• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /* Originally written by Bodo Moeller for the OpenSSL project.
2  * ====================================================================
3  * Copyright (c) 1998-2005 The OpenSSL Project.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  *
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  *
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in
14  *    the documentation and/or other materials provided with the
15  *    distribution.
16  *
17  * 3. All advertising materials mentioning features or use of this
18  *    software must display the following acknowledgment:
19  *    "This product includes software developed by the OpenSSL Project
20  *    for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
21  *
22  * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
23  *    endorse or promote products derived from this software without
24  *    prior written permission. For written permission, please contact
25  *    openssl-core@openssl.org.
26  *
27  * 5. Products derived from this software may not be called "OpenSSL"
28  *    nor may "OpenSSL" appear in their names without prior written
29  *    permission of the OpenSSL Project.
30  *
31  * 6. Redistributions of any form whatsoever must retain the following
32  *    acknowledgment:
33  *    "This product includes software developed by the OpenSSL Project
34  *    for use in the OpenSSL Toolkit (http://www.openssl.org/)"
35  *
36  * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
37  * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
38  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
39  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE OpenSSL PROJECT OR
40  * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
41  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
42  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
43  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
44  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
45  * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
46  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
47  * OF THE POSSIBILITY OF SUCH DAMAGE.
48  * ====================================================================
49  *
50  * This product includes cryptographic software written by Eric Young
51  * (eay@cryptsoft.com).  This product includes software written by Tim
52  * Hudson (tjh@cryptsoft.com).
53  *
54  */
55 /* ====================================================================
56  * Copyright 2002 Sun Microsystems, Inc. ALL RIGHTS RESERVED.
57  *
58  * Portions of the attached software ("Contribution") are developed by
59  * SUN MICROSYSTEMS, INC., and are contributed to the OpenSSL project.
60  *
61  * The Contribution is licensed pursuant to the OpenSSL open source
62  * license provided above.
63  *
64  * The elliptic curve binary polynomial software is originally written by
65  * Sheueling Chang Shantz and Douglas Stebila of Sun Microsystems
66  * Laboratories. */
67 
68 #include <openssl/ec.h>
69 
70 #include <string.h>
71 
72 #include <openssl/bn.h>
73 #include <openssl/err.h>
74 #include <openssl/mem.h>
75 #include <openssl/thread.h>
76 
77 #include "internal.h"
78 #include "../../internal.h"
79 
80 
81 /* This file implements the wNAF-based interleaving multi-exponentiation method
82  * at:
83  *   http://link.springer.com/chapter/10.1007%2F3-540-45537-X_13
84  *   http://www.bmoeller.de/pdf/TI-01-08.multiexp.pdf */
85 
86 /* Determine the modified width-(w+1) Non-Adjacent Form (wNAF) of 'scalar'.
87  * This is an array  r[]  of values that are either zero or odd with an
88  * absolute value less than  2^w  satisfying
89  *     scalar = \sum_j r[j]*2^j
90  * where at most one of any  w+1  consecutive digits is non-zero
91  * with the exception that the most significant digit may be only
92  * w-1 zeros away from that next non-zero digit.
