wMaxPacketSize = MAX_PACKET_SIZE_HS,
152     },
153     .sink = {
154         .bLength = sizeof(hs_descriptors.sink),
155         .bDescriptorType = USB_DT_ENDPOINT,
156         .bEndpointAddress = 2 | USB_DIR_IN,
157         .bmAttributes = USB_ENDPOINT_XFER_BULK,
158         .wMaxPacketSize = MAX_PACKET_SIZE_HS,
159     },
160 };
161 
162 static struct ss_func_desc ss_descriptors = {
163     .intf = {
164         .bLength = sizeof(ss_descriptors.intf),
165         .bDescriptorType = USB_DT_INTERFACE,
166         .bInterfaceNumber = 0,
167         .bNumEndpoints = 2,
168         .bInterfaceClass = ADB_CLASS,
169         .bInterfaceSubClass = ADB_SUBCLASS,
170         .bInterfaceProtocol = ADB_PROTOCOL,
171         .iInterface = 1, /* first string from the provided table */
172     },
173     .source = {
174         .bLength = sizeof(ss_descriptors.source),
175         .bDescriptorType = USB_DT_ENDPOINT,
176         .bEndpointAddress = 1 | USB_DIR_OUT,
177         .bmAttributes = USB_ENDPOINT_XFER_BULK,
178         .wMaxPacketSize = MAX_PACKET_SIZE_SS,
179     },
180     .source_comp = {
181         .bLength = sizeof(ss_descriptors.source_comp),
182         .bDescriptorType = USB_DT_SS_ENDPOINT_COMP,
183         .bMaxBurst = 4,
184     },
185     .sink = {
186         .bLength = sizeof(ss_descriptors.sink),
187         .bDescriptorType = USB_DT_ENDPOINT,
188         .bEndpointAddress = 2 | USB_DIR_IN,
189         .bmAttributes = USB_ENDPOINT_XFER_BULK,
190         .wMaxPacketSize = MAX_PACKET_SIZE_SS,
191     },
192     .sink_comp = {
193         .bLength = sizeof(ss_descriptors.sink_comp),
194         .bDescriptorType = USB_DT_SS_ENDPOINT_COMP,
195         .bMaxBurst = 4,
196     },
197 };
198 
199 struct usb_ext_compat_desc os_desc_compat = {
200     .bFirstInterfaceNumber = 0,
201     .Reserved1 = cpu_to_le32(1),
202     .CompatibleID = {0},
203     .SubCompatibleID = {0},
204     .Reserved2 = {0},
205 };
206 
207 static struct usb_os_desc_header os_desc_header = {
208     .interface = cpu_to_le32(1),
209     .dwLength = cpu_to_le32(sizeof(os_desc_header) + sizeof(os_desc_compat)),
210     .bcdVersion = cpu_to_le32(1),
211     .wIndex = cpu_to_le32(4),
212     .bCount = cpu_to_le32(1),
213     .Reserved = cpu_to_le32(0),
214 };
215 
216 #define STR_INTERFACE_ "ADB Interface"
217 
218 static const struct {
219     struct usb_functionfs_strings_head header;
220     struct {
221         __le16 code;
222         const char str1[sizeof(STR_INTERFACE_)];
223     } __attribute__((packed)) lang0;
224 } __attribute__((packed)) strings = {
225     .header = {
226         .magic = cpu_to_le32(FUNCTIONFS_STRINGS_MAGIC),
227         .length = cpu_to_le32(sizeof(strings)),
228         .str_count = cpu_to_le32(1),
229         .lang_count = cpu_to_le32(1),
230     },
231     .lang0 = {
232         cpu_to_le16(0x0409), /* en-us */
233         STR_INTERFACE_,
234     },
235 };
236 
init_functionfs(struct usb_handle * h)237 bool init_functionfs(struct usb_handle* h) {
238     LOG(INFO) << "initializing functionfs";
239 
240     ssize_t ret;
241     struct desc_v1 v1_descriptor;
242     struct desc_v2 v2_descriptor;
243     size_t retries = 0;
244 
245     v2_descriptor.header.magic = cpu_to_le32(FUNCTIONFS_DESCRIPTORS_MAGIC_V2);
246     v2_descriptor.header.length = cpu_to_le32(sizeof(v2_descriptor));
247     v2_descriptor.header.flags = FUNCTIONFS_HAS_FS_DESC | FUNCTIONFS_HAS_HS_DESC |
