• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*-------------------------------------------------------------------------
2  * drawElements Quality Program OpenGL ES 3.0 Module
3  * -------------------------------------------------
4  *
5  * Copyright 2014 The Android Open Source Project
6  *
7  * Licensed under the Apache License, Version 2.0 (the "License");
8  * you may not use this file except in compliance with the License.
9  * You may obtain a copy of the License at
10  *
11  *      http://www.apache.org/licenses/LICENSE-2.0
12  *
13  * Unless required by applicable law or agreed to in writing, software
14  * distributed under the License is distributed on an "AS IS" BASIS,
15  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
16  * See the License for the specific language governing permissions and
17  * limitations under the License.
18  *
19  *//*!
20  * \file
21  * \brief Shader derivate function tests.
22  *
23  * \todo [2013-06-25 pyry] Missing features:
24  *  - lines and points
25  *  - projected coordinates
26  *  - continous non-trivial functions (sin, exp)
27  *  - non-continous functions (step)
28  *//*--------------------------------------------------------------------*/
29 
30 #include "es3fShaderDerivateTests.hpp"
31 #include "gluShaderProgram.hpp"
32 #include "gluRenderContext.hpp"
33 #include "gluDrawUtil.hpp"
34 #include "gluPixelTransfer.hpp"
35 #include "gluShaderUtil.hpp"
36 #include "gluStrUtil.hpp"
37 #include "gluTextureUtil.hpp"
38 #include "gluTexture.hpp"
39 #include "tcuStringTemplate.hpp"
40 #include "tcuRenderTarget.hpp"
41 #include "tcuSurface.hpp"
42 #include "tcuTestLog.hpp"
43 #include "tcuVectorUtil.hpp"
44 #include "tcuTextureUtil.hpp"
45 #include "tcuRGBA.hpp"
46 #include "tcuFloat.hpp"
47 #include "tcuInterval.hpp"
48 #include "deRandom.hpp"
49 #include "deUniquePtr.hpp"
50 #include "deString.h"
51 #include "glwEnums.hpp"
52 #include "glwFunctions.hpp"
53 #include "glsShaderRenderCase.hpp" // gls::setupDefaultUniforms()
54 
55 #include <sstream>
56 
57 namespace deqp
58 {
59 namespace gles3
60 {
61 namespace Functional
62 {
63 
64 using std::vector;
65 using std::string;
66 using std::map;
67 using tcu::TestLog;
68 using std::ostringstream;
69 
70 enum
71 {
72 	VIEWPORT_WIDTH		= 167,
73 	VIEWPORT_HEIGHT		= 103,
74 	FBO_WIDTH			= 99,
75 	FBO_HEIGHT			= 133,
76 	MAX_FAILED_MESSAGES	= 10
77 };
78 
79 enum DerivateFunc
80 {
81 	DERIVATE_DFDX	= 0,
82 	DERIVATE_DFDY,
83 	DERIVATE_FWIDTH,
84 
85 	DERIVATE_LAST
86 };
87 
88 enum SurfaceType
89 {
90 	SURFACETYPE_DEFAULT_FRAMEBUFFER = 0,
91 	SURFACETYPE_UNORM_FBO,
92 	SURFACETYPE_FLOAT_FBO,	// \note Uses RGBA32UI fbo actually, since FP rendertargets are not in core spec.
93 
94 	SURFACETYPE_LAST
95 };
96 
97 // Utilities
98 
99 namespace
100 {
101 
102 class AutoFbo
103 {
104 public:
AutoFbo(const glw::Functions & gl)105 	AutoFbo (const glw::Functions& gl)
106 		: m_gl	(gl)
107 		, m_fbo	(0)
108 	{
109 	}
110 
~AutoFbo(void)111 	~AutoFbo (void)
112 	{
113 		if (m_fbo)
114 			m_gl.deleteFramebuffers(1, &m_fbo);
115 	}
116 
gen(void)117 	void gen (void)
118 	{
119 		DE_ASSERT(!m_fbo);
120 		m_gl.genFramebuffers(1, &m_fbo);
121 	}
122 
operator *(void) const123 	deUint32 operator* (void) const { return m_fbo; }
124 
125 private:
126 	const glw::Functions&	m_gl;
127 	deUint32				m_fbo;
128 };
129 
130 class AutoRbo
131 {
132 public:
AutoRbo(const glw::Functions & gl)133 	AutoRbo (const glw::Functions& gl)
134 		: m_gl	(gl)
135 		, m_rbo	(0)
136 	{
137 	}
138 
~AutoRbo(void)139 	~AutoRbo (void)
140 	{
141 		if (m_rbo)
142 			m_gl.deleteRenderbuffers(1, &m_rbo);
143 	}
144 
gen(void)145 	void gen (void)
146 	{
147 		DE_ASSERT(!m_rbo);
148 		m_gl.genRenderbuffers(1, &m_rbo);
149 	}
150 
operator *(void) const151 	deUint32 operator* (void) const { return m_rbo; }
152 
153 private:
154 	const glw::Functions&	m_gl;
155 	deUint32				m_rbo;
156 };
157 
158 } // anonymous
159 
getDerivateFuncName(DerivateFunc func)160 static const char* getDerivateFuncName (DerivateFunc func)
161 {
162 	switch (func)
163 	{
164 		case DERIVATE_DFDX:		return "dFdx";
165 		case DERIVATE_DFDY:		return "dFdy";
166 		case DERIVATE_FWIDTH:	return "fwidth";
167 		default:
168 			DE_ASSERT(false);
169 			return DE_NULL;
170 	}
171 }
172 
getDerivateFuncCaseName(DerivateFunc func)173 static const char* getDerivateFuncCaseName (DerivateFunc func)
174 {
175 	switch (func)
176 	{
177 		case DERIVATE_DFDX:		return "dfdx";
178 		case DERIVATE_DFDY:		return "dfdy";
179 		case DERIVATE_FWIDTH:	return "fwidth";
180 		default:
181 			DE_ASSERT(false);
182 			return DE_NULL;
183 	}
184 }
185 
getDerivateMask(glu::DataType type)186 static inline tcu::BVec4 getDerivateMask (glu::DataType type)
187 {
188 	switch (type)
189 	{
190 		case glu::TYPE_FLOAT:		return tcu::BVec4(true, false, false, false);
191 		case glu::TYPE_FLOAT_VEC2:	return tcu::BVec4(true, true, false, false);
192 		case glu::TYPE_FLOAT_VEC3:	return tcu::BVec4(true, true, true, false);
193 		case glu::TYPE_FLOAT_VEC4:	return tcu::BVec4(true, true, true, true);
194 		default:
195 			DE_ASSERT(false);
196 			return tcu::BVec4(true);
197 	}
198 }
199 
readDerivate(const tcu::ConstPixelBufferAccess & surface,const tcu::Vec4 & derivScale,const tcu::Vec4 & derivBias,int x,int y)200 static inline tcu::Vec4 readDerivate (const tcu::ConstPixelBufferAccess& surface, const tcu::Vec4& derivScale, const tcu::Vec4& derivBias, int x, int y)
201 {
202 	return (surface.getPixel(x, y) - derivBias) / derivScale;
203 }
204 
getCompExpBits(const tcu::Vec4 & v)205 static inline tcu::UVec4 getCompExpBits (const tcu::Vec4& v)
206 {
207 	return tcu::UVec4(tcu::Float32(v[0]).exponentBits(),
208 					  tcu::Float32(v[1]).exponentBits(),
209 					  tcu::Float32(v[2]).exponentBits(),
210 					  tcu::Float32(v[3]).exponentBits());
211 }
212 
computeFloatingPointError(const float value,const int numAccurateBits)213 float computeFloatingPointError (const float value, const int numAccurateBits)
214 {
215 	const int		numGarbageBits	= 23-numAccurateBits;
216 	const deUint32	mask			= (1u<<numGarbageBits)-1u;
217 	const int		exp				= tcu::Float32(value).exponent();
218 
219 	return tcu::Float32::construct(+1, exp, (1u<<23) | mask).asFloat() - tcu::Float32::construct(+1, exp, 1u<<23).asFloat();
220 }
221 
getNumMantissaBits(const glu::Precision precision)222 static int getNumMantissaBits (const glu::Precision precision)
223 {
224 	switch (precision)
225 	{
226 		case glu::PRECISION_HIGHP:		return 23;
227 		case glu::PRECISION_MEDIUMP:	return 10;
228 		case glu::PRECISION_LOWP:		return 6;
229 		default:
230 			DE_ASSERT(false);
231 			return 0;
232 	}
233 }
234 
getMinExponent(const glu::Precision precision)235 static int getMinExponent (const glu::Precision precision)
236 {
237 	switch (precision)
238 	{
239 		case glu::PRECISION_HIGHP:		return -126;
240 		case glu::PRECISION_MEDIUMP:	return -14;
241 		case glu::PRECISION_LOWP:		return -8;
242 		default:
243 			DE_ASSERT(false);
244 			return 0;
245 	}
246 }
247 
getSingleULPForExponent(int exp,int numMantissaBits)248 static float getSingleULPForExponent (int exp, int numMantissaBits)
249 {
250 	if (numMantissaBits > 0)
251 	{
252 		DE_ASSERT(numMantissaBits <= 23);
253 
254 		const int ulpBitNdx = 23-numMantissaBits;
255 		return tcu::Float32::construct(+1, exp, (1<<23) | (1 << ulpBitNdx)).asFloat() - tcu::Float32::construct(+1, exp, (1<<23)).asFloat();
256 	}
257 	else
258 	{
259 		DE_ASSERT(numMantissaBits == 0);
260 		return tcu::Float32::construct(+1, exp, (1<<23)).asFloat();
261 	}
262 }
263 
getSingleULPForValue(float value,int numMantissaBits)264 static float getSingleULPForValue (float value, int numMantissaBits)
265 {
266 	const int exp = tcu::Float32(value).exponent();
267 	return getSingleULPForExponent(exp, numMantissaBits);
268 }
269 
convertFloatFlushToZeroRtn(float value,int minExponent,int numAccurateBits)270 static float convertFloatFlushToZeroRtn (float value, int minExponent, int numAccurateBits)
271 {
272 	if (value == 0.0f)
273 	{
274 		return 0.0f;
275 	}
276 	else
277 	{
278 		const tcu::Float32	inputFloat			= tcu::Float32(value);
279 		const int			numTruncatedBits	= 23-numAccurateBits;
280 		const deUint32		truncMask			= (1u<<numTruncatedBits)-1u;
281 
282 		if (value > 0.0f)
283 		{
284 			if (value > 0.0f && tcu::Float32(value).exponent() < minExponent)
285 			{
286 				// flush to zero if possible
287 				return 0.0f;
288 			}
289 			else
290 			{
291 				// just mask away non-representable bits
292 				return tcu::Float32::construct(+1, inputFloat.exponent(), inputFloat.mantissa() & ~truncMask).asFloat();
293 			}
294 		}
295 		else
296 		{
297 			if (inputFloat.mantissa() & truncMask)
298 			{
299 				// decrement one ulp if truncated bits are non-zero (i.e. if value is not representable)
300 				return tcu::Float32::construct(-1, inputFloat.exponent(), inputFloat.mantissa() & ~truncMask).asFloat() - getSingleULPForExponent(inputFloat.exponent(), numAccurateBits);
301 			}
302 			else
303 			{
304 				// value is representable, no need to do anything
305 				return value;
306 			}
307 		}
308 	}
309 }
310 
convertFloatFlushToZeroRtp(float value,int minExponent,int numAccurateBits)311 static float convertFloatFlushToZeroRtp (float value, int minExponent, int numAccurateBits)
312 {
313 	return -convertFloatFlushToZeroRtn(-value, minExponent, numAccurateBits);
314 }
315 
addErrorUlp(float value,float numUlps,int numMantissaBits)316 static float addErrorUlp (float value, float numUlps, int numMantissaBits)
317 {
318 	return value + numUlps * getSingleULPForValue(value, numMantissaBits);
319 }
320 
321 enum
322 {
323 	INTERPOLATION_LOST_BITS = 3, // number mantissa of bits allowed to be lost in varying interpolation
324 };
325 
