• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1///////////////////////////////////////////////////////////////////////////////////
2/// OpenGL Mathematics (glm.g-truc.net)
3///
4/// Copyright (c) 2005 - 2014 G-Truc Creation (www.g-truc.net)
5/// Permission is hereby granted, free of charge, to any person obtaining a copy
6/// of this software and associated documentation files (the "Software"), to deal
7/// in the Software without restriction, including without limitation the rights
8/// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
9/// copies of the Software, and to permit persons to whom the Software is
10/// furnished to do so, subject to the following conditions:
11///
12/// The above copyright notice and this permission notice shall be included in
13/// all copies or substantial portions of the Software.
14///
15/// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16/// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17/// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
18/// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19/// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20/// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
21/// THE SOFTWARE.
22///
23/// @ref gtc_noise
24/// @file glm/gtc/noise.inl
25/// @date 2011-04-21 / 2012-04-07
26/// @author Christophe Riccio
27///////////////////////////////////////////////////////////////////////////////////
28// Based on the work of Stefan Gustavson and Ashima Arts on "webgl-noise":
29// https://github.com/ashima/webgl-noise
30// Following Stefan Gustavson's paper "Simplex noise demystified":
31// http://www.itn.liu.se/~stegu/simplexnoise/simplexnoise.pdf
32///////////////////////////////////////////////////////////////////////////////////
33
34#include "../geometric.hpp"
35#include "../common.hpp"
36#include "../vector_relational.hpp"
37#include "../detail/_noise.hpp"
38
39namespace glm{
40namespace gtc
41{
42	template <typename T, precision P>
43	GLM_FUNC_QUALIFIER detail::tvec4<T, P> grad4(T const & j, detail::tvec4<T, P> const & ip)
44	{
45		detail::tvec3<T, P> pXYZ = floor(fract(detail::tvec3<T, P>(j) * detail::tvec3<T, P>(ip)) * T(7)) * ip[2] - T(1);
46		T pW = static_cast<T>(1.5) - dot(abs(pXYZ), detail::tvec3<T, P>(1));
47		detail::tvec4<T, P> s = detail::tvec4<T, P>(lessThan(detail::tvec4<T, P>(pXYZ, pW), detail::tvec4<T, P>(0.0)));
48		pXYZ = pXYZ + (detail::tvec3<T, P>(s) * T(2) - T(1)) * s.w;
49		return detail::tvec4<T, P>(pXYZ, pW);
50	}
51}//namespace gtc
52
53	// Classic Perlin noise
54	template <typename T, precision P>
55	GLM_FUNC_QUALIFIER T perlin(detail::tvec2<T, P> const & Position)
56	{
57		detail::tvec4<T, P> Pi = glm::floor(detail::tvec4<T, P>(Position.x, Position.y, Position.x, Position.y)) + detail::tvec4<T, P>(0.0, 0.0, 1.0, 1.0);
58		detail::tvec4<T, P> Pf = glm::fract(detail::tvec4<T, P>(Position.x, Position.y, Position.x, Position.y)) - detail::tvec4<T, P>(0.0, 0.0, 1.0, 1.0);
59		Pi = mod(Pi, detail::tvec4<T, P>(289)); // To avoid truncation effects in permutation
60		detail::tvec4<T, P> ix(Pi.x, Pi.z, Pi.x, Pi.z);
61		detail::tvec4<T, P> iy(Pi.y, Pi.y, Pi.w, Pi.w);
62		detail::tvec4<T, P> fx(Pf.x, Pf.z, Pf.x, Pf.z);
63		detail::tvec4<T, P> fy(Pf.y, Pf.y, Pf.w, Pf.w);
64
65		detail::tvec4<T, P> i = detail::permute(detail::permute(ix) + iy);
66