93  */
compute_wNAF(const BIGNUM * scalar,int w,size_t * ret_len)94 static int8_t *compute_wNAF(const BIGNUM *scalar, int w, size_t *ret_len) {
95   int window_val;
96   int ok = 0;
97   int8_t *r = NULL;
98   int sign = 1;
99   int bit, next_bit, mask;
100   size_t len = 0, j;
101 
102   if (BN_is_zero(scalar)) {
103     r = OPENSSL_malloc(1);
104     if (!r) {
105       OPENSSL_PUT_ERROR(EC, ERR_R_MALLOC_FAILURE);
106       goto err;
107     }
108     r[0] = 0;
109     *ret_len = 1;
110     return r;
111   }
112 
113   /* 'int8_t' can represent integers with absolute values less than 2^7. */
114   if (w <= 0 || w > 7) {
115     OPENSSL_PUT_ERROR(EC, ERR_R_INTERNAL_ERROR);
116     goto err;
117   }
118   bit = 1 << w;        /* at most 128 */
119   next_bit = bit << 1; /* at most 256 */
120   mask = next_bit - 1; /* at most 255 */
121 
122   if (BN_is_negative(scalar)) {
123     sign = -1;
124   }
125 
126   if (scalar->d == NULL || scalar->top == 0) {
127     OPENSSL_PUT_ERROR(EC, ERR_R_INTERNAL_ERROR);
128     goto err;
129   }
130 
131   len = BN_num_bits(scalar);
132   /* The modified wNAF may be one digit longer than binary representation
133    * (*ret_len will be set to the actual length, i.e. at most
134    * BN_num_bits(scalar) + 1). */
135   r = OPENSSL_malloc(len + 1);
136   if (r == NULL) {
137     OPENSSL_PUT_ERROR(EC, ERR_R_MALLOC_FAILURE);
138     goto err;
139   }
140   window_val = scalar->d[0] & mask;
141   j = 0;
142   /* If j+w+1 >= len, window_val will not increase. */
143   while (window_val != 0 || j + w + 1 < len) {
144     int digit = 0;
145 
146     /* 0 <= window_val <= 2^(w+1) */
147 
148     if (window_val & 1) {
149       /* 0 < window_val < 2^(w+1) */
150 
151       if (window_val & bit) {
152         digit = window_val - next_bit; /* -2^w < digit < 0 */
153 
154 #if 1 /* modified wNAF */
155         if (j + w + 1 >= len) {
156           /* special case for generating modified wNAFs:
157            * no new bits will be added into window_val,
158            * so using a positive digit here will decrease
159            * the total length of the representation */
160 
161           digit = window_val & (mask >> 1); /* 0 < digit < 2^w */
162         }
163 #endif
164       } else {
165         digit = window_val; /* 0 < digit < 2^w */
166       }
167 
168       if (digit <= -bit || digit >= bit || !(digit & 1)) {
169         OPENSSL_PUT_ERROR(EC, ERR_R_INTERNAL_ERROR);
170         goto err;
171       }
172 
173       window_val -= digit;
174 
175       /* Now window_val is 0 or 2^(w+1) in standard wNAF generation;
176        * for modified window NAFs, it may also be 2^w. */
177       if (window_val != 0 && window_val != next_bit && window_val != bit) {
178         OPENSSL_PUT_ERROR(EC, ERR_R_INTERNAL_ERROR);
179         goto err;
180       }
181     }
182 
183     r[j++] = sign * digit;
184 
185     window_val >>= 1;
186     window_val += bit * BN_is_bit_set(scalar, j + w);
187 
188     if (window_val > next_bit) {
189       OPENSSL_PUT_ERROR(EC, ERR_R_INTERNAL_ERROR);
190       goto err;
191     }
192   }
193 
194   if (j > len + 1) {
195     OPENSSL_PUT_ERROR(EC, ERR_R_INTERNAL_ERROR);
196     goto err;
197   }
198   len = j;
199   ok = 1;
200 
201 err:
202   if (!ok) {
203     OPENSSL_free(r);
204     r = NULL;
205   }
206   if (ok) {
207     *ret_len = len;
208   }
209   return r;
210 }
211 
212 
213 /* TODO: table should be optimised for the wNAF-based implementation,
214  *       sometimes smaller windows will give better performance
215  *       (thus the boundaries should be increased)
216  */
window_bits_for_scalar_size(size_t b)217 static size_t window_bits_for_scalar_size(size_t b) {
218   if (b >= 2000) {
219     return 6;
220   }
221 
222   if (b >= 800) {
223     return 5;
224   }
225 
226   if (b >= 300) {
227     return 4;
228   }
229 
230   if (b >= 70) {
231     return 3;
232   }
233 
234   if (b >= 20) {
235     return 2;