getDerivateThreshold(const glu::Precision precision,const tcu::Vec4 & valueMin,const tcu::Vec4 & valueMax,const tcu::Vec4 & expectedDerivate)326 static inline tcu::Vec4 getDerivateThreshold (const glu::Precision precision, const tcu::Vec4& valueMin, const tcu::Vec4& valueMax, const tcu::Vec4& expectedDerivate)
327 {
328 	const int			baseBits		= getNumMantissaBits(precision);
329 	const tcu::UVec4	derivExp		= getCompExpBits(expectedDerivate);
330 	const tcu::UVec4	maxValueExp		= max(getCompExpBits(valueMin), getCompExpBits(valueMax));
331 	const tcu::UVec4	numBitsLost		= maxValueExp - min(maxValueExp, derivExp);
332 	const tcu::IVec4	numAccurateBits	= max(baseBits - numBitsLost.asInt() - (int)INTERPOLATION_LOST_BITS, tcu::IVec4(0));
333 
334 	return tcu::Vec4(computeFloatingPointError(expectedDerivate[0], numAccurateBits[0]),
335 					 computeFloatingPointError(expectedDerivate[1], numAccurateBits[1]),
336 					 computeFloatingPointError(expectedDerivate[2], numAccurateBits[2]),
337 					 computeFloatingPointError(expectedDerivate[3], numAccurateBits[3]));
338 }
339 
340 namespace
341 {
342 
343 struct LogVecComps
344 {
345 	const tcu::Vec4&	v;
346 	int					numComps;
347 
LogVecCompsdeqp::gles3::Functional::__anonf0d420800411::LogVecComps348 	LogVecComps (const tcu::Vec4& v_, int numComps_)
349 		: v			(v_)
350 		, numComps	(numComps_)
351 	{
352 	}
353 };
354 
operator <<(std::ostream & str,const LogVecComps & v)355 std::ostream& operator<< (std::ostream& str, const LogVecComps& v)
356 {
357 	DE_ASSERT(de::inRange(v.numComps, 1, 4));
358 	if (v.numComps == 1)		return str << v.v[0];
359 	else if (v.numComps == 2)	return str << v.v.toWidth<2>();
360 	else if (v.numComps == 3)	return str << v.v.toWidth<3>();
361 	else						return str << v.v;
362 }
363 
364 } // anonymous
365 
366 enum VerificationLogging
367 {
368 	LOG_ALL = 0,
369 	LOG_NOTHING
370 };
371 
verifyConstantDerivate(tcu::TestLog & log,const tcu::ConstPixelBufferAccess & result,const tcu::PixelBufferAccess & errorMask,glu::DataType dataType,const tcu::Vec4 & reference,const tcu::Vec4 & threshold,const tcu::Vec4 & scale,const tcu::Vec4 & bias,VerificationLogging logPolicy=LOG_ALL)372 static bool verifyConstantDerivate (tcu::TestLog&						log,
373 									const tcu::ConstPixelBufferAccess&	result,
374 									const tcu::PixelBufferAccess&		errorMask,
375 									glu::DataType						dataType,
376 									const tcu::Vec4&					reference,
377 									const tcu::Vec4&					threshold,
378 									const tcu::Vec4&					scale,
379 									const tcu::Vec4&					bias,
380 									VerificationLogging					logPolicy = LOG_ALL)
381 {
382 	const int			numComps		= glu::getDataTypeFloatScalars(dataType);
383 	const tcu::BVec4	mask			= tcu::logicalNot(getDerivateMask(dataType));
384 	int					numFailedPixels	= 0;
385 
386 	if (logPolicy == LOG_ALL)
387 		log << TestLog::Message << "Expecting " << LogVecComps(reference, numComps) << " with threshold " << LogVecComps(threshold, numComps) << TestLog::EndMessage;
388 
389 	for (int y = 0; y < result.getHeight(); y++)
390 	{
391 		for (int x = 0; x < result.getWidth(); x++)
392 		{
393 			const tcu::Vec4		resDerivate		= readDerivate(result, scale, bias, x, y);
394 			const bool			isOk			= tcu::allEqual(tcu::logicalOr(tcu::lessThanEqual(tcu::abs(reference - resDerivate), threshold), mask), tcu::BVec4(true));
395 
396 			if (!isOk)
397 			{
398 				if (numFailedPixels < MAX_FAILED_MESSAGES && logPolicy == LOG_ALL)
399 					log << TestLog::Message << "FAIL: got " << LogVecComps(resDerivate, numComps)
400 											<< ", diff = " << LogVecComps(tcu::abs(reference - resDerivate), numComps)
401 											<< ", at x = " << x << ", y = " << y
402 						<< TestLog::EndMessage;
403 				numFailedPixels += 1;
404 				errorMask.setPixel(tcu::RGBA::red().toVec(), x, y);
405 			}
406 		}
407 	}
408 
409 	if (numFailedPixels >= MAX_FAILED_MESSAGES && logPolicy == LOG_ALL)
410 		log << TestLog::Message << "..." << TestLog::EndMessage;
411 
412 	if (numFailedPixels > 0 && logPolicy == LOG_ALL)
413 		log << TestLog::Message << "FAIL: found " << numFailedPixels << " failed pixels" << TestLog::EndMessage;
414 
415 	return numFailedPixels == 0;
416 }
417 
418 struct Linear2DFunctionEvaluator
419 {
420 	tcu::Matrix<float, 4, 3> matrix;
421 
422 	//      .-----.
423 	//      | s_x |
424 	//  M x | s_y |
425 	//      | 1.0 |
426 	//      '-----'
427 	tcu::Vec4 evaluateAt (float screenX, float screenY) const;
428 };
429 
evaluateAt(float screenX,float screenY) const430 tcu::Vec4 Linear2DFunctionEvaluator::evaluateAt (float screenX, float screenY) const
431 {
432 	const tcu::Vec3 position(screenX, screenY, 1.0f);
433 	return matrix * position;
434 }
435 
reverifyConstantDerivateWithFlushRelaxations(tcu::TestLog & log,const tcu::ConstPixelBufferAccess & result,const tcu::PixelBufferAccess & errorMask,glu::DataType dataType,glu::Precision precision,const tcu::Vec4 & derivScale,const tcu::Vec4 & derivBias,const tcu::Vec4 & surfaceThreshold,DerivateFunc derivateFunc,const Linear2DFunctionEvaluator & function)436 static bool reverifyConstantDerivateWithFlushRelaxations (tcu::TestLog&							log,
437 														  const tcu::ConstPixelBufferAccess&	result,
438 														  const tcu::PixelBufferAccess&			errorMask,
439 														  glu::DataType							dataType,
440 														  glu::Precision						precision,
441 														  const tcu::Vec4&						derivScale,
442 														  const tcu::Vec4&						derivBias,
443 														  const tcu::Vec4&						surfaceThreshold,
444 														  DerivateFunc							derivateFunc,
445 														  const Linear2DFunctionEvaluator&		function)
446 {
447 	DE_ASSERT(result.getWidth() == errorMask.getWidth());
448 	DE_ASSERT(result.getHeight() == errorMask.getHeight());
449 	DE_ASSERT(derivateFunc == DERIVATE_DFDX || derivateFunc == DERIVATE_DFDY);
450 
451 	const tcu::IVec4	red						(255, 0, 0, 255);
452 	const tcu::IVec4	green					(0, 255, 0, 255);
453 	const float			divisionErrorUlps		= 2.5f;
454 
455 	const int			numComponents			= glu::getDataTypeFloatScalars(dataType);
456 	const int			numBits					= getNumMantissaBits(precision);
457 	const int			minExponent				= getMinExponent(precision);
458 
459 	const int			numVaryingSampleBits	= numBits - INTERPOLATION_LOST_BITS;
460 	int					numFailedPixels			= 0;
461 
462 	tcu::clear(errorMask, green);
463 
464 	// search for failed pixels
465 	for (int y = 0; y < result.getHeight(); ++y)
466 	for (int x = 0; x < result.getWidth(); ++x)
467 	{
468 		//                 flushToZero?(f2z?(functionValueCurrent) - f2z?(functionValueBefore))
469 		// flushToZero? ( ------------------------------------------------------------------------ +- 2.5 ULP )
470 		//                                                  dx
471 
472 		const tcu::Vec4	resultDerivative		= readDerivate(result, derivScale, derivBias, x, y);
473 
474 		// sample at the front of the back pixel and the back of the front pixel to cover the whole area of
475 		// legal sample positions. In general case this is NOT OK, but we know that the target funtion is
476 		// (mostly*) linear which allows us to take the sample points at arbitrary points. This gets us the
477 		// maximum difference possible in exponents which are used in error bound calculations.
478 		// * non-linearity may happen around zero or with very high function values due to subnorms not
479 		//   behaving well.
480 		const tcu::Vec4	functionValueForward	= (derivateFunc == DERIVATE_DFDX)
481 													? (function.evaluateAt((float)x + 2.0f, (float)y + 0.5f))
482 													: (function.evaluateAt((float)x + 0.5f, (float)y + 2.0f));
483 		const tcu::Vec4	functionValueBackward	= (derivateFunc == DERIVATE_DFDX)
484 													? (function.evaluateAt((float)x - 1.0f, (float)y + 0.5f))
485 													: (function.evaluateAt((float)x + 0.5f, (float)y - 1.0f));
486 
487 		bool	anyComponentFailed				= false;
488 
489 		// check components separately
490 		for (int c = 0; c < numComponents; ++c)
491 		{
492 			// Simulate interpolation. Add allowed interpolation error and round to target precision. Allow one half ULP (i.e. correct rounding)
493 			const tcu::Interval	forwardComponent		(convertFloatFlushToZeroRtn(addErrorUlp((float)functionValueForward[c],  -0.5f, numVaryingSampleBits), minExponent, numBits),
494 														 convertFloatFlushToZeroRtp(addErrorUlp((float)functionValueForward[c],  +0.5f, numVaryingSampleBits), minExponent, numBits));
495 			const tcu::Interval	backwardComponent		(convertFloatFlushToZeroRtn(addErrorUlp((float)functionValueBackward[c], -0.5f, numVaryingSampleBits), minExponent, numBits),
496 														 convertFloatFlushToZeroRtp(addErrorUlp((float)functionValueBackward[c], +0.5f, numVaryingSampleBits), minExponent, numBits));
497 			const int			maxValueExp				= de::max(de::max(tcu::Float32(forwardComponent.lo()).exponent(),   tcu::Float32(forwardComponent.hi()).exponent()),
498 																  de::max(tcu::Float32(backwardComponent.lo()).exponent(),  tcu::Float32(backwardComponent.hi()).exponent()));
499 
500 			// subtraction in numerator will likely cause a cancellation of the most
501 			// significant bits. Apply error bounds.
502 
503 			const tcu::Interval	numerator				(forwardComponent - backwardComponent);
504 			const int			numeratorLoExp			= tcu::Float32(numerator.lo()).exponent();
505 			const int			numeratorHiExp			= tcu::Float32(numerator.hi()).exponent();
506 			const int			numeratorLoBitsLost		= de::max(0, maxValueExp - numeratorLoExp); //!< must clamp to zero since if forward and backward components have different
507 			const int			numeratorHiBitsLost		= de::max(0, maxValueExp - numeratorHiExp); //!< sign, numerator might have larger exponent than its operands.
