• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (C) 2013 The Android Open Source Project
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  *      http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16 
17 #ifndef ART_RUNTIME_GC_HEAP_INL_H_
18 #define ART_RUNTIME_GC_HEAP_INL_H_
19 
20 #include "heap.h"
21 
22 #include "allocation_listener.h"
23 #include "base/time_utils.h"
24 #include "gc/accounting/atomic_stack.h"
25 #include "gc/accounting/card_table-inl.h"
26 #include "gc/allocation_record.h"
27 #include "gc/collector/semi_space.h"
28 #include "gc/space/bump_pointer_space-inl.h"
29 #include "gc/space/dlmalloc_space-inl.h"
30 #include "gc/space/large_object_space.h"
31 #include "gc/space/region_space-inl.h"
32 #include "gc/space/rosalloc_space-inl.h"
33 #include "obj_ptr-inl.h"
34 #include "runtime.h"
35 #include "handle_scope-inl.h"
36 #include "thread-inl.h"
37 #include "utils.h"
38 #include "verify_object.h"
39 
40 namespace art {
41 namespace gc {
42 
43 template <bool kInstrumented, bool kCheckLargeObject, typename PreFenceVisitor>
AllocObjectWithAllocator(Thread * self,ObjPtr<mirror::Class> klass,size_t byte_count,AllocatorType allocator,const PreFenceVisitor & pre_fence_visitor)44 inline mirror::Object* Heap::AllocObjectWithAllocator(Thread* self,
45                                                       ObjPtr<mirror::Class> klass,
46                                                       size_t byte_count,
47                                                       AllocatorType allocator,
48                                                       const PreFenceVisitor& pre_fence_visitor) {
49   if (kIsDebugBuild) {
50     CheckPreconditionsForAllocObject(klass, byte_count);
51     // Since allocation can cause a GC which will need to SuspendAll, make sure all allocations are
52     // done in the runnable state where suspension is expected.
53     CHECK_EQ(self->GetState(), kRunnable);
54     self->AssertThreadSuspensionIsAllowable();
55     self->AssertNoPendingException();
56     // Make sure to preserve klass.
57     StackHandleScope<1> hs(self);
58     HandleWrapperObjPtr<mirror::Class> h = hs.NewHandleWrapper(&klass);
59     self->PoisonObjectPointers();
60   }
61   // Need to check that we aren't the large object allocator since the large object allocation code
62   // path includes this function. If we didn't check we would have an infinite loop.
63   ObjPtr<mirror::Object> obj;
64   if (kCheckLargeObject && UNLIKELY(ShouldAllocLargeObject(klass, byte_count))) {
65     obj = AllocLargeObject<kInstrumented, PreFenceVisitor>(self, &klass, byte_count,
66                                                            pre_fence_visitor);
67     if (obj != nullptr) {
68       return obj.Ptr();
69     } else {
70       // There should be an OOM exception, since we are retrying, clear it.
71       self->ClearException();
72     }
73     // If the large object allocation failed, try to use the normal spaces (main space,
74     // non moving space). This can happen if there is significant virtual address space
75     // fragmentation.
76   }
77   // bytes allocated for the (individual) object.
78   size_t bytes_allocated;
79   size_t usable_size;
80   size_t new_num_bytes_allocated = 0;
81   if (IsTLABAllocator(allocator)) {
82     byte_count = RoundUp(byte_count, space::BumpPointerSpace::kAlignment);
83   }
84   // If we have a thread local allocation we don't need to update bytes allocated.
85   if (IsTLABAllocator(allocator) && byte_count <= self->TlabSize()) {
86     obj = self->AllocTlab(byte_count);
87     DCHECK(obj != nullptr) << "AllocTlab can't fail";
88     obj->SetClass(klass);
89     if (kUseBakerReadBarrier) {
90       obj->AssertReadBarrierState();
91     }
92     bytes_allocated = byte_count;
93     usable_size = bytes_allocated;
94     pre_fence_visitor(obj, usable_size);
95     QuasiAtomic::ThreadFenceForConstructor();
96   } else if (
97       !kInstrumented && allocator == kAllocatorTypeRosAlloc &&
98       (obj = rosalloc_space_->AllocThreadLocal(self, byte_count, &bytes_allocated)) != nullptr &&
99       LIKELY(obj != nullptr)) {
100     DCHECK(!is_running_on_memory_tool_);
101     obj->SetClass(klass);
102     if (kUseBakerReadBarrier) {
103       obj->AssertReadBarrierState();
104     }
105     usable_size = bytes_allocated;
106     pre_fence_visitor(obj, usable_size);
107     QuasiAtomic::ThreadFenceForConstructor();
108   } else {
109     // bytes allocated that takes bulk thread-local buffer allocations into account.
