• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /* Copyright (c) 2015, Google Inc.
2  *
3  * Permission to use, copy, modify, and/or distribute this software for any
4  * purpose with or without fee is hereby granted, provided that the above
5  * copyright notice and this permission notice appear in all copies.
6  *
7  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
8  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
9  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
10  * SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
11  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION
12  * OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
13  * CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */
14 
15 /* A 64-bit implementation of the NIST P-224 elliptic curve point multiplication
16  *
17  * Inspired by Daniel J. Bernstein's public domain nistp224 implementation
18  * and Adam Langley's public domain 64-bit C implementation of curve25519. */
19 
20 #include <openssl/base.h>
21 
22 #if defined(OPENSSL_64_BIT) && !defined(OPENSSL_WINDOWS) && \
23     !defined(OPENSSL_SMALL)
24 
25 #include <openssl/bn.h>
26 #include <openssl/ec.h>
27 #include <openssl/err.h>
28 #include <openssl/mem.h>
29 
30 #include <string.h>
31 
32 #include "internal.h"
33 #include "../delocate.h"
34 #include "../../internal.h"
35 
36 
37 /* Field elements are represented as a_0 + 2^56*a_1 + 2^112*a_2 + 2^168*a_3
38  * using 64-bit coefficients called 'limbs', and sometimes (for multiplication
39  * results) as b_0 + 2^56*b_1 + 2^112*b_2 + 2^168*b_3 + 2^224*b_4 + 2^280*b_5 +
40  * 2^336*b_6 using 128-bit coefficients called 'widelimbs'. A 4-p224_limb
41  * representation is an 'p224_felem'; a 7-p224_widelimb representation is a
42  * 'p224_widefelem'. Even within felems, bits of adjacent limbs overlap, and we
43  * don't always reduce the representations: we ensure that inputs to each
44  * p224_felem multiplication satisfy a_i < 2^60, so outputs satisfy b_i <
45  * 4*2^60*2^60, and fit into a 128-bit word without overflow. The coefficients
46  * are then again partially reduced to obtain an p224_felem satisfying a_i <
47  * 2^57. We only reduce to the unique minimal representation at the end of the
48  * computation. */
49 
50 typedef uint64_t p224_limb;
51 typedef uint128_t p224_widelimb;
52 
53 typedef p224_limb p224_felem[4];
54 typedef p224_widelimb p224_widefelem[7];
55 
56 /* Field element represented as a byte arrary. 28*8 = 224 bits is also the
57  * group order size for the elliptic curve, and we also use this type for
58  * scalars for point multiplication. */
59 typedef uint8_t p224_felem_bytearray[28];
60 
61 /* Precomputed multiples of the standard generator
62  * Points are given in coordinates (X, Y, Z) where Z normally is 1
63  * (0 for the point at infinity).
64  * For each field element, slice a_0 is word 0, etc.
65  *
66  * The table has 2 * 16 elements, starting with the following:
67  * index | bits    | point
68  * ------+---------+------------------------------
69  *     0 | 0 0 0 0 | 0G
70  *     1 | 0 0 0 1 | 1G
71  *     2 | 0 0 1 0 | 2^56G
72  *     3 | 0 0 1 1 | (2^56 + 1)G
73  *     4 | 0 1 0 0 | 2^112G
74  *     5 | 0 1 0 1 | (2^112 + 1)G
75  *     6 | 0 1 1 0 | (2^112 + 2^56)G
76  *     7 | 0 1 1 1 | (2^112 + 2^56 + 1)G
77  *     8 | 1 0 0 0 | 2^168G
78  *     9 | 1 0 0 1 | (2^168 + 1)G
79  *    10 | 1 0 1 0 | (2^168 + 2^56)G
80  *    11 | 1 0 1 1 | (2^168 + 2^56 + 1)G
81  *    12 | 1 1 0 0 | (2^168 + 2^112)G
82  *    13 | 1 1 0 1 | (2^168 + 2^112 + 1)G
83  *    14 | 1 1 1 0 | (2^168 + 2^112 + 2^56)G
84  *    15 | 1 1 1 1 | (2^168 + 2^112 + 2^56 + 1)G
85  * followed by a copy of this with each element multiplied by 2^28.
86  *
87  * The reason for this is so that we can clock bits into four different
88  * locations when doing simple scalar multiplies against the base point,
89  * and then another four locations using the second 16 elements. */
90 static const p224_felem g_p224_pre_comp[2][16][3] = {
91     {{{0, 0, 0, 0}, {0, 0, 0, 0}, {0, 0, 0, 0}},
92      {{0x3280d6115c1d21, 0xc1d356c2112234, 0x7f321390b94a03, 0xb70e0cbd6bb4bf},
93       {0xd5819985007e34, 0x75a05a07476444, 0xfb4c22dfe6cd43, 0xbd376388b5f723},
94       {1, 0, 0, 0}},
95      {{0xfd9675666ebbe9, 0xbca7664d40ce5e, 0x2242df8d8a2a43, 0x1f49bbb0f99bc5},
96       {0x29e0b892dc9c43, 0xece8608436e662, 0xdc858f185310d0, 0x9812dd4eb8d321},
97       {1, 0, 0, 0}},
98      {{0x6d3e678d5d8eb8, 0x559eed1cb362f1, 0x16e9a3bbce8a3f, 0xeedcccd8c2a748},
99       {0xf19f90ed50266d, 0xabf2b4bf65f9df, 0x313865468fafec, 0x5cb379ba910a17},
100       {1, 0, 0, 0}},
101      {{0x0641966cab26e3, 0x91fb2991fab0a0, 0xefec27a4e13a0b, 0x0499aa8a5f8ebe},
102       {0x7510407766af5d, 0x84d929610d5450, 0x81d77aae82f706, 0x6916f6d4338c5b},
103       {1, 0, 0, 0}},
104      {{0xea95ac3b1f15c6, 0x086000905e82d4, 0xdd323ae4d1c8b1, 0x932b56be7685a3},
105       {0x9ef93dea25dbbf, 0x41665960f390f0, 0xfdec76dbe2a8a7, 0x523e80f019062a},
106       {1, 0, 0, 0}},
107      {{0x822fdd26732c73, 0xa01c83531b5d0f, 0x363f37347c1ba4, 0xc391b45c84725c},
108       {0xbbd5e1b2d6ad24, 0xddfbcde19dfaec, 0xc393da7e222a7f, 0x1efb7890ede244},
109       {1, 0, 0, 0}},
110      {{0x4c9e90ca217da1, 0xd11beca79159bb, 0xff8d33c2c98b7c, 0x2610b39409f849},
111       {0x44d1352ac64da0, 0xcdbb7b2c46b4fb, 0x966c079b753c89, 0xfe67e4e820b112},
112       {1, 0, 0, 0}},
113      {{0xe28cae2df5312d, 0xc71b61d16f5c6e, 0x79b7619a3e7c4c, 0x05c73240899b47},
114       {0x9f7f6382c73e3a, 0x18615165c56bda, 0x641fab2116fd56, 0x72855882b08394},
115       {1, 0, 0, 0}},
116      {{0x0469182f161c09, 0x74a98ca8d00fb5, 0xb89da93489a3e0, 0x41c98768fb0c1d},
117       {0xe5ea05fb32da81, 0x3dce9ffbca6855, 0x1cfe2d3fbf59e6, 0x0e5e03408738a7},
118       {1, 0, 0, 0}},
119      {{0xdab22b2333e87f, 0x4430137a5dd2f6, 0xe03ab9f738beb8, 0xcb0c5d0dc34f24},
120       {0x764a7df0c8fda5, 0x185ba5c3fa2044, 0x9281d688bcbe50, 0xc40331df893881},
121       {1, 0, 0, 0}},
122      {{0xb89530796f0f60, 0xade92bd26909a3, 0x1a0c83fb4884da, 0x1765bf22a5a984},
123       {0x772a9ee75db09e, 0x23bc6c67cec16f, 0x4c1edba8b14e2f, 0xe2a215d9611369},