508 			const int			numeratorLoBits			= de::max(0, numBits - numeratorLoBitsLost);
509 			const int			numeratorHiBits			= de::max(0, numBits - numeratorHiBitsLost);
510 
511 			const tcu::Interval	numeratorRange			(convertFloatFlushToZeroRtn((float)numerator.lo(), minExponent, numeratorLoBits),
512 														 convertFloatFlushToZeroRtp((float)numerator.hi(), minExponent, numeratorHiBits));
513 
514 			const tcu::Interval	divisionRange			= numeratorRange / 3.0f; // legal sample area is anywhere within this and neighboring pixels (i.e. size = 3)
515 			const tcu::Interval	divisionResultRange		(convertFloatFlushToZeroRtn(addErrorUlp((float)divisionRange.lo(), -divisionErrorUlps, numBits), minExponent, numBits),
516 														 convertFloatFlushToZeroRtp(addErrorUlp((float)divisionRange.hi(), +divisionErrorUlps, numBits), minExponent, numBits));
517 			const tcu::Interval	finalResultRange		(divisionResultRange.lo() - surfaceThreshold[c], divisionResultRange.hi() + surfaceThreshold[c]);
518 
519 			if (resultDerivative[c] >= finalResultRange.lo() && resultDerivative[c] <= finalResultRange.hi())
520 			{
521 				// value ok
522 			}
523 			else
524 			{
525 				if (numFailedPixels < MAX_FAILED_MESSAGES)
526 					log << tcu::TestLog::Message
527 						<< "Error in pixel at " << x << ", " << y << " with component " << c << " (channel " << ("rgba"[c]) << ")\n"
528 						<< "\tGot pixel value " << result.getPixelInt(x, y) << "\n"
529 						<< "\t\tdFd" << ((derivateFunc == DERIVATE_DFDX) ? ('x') : ('y')) << " ~= " << resultDerivative[c] << "\n"
530 						<< "\t\tdifference to a valid range: "
531 							<< ((resultDerivative[c] < finalResultRange.lo()) ? ("-") : ("+"))
532 							<< ((resultDerivative[c] < finalResultRange.lo()) ? (finalResultRange.lo() - resultDerivative[c]) : (resultDerivative[c] - finalResultRange.hi()))
533 							<< "\n"
534 						<< "\tDerivative value range:\n"
535 						<< "\t\tMin: " << finalResultRange.lo() << "\n"
536 						<< "\t\tMax: " << finalResultRange.hi() << "\n"
537 						<< tcu::TestLog::EndMessage;
538 
539 				++numFailedPixels;
540 				anyComponentFailed = true;
541 			}
542 		}
543 
544 		if (anyComponentFailed)
545 			errorMask.setPixel(red, x, y);
546 	}
547 
548 	if (numFailedPixels >= MAX_FAILED_MESSAGES)
549 		log << TestLog::Message << "..." << TestLog::EndMessage;
550 
551 	if (numFailedPixels > 0)
552 		log << TestLog::Message << "FAIL: found " << numFailedPixels << " failed pixels" << TestLog::EndMessage;
553 
554 	return numFailedPixels == 0;
555 }
556 
557 // TriangleDerivateCase
558 
559 class TriangleDerivateCase : public TestCase
560 {
561 public:
562 						TriangleDerivateCase	(Context& context, const char* name, const char* description);
563 						~TriangleDerivateCase	(void);
564 
565 	IterateResult		iterate					(void);
566 
567 protected:
setupRenderState(deUint32 program)568 	virtual void		setupRenderState		(deUint32 program) { DE_UNREF(program); }
569 	virtual bool		verify					(const tcu::ConstPixelBufferAccess& result, const tcu::PixelBufferAccess& errorMask) = DE_NULL;
570 
571 	tcu::IVec2			getViewportSize			(void) const;
572 	tcu::Vec4			getSurfaceThreshold		(void) const;
573 
574 	glu::DataType		m_dataType;
575 	glu::Precision		m_precision;
576 
577 	glu::DataType		m_coordDataType;
578 	glu::Precision		m_coordPrecision;
579 
580 	std::string			m_fragmentSrc;
581 
582 	tcu::Vec4			m_coordMin;
583 	tcu::Vec4			m_coordMax;
584 	tcu::Vec4			m_derivScale;
585 	tcu::Vec4			m_derivBias;
586 
587 	SurfaceType			m_surfaceType;
588 	int					m_numSamples;
589 	deUint32			m_hint;
590 };
591 
TriangleDerivateCase(Context & context,const char * name,const char * description)592 TriangleDerivateCase::TriangleDerivateCase (Context& context, const char* name, const char* description)
593 	: TestCase			(context, name, description)
594 	, m_dataType		(glu::TYPE_LAST)
595 	, m_precision		(glu::PRECISION_LAST)
596 	, m_coordDataType	(glu::TYPE_LAST)
597 	, m_coordPrecision	(glu::PRECISION_LAST)
598 	, m_surfaceType		(SURFACETYPE_DEFAULT_FRAMEBUFFER)
599 	, m_numSamples		(0)
600 	, m_hint			(GL_DONT_CARE)
601 {
602 	DE_ASSERT(m_surfaceType != SURFACETYPE_DEFAULT_FRAMEBUFFER || m_numSamples == 0);
603 }
604 
~TriangleDerivateCase(void)605 TriangleDerivateCase::~TriangleDerivateCase (void)
606 {
607 	TriangleDerivateCase::deinit();
608 }
609 
genVertexSource(glu::DataType coordType,glu::Precision precision)610 static std::string genVertexSource (glu::DataType coordType, glu::Precision precision)
611 {
612 	DE_ASSERT(glu::isDataTypeFloatOrVec(coordType));
613 
614 	const char* vertexTmpl =
615 		"#version 300 es\n"
616 		"in highp vec4 a_position;\n"
617 		"in ${PRECISION} ${DATATYPE} a_coord;\n"
618 		"out ${PRECISION} ${DATATYPE} v_coord;\n"
619 		"void main (void)\n"
620 		"{\n"
621 		"	gl_Position = a_position;\n"
622 		"	v_coord = a_coord;\n"
623 		"}\n";
624 
625 	map<string, string> vertexParams;
626 
627 	vertexParams["PRECISION"]	= glu::getPrecisionName(precision);
628 	vertexParams["DATATYPE"]	= glu::getDataTypeName(coordType);
629 
630 	return tcu::StringTemplate(vertexTmpl).specialize(vertexParams);
631 }
632 
getViewportSize(void) const633 inline tcu::IVec2 TriangleDerivateCase::getViewportSize (void) const
634 {
635 	if (m_surfaceType == SURFACETYPE_DEFAULT_FRAMEBUFFER)
636 	{
637 		const int	width	= de::min<int>(m_context.getRenderTarget().getWidth(),	VIEWPORT_WIDTH);
638 		const int	height	= de::min<int>(m_context.getRenderTarget().getHeight(),	VIEWPORT_HEIGHT);
639 		return tcu::IVec2(width, height);
640 	}
641 	else
642 		return tcu::IVec2(FBO_WIDTH, FBO_HEIGHT);
643 }
644 
iterate(void)645 TriangleDerivateCase::IterateResult TriangleDerivateCase::iterate (void)
646 {
647 	const glw::Functions&		gl				= m_context.getRenderContext().getFunctions();
648 	const glu::ShaderProgram	program			(m_context.getRenderContext(), glu::makeVtxFragSources(genVertexSource(m_coordDataType, m_coordPrecision), m_fragmentSrc));
649 	de::Random					rnd				(deStringHash(getName()) ^ 0xbbc24);
650 	const bool					useFbo			= m_surfaceType != SURFACETYPE_DEFAULT_FRAMEBUFFER;
651 	const deUint32				fboFormat		= m_surfaceType == SURFACETYPE_FLOAT_FBO ? GL_RGBA32UI : GL_RGBA8;
652 	const tcu::IVec2			viewportSize	= getViewportSize();
653 	const int					viewportX		= useFbo ? 0 : rnd.getInt(0, m_context.getRenderTarget().getWidth()		- viewportSize.x());
654 	const int					viewportY		= useFbo ? 0 : rnd.getInt(0, m_context.getRenderTarget().getHeight()	- viewportSize.y());
655 	AutoFbo						fbo				(gl);
656 	AutoRbo						rbo				(gl);
657 	tcu::TextureLevel			result;
658 
659 	m_testCtx.getLog() << program;
660 
661 	if (!program.isOk())
662 		TCU_FAIL("Compile failed");
663 
664 	if (useFbo)
665 	{
666 		m_testCtx.getLog() << TestLog::Message
667 						   << "Rendering to FBO, format = " << glu::getTextureFormatStr(fboFormat)
668 						   << ", samples = " << m_numSamples
669 						   << TestLog::EndMessage;
670 
671 		fbo.gen();
672 		rbo.gen();
673 
674 		gl.bindRenderbuffer(GL_RENDERBUFFER, *rbo);
675 		gl.renderbufferStorageMultisample(GL_RENDERBUFFER, m_numSamples, fboFormat, viewportSize.x(), viewportSize.y());
676 		gl.bindFramebuffer(GL_FRAMEBUFFER, *fbo);
677 		gl.framebufferRenderbuffer(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, GL_RENDERBUFFER, *rbo);
678 		TCU_CHECK(gl.checkFramebufferStatus(GL_FRAMEBUFFER) == GL_FRAMEBUFFER_COMPLETE);
679 	}
680 	else
681 	{
682 		const tcu::PixelFormat pixelFormat = m_context.getRenderTarget().getPixelFormat();
683 
684 		m_testCtx.getLog()
685 			<< TestLog::Message
686 			<< "Rendering to default framebuffer\n"
687 			<< "\tColor depth: R=" << pixelFormat.redBits << ", G=" << pixelFormat.greenBits << ", B=" << pixelFormat.blueBits << ", A=" << pixelFormat.alphaBits
688 			<< TestLog::EndMessage;
689 	}
690 
691 	m_testCtx.getLog() << TestLog::Message << "in: " << m_coordMin << " -> " << m_coordMax << "\n"
692 										   << "v_coord.x = in.x * x\n"
693 										   << "v_coord.y = in.y * y\n"
694 										   << "v_coord.z = in.z * (x+y)/2\n"
695 										   << "v_coord.w = in.w * (1 - (x+y)/2)\n"
696 					   << TestLog::EndMessage
697 					   << TestLog::Message << "u_scale: " << m_derivScale << ", u_bias: " << m_derivBias << " (displayed values have scale/bias removed)" << TestLog::EndMessage
698 					   << TestLog::Message << "Viewport: " << viewportSize.x() << "x" << viewportSize.y() << TestLog::EndMessage
699 					   << TestLog::Message << "GL_FRAGMENT_SHADER_DERIVATE_HINT: " << glu::getHintModeStr(m_hint) << TestLog::EndMessage;
700 
701 	// Draw
702 	{
703 		const float positions[] =
704 		{
705 			-1.0f, -1.0f, 0.0f, 1.0f,
706 			-1.0f,  1.0f, 0.0f, 1.0f,
707 			 1.0f, -1.0f, 0.0f, 1.0f,
708 			 1.0f,  1.0f, 0.0f, 1.0f
709 		};
710 		const float coords[] =
711 		{
712 			m_coordMin.x(), m_coordMin.y(), m_coordMin.z(),							m_coordMax.w(),
713 			m_coordMin.x(), m_coordMax.y(), (m_coordMin.z()+m_coordMax.z())*0.5f,	(m_coordMin.w()+m_coordMax.w())*0.5f,
714 			m_coordMax.x(), m_coordMin.y(), (m_coordMin.z()+m_coordMax.z())*0.5f,	(m_coordMin.w()+m_coordMax.w())*0.5f,
715 			m_coordMax.x(), m_coordMax.y(), m_coordMax.z(),							m_coordMin.w()
716 		};