110     size_t bytes_tl_bulk_allocated = 0;
111     obj = TryToAllocate<kInstrumented, false>(self, allocator, byte_count, &bytes_allocated,
112                                               &usable_size, &bytes_tl_bulk_allocated);
113     if (UNLIKELY(obj == nullptr)) {
114       // AllocateInternalWithGc can cause thread suspension, if someone instruments the entrypoints
115       // or changes the allocator in a suspend point here, we need to retry the allocation.
116       obj = AllocateInternalWithGc(self,
117                                    allocator,
118                                    kInstrumented,
119                                    byte_count,
120                                    &bytes_allocated,
121                                    &usable_size,
122                                    &bytes_tl_bulk_allocated, &klass);
123       if (obj == nullptr) {
124         // The only way that we can get a null return if there is no pending exception is if the
125         // allocator or instrumentation changed.
126         if (!self->IsExceptionPending()) {
127           // AllocObject will pick up the new allocator type, and instrumented as true is the safe
128           // default.
129           return AllocObject</*kInstrumented*/true>(self,
130                                                     klass,
131                                                     byte_count,
132                                                     pre_fence_visitor);
133         }
134         return nullptr;
135       }
136     }
137     DCHECK_GT(bytes_allocated, 0u);
138     DCHECK_GT(usable_size, 0u);
139     obj->SetClass(klass);
140     if (kUseBakerReadBarrier) {
141       obj->AssertReadBarrierState();
142     }
143     if (collector::SemiSpace::kUseRememberedSet && UNLIKELY(allocator == kAllocatorTypeNonMoving)) {
144       // (Note this if statement will be constant folded away for the
145       // fast-path quick entry points.) Because SetClass() has no write
146       // barrier, if a non-moving space allocation, we need a write
147       // barrier as the class pointer may point to the bump pointer
148       // space (where the class pointer is an "old-to-young" reference,
149       // though rare) under the GSS collector with the remembered set
150       // enabled. We don't need this for kAllocatorTypeRosAlloc/DlMalloc
151       // cases because we don't directly allocate into the main alloc
152       // space (besides promotions) under the SS/GSS collector.
153       WriteBarrierField(obj, mirror::Object::ClassOffset(), klass);
154     }
155     pre_fence_visitor(obj, usable_size);
156     QuasiAtomic::ThreadFenceForConstructor();
157     new_num_bytes_allocated = num_bytes_allocated_.FetchAndAddRelaxed(bytes_tl_bulk_allocated) +
158         bytes_tl_bulk_allocated;
159     if (bytes_tl_bulk_allocated > 0) {
160       // Only trace when we get an increase in the number of bytes allocated. This happens when
161       // obtaining a new TLAB and isn't often enough to hurt performance according to golem.
162       TraceHeapSize(new_num_bytes_allocated + bytes_tl_bulk_allocated);
163     }
164   }
165   if (kIsDebugBuild && Runtime::Current()->IsStarted()) {
166     CHECK_LE(obj->SizeOf(), usable_size);
167   }
168   // TODO: Deprecate.
169   if (kInstrumented) {
170     if (Runtime::Current()->HasStatsEnabled()) {
171       RuntimeStats* thread_stats = self->GetStats();
172       ++thread_stats->allocated_objects;
173       thread_stats->allocated_bytes += bytes_allocated;
174       RuntimeStats* global_stats = Runtime::Current()->GetStats();
175       ++global_stats->allocated_objects;
176       global_stats->allocated_bytes += bytes_allocated;
177     }
178   } else {
179     DCHECK(!Runtime::Current()->HasStatsEnabled());
180   }
181   if (kInstrumented) {
182     if (IsAllocTrackingEnabled()) {
183       // allocation_records_ is not null since it never becomes null after allocation tracking is
184       // enabled.