124       {1, 0, 0, 0}},
125      {{0x571e509fb5efb3, 0xade88696410552, 0xc8ae85fada74fe, 0x6c7e4be83bbde3},
126       {0xff9f51160f4652, 0xb47ce2495a6539, 0xa2946c53b582f4, 0x286d2db3ee9a60},
127       {1, 0, 0, 0}},
128      {{0x40bbd5081a44af, 0x0995183b13926c, 0xbcefba6f47f6d0, 0x215619e9cc0057},
129       {0x8bc94d3b0df45e, 0xf11c54a3694f6f, 0x8631b93cdfe8b5, 0xe7e3f4b0982db9},
130       {1, 0, 0, 0}},
131      {{0xb17048ab3e1c7b, 0xac38f36ff8a1d8, 0x1c29819435d2c6, 0xc813132f4c07e9},
132       {0x2891425503b11f, 0x08781030579fea, 0xf5426ba5cc9674, 0x1e28ebf18562bc},
133       {1, 0, 0, 0}},
134      {{0x9f31997cc864eb, 0x06cd91d28b5e4c, 0xff17036691a973, 0xf1aef351497c58},
135       {0xdd1f2d600564ff, 0xdead073b1402db, 0x74a684435bd693, 0xeea7471f962558},
136       {1, 0, 0, 0}}},
137     {{{0, 0, 0, 0}, {0, 0, 0, 0}, {0, 0, 0, 0}},
138      {{0x9665266dddf554, 0x9613d78b60ef2d, 0xce27a34cdba417, 0xd35ab74d6afc31},
139       {0x85ccdd22deb15e, 0x2137e5783a6aab, 0xa141cffd8c93c6, 0x355a1830e90f2d},
140       {1, 0, 0, 0}},
141      {{0x1a494eadaade65, 0xd6da4da77fe53c, 0xe7992996abec86, 0x65c3553c6090e3},
142       {0xfa610b1fb09346, 0xf1c6540b8a4aaf, 0xc51a13ccd3cbab, 0x02995b1b18c28a},
143       {1, 0, 0, 0}},
144      {{0x7874568e7295ef, 0x86b419fbe38d04, 0xdc0690a7550d9a, 0xd3966a44beac33},
145       {0x2b7280ec29132f, 0xbeaa3b6a032df3, 0xdc7dd88ae41200, 0xd25e2513e3a100},
146       {1, 0, 0, 0}},
147      {{0x924857eb2efafd, 0xac2bce41223190, 0x8edaa1445553fc, 0x825800fd3562d5},
148       {0x8d79148ea96621, 0x23a01c3dd9ed8d, 0xaf8b219f9416b5, 0xd8db0cc277daea},
149       {1, 0, 0, 0}},
150      {{0x76a9c3b1a700f0, 0xe9acd29bc7e691, 0x69212d1a6b0327, 0x6322e97fe154be},
151       {0x469fc5465d62aa, 0x8d41ed18883b05, 0x1f8eae66c52b88, 0xe4fcbe9325be51},
152       {1, 0, 0, 0}},
153      {{0x825fdf583cac16, 0x020b857c7b023a, 0x683c17744b0165, 0x14ffd0a2daf2f1},
154       {0x323b36184218f9, 0x4944ec4e3b47d4, 0xc15b3080841acf, 0x0bced4b01a28bb},
155       {1, 0, 0, 0}},
156      {{0x92ac22230df5c4, 0x52f33b4063eda8, 0xcb3f19870c0c93, 0x40064f2ba65233},
157       {0xfe16f0924f8992, 0x012da25af5b517, 0x1a57bb24f723a6, 0x06f8bc76760def},
158       {1, 0, 0, 0}},
159      {{0x4a7084f7817cb9, 0xbcab0738ee9a78, 0x3ec11e11d9c326, 0xdc0fe90e0f1aae},
160       {0xcf639ea5f98390, 0x5c350aa22ffb74, 0x9afae98a4047b7, 0x956ec2d617fc45},
161       {1, 0, 0, 0}},
162      {{0x4306d648c1be6a, 0x9247cd8bc9a462, 0xf5595e377d2f2e, 0xbd1c3caff1a52e},
163       {0x045e14472409d0, 0x29f3e17078f773, 0x745a602b2d4f7d, 0x191837685cdfbb},
164       {1, 0, 0, 0}},
165      {{0x5b6ee254a8cb79, 0x4953433f5e7026, 0xe21faeb1d1def4, 0xc4c225785c09de},
166       {0x307ce7bba1e518, 0x31b125b1036db8, 0x47e91868839e8f, 0xc765866e33b9f3},
167       {1, 0, 0, 0}},
168      {{0x3bfece24f96906, 0x4794da641e5093, 0xde5df64f95db26, 0x297ecd89714b05},
169       {0x701bd3ebb2c3aa, 0x7073b4f53cb1d5, 0x13c5665658af16, 0x9895089d66fe58},
170       {1, 0, 0, 0}},
171      {{0x0fef05f78c4790, 0x2d773633b05d2e, 0x94229c3a951c94, 0xbbbd70df4911bb},
172       {0xb2c6963d2c1168, 0x105f47a72b0d73, 0x9fdf6111614080, 0x7b7e94b39e67b0},
173       {1, 0, 0, 0}},
174      {{0xad1a7d6efbe2b3, 0xf012482c0da69d, 0x6b3bdf12438345, 0x40d7558d7aa4d9},
175       {0x8a09fffb5c6d3d, 0x9a356e5d9ffd38, 0x5973f15f4f9b1c, 0xdcd5f59f63c3ea},
176       {1, 0, 0, 0}},
177      {{0xacf39f4c5ca7ab, 0x4c8071cc5fd737, 0xc64e3602cd1184, 0x0acd4644c9abba},
178       {0x6c011a36d8bf6e, 0xfecd87ba24e32a, 0x19f6f56574fad8, 0x050b204ced9405},
179       {1, 0, 0, 0}},
180      {{0xed4f1cae7d9a96, 0x5ceef7ad94c40a, 0x778e4a3bf3ef9b, 0x7405783dc3b55e},
181       {0x32477c61b6e8c6, 0xb46a97570f018b, 0x91176d0a7e95d1, 0x3df90fbc4c7d0e},
182       {1, 0, 0, 0}}}};
183 
p224_load_u64(const uint8_t in[8])184 static uint64_t p224_load_u64(const uint8_t in[8]) {
185   uint64_t ret;
186   OPENSSL_memcpy(&ret, in, sizeof(ret));
187   return ret;
188 }
189 
190 /* Helper functions to convert field elements to/from internal representation */
p224_bin28_to_felem(p224_felem out,const uint8_t in[28])191 static void p224_bin28_to_felem(p224_felem out, const uint8_t in[28]) {
192   out[0] = p224_load_u64(in) & 0x00ffffffffffffff;
193   out[1] = p224_load_u64(in + 7) & 0x00ffffffffffffff;
194   out[2] = p224_load_u64(in + 14) & 0x00ffffffffffffff;
195   out[3] = p224_load_u64(in + 20) >> 8;
196 }
197 
p224_felem_to_bin28(uint8_t out[28],const p224_felem in)198 static void p224_felem_to_bin28(uint8_t out[28], const p224_felem in) {
199   for (size_t i = 0; i < 7; ++i) {
200     out[i] = in[0] >> (8 * i);
201     out[i + 7] = in[1] >> (8 * i);
202     out[i + 14] = in[2] >> (8 * i);
203     out[i + 21] = in[3] >> (8 * i);
204   }
205 }
206 
207 /* To preserve endianness when using BN_bn2bin and BN_bin2bn */
p224_flip_endian(uint8_t * out,const uint8_t * in,size_t len)208 static void p224_flip_endian(uint8_t *out, const uint8_t *in, size_t len) {
209   for (size_t i = 0; i < len; ++i) {
210     out[i] = in[len - 1 - i];
211   }
212 }
213 
214 /* From OpenSSL BIGNUM to internal representation */
p224_BN_to_felem(p224_felem out,const BIGNUM * bn)215 static int p224_BN_to_felem(p224_felem out, const BIGNUM *bn) {
216   /* BN_bn2bin eats leading zeroes */
217   p224_felem_bytearray b_out;
218   OPENSSL_memset(b_out, 0, sizeof(b_out));
219   size_t num_bytes = BN_num_bytes(bn);
220   if (num_bytes > sizeof(b_out) ||
221       BN_is_negative(bn)) {
222     OPENSSL_PUT_ERROR(EC, EC_R_BIGNUM_OUT_OF_RANGE);
223     return 0;
224   }
225 
226   p224_felem_bytearray b_in;
227   num_bytes = BN_bn2bin(bn, b_in);
228   p224_flip_endian(b_out, b_in, num_bytes);
229   p224_bin28_to_felem(out, b_out);
230   return 1;
231 }
232 
233 /* From internal representation to OpenSSL BIGNUM */
p224_felem_to_BN(BIGNUM * out,const p224_felem in)234 static BIGNUM *p224_felem_to_BN(BIGNUM *out, const p224_felem in) {
235   p224_felem_bytearray b_in, b_out;
236   p224_felem_to_bin28(b_in, in);
237   p224_flip_endian(b_out, b_in, sizeof(b_out));
238   return BN_bin2bn(b_out, sizeof(b_out), out);
239 }
240 
241 /* Field operations, using the internal representation of field elements.