717 		const glu::VertexArrayBinding vertexArrays[] =
718 		{
719 			glu::va::Float("a_position",	4, 4, 0, &positions[0]),
720 			glu::va::Float("a_coord",		4, 4, 0, &coords[0])
721 		};
722 		const deUint16 indices[] = { 0, 2, 1, 2, 3, 1 };
723 
724 		gl.clearColor(0.125f, 0.25f, 0.5f, 1.0f);
725 		gl.clear(GL_COLOR_BUFFER_BIT|GL_DEPTH_BUFFER_BIT|GL_STENCIL_BUFFER_BIT);
726 		gl.disable(GL_DITHER);
727 
728 		gl.useProgram(program.getProgram());
729 
730 		{
731 			const int	scaleLoc	= gl.getUniformLocation(program.getProgram(), "u_scale");
732 			const int	biasLoc		= gl.getUniformLocation(program.getProgram(), "u_bias");
733 
734 			switch (m_dataType)
735 			{
736 				case glu::TYPE_FLOAT:
737 					gl.uniform1f(scaleLoc, m_derivScale.x());
738 					gl.uniform1f(biasLoc, m_derivBias.x());
739 					break;
740 
741 				case glu::TYPE_FLOAT_VEC2:
742 					gl.uniform2fv(scaleLoc, 1, m_derivScale.getPtr());
743 					gl.uniform2fv(biasLoc, 1, m_derivBias.getPtr());
744 					break;
745 
746 				case glu::TYPE_FLOAT_VEC3:
747 					gl.uniform3fv(scaleLoc, 1, m_derivScale.getPtr());
748 					gl.uniform3fv(biasLoc, 1, m_derivBias.getPtr());
749 					break;
750 
751 				case glu::TYPE_FLOAT_VEC4:
752 					gl.uniform4fv(scaleLoc, 1, m_derivScale.getPtr());
753 					gl.uniform4fv(biasLoc, 1, m_derivBias.getPtr());
754 					break;
755 
756 				default:
757 					DE_ASSERT(false);
758 			}
759 		}
760 
761 		gls::setupDefaultUniforms(m_context.getRenderContext(), program.getProgram());
762 		setupRenderState(program.getProgram());
763 
764 		gl.hint(GL_FRAGMENT_SHADER_DERIVATIVE_HINT, m_hint);
765 		GLU_EXPECT_NO_ERROR(gl.getError(), "Setup program state");
766 
767 		gl.viewport(viewportX, viewportY, viewportSize.x(), viewportSize.y());
768 		glu::draw(m_context.getRenderContext(), program.getProgram(), DE_LENGTH_OF_ARRAY(vertexArrays), &vertexArrays[0],
769 				  glu::pr::Triangles(DE_LENGTH_OF_ARRAY(indices), &indices[0]));
770 		GLU_EXPECT_NO_ERROR(gl.getError(), "Draw");
771 	}
772 
773 	// Read back results
774 	{
775 		const bool		isMSAA		= useFbo && m_numSamples > 0;
776 		AutoFbo			resFbo		(gl);
777 		AutoRbo			resRbo		(gl);
778 
779 		// Resolve if necessary
780 		if (isMSAA)
781 		{
782 			resFbo.gen();
783 			resRbo.gen();
784 
785 			gl.bindRenderbuffer(GL_RENDERBUFFER, *resRbo);
786 			gl.renderbufferStorageMultisample(GL_RENDERBUFFER, 0, fboFormat, viewportSize.x(), viewportSize.y());
787 			gl.bindFramebuffer(GL_DRAW_FRAMEBUFFER, *resFbo);
788 			gl.framebufferRenderbuffer(GL_DRAW_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, GL_RENDERBUFFER, *resRbo);
789 			TCU_CHECK(gl.checkFramebufferStatus(GL_FRAMEBUFFER) == GL_FRAMEBUFFER_COMPLETE);
790 
791 			gl.blitFramebuffer(0, 0, viewportSize.x(), viewportSize.y(), 0, 0, viewportSize.x(), viewportSize.y(), GL_COLOR_BUFFER_BIT, GL_NEAREST);
792 			GLU_EXPECT_NO_ERROR(gl.getError(), "Resolve blit");
793 
794 			gl.bindFramebuffer(GL_READ_FRAMEBUFFER, *resFbo);
795 		}
796 
797 		switch (m_surfaceType)
798 		{
799 			case SURFACETYPE_DEFAULT_FRAMEBUFFER:
800 			case SURFACETYPE_UNORM_FBO:
801 				result.setStorage(tcu::TextureFormat(tcu::TextureFormat::RGBA, tcu::TextureFormat::UNORM_INT8), viewportSize.x(), viewportSize.y());
802 				glu::readPixels(m_context.getRenderContext(), viewportX, viewportY, result);
803 				break;
804 
805 			case SURFACETYPE_FLOAT_FBO:
806 			{
807 				const tcu::TextureFormat	dataFormat		(tcu::TextureFormat::RGBA, tcu::TextureFormat::FLOAT);
808 				const tcu::TextureFormat	transferFormat	(tcu::TextureFormat::RGBA, tcu::TextureFormat::UNSIGNED_INT32);
809 
810 				result.setStorage(dataFormat, viewportSize.x(), viewportSize.y());
811 				glu::readPixels(m_context.getRenderContext(), viewportX, viewportY,
812 								tcu::PixelBufferAccess(transferFormat, result.getWidth(), result.getHeight(), result.getDepth(), result.getAccess().getDataPtr()));
813 				break;
814 			}
815 
816 			default:
817 				DE_ASSERT(false);
818 		}
819 
820 		GLU_EXPECT_NO_ERROR(gl.getError(), "Read pixels");
821 	}
822 
823 	// Verify
824 	{
825 		tcu::Surface errorMask(result.getWidth(), result.getHeight());
826 		tcu::clear(errorMask.getAccess(), tcu::RGBA::green().toVec());
827 
828 		const bool isOk = verify(result.getAccess(), errorMask.getAccess());
829 
830 		m_testCtx.getLog() << TestLog::ImageSet("Result", "Result images")
831 						   << TestLog::Image("Rendered", "Rendered image", result);
832 
833 		if (!isOk)
834 			m_testCtx.getLog() << TestLog::Image("ErrorMask", "Error mask", errorMask);
835 
836 		m_testCtx.getLog() << TestLog::EndImageSet;
837 
838 		m_testCtx.setTestResult(isOk ? QP_TEST_RESULT_PASS	: QP_TEST_RESULT_FAIL,
839 								isOk ? "Pass"				: "Image comparison failed");
840 	}
841 
842 	return STOP;
843 }
844 
getSurfaceThreshold(void) const845 tcu::Vec4 TriangleDerivateCase::getSurfaceThreshold (void) const
846 {
847 	switch (m_surfaceType)
848 	{
849 		case SURFACETYPE_DEFAULT_FRAMEBUFFER:
850 		{
851 			const tcu::PixelFormat	pixelFormat		= m_context.getRenderTarget().getPixelFormat();
852 			const tcu::IVec4		channelBits		(pixelFormat.redBits, pixelFormat.greenBits, pixelFormat.blueBits, pixelFormat.alphaBits);
853 			const tcu::IVec4		intThreshold	= tcu::IVec4(1) << (8 - channelBits);
854 			const tcu::Vec4			normThreshold	= intThreshold.asFloat() / 255.0f;
855 
856 			return normThreshold;
857 		}
858 
859 		case SURFACETYPE_UNORM_FBO:				return tcu::IVec4(1).asFloat() / 255.0f;
860 		case SURFACETYPE_FLOAT_FBO:				return tcu::Vec4(0.0f);
861 		default:
862 			DE_ASSERT(false);
863 			return tcu::Vec4(0.0f);
864 	}
865 }
866 
867 // ConstantDerivateCase
868 
869 class ConstantDerivateCase : public TriangleDerivateCase
870 {
871 public:
872 						ConstantDerivateCase		(Context& context, const char* name, const char* description, DerivateFunc func, glu::DataType type);
~ConstantDerivateCase(void)873 						~ConstantDerivateCase		(void) {}
874 
875 	void				init						(void);
876 
877 protected:
878 	bool				verify						(const tcu::ConstPixelBufferAccess& result, const tcu::PixelBufferAccess& errorMask);
879 
880 private:
881 	DerivateFunc		m_func;
882 };
883 
ConstantDerivateCase(Context & context,const char * name,const char * description,DerivateFunc func,glu::DataType type)884 ConstantDerivateCase::ConstantDerivateCase (Context& context, const char* name, const char* description, DerivateFunc func, glu::DataType type)
885 	: TriangleDerivateCase	(context, name, description)
886 	, m_func				(func)
887 {
888 	m_dataType			= type;
889 	m_precision			= glu::PRECISION_HIGHP;
890 	m_coordDataType		= m_dataType;
891 	m_coordPrecision	= m_precision;
892 }
893 
init(void)894 void ConstantDerivateCase::init (void)
895 {
896 	const char* fragmentTmpl =
897 		"#version 300 es\n"
898 		"layout(location = 0) out mediump vec4 o_color;\n"
899 		"uniform ${PRECISION} ${DATATYPE} u_scale;\n"
900 		"uniform ${PRECISION} ${DATATYPE} u_bias;\n"
901 		"void main (void)\n"
902 		"{\n"
903 		"	${PRECISION} ${DATATYPE} res = ${FUNC}(${VALUE}) * u_scale + u_bias;\n"
904 		"	o_color = ${CAST_TO_OUTPUT};\n"
905 		"}\n";
906 	map<string, string> fragmentParams;
907 	fragmentParams["PRECISION"]			= glu::getPrecisionName(m_precision);
908 	fragmentParams["DATATYPE"]			= glu::getDataTypeName(m_dataType);
909 	fragmentParams["FUNC"]				= getDerivateFuncName(m_func);
910 	fragmentParams["VALUE"]				= m_dataType == glu::TYPE_FLOAT_VEC4 ? "vec4(1.0, 7.2, -1e5, 0.0)" :
911 										  m_dataType == glu::TYPE_FLOAT_VEC3 ? "vec3(1e2, 8.0, 0.01)" :
912 										  m_dataType == glu::TYPE_FLOAT_VEC2 ? "vec2(-0.0, 2.7)" :
913 										  /* TYPE_FLOAT */					   "7.7";
914 	fragmentParams["CAST_TO_OUTPUT"]	= m_dataType == glu::TYPE_FLOAT_VEC4 ? "res" :
915 										  m_dataType == glu::TYPE_FLOAT_VEC3 ? "vec4(res, 1.0)" :
916 										  m_dataType == glu::TYPE_FLOAT_VEC2 ? "vec4(res, 0.0, 1.0)" :
917 										  /* TYPE_FLOAT */					   "vec4(res, 0.0, 0.0, 1.0)";
918 
919 	m_fragmentSrc = tcu::StringTemplate(fragmentTmpl).specialize(fragmentParams);
920 
921 	m_derivScale	= tcu::Vec4(1e3f, 1e3f, 1e3f, 1e3f);
922 	m_derivBias		= tcu::Vec4(0.5f, 0.5f, 0.5f, 0.5f);
923 }
924 
verify(const tcu::ConstPixelBufferAccess & result,const tcu::PixelBufferAccess & errorMask)925 bool ConstantDerivateCase::verify (const tcu::ConstPixelBufferAccess& result, const tcu::PixelBufferAccess& errorMask)
926 {
927 	const tcu::Vec4 reference	(0.0f); // Derivate of constant argument should always be 0
928 	const tcu::Vec4	threshold	= getSurfaceThreshold() / abs(m_derivScale);
929 
930 	return verifyConstantDerivate(m_testCtx.getLog(), result, errorMask, m_dataType,
931 								  reference, threshold, m_derivScale, m_derivBias);
932 }
933 
934 // LinearDerivateCase
935 
936 class LinearDerivateCase : public TriangleDerivateCase
937 {
938 public:
939 						LinearDerivateCase		(Context& context, const char* name, const char* description, DerivateFunc func, glu::DataType type, glu::Precision precision, deUint32 hint, SurfaceType surfaceType, int numSamples, const char* fragmentSrcTmpl);
~LinearDerivateCase(void)940 						~LinearDerivateCase		(void) {}
941 
942 	void				init					(void);
943 
944 protected:
945 	bool				verify					(const tcu::ConstPixelBufferAccess& result, const tcu::PixelBufferAccess& errorMask);
946 
947 private:
948 	DerivateFunc		m_func;
949 	std::string			m_fragmentTmpl;
950 };
951 
LinearDerivateCase(Context & context,const char * name,const char * description,DerivateFunc func,glu::DataType type,glu::Precision precision,deUint32 hint,SurfaceType surfaceType,int numSamples,const char * fragmentSrcTmpl)952 LinearDerivateCase::LinearDerivateCase (Context& context, const char* name, const char* description, DerivateFunc func, glu::DataType type, glu::Precision precision, deUint32 hint, SurfaceType surfaceType, int numSamples, const char* fragmentSrcTmpl)
953 	: TriangleDerivateCase	(context, name, description)
954 	, m_func				(func)
955 	, m_fragmentTmpl		(fragmentSrcTmpl)
956 {
957 	m_dataType			= type;
958 	m_precision			= precision;
959 	m_coordDataType		= m_dataType;
960 	m_coordPrecision	= m_precision;
961 	m_hint				= hint;
962 	m_surfaceType		= surfaceType;
963 	m_numSamples		= numSamples;
964 }
965 
init(void)966 void LinearDerivateCase::init (void)
967 {
968 	const tcu::IVec2	viewportSize	= getViewportSize();
969 	const float			w				= float(viewportSize.x());
970 	const float			h				= float(viewportSize.y());
971 	const bool			packToInt		= m_surfaceType == SURFACETYPE_FLOAT_FBO;
972 	map<string, string>	fragmentParams;
973 
974 	fragmentParams["OUTPUT_TYPE"]		= glu::getDataTypeName(packToInt ? glu::TYPE_UINT_VEC4 : glu::TYPE_FLOAT_VEC4);
975 	fragmentParams["OUTPUT_PREC"]		= glu::getPrecisionName(packToInt ? glu::PRECISION_HIGHP : m_precision);
976 	fragmentParams["PRECISION"]			= glu::getPrecisionName(m_precision);
977 	fragmentParams["DATATYPE"]			= glu::getDataTypeName(m_dataType);
978 	fragmentParams["FUNC"]				= getDerivateFuncName(m_func);
979 
980 	if (packToInt)
981 	{
982 		fragmentParams["CAST_TO_OUTPUT"]	= m_dataType == glu::TYPE_FLOAT_VEC4 ? "floatBitsToUint(res)" :
983 											  m_dataType == glu::TYPE_FLOAT_VEC3 ? "floatBitsToUint(vec4(res, 1.0))" :
984 											  m_dataType == glu::TYPE_FLOAT_VEC2 ? "floatBitsToUint(vec4(res, 0.0, 1.0))" :
985 											  /* TYPE_FLOAT */					   "floatBitsToUint(vec4(res, 0.0, 0.0, 1.0))";
986 	}
987 	else
988 	{
989 		fragmentParams["CAST_TO_OUTPUT"]	= m_dataType == glu::TYPE_FLOAT_VEC4 ? "res" :
990 											  m_dataType == glu::TYPE_FLOAT_VEC3 ? "vec4(res, 1.0)" :
991 											  m_dataType == glu::TYPE_FLOAT_VEC2 ? "vec4(res, 0.0, 1.0)" :
992 											  /* TYPE_FLOAT */					   "vec4(res, 0.0, 0.0, 1.0)";
993 	}
994 
995 	m_fragmentSrc = tcu::StringTemplate(m_fragmentTmpl.c_str()).specialize(fragmentParams);
996 
997 	switch (m_precision)
998 	{
999 		case glu::PRECISION_HIGHP:
1000 			m_coordMin = tcu::Vec4(-97.f, 0.2f, 71.f, 74.f);
1001 			m_coordMax = tcu::Vec4(-13.2f, -77.f, 44.f, 76.f);
1002 			break;
1003 
1004 		case glu::PRECISION_MEDIUMP:
1005 			m_coordMin = tcu::Vec4(-37.0f, 47.f, -7.f, 0.0f);
1006 			m_coordMax = tcu::Vec4(-1.0f, 12.f, 7.f, 19.f);
1007 			break;
1008 
1009 		case glu::PRECISION_LOWP:
1010 			m_coordMin = tcu::Vec4(0.0f, -1.0f, 0.0f, 1.0f);
1011 			m_coordMax = tcu::Vec4(1.0f, 1.0f, -1.0f, -1.0f);
1012 			break;
1013 
1014 		default:
1015 			DE_ASSERT(false);
1016 	}
1017 
1018 	if (m_surfaceType == SURFACETYPE_FLOAT_FBO)
1019 	{
1020 		// No scale or bias used for accuracy.
1021 		m_derivScale	= tcu::Vec4(1.0f);
1022 		m_derivBias		= tcu::Vec4(0.0f);
1023 	}
1024 	else
1025 	{
1026 		// Compute scale - bias that normalizes to 0..1 range.
1027 		const tcu::Vec4 dx = (m_coordMax - m_coordMin) / tcu::Vec4(w, w, w*0.5f, -w*0.5f);
1028 		const tcu::Vec4 dy = (m_coordMax - m_coordMin) / tcu::Vec4(h, h, h*0.5f, -h*0.5f);
1029 
1030 		switch (m_func)
1031 		{
1032 			case DERIVATE_DFDX:
1033 				m_derivScale = 0.5f / dx;
1034 				break;
1035 
1036 			case DERIVATE_DFDY:
1037 				m_derivScale = 0.5f / dy;
1038 				break;
1039 
1040 			case DERIVATE_FWIDTH:
1041 				m_derivScale = 0.5f / (tcu::abs(dx) + tcu::abs(dy));
1042 				break;
1043 
1044 			default:
1045 				DE_ASSERT(false);
1046 		}
1047 
1048 		m_derivBias = tcu::Vec4(0.0f, 0.0f, 0.0f, 0.0f);
1049 	}
1050 }
1051 
verify(const tcu::ConstPixelBufferAccess & result,const tcu::PixelBufferAccess & errorMask)1052 bool LinearDerivateCase::verify (const tcu::ConstPixelBufferAccess& result, const tcu::PixelBufferAccess& errorMask)
1053 {
1054 	const tcu::Vec4		xScale				= tcu::Vec4(1.0f, 0.0f, 0.5f, -0.5f);
1055 	const tcu::Vec4		yScale				= tcu::Vec4(0.0f, 1.0f, 0.5f, -0.5f);
1056 	const tcu::Vec4		surfaceThreshold	= getSurfaceThreshold() / abs(m_derivScale);
1057 
1058 	if (m_func == DERIVATE_DFDX || m_func == DERIVATE_DFDY)
1059 	{
1060 		const bool			isX			= m_func == DERIVATE_DFDX;
1061 		const float			div			= isX ? float(result.getWidth()) : float(result.getHeight());
1062 		const tcu::Vec4		scale		= isX ? xScale : yScale;
1063 		const tcu::Vec4		reference	= ((m_coordMax - m_coordMin) / div) * scale;
1064 		const tcu::Vec4		opThreshold	= getDerivateThreshold(m_precision, m_coordMin*scale, m_coordMax*scale, reference);
1065 		const tcu::Vec4		threshold	= max(surfaceThreshold, opThreshold);
1066 		const int			numComps	= glu::getDataTypeFloatScalars(m_dataType);
1067 
1068 		m_testCtx.getLog()
1069 			<< tcu::TestLog::Message
1070 			<< "Verifying result image.\n"
1071 			<< "\tValid derivative is " << LogVecComps(reference, numComps) << " with threshold " << LogVecComps(threshold, numComps)
1072 			<< tcu::TestLog::EndMessage;
1073 
1074 		// short circuit if result is strictly within the normal value error bounds.
1075 		// This improves performance significantly.
1076 		if (verifyConstantDerivate(m_testCtx.getLog(), result, errorMask, m_dataType,
1077 								   reference, threshold, m_derivScale, m_derivBias,
1078 								   LOG_NOTHING))
1079 		{
1080 			m_testCtx.getLog()
1081 				<< tcu::TestLog::Message
1082 				<< "No incorrect derivatives found, result valid."
1083 				<< tcu::TestLog::EndMessage;
1084 
1085 			return true;
1086 		}
1087 
1088 		// some pixels exceed error bounds calculated for normal values. Verify that these
1089 		// potentially invalid pixels are in fact valid due to (for example) subnorm flushing.
1090 
1091 		m_testCtx.getLog()
1092 			<< tcu::TestLog::Message
1093 			<< "Initial verification failed, verifying image by calculating accurate error bounds for each result pixel.\n"
1094 			<< "\tVerifying each result derivative is within its range of legal result values."
1095 			<< tcu::TestLog::EndMessage;
1096 
1097 		{
1098 			const tcu::IVec2			viewportSize	= getViewportSize();
1099 			const float					w				= float(viewportSize.x());
1100 			const float					h				= float(viewportSize.y());
1101 			const tcu::Vec4				valueRamp		= (m_coordMax - m_coordMin);
1102 			Linear2DFunctionEvaluator	function;
1103 
1104 			function.matrix.setRow(0, tcu::Vec3(valueRamp.x() / w, 0.0f, m_coordMin.x()));
1105 			function.matrix.setRow(1, tcu::Vec3(0.0f, valueRamp.y() / h, m_coordMin.y()));
1106 			function.matrix.setRow(2, tcu::Vec3(valueRamp.z() / w, valueRamp.z() / h, m_coordMin.z() + m_coordMin.z()) / 2.0f);
1107 			function.matrix.setRow(3, tcu::Vec3(-valueRamp.w() / w, -valueRamp.w() / h, m_coordMax.w() + m_coordMax.w()) / 2.0f);
1108 
1109 			return reverifyConstantDerivateWithFlushRelaxations(m_testCtx.getLog(), result, errorMask,
1110 																m_dataType, m_precision, m_derivScale,
1111 																m_derivBias, surfaceThreshold, m_func,
1112 																function);
1113 		}
1114 	}
1115 	else
1116 	{
1117 		DE_ASSERT(m_func == DERIVATE_FWIDTH);
1118 		const float			w			= float(result.getWidth());
1119 		const float			h			= float(result.getHeight());
1120 
1121 		const tcu::Vec4		dx			= ((m_coordMax - m_coordMin) / w) * xScale;
1122 		const tcu::Vec4		dy			= ((m_coordMax - m_coordMin) / h) * yScale;
1123 		const tcu::Vec4		reference	= tcu::abs(dx) + tcu::abs(dy);
1124 		const tcu::Vec4		dxThreshold	= getDerivateThreshold(m_precision, m_coordMin*xScale, m_coordMax*xScale, dx);
1125 		const tcu::Vec4		dyThreshold	= getDerivateThreshold(m_precision, m_coordMin*yScale, m_coordMax*yScale, dy);
1126 		const tcu::Vec4		threshold	= max(surfaceThreshold, max(dxThreshold, dyThreshold));
1127 
1128 		return verifyConstantDerivate(m_testCtx.getLog(), result, errorMask, m_dataType,
1129 									  reference, threshold, m_derivScale, m_derivBias);
1130 	}
1131 }
1132 
1133 // TextureDerivateCase
1134 
1135 class TextureDerivateCase : public TriangleDerivateCase
1136 {
1137 public:
1138 						TextureDerivateCase		(Context& context, const char* name, const char* description, DerivateFunc func, glu::DataType type, glu::Precision precision, deUint32 hint, SurfaceType surfaceType, int numSamples);
1139 						~TextureDerivateCase	(void);
1140 
1141 	void				init					(void);
1142 	void				deinit					(void);
1143 
1144 protected:
1145 	void				setupRenderState		(deUint32 program);
1146 	bool				verify					(const tcu::ConstPixelBufferAccess& result, const tcu::PixelBufferAccess& errorMask);
1147 
1148 private:
1149 	DerivateFunc		m_func;
1150 
1151 	tcu::Vec4			m_texValueMin;
1152 	tcu::Vec4			m_texValueMax;
1153 	glu::Texture2D*		m_texture;
1154 };
1155 