248                                  FUNCTIONFS_HAS_SS_DESC | FUNCTIONFS_HAS_MS_OS_DESC;
249     v2_descriptor.fs_count = 3;
250     v2_descriptor.hs_count = 3;
251     v2_descriptor.ss_count = 5;
252     v2_descriptor.os_count = 1;
253     v2_descriptor.fs_descs = fs_descriptors;
254     v2_descriptor.hs_descs = hs_descriptors;
255     v2_descriptor.ss_descs = ss_descriptors;
256     v2_descriptor.os_header = os_desc_header;
257     v2_descriptor.os_desc = os_desc_compat;
258 
259     if (h->control < 0) { // might have already done this before
260         LOG(INFO) << "opening control endpoint " << USB_FFS_ADB_EP0;
261         h->control = adb_open(USB_FFS_ADB_EP0, O_RDWR);
262         if (h->control < 0) {
263             PLOG(ERROR) << "cannot open control endpoint " << USB_FFS_ADB_EP0;
264             goto err;
265         }
266 
267         ret = adb_write(h->control, &v2_descriptor, sizeof(v2_descriptor));
268         if (ret < 0) {
269             v1_descriptor.header.magic = cpu_to_le32(FUNCTIONFS_DESCRIPTORS_MAGIC);
270             v1_descriptor.header.length = cpu_to_le32(sizeof(v1_descriptor));
271             v1_descriptor.header.fs_count = 3;
272             v1_descriptor.header.hs_count = 3;
273             v1_descriptor.fs_descs = fs_descriptors;
274             v1_descriptor.hs_descs = hs_descriptors;
275             D("[ %s: Switching to V1_descriptor format errno=%d ]", USB_FFS_ADB_EP0, errno);
276             ret = adb_write(h->control, &v1_descriptor, sizeof(v1_descriptor));
277             if (ret < 0) {
278                 D("[ %s: write descriptors failed: errno=%d ]", USB_FFS_ADB_EP0, errno);
279                 goto err;
280             }
281         }
282 
283         ret = adb_write(h->control, &strings, sizeof(strings));
284         if (ret < 0) {
285             D("[ %s: writing strings failed: errno=%d]", USB_FFS_ADB_EP0, errno);
286             goto err;
287         }
288         //Signal only when writing the descriptors to ffs
289         android::base::SetProperty("sys.usb.ffs.ready", "1");
290     }
291 
292     h->bulk_out = adb_open(USB_FFS_ADB_OUT, O_RDWR);
293     if (h->bulk_out < 0) {
294         PLOG(ERROR) << "cannot open bulk-out endpoint " << USB_FFS_ADB_OUT;
295         goto err;
296     }
297 
298     h->bulk_in = adb_open(USB_FFS_ADB_IN, O_RDWR);
299     if (h->bulk_in < 0) {
300         PLOG(ERROR) << "cannot open bulk-in endpoint " << USB_FFS_ADB_IN;
301         goto err;
302     }
303 
304     h->max_rw = MAX_PAYLOAD;
305     while (h->max_rw >= USB_FFS_BULK_SIZE && retries < ENDPOINT_ALLOC_RETRIES) {
306         int ret_in = ioctl(h->bulk_in, FUNCTIONFS_ENDPOINT_ALLOC, static_cast<__u32>(h->max_rw));
307         int errno_in = errno;
308         int ret_out = ioctl(h->bulk_out, FUNCTIONFS_ENDPOINT_ALLOC, static_cast<__u32>(h->max_rw));
309         int errno_out = errno;
310 
311         if (ret_in || ret_out) {
312             if (errno_in == ENODEV || errno_out == ENODEV) {
313                 std::this_thread::sleep_for(100ms);
314                 retries += 1;
315                 continue;
316             }
317             h->max_rw /= 2;
318         } else {
319             return true;
320         }
321     }
322 
323     D("[ adb: cannot call endpoint alloc: errno=%d ]", errno);
324     // Kernel pre-allocation could have failed for recoverable reasons.
325     // Continue running with a safe max rw size.