242  * NB! These operations are specific to our point multiplication and cannot be
243  * expected to be correct in general - e.g., multiplication with a large scalar
244  * will cause an overflow. */
245 
p224_felem_assign(p224_felem out,const p224_felem in)246 static void p224_felem_assign(p224_felem out, const p224_felem in) {
247   out[0] = in[0];
248   out[1] = in[1];
249   out[2] = in[2];
250   out[3] = in[3];
251 }
252 
253 /* Sum two field elements: out += in */
p224_felem_sum(p224_felem out,const p224_felem in)254 static void p224_felem_sum(p224_felem out, const p224_felem in) {
255   out[0] += in[0];
256   out[1] += in[1];
257   out[2] += in[2];
258   out[3] += in[3];
259 }
260 
261 /* Get negative value: out = -in */
262 /* Assumes in[i] < 2^57 */
p224_felem_neg(p224_felem out,const p224_felem in)263 static void p224_felem_neg(p224_felem out, const p224_felem in) {
264   static const p224_limb two58p2 =
265       (((p224_limb)1) << 58) + (((p224_limb)1) << 2);
266   static const p224_limb two58m2 =
267       (((p224_limb)1) << 58) - (((p224_limb)1) << 2);
268   static const p224_limb two58m42m2 =
269       (((p224_limb)1) << 58) - (((p224_limb)1) << 42) - (((p224_limb)1) << 2);
270 
271   /* Set to 0 mod 2^224-2^96+1 to ensure out > in */
272   out[0] = two58p2 - in[0];
273   out[1] = two58m42m2 - in[1];
274   out[2] = two58m2 - in[2];
275   out[3] = two58m2 - in[3];
276 }
277 
278 /* Subtract field elements: out -= in */
279 /* Assumes in[i] < 2^57 */
p224_felem_diff(p224_felem out,const p224_felem in)280 static void p224_felem_diff(p224_felem out, const p224_felem in) {
281   static const p224_limb two58p2 =
282       (((p224_limb)1) << 58) + (((p224_limb)1) << 2);
283   static const p224_limb two58m2 =
284       (((p224_limb)1) << 58) - (((p224_limb)1) << 2);
285   static const p224_limb two58m42m2 =
286       (((p224_limb)1) << 58) - (((p224_limb)1) << 42) - (((p224_limb)1) << 2);
287 
288   /* Add 0 mod 2^224-2^96+1 to ensure out > in */
289   out[0] += two58p2;
290   out[1] += two58m42m2;
291   out[2] += two58m2;
292   out[3] += two58m2;
293 
294   out[0] -= in[0];
295   out[1] -= in[1];
296   out[2] -= in[2];
297   out[3] -= in[3];
298 }
299 
300 /* Subtract in unreduced 128-bit mode: out -= in */
301 /* Assumes in[i] < 2^119 */
p224_widefelem_diff(p224_widefelem out,const p224_widefelem in)302 static void p224_widefelem_diff(p224_widefelem out, const p224_widefelem in) {
303   static const p224_widelimb two120 = ((p224_widelimb)1) << 120;
304   static const p224_widelimb two120m64 =
305       (((p224_widelimb)1) << 120) - (((p224_widelimb)1) << 64);
306   static const p224_widelimb two120m104m64 = (((p224_widelimb)1) << 120) -
307                                              (((p224_widelimb)1) << 104) -
308                                              (((p224_widelimb)1) << 64);
309 
310   /* Add 0 mod 2^224-2^96+1 to ensure out > in */
311   out[0] += two120;
312   out[1] += two120m64;
313   out[2] += two120m64;
314   out[3] += two120;
315   out[4] += two120m104m64;
316   out[5] += two120m64;
317   out[6] += two120m64;
318 
319   out[0] -= in[0];
320   out[1] -= in[1];
321   out[2] -= in[2];
322   out[3] -= in[3];
323   out[4] -= in[4];
324   out[5] -= in[5];
325   out[6] -= in[6];
326 }
327 
328 /* Subtract in mixed mode: out128 -= in64 */
329 /* in[i] < 2^63 */
p224_felem_diff_128_64(p224_widefelem out,const p224_felem in)330 static void p224_felem_diff_128_64(p224_widefelem out, const p224_felem in) {
331   static const p224_widelimb two64p8 =
332       (((p224_widelimb)1) << 64) + (((p224_widelimb)1) << 8);
333   static const p224_widelimb two64m8 =
334       (((p224_widelimb)1) << 64) - (((p224_widelimb)1) << 8);
335   static const p224_widelimb two64m48m8 = (((p224_widelimb)1) << 64) -
336                                           (((p224_widelimb)1) << 48) -
337                                           (((p224_widelimb)1) << 8);
338 
339   /* Add 0 mod 2^224-2^96+1 to ensure out > in */
340   out[0] += two64p8;
341   out[1] += two64m48m8;
342   out[2] += two64m8;
343   out[3] += two64m8;
344 
345   out[0] -= in[0];
346   out[1] -= in[1];
347   out[2] -= in[2];
348   out[3] -= in[3];
349 }
350 
351 /* Multiply a field element by a scalar: out = out * scalar
352  * The scalars we actually use are small, so results fit without overflow */
p224_felem_scalar(p224_felem out,const p224_limb scalar)353 static void p224_felem_scalar(p224_felem out, const p224_limb scalar) {
354   out[0] *= scalar;
355   out[1] *= scalar;
356   out[2] *= scalar;
357   out[3] *= scalar;
358 }
359 
360 /* Multiply an unreduced field element by a scalar: out = out * scalar
361  * The scalars we actually use are small, so results fit without overflow */
p224_widefelem_scalar(p224_widefelem out,const p224_widelimb scalar)362 static void p224_widefelem_scalar(p224_widefelem out,
363                                   const p224_widelimb scalar) {
364   out[0] *= scalar;
365   out[1] *= scalar;
366   out[2] *= scalar;
367   out[3] *= scalar;
368   out[4] *= scalar;
369   out[5] *= scalar;
370   out[6] *= scalar;
371 }
372 
373 /* Square a field element: out = in^2 */
p224_felem_square(p224_widefelem out,const p224_felem in)374 static void p224_felem_square(p224_widefelem out, const p224_felem in) {
375   p224_limb tmp0, tmp1, tmp2;
376   tmp0 = 2 * in[0];
377   tmp1 = 2 * in[1];
378   tmp2 = 2 * in[2];
379   out[0] = ((p224_widelimb)in[0]) * in[0];
380   out[1] = ((p224_widelimb)in[0]) * tmp1;
381   out[2] = ((p224_widelimb)in[0]) * tmp2 + ((p224_widelimb)in[1]) * in[1];
382   out[3] = ((p224_widelimb)in[3]) * tmp0 + ((p224_widelimb)in[1]) * tmp2;
383   out[4] = ((p224_widelimb)in[3]) * tmp1 + ((p224_widelimb)in[2]) * in[2];
384   out[5] = ((p224_widelimb)in[3]) * tmp2;
385   out[6] = ((p224_widelimb)in[3]) * in[3];
386 }
387 
388 /* Multiply two field elements: out = in1 * in2 */
p224_felem_mul(p224_widefelem out,const p224_felem in1,const p224_felem in2)389 static void p224_felem_mul(p224_widefelem out, const p224_felem in1,
390                            const p224_felem in2) {
391   out[0] = ((p224_widelimb)in1[0]) * in2[0];
392   out[1] = ((p224_widelimb)in1[0]) * in2[1] + ((p224_widelimb)in1[1]) * in2[0];
393   out[2] = ((p224_widelimb)in1[0]) * in2[2] + ((p224_widelimb)in1[1]) * in2[1] +
394            ((p224_widelimb)in1[2]) * in2[0];
395   out[3] = ((p224_widelimb)in1[0]) * in2[3] + ((p224_widelimb)in1[1]) * in2[2] +
396            ((p224_widelimb)in1[2]) * in2[1] + ((p224_widelimb)in1[3]) * in2[0];
397   out[4] = ((p224_widelimb)in1[1]) * in2[3] + ((p224_widelimb)in1[2]) * in2[2] +
398            ((p224_widelimb)in1[3]) * in2[1];
399   out[5] = ((p224_widelimb)in1[2]) * in2[3] + ((p224_widelimb)in1[3]) * in2[2];
400   out[6] = ((p224_widelimb)in1[3]) * in2[3];
401 }
402 
403 /* Reduce seven 128-bit coefficients to four 64-bit coefficients.