TextureDerivateCase(Context & context,const char * name,const char * description,DerivateFunc func,glu::DataType type,glu::Precision precision,deUint32 hint,SurfaceType surfaceType,int numSamples)1156 TextureDerivateCase::TextureDerivateCase (Context& context, const char* name, const char* description, DerivateFunc func, glu::DataType type, glu::Precision precision, deUint32 hint, SurfaceType surfaceType, int numSamples)
1157 	: TriangleDerivateCase	(context, name, description)
1158 	, m_func				(func)
1159 	, m_texture				(DE_NULL)
1160 {
1161 	m_dataType			= type;
1162 	m_precision			= precision;
1163 	m_coordDataType		= glu::TYPE_FLOAT_VEC2;
1164 	m_coordPrecision	= glu::PRECISION_HIGHP;
1165 	m_hint				= hint;
1166 	m_surfaceType		= surfaceType;
1167 	m_numSamples		= numSamples;
1168 }
1169 
~TextureDerivateCase(void)1170 TextureDerivateCase::~TextureDerivateCase (void)
1171 {
1172 	delete m_texture;
1173 }
1174 
init(void)1175 void TextureDerivateCase::init (void)
1176 {
1177 	// Generate shader
1178 	{
1179 		const char* fragmentTmpl =
1180 			"#version 300 es\n"
1181 			"in highp vec2 v_coord;\n"
1182 			"layout(location = 0) out ${OUTPUT_PREC} ${OUTPUT_TYPE} o_color;\n"
1183 			"uniform ${PRECISION} sampler2D u_sampler;\n"
1184 			"uniform ${PRECISION} ${DATATYPE} u_scale;\n"
1185 			"uniform ${PRECISION} ${DATATYPE} u_bias;\n"
1186 			"void main (void)\n"
1187 			"{\n"
1188 			"	${PRECISION} vec4 tex = texture(u_sampler, v_coord);\n"
1189 			"	${PRECISION} ${DATATYPE} res = ${FUNC}(tex${SWIZZLE}) * u_scale + u_bias;\n"
1190 			"	o_color = ${CAST_TO_OUTPUT};\n"
1191 			"}\n";
1192 
1193 		const bool			packToInt		= m_surfaceType == SURFACETYPE_FLOAT_FBO;
1194 		map<string, string> fragmentParams;
1195 
1196 		fragmentParams["OUTPUT_TYPE"]		= glu::getDataTypeName(packToInt ? glu::TYPE_UINT_VEC4 : glu::TYPE_FLOAT_VEC4);
1197 		fragmentParams["OUTPUT_PREC"]		= glu::getPrecisionName(packToInt ? glu::PRECISION_HIGHP : m_precision);
1198 		fragmentParams["PRECISION"]			= glu::getPrecisionName(m_precision);
1199 		fragmentParams["DATATYPE"]			= glu::getDataTypeName(m_dataType);
1200 		fragmentParams["FUNC"]				= getDerivateFuncName(m_func);
1201 		fragmentParams["SWIZZLE"]			= m_dataType == glu::TYPE_FLOAT_VEC4 ? "" :
1202 											  m_dataType == glu::TYPE_FLOAT_VEC3 ? ".xyz" :
1203 											  m_dataType == glu::TYPE_FLOAT_VEC2 ? ".xy" :
1204 											  /* TYPE_FLOAT */					   ".x";
1205 
1206 		if (packToInt)
1207 		{
1208 			fragmentParams["CAST_TO_OUTPUT"]	= m_dataType == glu::TYPE_FLOAT_VEC4 ? "floatBitsToUint(res)" :
1209 												  m_dataType == glu::TYPE_FLOAT_VEC3 ? "floatBitsToUint(vec4(res, 1.0))" :
1210 												  m_dataType == glu::TYPE_FLOAT_VEC2 ? "floatBitsToUint(vec4(res, 0.0, 1.0))" :
1211 												  /* TYPE_FLOAT */					   "floatBitsToUint(vec4(res, 0.0, 0.0, 1.0))";
1212 		}
1213 		else
1214 		{
1215 			fragmentParams["CAST_TO_OUTPUT"]	= m_dataType == glu::TYPE_FLOAT_VEC4 ? "res" :
1216 												  m_dataType == glu::TYPE_FLOAT_VEC3 ? "vec4(res, 1.0)" :
1217 												  m_dataType == glu::TYPE_FLOAT_VEC2 ? "vec4(res, 0.0, 1.0)" :
1218 												  /* TYPE_FLOAT */					   "vec4(res, 0.0, 0.0, 1.0)";
1219 		}
1220 
1221 		m_fragmentSrc = tcu::StringTemplate(fragmentTmpl).specialize(fragmentParams);
1222 	}
1223 
1224 	// Texture size matches viewport and nearest sampling is used. Thus texture sampling
1225 	// is equal to just interpolating the texture value range.
1226 
1227 	// Determine value range for texture.
1228 
1229 	switch (m_precision)
1230 	{
1231 		case glu::PRECISION_HIGHP:
1232 			m_texValueMin = tcu::Vec4(-97.f, 0.2f, 71.f, 74.f);
1233 			m_texValueMax = tcu::Vec4(-13.2f, -77.f, 44.f, 76.f);
1234 			break;
1235 
1236 		case glu::PRECISION_MEDIUMP:
1237 			m_texValueMin = tcu::Vec4(-37.0f, 47.f, -7.f, 0.0f);
1238 			m_texValueMax = tcu::Vec4(-1.0f, 12.f, 7.f, 19.f);
1239 			break;
1240 
1241 		case glu::PRECISION_LOWP:
1242 			m_texValueMin = tcu::Vec4(0.0f, -1.0f, 0.0f, 1.0f);
1243 			m_texValueMax = tcu::Vec4(1.0f, 1.0f, -1.0f, -1.0f);
1244 			break;
1245 
1246 		default:
1247 			DE_ASSERT(false);
1248 	}
1249 
1250 	// Lowp and mediump cases use RGBA16F format, while highp uses RGBA32F.
1251 	{
1252 		const tcu::IVec2 viewportSize = getViewportSize();
1253 		DE_ASSERT(!m_texture);
1254 		m_texture = new glu::Texture2D(m_context.getRenderContext(), m_precision == glu::PRECISION_HIGHP ? GL_RGBA32F : GL_RGBA16F, viewportSize.x(), viewportSize.y());
1255 		m_texture->getRefTexture().allocLevel(0);
1256 	}
1257 
1258 	// Texture coordinates
1259 	m_coordMin = tcu::Vec4(0.0f);
1260 	m_coordMax = tcu::Vec4(1.0f);
1261 
1262 	// Fill with gradients.
1263 	{
1264 		const tcu::PixelBufferAccess level0 = m_texture->getRefTexture().getLevel(0);
1265 		for (int y = 0; y < level0.getHeight(); y++)
1266 		{
1267 			for (int x = 0; x < level0.getWidth(); x++)
1268 			{
1269 				const float		xf		= (float(x)+0.5f) / float(level0.getWidth());
1270 				const float		yf		= (float(y)+0.5f) / float(level0.getHeight());
1271 				const tcu::Vec4	s		= tcu::Vec4(xf, yf, (xf+yf)/2.0f, 1.0f - (xf+yf)/2.0f);
1272 
1273 				level0.setPixel(m_texValueMin + (m_texValueMax - m_texValueMin)*s, x, y);
1274 			}
1275 		}
1276 	}
1277 
1278 	m_texture->upload();
1279 
1280 	if (m_surfaceType == SURFACETYPE_FLOAT_FBO)
1281 	{
1282 		// No scale or bias used for accuracy.
1283 		m_derivScale	= tcu::Vec4(1.0f);
1284 		m_derivBias		= tcu::Vec4(0.0f);
1285 	}
1286 	else
1287 	{
1288 		// Compute scale - bias that normalizes to 0..1 range.
1289 		const tcu::IVec2	viewportSize	= getViewportSize();
1290 		const float			w				= float(viewportSize.x());
1291 		const float			h				= float(viewportSize.y());
1292 		const tcu::Vec4		dx				= (m_texValueMax - m_texValueMin) / tcu::Vec4(w, w, w*0.5f, -w*0.5f);
1293 		const tcu::Vec4		dy				= (m_texValueMax - m_texValueMin) / tcu::Vec4(h, h, h*0.5f, -h*0.5f);
1294 
1295 		switch (m_func)
1296 		{
1297 			case DERIVATE_DFDX:
1298 				m_derivScale = 0.5f / dx;
1299 				break;
1300 
1301 			case DERIVATE_DFDY:
1302 				m_derivScale = 0.5f / dy;
1303 				break;
1304 
1305 			case DERIVATE_FWIDTH:
1306 				m_derivScale = 0.5f / (tcu::abs(dx) + tcu::abs(dy));
1307 				break;
1308 
1309 			default:
1310 				DE_ASSERT(false);
1311 		}
1312 
1313 		m_derivBias = tcu::Vec4(0.0f, 0.0f, 0.0f, 0.0f);
1314 	}
1315 }
1316 
deinit(void)1317 void TextureDerivateCase::deinit (void)
1318 {
1319 	delete m_texture;
1320 	m_texture = DE_NULL;
1321 }
1322 
setupRenderState(deUint32 program)1323 void TextureDerivateCase::setupRenderState (deUint32 program)
1324 {
1325 	const glw::Functions&	gl			= m_context.getRenderContext().getFunctions();
1326 	const int				texUnit		= 1;
1327 
1328 	gl.activeTexture	(GL_TEXTURE0+texUnit);
1329 	gl.bindTexture		(GL_TEXTURE_2D, m_texture->getGLTexture());
1330 	gl.texParameteri	(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER,	GL_NEAREST);
1331 	gl.texParameteri	(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER,	GL_NEAREST);
1332 	gl.texParameteri	(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S,		GL_CLAMP_TO_EDGE);
1333 	gl.texParameteri	(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T,		GL_CLAMP_TO_EDGE);
1334 
1335 	gl.uniform1i		(gl.getUniformLocation(program, "u_sampler"), texUnit);
1336 }
1337 
verify(const tcu::ConstPixelBufferAccess & result,const tcu::PixelBufferAccess & errorMask)1338 bool TextureDerivateCase::verify (const tcu::ConstPixelBufferAccess& result, const tcu::PixelBufferAccess& errorMask)
1339 {
1340 	// \note Edges are ignored in comparison
1341 	if (result.getWidth() < 2 || result.getHeight() < 2)
1342 		throw tcu::NotSupportedError("Too small viewport");
1343 
1344 	tcu::ConstPixelBufferAccess	compareArea			= tcu::getSubregion(result, 1, 1, result.getWidth()-2, result.getHeight()-2);
1345 	tcu::PixelBufferAccess		maskArea			= tcu::getSubregion(errorMask, 1, 1, errorMask.getWidth()-2, errorMask.getHeight()-2);
1346 	const tcu::Vec4				xScale				= tcu::Vec4(1.0f, 0.0f, 0.5f, -0.5f);
1347 	const tcu::Vec4				yScale				= tcu::Vec4(0.0f, 1.0f, 0.5f, -0.5f);
1348 	const float					w					= float(result.getWidth());
1349 	const float					h					= float(result.getHeight());
1350 
1351 	const tcu::Vec4				surfaceThreshold	= getSurfaceThreshold() / abs(m_derivScale);
1352 
1353 	if (m_func == DERIVATE_DFDX || m_func == DERIVATE_DFDY)
1354 	{
1355 		const bool			isX			= m_func == DERIVATE_DFDX;
1356 		const float			div			= isX ? w : h;
1357 		const tcu::Vec4		scale		= isX ? xScale : yScale;
1358 		const tcu::Vec4		reference	= ((m_texValueMax - m_texValueMin) / div) * scale;
1359 		const tcu::Vec4		opThreshold	= getDerivateThreshold(m_precision, m_texValueMin*scale, m_texValueMax*scale, reference);
1360 		const tcu::Vec4		threshold	= max(surfaceThreshold, opThreshold);
1361 		const int			numComps	= glu::getDataTypeFloatScalars(m_dataType);
1362 
1363 		m_testCtx.getLog()
1364 			<< tcu::TestLog::Message
1365 			<< "Verifying result image.\n"
1366 			<< "\tValid derivative is " << LogVecComps(reference, numComps) << " with threshold " << LogVecComps(threshold, numComps)
1367 			<< tcu::TestLog::EndMessage;
1368 
1369 		// short circuit if result is strictly within the normal value error bounds.
