1 /* ===-- divxc3.c - Implement __divxc3 -------------------------------------===
2 *
3 * The LLVM Compiler Infrastructure
4 *
5 * This file is dual licensed under the MIT and the University of Illinois Open
6 * Source Licenses. See LICENSE.TXT for details.
7 *
8 * ===----------------------------------------------------------------------===
9 *
10 * This file implements __divxc3 for the compiler_rt library.
11 *
12 */
13
14 #if !_ARCH_PPC
15
16 #include "int_lib.h"
17 #include "int_math.h"
18
19 /* Returns: the quotient of (a + ib) / (c + id) */
20
21 COMPILER_RT_ABI Lcomplex
__divxc3(long double __a,long double __b,long double __c,long double __d)22 __divxc3(long double __a, long double __b, long double __c, long double __d)
23 {
24 int __ilogbw = 0;
25 long double __logbw = crt_logbl(crt_fmaxl(crt_fabsl(__c), crt_fabsl(__d)));
26 if (crt_isfinite(__logbw))
27 {
28 __ilogbw = (int)__logbw;
29 __c = crt_scalbnl(__c, -__ilogbw);
30 __d = crt_scalbnl(__d, -__ilogbw);
31 }
32 long double __denom = __c * __c + __d * __d;
33 Lcomplex z;
34 COMPLEX_REAL(z) = crt_scalbnl((__a * __c + __b * __d) / __denom, -__ilogbw);
35 COMPLEX_IMAGINARY(z) = crt_scalbnl((__b * __c - __a * __d) / __denom, -__ilogbw);
36 if (crt_isnan(COMPLEX_REAL(z)) && crt_isnan(COMPLEX_IMAGINARY(z)))
37 {
38 if ((__denom == 0) && (!crt_isnan(__a) || !crt_isnan(__b)))
39 {
40 COMPLEX_REAL(z) = crt_copysignl(CRT_INFINITY, __c) * __a;
41 COMPLEX_IMAGINARY(z) = crt_copysignl(CRT_INFINITY, __c) * __b;
42 }
43 else if ((crt_isinf(__a) || crt_isinf(__b)) &&
44 crt_isfinite(__c) && crt_isfinite(__d))
45 {
46 __a = crt_copysignl(crt_isinf(__a) ? 1 : 0, __a);
47 __b = crt_copysignl(crt_isinf(__b) ? 1 : 0, __b);
48 COMPLEX_REAL(z) = CRT_INFINITY * (__a * __c + __b * __d);
49 COMPLEX_IMAGINARY(z) = CRT_INFINITY * (__b * __c - __a * __d);
50 }
51 else if (crt_isinf(__logbw) && __logbw > 0 &&
52 crt_isfinite(__a) && crt_isfinite(__b))
53 {
54 __c = crt_copysignl(crt_isinf(__c) ? 1 : 0, __c);
55 __d = crt_copysignl(crt_isinf(__d) ? 1 : 0, __d);
56 COMPLEX_REAL(z) = 0 * (__a * __c + __b * __d);
57 COMPLEX_IMAGINARY(z) = 0 * (__b * __c - __a * __d);
58 }
59 }
60 return z;
61 }
62
63 #endif
64