404  * Requires in[i] < 2^126,
405  * ensures out[0] < 2^56, out[1] < 2^56, out[2] < 2^56, out[3] <= 2^56 + 2^16 */
p224_felem_reduce(p224_felem out,const p224_widefelem in)406 static void p224_felem_reduce(p224_felem out, const p224_widefelem in) {
407   static const p224_widelimb two127p15 =
408       (((p224_widelimb)1) << 127) + (((p224_widelimb)1) << 15);
409   static const p224_widelimb two127m71 =
410       (((p224_widelimb)1) << 127) - (((p224_widelimb)1) << 71);
411   static const p224_widelimb two127m71m55 = (((p224_widelimb)1) << 127) -
412                                             (((p224_widelimb)1) << 71) -
413                                             (((p224_widelimb)1) << 55);
414   p224_widelimb output[5];
415 
416   /* Add 0 mod 2^224-2^96+1 to ensure all differences are positive */
417   output[0] = in[0] + two127p15;
418   output[1] = in[1] + two127m71m55;
419   output[2] = in[2] + two127m71;
420   output[3] = in[3];
421   output[4] = in[4];
422 
423   /* Eliminate in[4], in[5], in[6] */
424   output[4] += in[6] >> 16;
425   output[3] += (in[6] & 0xffff) << 40;
426   output[2] -= in[6];
427 
428   output[3] += in[5] >> 16;
429   output[2] += (in[5] & 0xffff) << 40;
430   output[1] -= in[5];
431 
432   output[2] += output[4] >> 16;
433   output[1] += (output[4] & 0xffff) << 40;
434   output[0] -= output[4];
435 
436   /* Carry 2 -> 3 -> 4 */
437   output[3] += output[2] >> 56;
438   output[2] &= 0x00ffffffffffffff;
439 
440   output[4] = output[3] >> 56;
441   output[3] &= 0x00ffffffffffffff;
442 
443   /* Now output[2] < 2^56, output[3] < 2^56, output[4] < 2^72 */
444 
445   /* Eliminate output[4] */
446   output[2] += output[4] >> 16;
447   /* output[2] < 2^56 + 2^56 = 2^57 */
448   output[1] += (output[4] & 0xffff) << 40;
449   output[0] -= output[4];
450 
451   /* Carry 0 -> 1 -> 2 -> 3 */
452   output[1] += output[0] >> 56;
453   out[0] = output[0] & 0x00ffffffffffffff;
454 
455   output[2] += output[1] >> 56;
456   /* output[2] < 2^57 + 2^72 */
457   out[1] = output[1] & 0x00ffffffffffffff;
458   output[3] += output[2] >> 56;
459   /* output[3] <= 2^56 + 2^16 */
460   out[2] = output[2] & 0x00ffffffffffffff;
461 
462   /* out[0] < 2^56, out[1] < 2^56, out[2] < 2^56,
463    * out[3] <= 2^56 + 2^16 (due to final carry),
464    * so out < 2*p */
465   out[3] = output[3];
466 }
467 
468 /* Reduce to unique minimal representation.
469  * Requires 0 <= in < 2*p (always call p224_felem_reduce first) */
p224_felem_contract(p224_felem out,const p224_felem in)470 static void p224_felem_contract(p224_felem out, const p224_felem in) {
471   static const int64_t two56 = ((p224_limb)1) << 56;
472   /* 0 <= in < 2*p, p = 2^224 - 2^96 + 1 */
473   /* if in > p , reduce in = in - 2^224 + 2^96 - 1 */
474   int64_t tmp[4], a;
475   tmp[0] = in[0];
476   tmp[1] = in[1];
477   tmp[2] = in[2];
478   tmp[3] = in[3];
479   /* Case 1: a = 1 iff in >= 2^224 */
480   a = (in[3] >> 56);
481   tmp[0] -= a;
482   tmp[1] += a << 40;
483   tmp[3] &= 0x00ffffffffffffff;
484   /* Case 2: a = 0 iff p <= in < 2^224, i.e., the high 128 bits are all 1 and
485    * the lower part is non-zero */
486   a = ((in[3] & in[2] & (in[1] | 0x000000ffffffffff)) + 1) |
487       (((int64_t)(in[0] + (in[1] & 0x000000ffffffffff)) - 1) >> 63);
488   a &= 0x00ffffffffffffff;
489   /* turn a into an all-one mask (if a = 0) or an all-zero mask */
490   a = (a - 1) >> 63;
491   /* subtract 2^224 - 2^96 + 1 if a is all-one */
492   tmp[3] &= a ^ 0xffffffffffffffff;
493   tmp[2] &= a ^ 0xffffffffffffffff;
494   tmp[1] &= (a ^ 0xffffffffffffffff) | 0x000000ffffffffff;
495   tmp[0] -= 1 & a;
496 
497   /* eliminate negative coefficients: if tmp[0] is negative, tmp[1] must
498    * be non-zero, so we only need one step */
499   a = tmp[0] >> 63;
500   tmp[0] += two56 & a;
501   tmp[1] -= 1 & a;
502 
503   /* carry 1 -> 2 -> 3 */
504   tmp[2] += tmp[1] >> 56;
505   tmp[1] &= 0x00ffffffffffffff;
506 
507   tmp[3] += tmp[2] >> 56;
508   tmp[2] &= 0x00ffffffffffffff;
509 
510   /* Now 0 <= out < p */
511   out[0] = tmp[0];
512   out[1] = tmp[1];
513   out[2] = tmp[2];
514   out[3] = tmp[3];
515 }
516 
517 /* Zero-check: returns 1 if input is 0, and 0 otherwise. We know that field
518  * elements are reduced to in < 2^225, so we only need to check three cases: 0,
519  * 2^224 - 2^96 + 1, and 2^225 - 2^97 + 2 */
p224_felem_is_zero(const p224_felem in)520 static p224_limb p224_felem_is_zero(const p224_felem in) {
521   p224_limb zero = in[0] | in[1] | in[2] | in[3];
522   zero = (((int64_t)(zero)-1) >> 63) & 1;
523 
524   p224_limb two224m96p1 = (in[0] ^ 1) | (in[1] ^ 0x00ffff0000000000) |
525                      (in[2] ^ 0x00ffffffffffffff) |
526                      (in[3] ^ 0x00ffffffffffffff);
527   two224m96p1 = (((int64_t)(two224m96p1)-1) >> 63) & 1;
528   p224_limb two225m97p2 = (in[0] ^ 2) | (in[1] ^ 0x00fffe0000000000) |
529                      (in[2] ^ 0x00ffffffffffffff) |
530                      (in[3] ^ 0x01ffffffffffffff);
531   two225m97p2 = (((int64_t)(two225m97p2)-1) >> 63) & 1;
532   return (zero | two224m96p1 | two225m97p2);
533 }
534 
535 /* Invert a field element */
536 /* Computation chain copied from djb's code */
p224_felem_inv(p224_felem out,const p224_felem in)537 static void p224_felem_inv(p224_felem out, const p224_felem in) {
538   p224_felem ftmp, ftmp2, ftmp3, ftmp4;
539   p224_widefelem tmp;
540 
541   p224_felem_square(tmp, in);
542   p224_felem_reduce(ftmp, tmp); /* 2 */
543   p224_felem_mul(tmp, in, ftmp);
544   p224_felem_reduce(ftmp, tmp); /* 2^2 - 1 */
545   p224_felem_square(tmp, ftmp);
546   p224_felem_reduce(ftmp, tmp); /* 2^3 - 2 */
547   p224_felem_mul(tmp, in, ftmp);
548   p224_felem_reduce(ftmp, tmp); /* 2^3 - 1 */
549   p224_felem_square(tmp, ftmp);
550   p224_felem_reduce(ftmp2, tmp); /* 2^4 - 2 */
551   p224_felem_square(tmp, ftmp2);
552   p224_felem_reduce(ftmp2, tmp); /* 2^5 - 4 */
553   p224_felem_square(tmp, ftmp2);
554   p224_felem_reduce(ftmp2, tmp); /* 2^6 - 8 */
555   p224_felem_mul(tmp, ftmp2, ftmp);
556   p224_felem_reduce(ftmp, tmp); /* 2^6 - 1 */