1370 		// This improves performance significantly.
1371 		if (verifyConstantDerivate(m_testCtx.getLog(), compareArea, maskArea, m_dataType,
1372 								   reference, threshold, m_derivScale, m_derivBias,
1373 								   LOG_NOTHING))
1374 		{
1375 			m_testCtx.getLog()
1376 				<< tcu::TestLog::Message
1377 				<< "No incorrect derivatives found, result valid."
1378 				<< tcu::TestLog::EndMessage;
1379 
1380 			return true;
1381 		}
1382 
1383 		// some pixels exceed error bounds calculated for normal values. Verify that these
1384 		// potentially invalid pixels are in fact valid due to (for example) subnorm flushing.
1385 
1386 		m_testCtx.getLog()
1387 			<< tcu::TestLog::Message
1388 			<< "Initial verification failed, verifying image by calculating accurate error bounds for each result pixel.\n"
1389 			<< "\tVerifying each result derivative is within its range of legal result values."
1390 			<< tcu::TestLog::EndMessage;
1391 
1392 		{
1393 			const tcu::Vec4				valueRamp		= (m_texValueMax - m_texValueMin);
1394 			Linear2DFunctionEvaluator	function;
1395 
1396 			function.matrix.setRow(0, tcu::Vec3(valueRamp.x() / w, 0.0f, m_texValueMin.x()));
1397 			function.matrix.setRow(1, tcu::Vec3(0.0f, valueRamp.y() / h, m_texValueMin.y()));
1398 			function.matrix.setRow(2, tcu::Vec3(valueRamp.z() / w, valueRamp.z() / h, m_texValueMin.z() + m_texValueMin.z()) / 2.0f);
1399 			function.matrix.setRow(3, tcu::Vec3(-valueRamp.w() / w, -valueRamp.w() / h, m_texValueMax.w() + m_texValueMax.w()) / 2.0f);
1400 
1401 			return reverifyConstantDerivateWithFlushRelaxations(m_testCtx.getLog(), compareArea, maskArea,
1402 																m_dataType, m_precision, m_derivScale,
1403 																m_derivBias, surfaceThreshold, m_func,
1404 																function);
1405 		}
1406 	}
1407 	else
1408 	{
1409 		DE_ASSERT(m_func == DERIVATE_FWIDTH);
1410 		const tcu::Vec4	dx			= ((m_texValueMax - m_texValueMin) / w) * xScale;
1411 		const tcu::Vec4	dy			= ((m_texValueMax - m_texValueMin) / h) * yScale;
1412 		const tcu::Vec4	reference	= tcu::abs(dx) + tcu::abs(dy);
1413 		const tcu::Vec4	dxThreshold	= getDerivateThreshold(m_precision, m_texValueMin*xScale, m_texValueMax*xScale, dx);
1414 		const tcu::Vec4	dyThreshold	= getDerivateThreshold(m_precision, m_texValueMin*yScale, m_texValueMax*yScale, dy);
1415 		const tcu::Vec4	threshold	= max(surfaceThreshold, max(dxThreshold, dyThreshold));
1416 
1417 		return verifyConstantDerivate(m_testCtx.getLog(), compareArea, maskArea, m_dataType,
1418 									  reference, threshold, m_derivScale, m_derivBias);
1419 	}
1420 }
1421 
ShaderDerivateTests(Context & context)1422 ShaderDerivateTests::ShaderDerivateTests (Context& context)
1423 	: TestCaseGroup(context, "derivate", "Derivate Function Tests")
1424 {
1425 }
1426 
~ShaderDerivateTests(void)1427 ShaderDerivateTests::~ShaderDerivateTests (void)
1428 {
1429 }
1430 
1431 struct FunctionSpec
1432 {
1433 	std::string		name;
1434 	DerivateFunc	function;
1435 	glu::DataType	dataType;
1436 	glu::Precision	precision;
1437 
FunctionSpecdeqp::gles3::Functional::FunctionSpec1438 	FunctionSpec (const std::string& name_, DerivateFunc function_, glu::DataType dataType_, glu::Precision precision_)
1439 		: name		(name_)
1440 		, function	(function_)
1441 		, dataType	(dataType_)
1442 		, precision	(precision_)
1443 	{
1444 	}
1445 };
1446 
init(void)1447 void ShaderDerivateTests::init (void)
1448 {
1449 	static const struct
1450 	{
1451 		const char*		name;
1452 		const char*		description;
1453 		const char*		source;
1454 	} s_linearDerivateCases[] =
1455 	{
1456 		{
1457 			"linear",
1458 			"Basic derivate of linearly interpolated argument",
1459 
1460 			"#version 300 es\n"
1461 			"in ${PRECISION} ${DATATYPE} v_coord;\n"
1462 			"layout(location = 0) out ${OUTPUT_PREC} ${OUTPUT_TYPE} o_color;\n"
1463 			"uniform ${PRECISION} ${DATATYPE} u_scale;\n"
1464 			"uniform ${PRECISION} ${DATATYPE} u_bias;\n"
1465 			"void main (void)\n"
1466 			"{\n"
1467 			"	${PRECISION} ${DATATYPE} res = ${FUNC}(v_coord) * u_scale + u_bias;\n"
1468 			"	o_color = ${CAST_TO_OUTPUT};\n"
1469 			"}\n"
1470 		},
1471 		{
1472 			"in_function",
1473 			"Derivate of linear function argument",
1474 
1475 			"#version 300 es\n"
1476 			"in ${PRECISION} ${DATATYPE} v_coord;\n"
1477 			"layout(location = 0) out ${OUTPUT_PREC} ${OUTPUT_TYPE} o_color;\n"
1478 			"uniform ${PRECISION} ${DATATYPE} u_scale;\n"
1479 			"uniform ${PRECISION} ${DATATYPE} u_bias;\n"
1480 			"\n"
1481 			"${PRECISION} ${DATATYPE} computeRes (${PRECISION} ${DATATYPE} value)\n"
1482 			"{\n"
1483 			"	return ${FUNC}(v_coord) * u_scale + u_bias;\n"
1484 			"}\n"
1485 			"\n"
1486 			"void main (void)\n"
1487 			"{\n"
1488 			"	${PRECISION} ${DATATYPE} res = computeRes(v_coord);\n"
1489 			"	o_color = ${CAST_TO_OUTPUT};\n"
1490 			"}\n"
1491 		},
1492 		{
1493 			"static_if",
1494 			"Derivate of linearly interpolated value in static if",
1495 
1496 			"#version 300 es\n"
1497 			"in ${PRECISION} ${DATATYPE} v_coord;\n"
1498 			"layout(location = 0) out ${OUTPUT_PREC} ${OUTPUT_TYPE} o_color;\n"
1499 			"uniform ${PRECISION} ${DATATYPE} u_scale;\n"
1500 			"uniform ${PRECISION} ${DATATYPE} u_bias;\n"
1501 			"void main (void)\n"
1502 			"{\n"
1503 			"	${PRECISION} ${DATATYPE} res;\n"
1504 			"	if (false)\n"
1505 			"		res = ${FUNC}(-v_coord) * u_scale + u_bias;\n"
1506 			"	else\n"
1507 			"		res = ${FUNC}(v_coord) * u_scale + u_bias;\n"
1508 			"	o_color = ${CAST_TO_OUTPUT};\n"
1509 			"}\n"
1510 		},
1511 		{
1512 			"static_loop",
1513 			"Derivate of linearly interpolated value in static loop",
1514 
1515 			"#version 300 es\n"
1516 			"in ${PRECISION} ${DATATYPE} v_coord;\n"
1517 			"layout(location = 0) out ${OUTPUT_PREC} ${OUTPUT_TYPE} o_color;\n"
1518 			"uniform ${PRECISION} ${DATATYPE} u_scale;\n"
1519 			"uniform ${PRECISION} ${DATATYPE} u_bias;\n"
1520 			"void main (void)\n"
1521 			"{\n"
1522 			"	${PRECISION} ${DATATYPE} res = ${DATATYPE}(0.0);\n"
1523 			"	for (int i = 0; i < 2; i++)\n"
1524 			"		res += ${FUNC}(v_coord * float(i));\n"
1525 			"	res = res * u_scale + u_bias;\n"
1526 			"	o_color = ${CAST_TO_OUTPUT};\n"
1527 			"}\n"
1528 		},
1529 		{
1530 			"static_switch",
1531 			"Derivate of linearly interpolated value in static switch",
1532 
1533 			"#version 300 es\n"
1534 			"in ${PRECISION} ${DATATYPE} v_coord;\n"
1535 			"layout(location = 0) out ${OUTPUT_PREC} ${OUTPUT_TYPE} o_color;\n"
1536 			"uniform ${PRECISION} ${DATATYPE} u_scale;\n"
1537 			"uniform ${PRECISION} ${DATATYPE} u_bias;\n"
1538 			"void main (void)\n"
1539 			"{\n"
1540 			"	${PRECISION} ${DATATYPE} res;\n"
1541 			"	switch (1)\n"
1542 			"	{\n"
1543 			"		case 0:	res = ${FUNC}(-v_coord) * u_scale + u_bias;	break;\n"
1544 			"		case 1:	res = ${FUNC}(v_coord) * u_scale + u_bias;	break;\n"
1545 			"	}\n"
1546 			"	o_color = ${CAST_TO_OUTPUT};\n"
1547 			"}\n"
1548 		},
1549 		{
1550 			"uniform_if",
1551 			"Derivate of linearly interpolated value in uniform if",
1552 
1553 			"#version 300 es\n"
1554 			"in ${PRECISION} ${DATATYPE} v_coord;\n"
1555 			"layout(location = 0) out ${OUTPUT_PREC} ${OUTPUT_TYPE} o_color;\n"
1556 			"uniform ${PRECISION} ${DATATYPE} u_scale;\n"
1557 			"uniform ${PRECISION} ${DATATYPE} u_bias;\n"
1558 			"uniform bool ub_true;\n"
1559 			"void main (void)\n"
1560 			"{\n"
1561 			"	${PRECISION} ${DATATYPE} res;\n"
1562 			"	if (ub_true)"
1563 			"		res = ${FUNC}(v_coord) * u_scale + u_bias;\n"
1564 			"	else\n"
1565 			"		res = ${FUNC}(-v_coord) * u_scale + u_bias;\n"
1566 			"	o_color = ${CAST_TO_OUTPUT};\n"
1567 			"}\n"
1568 		},
1569 		{
1570 			"uniform_loop",
1571 			"Derivate of linearly interpolated value in uniform loop",
1572 
1573 			"#version 300 es\n"
1574 			"in ${PRECISION} ${DATATYPE} v_coord;\n"
1575 			"layout(location = 0) out ${OUTPUT_PREC} ${OUTPUT_TYPE} o_color;\n"
1576 			"uniform ${PRECISION} ${DATATYPE} u_scale;\n"
1577 			"uniform ${PRECISION} ${DATATYPE} u_bias;\n"
1578 			"uniform int ui_two;\n"
1579 			"void main (void)\n"
1580 			"{\n"
1581 			"	${PRECISION} ${DATATYPE} res = ${DATATYPE}(0.0);\n"
1582 			"	for (int i = 0; i < ui_two; i++)\n"
1583 			"		res += ${FUNC}(v_coord * float(i));\n"
1584 			"	res = res * u_scale + u_bias;\n"
1585 			"	o_color = ${CAST_TO_OUTPUT};\n"
1586 			"}\n"
1587 		},
1588 		{
1589 			"uniform_switch",
1590 			"Derivate of linearly interpolated value in uniform switch",
1591 
1592 			"#version 300 es\n"
1593 			"in ${PRECISION} ${DATATYPE} v_coord;\n"
1594 			"layout(location = 0) out ${OUTPUT_PREC} ${OUTPUT_TYPE} o_color;\n"
1595 			"uniform ${PRECISION} ${DATATYPE} u_scale;\n"
1596 			"uniform ${PRECISION} ${DATATYPE} u_bias;\n"
1597 			"uniform int ui_one;\n"
1598 			"void main (void)\n"
1599 			"{\n"
1600 			"	${PRECISION} ${DATATYPE} res;\n"
1601 			"	switch (ui_one)\n"
1602 			"	{\n"
1603 			"		case 0:	res = ${FUNC}(-v_coord) * u_scale + u_bias;	break;\n"