185       DCHECK(allocation_records_ != nullptr);
186       allocation_records_->RecordAllocation(self, &obj, bytes_allocated);
187     }
188     AllocationListener* l = alloc_listener_.LoadSequentiallyConsistent();
189     if (l != nullptr) {
190       // Same as above. We assume that a listener that was once stored will never be deleted.
191       // Otherwise we'd have to perform this under a lock.
192       l->ObjectAllocated(self, &obj, bytes_allocated);
193     }
194   } else {
195     DCHECK(!IsAllocTrackingEnabled());
196   }
197   if (AllocatorHasAllocationStack(allocator)) {
198     PushOnAllocationStack(self, &obj);
199   }
200   if (kInstrumented) {
201     if (gc_stress_mode_) {
202       CheckGcStressMode(self, &obj);
203     }
204   } else {
205     DCHECK(!gc_stress_mode_);
206   }
207   // IsGcConcurrent() isn't known at compile time so we can optimize by not checking it for
208   // the BumpPointer or TLAB allocators. This is nice since it allows the entire if statement to be
209   // optimized out. And for the other allocators, AllocatorMayHaveConcurrentGC is a constant since
210   // the allocator_type should be constant propagated.
211   if (AllocatorMayHaveConcurrentGC(allocator) && IsGcConcurrent()) {
212     CheckConcurrentGC(self, new_num_bytes_allocated, &obj);
213   }
214   VerifyObject(obj);
215   self->VerifyStack();
216   return obj.Ptr();
217 }
218 
219 // The size of a thread-local allocation stack in the number of references.
220 static constexpr size_t kThreadLocalAllocationStackSize = 128;
221 
PushOnAllocationStack(Thread * self,ObjPtr<mirror::Object> * obj)222 inline void Heap::PushOnAllocationStack(Thread* self, ObjPtr<mirror::Object>* obj) {
223   if (kUseThreadLocalAllocationStack) {
224     if (UNLIKELY(!self->PushOnThreadLocalAllocationStack(obj->Ptr()))) {
225       PushOnThreadLocalAllocationStackWithInternalGC(self, obj);
226     }
227   } else if (UNLIKELY(!allocation_stack_->AtomicPushBack(obj->Ptr()))) {
228     PushOnAllocationStackWithInternalGC(self, obj);
229   }
230 }
231 
232 template <bool kInstrumented, typename PreFenceVisitor>
AllocLargeObject(Thread * self,ObjPtr<mirror::Class> * klass,size_t byte_count,const PreFenceVisitor & pre_fence_visitor)233 inline mirror::Object* Heap::AllocLargeObject(Thread* self,
234                                               ObjPtr<mirror::Class>* klass,
235                                               size_t byte_count,
236                                               const PreFenceVisitor& pre_fence_visitor) {
237   // Save and restore the class in case it moves.
238   StackHandleScope<1> hs(self);
239   auto klass_wrapper = hs.NewHandleWrapper(klass);
240   return AllocObjectWithAllocator<kInstrumented, false, PreFenceVisitor>(self, *klass, byte_count,
241                                                                          kAllocatorTypeLOS,
242                                                                          pre_fence_visitor);
243 }
244 
245 template <const bool kInstrumented, const bool kGrow>
TryToAllocate(Thread * self,AllocatorType allocator_type,size_t alloc_size,size_t * bytes_allocated,size_t * usable_size,size_t * bytes_tl_bulk_allocated)246 inline mirror::Object* Heap::TryToAllocate(Thread* self,
247                                            AllocatorType allocator_type,
248                                            size_t alloc_size,
249                                            size_t* bytes_allocated,
250                                            size_t* usable_size,
251                                            size_t* bytes_tl_bulk_allocated) {
252   if (allocator_type != kAllocatorTypeTLAB &&
253       allocator_type != kAllocatorTypeRegionTLAB &&
254       allocator_type != kAllocatorTypeRosAlloc &&
255       UNLIKELY(IsOutOfMemoryOnAllocation(allocator_type, alloc_size, kGrow))) {
256     return nullptr;
257   }
258   mirror::Object* ret;
259   switch (allocator_type) {
260     case kAllocatorTypeBumpPointer: {
261       DCHECK(bump_pointer_space_ != nullptr);
262       alloc_size = RoundUp(alloc_size, space::BumpPointerSpace::kAlignment);
263       ret = bump_pointer_space_->AllocNonvirtual(alloc_size);
264       if (LIKELY(ret != nullptr)) {
265         *bytes_allocated = alloc_size;
266         *usable_size = alloc_size;
267         *bytes_tl_bulk_allocated = alloc_size;
268       }
269       break;
270     }
271     case kAllocatorTypeRosAlloc: {
272       if (kInstrumented && UNLIKELY(is_running_on_memory_tool_)) {
273         // If running on valgrind or asan, we should be using the instrumented path.