236   }
237 
238   return 1;
239 }
240 
ec_wNAF_mul(const EC_GROUP * group,EC_POINT * r,const BIGNUM * g_scalar,const EC_POINT * p,const BIGNUM * p_scalar,BN_CTX * ctx)241 int ec_wNAF_mul(const EC_GROUP *group, EC_POINT *r, const BIGNUM *g_scalar,
242                 const EC_POINT *p, const BIGNUM *p_scalar, BN_CTX *ctx) {
243   BN_CTX *new_ctx = NULL;
244   const EC_POINT *generator = NULL;
245   EC_POINT *tmp = NULL;
246   size_t total_num = 0;
247   size_t i, j;
248   int k;
249   int r_is_inverted = 0;
250   int r_is_at_infinity = 1;
251   size_t *wsize = NULL;      /* individual window sizes */
252   int8_t **wNAF = NULL; /* individual wNAFs */
253   size_t *wNAF_len = NULL;
254   size_t max_len = 0;
255   size_t num_val = 0;
256   EC_POINT **val = NULL; /* precomputation */
257   EC_POINT **v;
258   EC_POINT ***val_sub = NULL; /* pointers to sub-arrays of 'val' */
259   int ret = 0;
260 
261   if (ctx == NULL) {
262     ctx = new_ctx = BN_CTX_new();
263     if (ctx == NULL) {
264       goto err;
265     }
266   }
267 
268   /* TODO: This function used to take |points| and |scalars| as arrays of
269    * |num| elements. The code below should be simplified to work in terms of |p|
270    * and |p_scalar|. */
271   size_t num = p != NULL ? 1 : 0;
272   const EC_POINT **points = p != NULL ? &p : NULL;
273   const BIGNUM **scalars = p != NULL ? &p_scalar : NULL;
274 
275   total_num = num;
276 
277   if (g_scalar != NULL) {
278     generator = EC_GROUP_get0_generator(group);
279     if (generator == NULL) {
280       OPENSSL_PUT_ERROR(EC, EC_R_UNDEFINED_GENERATOR);
281       goto err;
282     }
283 
284     ++total_num; /* treat 'g_scalar' like 'num'-th element of 'scalars' */
285   }
286 
287 
288   wsize = OPENSSL_malloc(total_num * sizeof(wsize[0]));
289   wNAF_len = OPENSSL_malloc(total_num * sizeof(wNAF_len[0]));
290   wNAF = OPENSSL_malloc(total_num * sizeof(wNAF[0]));
291   val_sub = OPENSSL_malloc(total_num * sizeof(val_sub[0]));
292 
293   /* Ensure wNAF is initialised in case we end up going to err. */
294   if (wNAF != NULL) {
295     OPENSSL_memset(wNAF, 0, total_num * sizeof(wNAF[0]));
296   }
297 
298   if (!wsize || !wNAF_len || !wNAF || !val_sub) {
299     OPENSSL_PUT_ERROR(EC, ERR_R_MALLOC_FAILURE);
300     goto err;
301   }
302 
303   /* num_val will be the total number of temporarily precomputed points */
304   num_val = 0;
305 
306   for (i = 0; i < total_num; i++) {
307     size_t bits;
308 
309     bits = i < num ? BN_num_bits(scalars[i]) : BN_num_bits(g_scalar);
310     wsize[i] = window_bits_for_scalar_size(bits);
311     num_val += (size_t)1 << (wsize[i] - 1);
312     wNAF[i] =
313         compute_wNAF((i < num ? scalars[i] : g_scalar), wsize[i], &wNAF_len[i]);
314     if (wNAF[i] == NULL) {
315       goto err;
316     }
317     if (wNAF_len[i] > max_len) {
318       max_len = wNAF_len[i];
319     }
320   }
321 
322   /* All points we precompute now go into a single array 'val'. 'val_sub[i]' is
323    * a pointer to the subarray for the i-th point. */
324   val = OPENSSL_malloc(num_val * sizeof(val[0]));
325   if (val == NULL) {
326     OPENSSL_PUT_ERROR(EC, ERR_R_MALLOC_FAILURE);
327     goto err;
328   }
329   OPENSSL_memset(val, 0, num_val * sizeof(val[0]));
330 
331   /* allocate points for precomputation */
332   v = val;
333   for (i = 0; i < total_num; i++) {
334     val_sub[i] = v;
335     for (j = 0; j < ((size_t)1 << (wsize[i] - 1)); j++) {
336       *v = EC_POINT_new(group);
337       if (*v == NULL) {
338         goto err;
339       }
340       v++;
341     }
342   }
343   if (!(v == val + num_val)) {
344     OPENSSL_PUT_ERROR(EC, ERR_R_INTERNAL_ERROR);
345     goto err;
346   }
347 
348   if (!(tmp = EC_POINT_new(group))) {
349     goto err;
350   }
351 
352   /* prepare precomputed values:
353    *    val_sub[i][0] :=     points[i]
354    *    val_sub[i][1] := 3 * points[i]
355    *    val_sub[i][2] := 5 * points[i]
356    *    ...