1604 			"		case 1:	res = ${FUNC}(v_coord) * u_scale + u_bias;	break;\n"
1605 			"	}\n"
1606 			"	o_color = ${CAST_TO_OUTPUT};\n"
1607 			"}\n"
1608 		},
1609 	};
1610 
1611 	static const struct
1612 	{
1613 		const char*		name;
1614 		SurfaceType		surfaceType;
1615 		int				numSamples;
1616 	} s_fboConfigs[] =
1617 	{
1618 		{ "fbo",		SURFACETYPE_DEFAULT_FRAMEBUFFER,	0 },
1619 		{ "fbo_msaa2",	SURFACETYPE_UNORM_FBO,				2 },
1620 		{ "fbo_msaa4",	SURFACETYPE_UNORM_FBO,				4 },
1621 		{ "fbo_float",	SURFACETYPE_FLOAT_FBO,				0 },
1622 	};
1623 
1624 	static const struct
1625 	{
1626 		const char*		name;
1627 		deUint32		hint;
1628 	} s_hints[] =
1629 	{
1630 		{ "fastest",	GL_FASTEST	},
1631 		{ "nicest",		GL_NICEST	},
1632 	};
1633 
1634 	static const struct
1635 	{
1636 		const char*		name;
1637 		SurfaceType		surfaceType;
1638 		int				numSamples;
1639 	} s_hintFboConfigs[] =
1640 	{
1641 		{ "default",		SURFACETYPE_DEFAULT_FRAMEBUFFER,	0 },
1642 		{ "fbo_msaa4",		SURFACETYPE_UNORM_FBO,				4 },
1643 		{ "fbo_float",		SURFACETYPE_FLOAT_FBO,				0 }
1644 	};
1645 
1646 	static const struct
1647 	{
1648 		const char*		name;
1649 		SurfaceType		surfaceType;
1650 		int				numSamples;
1651 		deUint32		hint;
1652 	} s_textureConfigs[] =
1653 	{
1654 		{ "basic",			SURFACETYPE_DEFAULT_FRAMEBUFFER,	0,	GL_DONT_CARE	},
1655 		{ "msaa4",			SURFACETYPE_UNORM_FBO,				4,	GL_DONT_CARE	},
1656 		{ "float_fastest",	SURFACETYPE_FLOAT_FBO,				0,	GL_FASTEST		},
1657 		{ "float_nicest",	SURFACETYPE_FLOAT_FBO,				0,	GL_NICEST		},
1658 	};
1659 
1660 	// .dfdx, .dfdy, .fwidth
1661 	for (int funcNdx = 0; funcNdx < DERIVATE_LAST; funcNdx++)
1662 	{
1663 		const DerivateFunc			function		= DerivateFunc(funcNdx);
1664 		tcu::TestCaseGroup* const	functionGroup	= new tcu::TestCaseGroup(m_testCtx, getDerivateFuncCaseName(function), getDerivateFuncName(function));
1665 		addChild(functionGroup);
1666 
1667 		// .constant - no precision variants, checks that derivate of constant arguments is 0
1668 		{
1669 			tcu::TestCaseGroup* const constantGroup = new tcu::TestCaseGroup(m_testCtx, "constant", "Derivate of constant argument");
1670 			functionGroup->addChild(constantGroup);
1671 
1672 			for (int vecSize = 1; vecSize <= 4; vecSize++)
1673 			{
1674 				const glu::DataType dataType = vecSize > 1 ? glu::getDataTypeFloatVec(vecSize) : glu::TYPE_FLOAT;
1675 				constantGroup->addChild(new ConstantDerivateCase(m_context, glu::getDataTypeName(dataType), "", function, dataType));
1676 			}
1677 		}
1678 
1679 		// Cases based on LinearDerivateCase
1680 		for (int caseNdx = 0; caseNdx < DE_LENGTH_OF_ARRAY(s_linearDerivateCases); caseNdx++)
1681 		{
1682 			tcu::TestCaseGroup* const linearCaseGroup	= new tcu::TestCaseGroup(m_testCtx, s_linearDerivateCases[caseNdx].name, s_linearDerivateCases[caseNdx].description);
1683 			const char*			source					= s_linearDerivateCases[caseNdx].source;
1684 			functionGroup->addChild(linearCaseGroup);
1685 
1686 			for (int vecSize = 1; vecSize <= 4; vecSize++)
1687 			{
1688 				for (int precNdx = 0; precNdx < glu::PRECISION_LAST; precNdx++)
1689 				{
1690 					const glu::DataType		dataType		= vecSize > 1 ? glu::getDataTypeFloatVec(vecSize) : glu::TYPE_FLOAT;
1691 					const glu::Precision	precision		= glu::Precision(precNdx);
1692 					const SurfaceType		surfaceType		= SURFACETYPE_DEFAULT_FRAMEBUFFER;
1693 					const int				numSamples		= 0;
1694 					const deUint32			hint			= GL_DONT_CARE;
1695 					ostringstream			caseName;
1696 
1697 					if (caseNdx != 0 && precision == glu::PRECISION_LOWP)
1698 						continue; // Skip as lowp doesn't actually produce any bits when rendered to default FB.
1699 
1700 					caseName << glu::getDataTypeName(dataType) << "_" << glu::getPrecisionName(precision);
1701 
1702 					linearCaseGroup->addChild(new LinearDerivateCase(m_context, caseName.str().c_str(), "", function, dataType, precision, hint, surfaceType, numSamples, source));
1703 				}
1704 			}
1705 		}
1706 
1707 		// Fbo cases
1708 		for (int caseNdx = 0; caseNdx < DE_LENGTH_OF_ARRAY(s_fboConfigs); caseNdx++)
1709 		{
1710 			tcu::TestCaseGroup*	const	fboGroup		= new tcu::TestCaseGroup(m_testCtx, s_fboConfigs[caseNdx].name, "Derivate usage when rendering into FBO");
1711 			const char*					source			= s_linearDerivateCases[0].source; // use source from .linear group
1712 			const SurfaceType			surfaceType		= s_fboConfigs[caseNdx].surfaceType;
1713 			const int					numSamples		= s_fboConfigs[caseNdx].numSamples;
1714 			functionGroup->addChild(fboGroup);
1715 
1716 			for (int vecSize = 1; vecSize <= 4; vecSize++)
1717 			{
1718 				for (int precNdx = 0; precNdx < glu::PRECISION_LAST; precNdx++)
1719 				{
1720 					const glu::DataType		dataType		= vecSize > 1 ? glu::getDataTypeFloatVec(vecSize) : glu::TYPE_FLOAT;
1721 					const glu::Precision	precision		= glu::Precision(precNdx);
1722 					const deUint32			hint			= GL_DONT_CARE;
1723 					ostringstream			caseName;
1724 
1725 					if (surfaceType != SURFACETYPE_FLOAT_FBO && precision == glu::PRECISION_LOWP)
1726 						continue; // Skip as lowp doesn't actually produce any bits when rendered to U8 RT.
1727 
1728 					caseName << glu::getDataTypeName(dataType) << "_" << glu::getPrecisionName(precision);
1729 
1730 					fboGroup->addChild(new LinearDerivateCase(m_context, caseName.str().c_str(), "", function, dataType, precision, hint, surfaceType, numSamples, source));
1731 				}
1732 			}
1733 		}
1734 
1735 		// .fastest, .nicest
1736 		for (int hintCaseNdx = 0; hintCaseNdx < DE_LENGTH_OF_ARRAY(s_hints); hintCaseNdx++)
1737 		{
1738 			tcu::TestCaseGroup* const	hintGroup		= new tcu::TestCaseGroup(m_testCtx, s_hints[hintCaseNdx].name, "Shader derivate hints");
1739 			const char*					source			= s_linearDerivateCases[0].source; // use source from .linear group
1740 			const deUint32				hint			= s_hints[hintCaseNdx].hint;
1741 			functionGroup->addChild(hintGroup);
1742 
1743 			for (int fboCaseNdx = 0; fboCaseNdx < DE_LENGTH_OF_ARRAY(s_hintFboConfigs); fboCaseNdx++)
1744 			{
1745 				tcu::TestCaseGroup*	const	fboGroup		= new tcu::TestCaseGroup(m_testCtx, s_hintFboConfigs[fboCaseNdx].name, "");
1746 				const SurfaceType			surfaceType		= s_hintFboConfigs[fboCaseNdx].surfaceType;
1747 				const int					numSamples		= s_hintFboConfigs[fboCaseNdx].numSamples;
1748 				hintGroup->addChild(fboGroup);
1749 
1750 				for (int vecSize = 1; vecSize <= 4; vecSize++)
1751 				{
1752 					for (int precNdx = 0; precNdx < glu::PRECISION_LAST; precNdx++)
1753 					{
1754 						const glu::DataType		dataType		= vecSize > 1 ? glu::getDataTypeFloatVec(vecSize) : glu::TYPE_FLOAT;
1755 						const glu::Precision	precision		= glu::Precision(precNdx);
1756 						ostringstream			caseName;
1757 
1758 						if (surfaceType != SURFACETYPE_FLOAT_FBO && precision == glu::PRECISION_LOWP)
1759 							continue; // Skip as lowp doesn't actually produce any bits when rendered to U8 RT.
1760 
1761 						caseName << glu::getDataTypeName(dataType) << "_" << glu::getPrecisionName(precision);
1762 
1763 						fboGroup->addChild(new LinearDerivateCase(m_context, caseName.str().c_str(), "", function, dataType, precision, hint, surfaceType, numSamples, source));
1764 					}
1765 				}
1766 			}
1767 		}
1768 
1769 		// .texture
1770 		{
1771 			tcu::TestCaseGroup* const textureGroup = new tcu::TestCaseGroup(m_testCtx, "texture", "Derivate of texture lookup result");
1772 			functionGroup->addChild(textureGroup);
1773 
1774 			for (int texCaseNdx = 0; texCaseNdx < DE_LENGTH_OF_ARRAY(s_textureConfigs); texCaseNdx++)
1775 			{
1776 				tcu::TestCaseGroup*	const	caseGroup		= new tcu::TestCaseGroup(m_testCtx, s_textureConfigs[texCaseNdx].name, "");
1777 				const SurfaceType			surfaceType		= s_textureConfigs[texCaseNdx].surfaceType;
1778 				const int					numSamples		= s_textureConfigs[texCaseNdx].numSamples;
1779 				const deUint32				hint			= s_textureConfigs[texCaseNdx].hint;
1780 				textureGroup->addChild(caseGroup);
1781 
1782 				for (int vecSize = 1; vecSize <= 4; vecSize++)
1783 				{
1784 					for (int precNdx = 0; precNdx < glu::PRECISION_LAST; precNdx++)
1785 					{
1786 						const glu::DataType		dataType		= vecSize > 1 ? glu::getDataTypeFloatVec(vecSize) : glu::TYPE_FLOAT;
1787 						const glu::Precision	precision		= glu::Precision(precNdx);
1788 						ostringstream			caseName;
1789 
1790 						if (surfaceType != SURFACETYPE_FLOAT_FBO && precision == glu::PRECISION_LOWP)
1791 							continue; // Skip as lowp doesn't actually produce any bits when rendered to U8 RT.
1792 
1793 						caseName << glu::getDataTypeName(dataType) << "_" << glu::getPrecisionName(precision);
1794 
1795 						caseGroup->addChild(new TextureDerivateCase(m_context, caseName.str().c_str(), "", function, dataType, precision, hint, surfaceType, numSamples));
1796 					}
1797 				}
1798 			}
1799 		}
1800 	}
1801 }
1802 
1803 } // Functional
1804 } // gles3
1805 } // deqp
1806