557   p224_felem_square(tmp, ftmp);
558   p224_felem_reduce(ftmp2, tmp); /* 2^7 - 2 */
559   for (size_t i = 0; i < 5; ++i) { /* 2^12 - 2^6 */
560     p224_felem_square(tmp, ftmp2);
561     p224_felem_reduce(ftmp2, tmp);
562   }
563   p224_felem_mul(tmp, ftmp2, ftmp);
564   p224_felem_reduce(ftmp2, tmp); /* 2^12 - 1 */
565   p224_felem_square(tmp, ftmp2);
566   p224_felem_reduce(ftmp3, tmp); /* 2^13 - 2 */
567   for (size_t i = 0; i < 11; ++i) {/* 2^24 - 2^12 */
568     p224_felem_square(tmp, ftmp3);
569     p224_felem_reduce(ftmp3, tmp);
570   }
571   p224_felem_mul(tmp, ftmp3, ftmp2);
572   p224_felem_reduce(ftmp2, tmp); /* 2^24 - 1 */
573   p224_felem_square(tmp, ftmp2);
574   p224_felem_reduce(ftmp3, tmp); /* 2^25 - 2 */
575   for (size_t i = 0; i < 23; ++i) {/* 2^48 - 2^24 */
576     p224_felem_square(tmp, ftmp3);
577     p224_felem_reduce(ftmp3, tmp);
578   }
579   p224_felem_mul(tmp, ftmp3, ftmp2);
580   p224_felem_reduce(ftmp3, tmp); /* 2^48 - 1 */
581   p224_felem_square(tmp, ftmp3);
582   p224_felem_reduce(ftmp4, tmp); /* 2^49 - 2 */
583   for (size_t i = 0; i < 47; ++i) {/* 2^96 - 2^48 */
584     p224_felem_square(tmp, ftmp4);
585     p224_felem_reduce(ftmp4, tmp);
586   }
587   p224_felem_mul(tmp, ftmp3, ftmp4);
588   p224_felem_reduce(ftmp3, tmp); /* 2^96 - 1 */
589   p224_felem_square(tmp, ftmp3);
590   p224_felem_reduce(ftmp4, tmp); /* 2^97 - 2 */
591   for (size_t i = 0; i < 23; ++i) {/* 2^120 - 2^24 */
592     p224_felem_square(tmp, ftmp4);
593     p224_felem_reduce(ftmp4, tmp);
594   }
595   p224_felem_mul(tmp, ftmp2, ftmp4);
596   p224_felem_reduce(ftmp2, tmp); /* 2^120 - 1 */
597   for (size_t i = 0; i < 6; ++i) { /* 2^126 - 2^6 */
598     p224_felem_square(tmp, ftmp2);
599     p224_felem_reduce(ftmp2, tmp);
600   }
601   p224_felem_mul(tmp, ftmp2, ftmp);
602   p224_felem_reduce(ftmp, tmp); /* 2^126 - 1 */
603   p224_felem_square(tmp, ftmp);
604   p224_felem_reduce(ftmp, tmp); /* 2^127 - 2 */
605   p224_felem_mul(tmp, ftmp, in);
606   p224_felem_reduce(ftmp, tmp); /* 2^127 - 1 */
607   for (size_t i = 0; i < 97; ++i) {/* 2^224 - 2^97 */
608     p224_felem_square(tmp, ftmp);
609     p224_felem_reduce(ftmp, tmp);
610   }
611   p224_felem_mul(tmp, ftmp, ftmp3);
612   p224_felem_reduce(out, tmp); /* 2^224 - 2^96 - 1 */
613 }
614 
615 /* Copy in constant time:
616  * if icopy == 1, copy in to out,
617  * if icopy == 0, copy out to itself. */
p224_copy_conditional(p224_felem out,const p224_felem in,p224_limb icopy)618 static void p224_copy_conditional(p224_felem out, const p224_felem in,
619                                   p224_limb icopy) {
620   /* icopy is a (64-bit) 0 or 1, so copy is either all-zero or all-one */
621   const p224_limb copy = -icopy;
622   for (size_t i = 0; i < 4; ++i) {
623     const p224_limb tmp = copy & (in[i] ^ out[i]);
624     out[i] ^= tmp;
625   }
626 }
627 
628 /* ELLIPTIC CURVE POINT OPERATIONS
629  *
630  * Points are represented in Jacobian projective coordinates:
631  * (X, Y, Z) corresponds to the affine point (X/Z^2, Y/Z^3),
632  * or to the point at infinity if Z == 0. */
633 
634 /* Double an elliptic curve point:
635  * (X', Y', Z') = 2 * (X, Y, Z), where
636  * X' = (3 * (X - Z^2) * (X + Z^2))^2 - 8 * X * Y^2
637  * Y' = 3 * (X - Z^2) * (X + Z^2) * (4 * X * Y^2 - X') - 8 * Y^2
638  * Z' = (Y + Z)^2 - Y^2 - Z^2 = 2 * Y * Z
639  * Outputs can equal corresponding inputs, i.e., x_out == x_in is allowed,
640  * while x_out == y_in is not (maybe this works, but it's not tested). */
p224_point_double(p224_felem x_out,p224_felem y_out,p224_felem z_out,const p224_felem x_in,const p224_felem y_in,const p224_felem z_in)641 static void p224_point_double(p224_felem x_out, p224_felem y_out,
642                               p224_felem z_out, const p224_felem x_in,
643                               const p224_felem y_in, const p224_felem z_in) {
644   p224_widefelem tmp, tmp2;
645   p224_felem delta, gamma, beta, alpha, ftmp, ftmp2;
646 
647   p224_felem_assign(ftmp, x_in);
648   p224_felem_assign(ftmp2, x_in);
649 
650   /* delta = z^2 */
651   p224_felem_square(tmp, z_in);
652   p224_felem_reduce(delta, tmp);
653 
654   /* gamma = y^2 */
655   p224_felem_square(tmp, y_in);
656   p224_felem_reduce(gamma, tmp);
657 
658   /* beta = x*gamma */
659   p224_felem_mul(tmp, x_in, gamma);
660   p224_felem_reduce(beta, tmp);
661 
662   /* alpha = 3*(x-delta)*(x+delta) */
663   p224_felem_diff(ftmp, delta);
664   /* ftmp[i] < 2^57 + 2^58 + 2 < 2^59 */
665   p224_felem_sum(ftmp2, delta);
666   /* ftmp2[i] < 2^57 + 2^57 = 2^58 */
667   p224_felem_scalar(ftmp2, 3);
668   /* ftmp2[i] < 3 * 2^58 < 2^60 */
669   p224_felem_mul(tmp, ftmp, ftmp2);
670   /* tmp[i] < 2^60 * 2^59 * 4 = 2^121 */
671   p224_felem_reduce(alpha, tmp);
672 
673   /* x' = alpha^2 - 8*beta */
674   p224_felem_square(tmp, alpha);
675   /* tmp[i] < 4 * 2^57 * 2^57 = 2^116 */
676   p224_felem_assign(ftmp, beta);
677   p224_felem_scalar(ftmp, 8);
678   /* ftmp[i] < 8 * 2^57 = 2^60 */
679   p224_felem_diff_128_64(tmp, ftmp);
680   /* tmp[i] < 2^116 + 2^64 + 8 < 2^117 */
681   p224_felem_reduce(x_out, tmp);
682 
683   /* z' = (y + z)^2 - gamma - delta */
684   p224_felem_sum(delta, gamma);
685   /* delta[i] < 2^57 + 2^57 = 2^58 */
686   p224_felem_assign(ftmp, y_in);
687   p224_felem_sum(ftmp, z_in);
688   /* ftmp[i] < 2^57 + 2^57 = 2^58 */
689   p224_felem_square(tmp, ftmp);
690   /* tmp[i] < 4 * 2^58 * 2^58 = 2^118 */
691   p224_felem_diff_128_64(tmp, delta);
692   /* tmp[i] < 2^118 + 2^64 + 8 < 2^119 */
693   p224_felem_reduce(z_out, tmp);
694 
695   /* y' = alpha*(4*beta - x') - 8*gamma^2 */
696   p224_felem_scalar(beta, 4);
697   /* beta[i] < 4 * 2^57 = 2^59 */
698   p224_felem_diff(beta, x_out);
699   /* beta[i] < 2^59 + 2^58 + 2 < 2^60 */
700   p224_felem_mul(tmp, alpha, beta);
701   /* tmp[i] < 4 * 2^57 * 2^60 = 2^119 */
702   p224_felem_square(tmp2, gamma);
703   /* tmp2[i] < 4 * 2^57 * 2^57 = 2^116 */
704   p224_widefelem_scalar(tmp2, 8);
705   /* tmp2[i] < 8 * 2^116 = 2^119 */
706   p224_widefelem_diff(tmp, tmp2);
707   /* tmp[i] < 2^119 + 2^120 < 2^121 */
708   p224_felem_reduce(y_out, tmp);