326     h->max_rw = USB_FFS_BULK_SIZE;
327     return true;
328 
329 err:
330     if (h->bulk_in > 0) {
331         adb_close(h->bulk_in);
332         h->bulk_in = -1;
333     }
334     if (h->bulk_out > 0) {
335         adb_close(h->bulk_out);
336         h->bulk_out = -1;
337     }
338     if (h->control > 0) {
339         adb_close(h->control);
340         h->control = -1;
341     }
342     return false;
343 }
344 
usb_ffs_open_thread(void * x)345 static void usb_ffs_open_thread(void* x) {
346     struct usb_handle* usb = (struct usb_handle*)x;
347 
348     adb_thread_setname("usb ffs open");
349 
350     while (true) {
351         // wait until the USB device needs opening
352         std::unique_lock<std::mutex> lock(usb->lock);
353         while (!usb->open_new_connection) {
354             usb->notify.wait(lock);
355         }
356         usb->open_new_connection = false;
357         lock.unlock();
358 
359         while (true) {
360             if (init_functionfs(usb)) {
361                 LOG(INFO) << "functionfs successfully initialized";
362                 break;
363             }
364             std::this_thread::sleep_for(1s);
365         }
366 
367         LOG(INFO) << "registering usb transport";
368         register_usb_transport(usb, 0, 0, 1);
369     }
370 
371     // never gets here
372     abort();
373 }
374 
usb_ffs_write(usb_handle * h,const void * data,int len)375 static int usb_ffs_write(usb_handle* h, const void* data, int len) {
376     D("about to write (fd=%d, len=%d)", h->bulk_in, len);
377 
378     const char* buf = static_cast<const char*>(data);
379     while (len > 0) {
380         int write_len = std::min(h->max_rw, len);
381         int n = adb_write(h->bulk_in, buf, write_len);
382         if (n < 0) {
383             D("ERROR: fd = %d, n = %d: %s", h->bulk_in, n, strerror(errno));
384             return -1;
385         }
386         buf += n;
387         len -= n;
388     }
389 
390     D("[ done fd=%d ]", h->bulk_in);
391     return 0;
392 }
393 
usb_ffs_read(usb_handle * h,void * data,int len)394 static int usb_ffs_read(usb_handle* h, void* data, int len) {
395     D("about to read (fd=%d, len=%d)", h->bulk_out, len);
396 
397     char* buf = static_cast<char*>(data);
398     while (len > 0) {
399         int read_len = std::min(h->max_rw, len);
400         int n = adb_read(h->bulk_out, buf, read_len);
401         if (n < 0) {
402             D("ERROR: fd = %d, n = %d: %s", h->bulk_out, n, strerror(errno));
403             return -1;
404         }
405         buf += n;
406         len -= n;
407     }
408 
409     D("[ done fd=%d ]", h->bulk_out);
410     return 0;
411 }
412 
usb_ffs_kick(usb_handle * h)413 static void usb_ffs_kick(usb_handle* h) {
414     int err;
415 
416     err = ioctl(h->bulk_in, FUNCTIONFS_CLEAR_HALT);
417     if (err < 0) {
418         D("[ kick: source (fd=%d) clear halt failed (%d) ]", h->bulk_in, errno);
419     }
420 
421     err = ioctl(h->bulk_out, FUNCTIONFS_CLEAR_HALT);
422     if (err < 0) {
423         D("[ kick: sink (fd=%d) clear halt failed (%d) ]", h->bulk_out, errno);
424     }
425 
426     // don't close ep0 here, since we may not need to reinitialize it with
427     // the same descriptors again. if however ep1/ep2 fail to re-open in
428     // init_functionfs, only then would we close and open ep0 again.
429     // Ditto the comment in usb_adb_kick.
430     h->kicked = true;
431     TEMP_FAILURE_RETRY(dup2(dummy_fd, h->bulk_out));
432     TEMP_FAILURE_RETRY(dup2(dummy_fd, h->bulk_in));
433 }
434 
usb_ffs_close(usb_handle * h)435 static void usb_ffs_close(usb_handle* h) {
436     LOG(INFO) << "closing functionfs transport";
437 
438     h->kicked = false;
439     adb_close(h->bulk_out);
440     adb_close(h->bulk_in);
441     // Notify usb_adb_open_thread to open a new connection.
442     h->lock.lock();
443     h->open_new_connection = true;
444     h->lock.unlock();
445     h->notify.notify_one();
446 }
447 
usb_ffs_init()448 static void usb_ffs_init() {
449     D("[ usb_init - using FunctionFS ]");
450 
451     usb_handle* h = new usb_handle();
452 
453     h->write = usb_ffs_write;
454     h->read = usb_ffs_read;
455     h->kick = usb_ffs_kick;
456     h->close = usb_ffs_close;
457 
458     D("[ usb_init - starting thread ]");
459     std::thread(usb_ffs_open_thread, h).detach();
460 }
461 
usb_init()462 void usb_init() {
463     dummy_fd = adb_open("/dev/null", O_WRONLY);
464     CHECK_NE(dummy_fd, -1);
465     usb_ffs_init();
466 }
467 
usb_write(usb_handle * h,const void * data,int len)468 int usb_write(usb_handle* h, const void* data, int len) {
469     return h->write(h, data, len);
470 }
471 
usb_read(usb_handle * h,void * data,int len)472 int usb_read(usb_handle* h, void* data, int len) {
473     return h->read(h, data, len);
474 }
475 
usb_close(usb_handle * h)476 int usb_close(usb_handle* h) {
477     h->close(h);
478     return 0;
479 }
480 
usb_kick(usb_handle * h)481 void usb_kick(usb_handle* h) {
482     h->kick(h);
483 }
484