67		detail::tvec4<T, P> gx = static_cast<T>(2) * glm::fract(i / T(41)) - T(1);
68		detail::tvec4<T, P> gy = glm::abs(gx) - T(0.5);
69		detail::tvec4<T, P> tx = glm::floor(gx + T(0.5));
70		gx = gx - tx;
71
72		detail::tvec2<T, P> g00(gx.x, gy.x);
73		detail::tvec2<T, P> g10(gx.y, gy.y);
74		detail::tvec2<T, P> g01(gx.z, gy.z);
75		detail::tvec2<T, P> g11(gx.w, gy.w);
76
77		detail::tvec4<T, P> norm = taylorInvSqrt(detail::tvec4<T, P>(dot(g00, g00), dot(g01, g01), dot(g10, g10), dot(g11, g11)));
78		g00 *= norm.x;
79		g01 *= norm.y;
80		g10 *= norm.z;
81		g11 *= norm.w;
82
83		T n00 = dot(g00, detail::tvec2<T, P>(fx.x, fy.x));
84		T n10 = dot(g10, detail::tvec2<T, P>(fx.y, fy.y));
85		T n01 = dot(g01, detail::tvec2<T, P>(fx.z, fy.z));
86		T n11 = dot(g11, detail::tvec2<T, P>(fx.w, fy.w));
87
88		detail::tvec2<T, P> fade_xy = fade(detail::tvec2<T, P>(Pf.x, Pf.y));
89		detail::tvec2<T, P> n_x = mix(detail::tvec2<T, P>(n00, n01), detail::tvec2<T, P>(n10, n11), fade_xy.x);
90		T n_xy = mix(n_x.x, n_x.y, fade_xy.y);
91		return T(2.3) * n_xy;
92	}
93
94	// Classic Perlin noise
95	template <typename T, precision P>
96	GLM_FUNC_QUALIFIER T perlin(detail::tvec3<T, P> const & Position)
97	{
98		detail::tvec3<T, P> Pi0 = floor(Position); // Integer part for indexing
99		detail::tvec3<T, P> Pi1 = Pi0 + T(1); // Integer part + 1
100		Pi0 = mod289(Pi0);
101		Pi1 = mod289(Pi1);
102		detail::tvec3<T, P> Pf0 = fract(Position); // Fractional part for interpolation
103		detail::tvec3<T, P> Pf1 = Pf0 - T(1); // Fractional part - 1.0
104		detail::tvec4<T, P> ix(Pi0.x, Pi1.x, Pi0.x, Pi1.x);
105		detail::tvec4<T, P> iy = detail::tvec4<T, P>(detail::tvec2<T, P>(Pi0.y), detail::tvec2<T, P>(Pi1.y));
106		detail::tvec4<T, P> iz0(Pi0.z);
107		detail::tvec4<T, P> iz1(Pi1.z);
108
109		detail::tvec4<T, P> ixy = detail::permute(detail::permute(ix) + iy);
110		detail::tvec4<T, P> ixy0 = detail::permute(ixy + iz0);
111		detail::tvec4<T, P> ixy1 = detail::permute(ixy + iz1);
112
113		detail::tvec4<T, P> gx0 = ixy0 * T(1.0 / 7.0);
114		detail::tvec4<T, P> gy0 = fract(floor(gx0) * T(1.0 / 7.0)) - T(0.5);
115		gx0 = fract(gx0);
116		detail::tvec4<T, P> gz0 = detail::tvec4<T, P>(0.5) - abs(gx0) - abs(gy0);
117		detail::tvec4<T, P> sz0 = step(gz0, detail::tvec4<T, P>(0.0));
118		gx0 -= sz0 * (step(T(0), gx0) - T(0.5));
119		gy0 -= sz0 * (step(T(0), gy0) - T(0.5));
120
121		detail::tvec4<T, P> gx1 = ixy1 * T(1.0 / 7.0);
122		detail::tvec4<T, P> gy1 = fract(floor(gx1) * T(1.0 / 7.0)) - T(0.5);
123		gx1 = fract(gx1);
124		detail::tvec4<T, P> gz1 = detail::tvec4<T, P>(0.5) - abs(gx1) - abs(gy1);
125		detail::tvec4<T, P> sz1 = step(gz1, detail::tvec4<T, P>(0.0));
126		gx1 -= sz1 * (step(T(0), gx1) - T(0.5));
127		gy1 -= sz1 * (step(T(0), gy1) - T(0.5));
128
129		detail::tvec3<T, P> g000(gx0.x, gy0.x, gz0.x);
130		detail::tvec3<T, P> g100(gx0.y, gy0.y, gz0.y);
131		detail::tvec3<T, P> g010(gx0.z, gy0.z, gz0.z);
132		detail::tvec3<T, P> g110(gx0.w, gy0.w, gz0.w);
133		detail::tvec3<T, P> g001(gx1.x, gy1.x, gz1.x);
134		detail::tvec3<T, P> g101(gx1.y, gy1.y, gz1.y);
135		detail::tvec3<T, P> g011(gx1.z, gy1.z, gz1.z);
136		detail::tvec3<T, P> g111(gx1.w, gy1.w, gz1.w);
137
138		detail::tvec4<T, P> norm0 = detail::taylorInvSqrt(detail::tvec4<T, P>(dot(g000, g000), dot(g010, g010), dot(g100, g100), dot(g110, g110)));
139		g000 *= norm0.x;