357    */
358   for (i = 0; i < total_num; i++) {
359     if (i < num) {
360       if (!EC_POINT_copy(val_sub[i][0], points[i])) {
361         goto err;
362       }
363     } else if (!EC_POINT_copy(val_sub[i][0], generator)) {
364       goto err;
365     }
366 
367     if (wsize[i] > 1) {
368       if (!EC_POINT_dbl(group, tmp, val_sub[i][0], ctx)) {
369         goto err;
370       }
371       for (j = 1; j < ((size_t)1 << (wsize[i] - 1)); j++) {
372         if (!EC_POINT_add(group, val_sub[i][j], val_sub[i][j - 1], tmp, ctx)) {
373           goto err;
374         }
375       }
376     }
377   }
378 
379 #if 1 /* optional; window_bits_for_scalar_size assumes we do this step */
380   if (!EC_POINTs_make_affine(group, num_val, val, ctx)) {
381     goto err;
382   }
383 #endif
384 
385   r_is_at_infinity = 1;
386 
387   for (k = max_len - 1; k >= 0; k--) {
388     if (!r_is_at_infinity && !EC_POINT_dbl(group, r, r, ctx)) {
389       goto err;
390     }
391 
392     for (i = 0; i < total_num; i++) {
393       if (wNAF_len[i] > (size_t)k) {
394         int digit = wNAF[i][k];
395         int is_neg;
396 
397         if (digit) {
398           is_neg = digit < 0;
399 
400           if (is_neg) {
401             digit = -digit;
402           }
403 
404           if (is_neg != r_is_inverted) {
405             if (!r_is_at_infinity && !EC_POINT_invert(group, r, ctx)) {
406               goto err;
407             }
408             r_is_inverted = !r_is_inverted;
409           }
410 
411           /* digit > 0 */
412 
413           if (r_is_at_infinity) {
414             if (!EC_POINT_copy(r, val_sub[i][digit >> 1])) {
415               goto err;
416             }
417             r_is_at_infinity = 0;
418           } else {
419             if (!EC_POINT_add(group, r, r, val_sub[i][digit >> 1], ctx)) {
420               goto err;
421             }
422           }
423         }
424       }
425     }
426   }
427 
428   if (r_is_at_infinity) {
429     if (!EC_POINT_set_to_infinity(group, r)) {
430       goto err;
431     }
432   } else if (r_is_inverted && !EC_POINT_invert(group, r, ctx)) {
433     goto err;
434   }
435 
436   ret = 1;
437 
438 err:
439   BN_CTX_free(new_ctx);
440   EC_POINT_free(tmp);
441   OPENSSL_free(wsize);
442   OPENSSL_free(wNAF_len);
443   if (wNAF != NULL) {
444     for (i = 0; i < total_num; i++) {
445       OPENSSL_free(wNAF[i]);
446     }
447 
448     OPENSSL_free(wNAF);
449   }
450   if (val != NULL) {
451     for (i = 0; i < num_val; i++) {
452       EC_POINT_clear_free(val[i]);
453     }
454 
455     OPENSSL_free(val);
456   }
457   OPENSSL_free(val_sub);
458   return ret;
459 }
460