709 }
710 
711 /* Add two elliptic curve points:
712  * (X_1, Y_1, Z_1) + (X_2, Y_2, Z_2) = (X_3, Y_3, Z_3), where
713  * X_3 = (Z_1^3 * Y_2 - Z_2^3 * Y_1)^2 - (Z_1^2 * X_2 - Z_2^2 * X_1)^3 -
714  * 2 * Z_2^2 * X_1 * (Z_1^2 * X_2 - Z_2^2 * X_1)^2
715  * Y_3 = (Z_1^3 * Y_2 - Z_2^3 * Y_1) * (Z_2^2 * X_1 * (Z_1^2 * X_2 - Z_2^2 *
716  * X_1)^2 - X_3) -
717  *        Z_2^3 * Y_1 * (Z_1^2 * X_2 - Z_2^2 * X_1)^3
718  * Z_3 = (Z_1^2 * X_2 - Z_2^2 * X_1) * (Z_1 * Z_2)
719  *
720  * This runs faster if 'mixed' is set, which requires Z_2 = 1 or Z_2 = 0. */
721 
722 /* This function is not entirely constant-time: it includes a branch for
723  * checking whether the two input points are equal, (while not equal to the
724  * point at infinity). This case never happens during single point
725  * multiplication, so there is no timing leak for ECDH or ECDSA signing. */
p224_point_add(p224_felem x3,p224_felem y3,p224_felem z3,const p224_felem x1,const p224_felem y1,const p224_felem z1,const int mixed,const p224_felem x2,const p224_felem y2,const p224_felem z2)726 static void p224_point_add(p224_felem x3, p224_felem y3, p224_felem z3,
727                            const p224_felem x1, const p224_felem y1,
728                            const p224_felem z1, const int mixed,
729                            const p224_felem x2, const p224_felem y2,
730                            const p224_felem z2) {
731   p224_felem ftmp, ftmp2, ftmp3, ftmp4, ftmp5, x_out, y_out, z_out;
732   p224_widefelem tmp, tmp2;
733   p224_limb z1_is_zero, z2_is_zero, x_equal, y_equal;
734 
735   if (!mixed) {
736     /* ftmp2 = z2^2 */
737     p224_felem_square(tmp, z2);
738     p224_felem_reduce(ftmp2, tmp);
739 
740     /* ftmp4 = z2^3 */
741     p224_felem_mul(tmp, ftmp2, z2);
742     p224_felem_reduce(ftmp4, tmp);
743 
744     /* ftmp4 = z2^3*y1 */
745     p224_felem_mul(tmp2, ftmp4, y1);
746     p224_felem_reduce(ftmp4, tmp2);
747 
748     /* ftmp2 = z2^2*x1 */
749     p224_felem_mul(tmp2, ftmp2, x1);
750     p224_felem_reduce(ftmp2, tmp2);
751   } else {
752     /* We'll assume z2 = 1 (special case z2 = 0 is handled later) */
753 
754     /* ftmp4 = z2^3*y1 */
755     p224_felem_assign(ftmp4, y1);
756 
757     /* ftmp2 = z2^2*x1 */
758     p224_felem_assign(ftmp2, x1);
759   }
760 
761   /* ftmp = z1^2 */
762   p224_felem_square(tmp, z1);
763   p224_felem_reduce(ftmp, tmp);
764 
765   /* ftmp3 = z1^3 */
766   p224_felem_mul(tmp, ftmp, z1);
767   p224_felem_reduce(ftmp3, tmp);
768 
769   /* tmp = z1^3*y2 */
770   p224_felem_mul(tmp, ftmp3, y2);
771   /* tmp[i] < 4 * 2^57 * 2^57 = 2^116 */
772 
773   /* ftmp3 = z1^3*y2 - z2^3*y1 */
774   p224_felem_diff_128_64(tmp, ftmp4);
775   /* tmp[i] < 2^116 + 2^64 + 8 < 2^117 */
776   p224_felem_reduce(ftmp3, tmp);
777 
778   /* tmp = z1^2*x2 */
779   p224_felem_mul(tmp, ftmp, x2);
780   /* tmp[i] < 4 * 2^57 * 2^57 = 2^116 */
781 
782   /* ftmp = z1^2*x2 - z2^2*x1 */
783   p224_felem_diff_128_64(tmp, ftmp2);
784   /* tmp[i] < 2^116 + 2^64 + 8 < 2^117 */
785   p224_felem_reduce(ftmp, tmp);
786 
787   /* the formulae are incorrect if the points are equal
788    * so we check for this and do doubling if this happens */
789   x_equal = p224_felem_is_zero(ftmp);
790   y_equal = p224_felem_is_zero(ftmp3);
791   z1_is_zero = p224_felem_is_zero(z1);
792   z2_is_zero = p224_felem_is_zero(z2);
793   /* In affine coordinates, (X_1, Y_1) == (X_2, Y_2) */
794   if (x_equal && y_equal && !z1_is_zero && !z2_is_zero) {
795     p224_point_double(x3, y3, z3, x1, y1, z1);
796     return;
797   }
798 
799   /* ftmp5 = z1*z2 */
800   if (!mixed) {
801     p224_felem_mul(tmp, z1, z2);
802     p224_felem_reduce(ftmp5, tmp);
803   } else {
804     /* special case z2 = 0 is handled later */
805     p224_felem_assign(ftmp5, z1);
806   }
807 
808   /* z_out = (z1^2*x2 - z2^2*x1)*(z1*z2) */
809   p224_felem_mul(tmp, ftmp, ftmp5);
810   p224_felem_reduce(z_out, tmp);
811 
812   /* ftmp = (z1^2*x2 - z2^2*x1)^2 */
813   p224_felem_assign(ftmp5, ftmp);
814   p224_felem_square(tmp, ftmp);
815   p224_felem_reduce(ftmp, tmp);
816 
817   /* ftmp5 = (z1^2*x2 - z2^2*x1)^3 */
818   p224_felem_mul(tmp, ftmp, ftmp5);
819   p224_felem_reduce(ftmp5, tmp);
820 
821   /* ftmp2 = z2^2*x1*(z1^2*x2 - z2^2*x1)^2 */
822   p224_felem_mul(tmp, ftmp2, ftmp);
823   p224_felem_reduce(ftmp2, tmp);
824 
825   /* tmp = z2^3*y1*(z1^2*x2 - z2^2*x1)^3 */
826   p224_felem_mul(tmp, ftmp4, ftmp5);
827   /* tmp[i] < 4 * 2^57 * 2^57 = 2^116 */
828 
829   /* tmp2 = (z1^3*y2 - z2^3*y1)^2 */
830   p224_felem_square(tmp2, ftmp3);
831   /* tmp2[i] < 4 * 2^57 * 2^57 < 2^116 */
832 
833   /* tmp2 = (z1^3*y2 - z2^3*y1)^2 - (z1^2*x2 - z2^2*x1)^3 */
834   p224_felem_diff_128_64(tmp2, ftmp5);
835   /* tmp2[i] < 2^116 + 2^64 + 8 < 2^117 */
836 
837   /* ftmp5 = 2*z2^2*x1*(z1^2*x2 - z2^2*x1)^2 */
838   p224_felem_assign(ftmp5, ftmp2);
839   p224_felem_scalar(ftmp5, 2);
840   /* ftmp5[i] < 2 * 2^57 = 2^58 */
841 
842   /* x_out = (z1^3*y2 - z2^3*y1)^2 - (z1^2*x2 - z2^2*x1)^3 -
843      2*z2^2*x1*(z1^2*x2 - z2^2*x1)^2 */
844   p224_felem_diff_128_64(tmp2, ftmp5);
845   /* tmp2[i] < 2^117 + 2^64 + 8 < 2^118 */
846   p224_felem_reduce(x_out, tmp2);
847 
848   /* ftmp2 = z2^2*x1*(z1^2*x2 - z2^2*x1)^2 - x_out */
849   p224_felem_diff(ftmp2, x_out);
850   /* ftmp2[i] < 2^57 + 2^58 + 2 < 2^59 */
851 
852   /* tmp2 = (z1^3*y2 - z2^3*y1)*(z2^2*x1*(z1^2*x2 - z2^2*x1)^2 - x_out) */
853   p224_felem_mul(tmp2, ftmp3, ftmp2);
854   /* tmp2[i] < 4 * 2^57 * 2^59 = 2^118 */
855 
856   /* y_out = (z1^3*y2 - z2^3*y1)*(z2^2*x1*(z1^2*x2 - z2^2*x1)^2 - x_out) -
857      z2^3*y1*(z1^2*x2 - z2^2*x1)^3 */
858   p224_widefelem_diff(tmp2, tmp);
859   /* tmp2[i] < 2^118 + 2^120 < 2^121 */
860   p224_felem_reduce(y_out, tmp2);
861 
862   /* the result (x_out, y_out, z_out) is incorrect if one of the inputs is
863    * the point at infinity, so we need to check for this separately */
864 
865   /* if point 1 is at infinity, copy point 2 to output, and vice versa */
866   p224_copy_conditional(x_out, x2, z1_is_zero);
867   p224_copy_conditional(x_out, x1, z2_is_zero);