274         size_t max_bytes_tl_bulk_allocated = rosalloc_space_->MaxBytesBulkAllocatedFor(alloc_size);
275         if (UNLIKELY(IsOutOfMemoryOnAllocation(allocator_type,
276                                                max_bytes_tl_bulk_allocated,
277                                                kGrow))) {
278           return nullptr;
279         }
280         ret = rosalloc_space_->Alloc(self, alloc_size, bytes_allocated, usable_size,
281                                      bytes_tl_bulk_allocated);
282       } else {
283         DCHECK(!is_running_on_memory_tool_);
284         size_t max_bytes_tl_bulk_allocated =
285             rosalloc_space_->MaxBytesBulkAllocatedForNonvirtual(alloc_size);
286         if (UNLIKELY(IsOutOfMemoryOnAllocation(allocator_type,
287                                                max_bytes_tl_bulk_allocated,
288                                                kGrow))) {
289           return nullptr;
290         }
291         if (!kInstrumented) {
292           DCHECK(!rosalloc_space_->CanAllocThreadLocal(self, alloc_size));
293         }
294         ret = rosalloc_space_->AllocNonvirtual(self,
295                                                alloc_size,
296                                                bytes_allocated,
297                                                usable_size,
298                                                bytes_tl_bulk_allocated);
299       }
300       break;
301     }
302     case kAllocatorTypeDlMalloc: {
303       if (kInstrumented && UNLIKELY(is_running_on_memory_tool_)) {
304         // If running on valgrind, we should be using the instrumented path.
305         ret = dlmalloc_space_->Alloc(self,
306                                      alloc_size,
307                                      bytes_allocated,
308                                      usable_size,
309                                      bytes_tl_bulk_allocated);
310       } else {
311         DCHECK(!is_running_on_memory_tool_);
312         ret = dlmalloc_space_->AllocNonvirtual(self,
313                                                alloc_size,
314                                                bytes_allocated,
315                                                usable_size,
316                                                bytes_tl_bulk_allocated);
317       }
318       break;
319     }
320     case kAllocatorTypeNonMoving: {
321       ret = non_moving_space_->Alloc(self,
322                                      alloc_size,
323                                      bytes_allocated,
324                                      usable_size,
325                                      bytes_tl_bulk_allocated);
326       break;
327     }
328     case kAllocatorTypeLOS: {
329       ret = large_object_space_->Alloc(self,
330                                        alloc_size,
331                                        bytes_allocated,
332                                        usable_size,
333                                        bytes_tl_bulk_allocated);
334       // Note that the bump pointer spaces aren't necessarily next to
335       // the other continuous spaces like the non-moving alloc space or
336       // the zygote space.
337       DCHECK(ret == nullptr || large_object_space_->Contains(ret));
338       break;
339     }
340     case kAllocatorTypeRegion: {
341       DCHECK(region_space_ != nullptr);
342       alloc_size = RoundUp(alloc_size, space::RegionSpace::kAlignment);
343       ret = region_space_->AllocNonvirtual<false>(alloc_size,
344                                                   bytes_allocated,
345                                                   usable_size,
346                                                   bytes_tl_bulk_allocated);
347       break;
348     }
349     case kAllocatorTypeTLAB:
350       FALLTHROUGH_INTENDED;
351     case kAllocatorTypeRegionTLAB: {
352       DCHECK_ALIGNED(alloc_size, kObjectAlignment);
353       static_assert(space::RegionSpace::kAlignment == space::BumpPointerSpace::kAlignment,
354                     "mismatched alignments");
355       static_assert(kObjectAlignment == space::BumpPointerSpace::kAlignment,
356                     "mismatched alignments");
357       if (UNLIKELY(self->TlabSize() < alloc_size)) {
358         // kAllocatorTypeTLAB may be the allocator for region space TLAB if the GC is not marking,
359         // that is why the allocator is not passed down.