868   p224_copy_conditional(y_out, y2, z1_is_zero);
869   p224_copy_conditional(y_out, y1, z2_is_zero);
870   p224_copy_conditional(z_out, z2, z1_is_zero);
871   p224_copy_conditional(z_out, z1, z2_is_zero);
872   p224_felem_assign(x3, x_out);
873   p224_felem_assign(y3, y_out);
874   p224_felem_assign(z3, z_out);
875 }
876 
877 /* p224_select_point selects the |idx|th point from a precomputation table and
878  * copies it to out. */
p224_select_point(const uint64_t idx,size_t size,const p224_felem pre_comp[][3],p224_felem out[3])879 static void p224_select_point(const uint64_t idx, size_t size,
880                               const p224_felem pre_comp[/*size*/][3],
881                               p224_felem out[3]) {
882   p224_limb *outlimbs = &out[0][0];
883   OPENSSL_memset(outlimbs, 0, 3 * sizeof(p224_felem));
884 
885   for (size_t i = 0; i < size; i++) {
886     const p224_limb *inlimbs = &pre_comp[i][0][0];
887     uint64_t mask = i ^ idx;
888     mask |= mask >> 4;
889     mask |= mask >> 2;
890     mask |= mask >> 1;
891     mask &= 1;
892     mask--;
893     for (size_t j = 0; j < 4 * 3; j++) {
894       outlimbs[j] |= inlimbs[j] & mask;
895     }
896   }
897 }
898 
899 /* p224_get_bit returns the |i|th bit in |in| */
p224_get_bit(const p224_felem_bytearray in,size_t i)900 static char p224_get_bit(const p224_felem_bytearray in, size_t i) {
901   if (i >= 224) {
902     return 0;
903   }
904   return (in[i >> 3] >> (i & 7)) & 1;
905 }
906 
907 /* Interleaved point multiplication using precomputed point multiples:
908  * The small point multiples 0*P, 1*P, ..., 16*P are in p_pre_comp, the scalars
909  * in p_scalar, if non-NULL. If g_scalar is non-NULL, we also add this multiple
910  * of the generator, using certain (large) precomputed multiples in
911  * g_p224_pre_comp. Output point (X, Y, Z) is stored in x_out, y_out, z_out */
p224_batch_mul(p224_felem x_out,p224_felem y_out,p224_felem z_out,const uint8_t * p_scalar,const uint8_t * g_scalar,const p224_felem p_pre_comp[17][3])912 static void p224_batch_mul(p224_felem x_out, p224_felem y_out, p224_felem z_out,
913                            const uint8_t *p_scalar, const uint8_t *g_scalar,
914                            const p224_felem p_pre_comp[17][3]) {
915   p224_felem nq[3], tmp[4];
916   uint64_t bits;
917   uint8_t sign, digit;
918 
919   /* set nq to the point at infinity */
920   OPENSSL_memset(nq, 0, 3 * sizeof(p224_felem));
921 
922   /* Loop over both scalars msb-to-lsb, interleaving additions of multiples of
923    * the generator (two in each of the last 28 rounds) and additions of p (every
924    * 5th round). */
925   int skip = 1; /* save two point operations in the first round */
926   size_t i = p_scalar != NULL ? 220 : 27;
927   for (;;) {
928     /* double */
929     if (!skip) {
930       p224_point_double(nq[0], nq[1], nq[2], nq[0], nq[1], nq[2]);
931     }
932 
933     /* add multiples of the generator */
934     if (g_scalar != NULL && i <= 27) {
935       /* first, look 28 bits upwards */
936       bits = p224_get_bit(g_scalar, i + 196) << 3;
937       bits |= p224_get_bit(g_scalar, i + 140) << 2;
938       bits |= p224_get_bit(g_scalar, i + 84) << 1;
939       bits |= p224_get_bit(g_scalar, i + 28);
940       /* select the point to add, in constant time */
941       p224_select_point(bits, 16, g_p224_pre_comp[1], tmp);
942 
943       if (!skip) {
944         p224_point_add(nq[0], nq[1], nq[2], nq[0], nq[1], nq[2], 1 /* mixed */,
945                   tmp[0], tmp[1], tmp[2]);
946       } else {
947         OPENSSL_memcpy(nq, tmp, 3 * sizeof(p224_felem));
948         skip = 0;
949       }
950 
951       /* second, look at the current position */
952       bits = p224_get_bit(g_scalar, i + 168) << 3;
953       bits |= p224_get_bit(g_scalar, i + 112) << 2;
954       bits |= p224_get_bit(g_scalar, i + 56) << 1;
955       bits |= p224_get_bit(g_scalar, i);
956       /* select the point to add, in constant time */
957       p224_select_point(bits, 16, g_p224_pre_comp[0], tmp);
958       p224_point_add(nq[0], nq[1], nq[2], nq[0], nq[1], nq[2], 1 /* mixed */,
959                      tmp[0], tmp[1], tmp[2]);
960     }
961 
962     /* do other additions every 5 doublings */
963     if (p_scalar != NULL && i % 5 == 0) {
964       bits = p224_get_bit(p_scalar, i + 4) << 5;
965       bits |= p224_get_bit(p_scalar, i + 3) << 4;
966       bits |= p224_get_bit(p_scalar, i + 2) << 3;
967       bits |= p224_get_bit(p_scalar, i + 1) << 2;
968       bits |= p224_get_bit(p_scalar, i) << 1;
969       bits |= p224_get_bit(p_scalar, i - 1);
970       ec_GFp_nistp_recode_scalar_bits(&sign, &digit, bits);
971 
972       /* select the point to add or subtract */
973       p224_select_point(digit, 17, p_pre_comp, tmp);
974       p224_felem_neg(tmp[3], tmp[1]); /* (X, -Y, Z) is the negative point */
975       p224_copy_conditional(tmp[1], tmp[3], sign);
976 
977       if (!skip) {
978         p224_point_add(nq[0], nq[1], nq[2], nq[0], nq[1], nq[2], 0 /* mixed */,
979                   tmp[0], tmp[1], tmp[2]);
980       } else {
981         OPENSSL_memcpy(nq, tmp, 3 * sizeof(p224_felem));
982         skip = 0;
983       }
984     }
985 
986     if (i == 0) {
987       break;
988     }
989     --i;
990   }
991   p224_felem_assign(x_out, nq[0]);
992   p224_felem_assign(y_out, nq[1]);
993   p224_felem_assign(z_out, nq[2]);
994 }
995 
996 /* Takes the Jacobian coordinates (X, Y, Z) of a point and returns
997  * (X', Y') = (X/Z^2, Y/Z^3) */
ec_GFp_nistp224_point_get_affine_coordinates(const EC_GROUP * group,const EC_POINT * point,BIGNUM * x,BIGNUM * y,BN_CTX * ctx)998 static int ec_GFp_nistp224_point_get_affine_coordinates(const EC_GROUP *group,
999                                                         const EC_POINT *point,
1000                                                         BIGNUM *x, BIGNUM *y,
1001                                                         BN_CTX *ctx) {
1002   p224_felem z1, z2, x_in, y_in, x_out, y_out;
1003   p224_widefelem tmp;
1004 
1005   if (EC_POINT_is_at_infinity(group, point)) {