360         return AllocWithNewTLAB(self,
361                                 alloc_size,
362                                 kGrow,
363                                 bytes_allocated,
364                                 usable_size,
365                                 bytes_tl_bulk_allocated);
366       }
367       // The allocation can't fail.
368       ret = self->AllocTlab(alloc_size);
369       DCHECK(ret != nullptr);
370       *bytes_allocated = alloc_size;
371       *bytes_tl_bulk_allocated = 0;  // Allocated in an existing buffer.
372       *usable_size = alloc_size;
373       break;
374     }
375     default: {
376       LOG(FATAL) << "Invalid allocator type";
377       ret = nullptr;
378     }
379   }
380   return ret;
381 }
382 
ShouldAllocLargeObject(ObjPtr<mirror::Class> c,size_t byte_count)383 inline bool Heap::ShouldAllocLargeObject(ObjPtr<mirror::Class> c, size_t byte_count) const {
384   // We need to have a zygote space or else our newly allocated large object can end up in the
385   // Zygote resulting in it being prematurely freed.
386   // We can only do this for primitive objects since large objects will not be within the card table
387   // range. This also means that we rely on SetClass not dirtying the object's card.
388   return byte_count >= large_object_threshold_ && (c->IsPrimitiveArray() || c->IsStringClass());
389 }
390 
IsOutOfMemoryOnAllocation(AllocatorType allocator_type,size_t alloc_size,bool grow)391 inline bool Heap::IsOutOfMemoryOnAllocation(AllocatorType allocator_type,
392                                             size_t alloc_size,
393                                             bool grow) {
394   size_t new_footprint = num_bytes_allocated_.LoadSequentiallyConsistent() + alloc_size;
395   if (UNLIKELY(new_footprint > max_allowed_footprint_)) {
396     if (UNLIKELY(new_footprint > growth_limit_)) {
397       return true;
398     }
399     if (!AllocatorMayHaveConcurrentGC(allocator_type) || !IsGcConcurrent()) {
400       if (!grow) {
401         return true;
402       }
403       // TODO: Grow for allocation is racy, fix it.
404       VLOG(heap) << "Growing heap from " << PrettySize(max_allowed_footprint_) << " to "
405           << PrettySize(new_footprint) << " for a " << PrettySize(alloc_size) << " allocation";
406       max_allowed_footprint_ = new_footprint;
407     }
408   }
409   return false;
410 }
411 
CheckConcurrentGC(Thread * self,size_t new_num_bytes_allocated,ObjPtr<mirror::Object> * obj)412 inline void Heap::CheckConcurrentGC(Thread* self,
413                                     size_t new_num_bytes_allocated,
414                                     ObjPtr<mirror::Object>* obj) {
415   if (UNLIKELY(new_num_bytes_allocated >= concurrent_start_bytes_)) {
416     RequestConcurrentGCAndSaveObject(self, false, obj);
417   }
418 }
419 
WriteBarrierField(ObjPtr<mirror::Object> dst,MemberOffset offset ATTRIBUTE_UNUSED,ObjPtr<mirror::Object> new_value ATTRIBUTE_UNUSED)420 inline void Heap::WriteBarrierField(ObjPtr<mirror::Object> dst,
421                                     MemberOffset offset ATTRIBUTE_UNUSED,
422                                     ObjPtr<mirror::Object> new_value ATTRIBUTE_UNUSED) {
423   card_table_->MarkCard(dst.Ptr());
424 }
425 
WriteBarrierArray(ObjPtr<mirror::Object> dst,int start_offset ATTRIBUTE_UNUSED,size_t length ATTRIBUTE_UNUSED)426 inline void Heap::WriteBarrierArray(ObjPtr<mirror::Object> dst,
427                                     int start_offset ATTRIBUTE_UNUSED,
428                                     size_t length ATTRIBUTE_UNUSED) {
429   card_table_->MarkCard(dst.Ptr());
430 }
431 
WriteBarrierEveryFieldOf(ObjPtr<mirror::Object> obj)432 inline void Heap::WriteBarrierEveryFieldOf(ObjPtr<mirror::Object> obj) {
433   card_table_->MarkCard(obj.Ptr());
434 }
435 
436 }  // namespace gc
437 }  // namespace art
438 
439 #endif  // ART_RUNTIME_GC_HEAP_INL_H_
440