1006     OPENSSL_PUT_ERROR(EC, EC_R_POINT_AT_INFINITY);
1007     return 0;
1008   }
1009 
1010   if (!p224_BN_to_felem(x_in, &point->X) ||
1011       !p224_BN_to_felem(y_in, &point->Y) ||
1012       !p224_BN_to_felem(z1, &point->Z)) {
1013     return 0;
1014   }
1015 
1016   p224_felem_inv(z2, z1);
1017   p224_felem_square(tmp, z2);
1018   p224_felem_reduce(z1, tmp);
1019   p224_felem_mul(tmp, x_in, z1);
1020   p224_felem_reduce(x_in, tmp);
1021   p224_felem_contract(x_out, x_in);
1022   if (x != NULL && !p224_felem_to_BN(x, x_out)) {
1023     OPENSSL_PUT_ERROR(EC, ERR_R_BN_LIB);
1024     return 0;
1025   }
1026 
1027   p224_felem_mul(tmp, z1, z2);
1028   p224_felem_reduce(z1, tmp);
1029   p224_felem_mul(tmp, y_in, z1);
1030   p224_felem_reduce(y_in, tmp);
1031   p224_felem_contract(y_out, y_in);
1032   if (y != NULL && !p224_felem_to_BN(y, y_out)) {
1033     OPENSSL_PUT_ERROR(EC, ERR_R_BN_LIB);
1034     return 0;
1035   }
1036 
1037   return 1;
1038 }
1039 
ec_GFp_nistp224_points_mul(const EC_GROUP * group,EC_POINT * r,const BIGNUM * g_scalar,const EC_POINT * p,const BIGNUM * p_scalar,BN_CTX * ctx)1040 static int ec_GFp_nistp224_points_mul(const EC_GROUP *group, EC_POINT *r,
1041                                       const BIGNUM *g_scalar, const EC_POINT *p,
1042                                       const BIGNUM *p_scalar, BN_CTX *ctx) {
1043   int ret = 0;
1044   BN_CTX *new_ctx = NULL;
1045   BIGNUM *x, *y, *z, *tmp_scalar;
1046   p224_felem_bytearray g_secret, p_secret;
1047   p224_felem p_pre_comp[17][3];
1048   p224_felem_bytearray tmp;
1049   p224_felem x_in, y_in, z_in, x_out, y_out, z_out;
1050 
1051   if (ctx == NULL) {
1052     ctx = BN_CTX_new();
1053     new_ctx = ctx;
1054     if (ctx == NULL) {
1055       return 0;
1056     }
1057   }
1058 
1059   BN_CTX_start(ctx);
1060   if ((x = BN_CTX_get(ctx)) == NULL ||
1061       (y = BN_CTX_get(ctx)) == NULL ||
1062       (z = BN_CTX_get(ctx)) == NULL ||
1063       (tmp_scalar = BN_CTX_get(ctx)) == NULL) {
1064     goto err;
1065   }
1066 
1067   if (p != NULL && p_scalar != NULL) {
1068     /* We treat NULL scalars as 0, and NULL points as points at infinity, i.e.,
1069      * they contribute nothing to the linear combination. */
1070     OPENSSL_memset(&p_secret, 0, sizeof(p_secret));
1071     OPENSSL_memset(&p_pre_comp, 0, sizeof(p_pre_comp));
1072     size_t num_bytes;
1073     /* reduce g_scalar to 0 <= g_scalar < 2^224 */
1074     if (BN_num_bits(p_scalar) > 224 || BN_is_negative(p_scalar)) {
1075       /* this is an unusual input, and we don't guarantee
1076        * constant-timeness */
1077       if (!BN_nnmod(tmp_scalar, p_scalar, &group->order, ctx)) {
1078         OPENSSL_PUT_ERROR(EC, ERR_R_BN_LIB);
1079         goto err;
1080       }
1081       num_bytes = BN_bn2bin(tmp_scalar, tmp);
1082     } else {
1083       num_bytes = BN_bn2bin(p_scalar, tmp);
1084     }
1085 
1086     p224_flip_endian(p_secret, tmp, num_bytes);
1087     /* precompute multiples */
1088     if (!p224_BN_to_felem(x_out, &p->X) ||
1089         !p224_BN_to_felem(y_out, &p->Y) ||
1090         !p224_BN_to_felem(z_out, &p->Z)) {
1091       goto err;
1092     }
1093 
1094     p224_felem_assign(p_pre_comp[1][0], x_out);
1095     p224_felem_assign(p_pre_comp[1][1], y_out);
1096     p224_felem_assign(p_pre_comp[1][2], z_out);
1097 
1098     for (size_t j = 2; j <= 16; ++j) {
1099       if (j & 1) {
1100         p224_point_add(p_pre_comp[j][0], p_pre_comp[j][1], p_pre_comp[j][2],
1101                   p_pre_comp[1][0], p_pre_comp[1][1], p_pre_comp[1][2],
1102                   0, p_pre_comp[j - 1][0], p_pre_comp[j - 1][1],
1103                   p_pre_comp[j - 1][2]);
1104       } else {
1105         p224_point_double(p_pre_comp[j][0], p_pre_comp[j][1],
1106                      p_pre_comp[j][2], p_pre_comp[j / 2][0],
1107                      p_pre_comp[j / 2][1], p_pre_comp[j / 2][2]);
1108       }
1109     }
1110   }
1111 
1112   if (g_scalar != NULL) {
1113     OPENSSL_memset(g_secret, 0, sizeof(g_secret));
1114     size_t num_bytes;
1115     /* reduce g_scalar to 0 <= g_scalar < 2^224 */
1116     if (BN_num_bits(g_scalar) > 224 || BN_is_negative(g_scalar)) {
1117       /* this is an unusual input, and we don't guarantee constant-timeness */
1118       if (!BN_nnmod(tmp_scalar, g_scalar, &group->order, ctx)) {
1119         OPENSSL_PUT_ERROR(EC, ERR_R_BN_LIB);
1120         goto err;
1121       }
1122       num_bytes = BN_bn2bin(tmp_scalar, tmp);
1123     } else {
1124       num_bytes = BN_bn2bin(g_scalar, tmp);
1125     }
1126 
1127     p224_flip_endian(g_secret, tmp, num_bytes);
1128   }
1129   p224_batch_mul(
1130       x_out, y_out, z_out, (p != NULL && p_scalar != NULL) ? p_secret : NULL,
1131       g_scalar != NULL ? g_secret : NULL, (const p224_felem(*)[3])p_pre_comp);
1132 
1133   /* reduce the output to its unique minimal representation */
1134   p224_felem_contract(x_in, x_out);
1135   p224_felem_contract(y_in, y_out);
1136   p224_felem_contract(z_in, z_out);
1137   if (!p224_felem_to_BN(x, x_in) ||
1138       !p224_felem_to_BN(y, y_in) ||
1139       !p224_felem_to_BN(z, z_in)) {
1140     OPENSSL_PUT_ERROR(EC, ERR_R_BN_LIB);
1141     goto err;
1142   }
1143   ret = ec_point_set_Jprojective_coordinates_GFp(group, r, x, y, z, ctx);
1144 
1145 err:
1146   BN_CTX_end(ctx);
1147   BN_CTX_free(new_ctx);
1148   return ret;
1149 }
1150 
DEFINE_METHOD_FUNCTION(EC_METHOD,EC_GFp_nistp224_method)1151 DEFINE_METHOD_FUNCTION(EC_METHOD, EC_GFp_nistp224_method) {
1152   out->group_init = ec_GFp_simple_group_init;
1153   out->group_finish = ec_GFp_simple_group_finish;
1154   out->group_copy = ec_GFp_simple_group_copy;
1155   out->group_set_curve = ec_GFp_simple_group_set_curve;
1156   out->point_get_affine_coordinates =
1157       ec_GFp_nistp224_point_get_affine_coordinates;
1158   out->mul = ec_GFp_nistp224_points_mul;
1159   out->field_mul = ec_GFp_simple_field_mul;
1160   out->field_sqr = ec_GFp_simple_field_sqr;
1161   out->field_encode = NULL;
1162   out->field_decode = NULL;
1163 };
1164 
1165 #endif  /* 64_BIT && !WINDOWS && !SMALL */
1166