140		g010 *= norm0.y;
141		g100 *= norm0.z;
142		g110 *= norm0.w;
143		detail::tvec4<T, P> norm1 = detail::taylorInvSqrt(detail::tvec4<T, P>(dot(g001, g001), dot(g011, g011), dot(g101, g101), dot(g111, g111)));
144		g001 *= norm1.x;
145		g011 *= norm1.y;
146		g101 *= norm1.z;
147		g111 *= norm1.w;
148
149		T n000 = dot(g000, Pf0);
150		T n100 = dot(g100, detail::tvec3<T, P>(Pf1.x, Pf0.y, Pf0.z));
151		T n010 = dot(g010, detail::tvec3<T, P>(Pf0.x, Pf1.y, Pf0.z));
152		T n110 = dot(g110, detail::tvec3<T, P>(Pf1.x, Pf1.y, Pf0.z));
153		T n001 = dot(g001, detail::tvec3<T, P>(Pf0.x, Pf0.y, Pf1.z));
154		T n101 = dot(g101, detail::tvec3<T, P>(Pf1.x, Pf0.y, Pf1.z));
155		T n011 = dot(g011, detail::tvec3<T, P>(Pf0.x, Pf1.y, Pf1.z));
156		T n111 = dot(g111, Pf1);
157
158		detail::tvec3<T, P> fade_xyz = fade(Pf0);
159		detail::tvec4<T, P> n_z = mix(detail::tvec4<T, P>(n000, n100, n010, n110), detail::tvec4<T, P>(n001, n101, n011, n111), fade_xyz.z);
160		detail::tvec2<T, P> n_yz = mix(detail::tvec2<T, P>(n_z.x, n_z.y), detail::tvec2<T, P>(n_z.z, n_z.w), fade_xyz.y);
161		T n_xyz = mix(n_yz.x, n_yz.y, fade_xyz.x);
162		return T(2.2) * n_xyz;
163	}
164	/*
165	// Classic Perlin noise
166	template <typename T, precision P>
167	GLM_FUNC_QUALIFIER T perlin(detail::tvec3<T, P> const & P)
168	{
169		detail::tvec3<T, P> Pi0 = floor(P); // Integer part for indexing
170		detail::tvec3<T, P> Pi1 = Pi0 + T(1); // Integer part + 1
171		Pi0 = mod(Pi0, T(289));
172		Pi1 = mod(Pi1, T(289));
173		detail::tvec3<T, P> Pf0 = fract(P); // Fractional part for interpolation
174		detail::tvec3<T, P> Pf1 = Pf0 - T(1); // Fractional part - 1.0
175		detail::tvec4<T, P> ix(Pi0.x, Pi1.x, Pi0.x, Pi1.x);
176		detail::tvec4<T, P> iy(Pi0.y, Pi0.y, Pi1.y, Pi1.y);
177		detail::tvec4<T, P> iz0(Pi0.z);
178		detail::tvec4<T, P> iz1(Pi1.z);
179
180		detail::tvec4<T, P> ixy = permute(permute(ix) + iy);
181		detail::tvec4<T, P> ixy0 = permute(ixy + iz0);
182		detail::tvec4<T, P> ixy1 = permute(ixy + iz1);
183
184		detail::tvec4<T, P> gx0 = ixy0 / T(7);
185		detail::tvec4<T, P> gy0 = fract(floor(gx0) / T(7)) - T(0.5);
186		gx0 = fract(gx0);
187		detail::tvec4<T, P> gz0 = detail::tvec4<T, P>(0.5) - abs(gx0) - abs(gy0);
188		detail::tvec4<T, P> sz0 = step(gz0, detail::tvec4<T, P>(0.0));
189		gx0 -= sz0 * (step(0.0, gx0) - T(0.5));
190		gy0 -= sz0 * (step(0.0, gy0) - T(0.5));
191
192		detail::tvec4<T, P> gx1 = ixy1 / T(7);
193		detail::tvec4<T, P> gy1 = fract(floor(gx1) / T(7)) - T(0.5);
194		gx1 = fract(gx1);
195		detail::tvec4<T, P> gz1 = detail::tvec4<T, P>(0.5) - abs(gx1) - abs(gy1);
196		detail::tvec4<T, P> sz1 = step(gz1, detail::tvec4<T, P>(0.0));
197		gx1 -= sz1 * (step(T(0), gx1) - T(0.5));
198		gy1 -= sz1 * (step(T(0), gy1) - T(0.5));
199
200		detail::tvec3<T, P> g000(gx0.x, gy0.x, gz0.x);
201		detail::tvec3<T, P> g100(gx0.y, gy0.y, gz0.y);
202		detail::tvec3<T, P> g010(gx0.z, gy0.z, gz0.z);
203		detail::tvec3<T, P> g110(gx0.w, gy0.w, gz0.w);
204		detail::tvec3<T, P> g001(gx1.x, gy1.x, gz1.x);
205		detail::tvec3<T, P> g101(gx1.y, gy1.y, gz1.y);
206		detail::tvec3<T, P> g011(gx1.z, gy1.z, gz1.z);
207		detail::tvec3<T, P> g111(gx1.w, gy1.w, gz1.w);
208
209		detail::tvec4<T, P> norm0 = taylorInvSqrt(detail::tvec4<T, P>(dot(g000, g000), dot(g010, g010), dot(g100, g100), dot(g110, g110)));
210		g000 *= norm0.x;
211		g010 *= norm0.y;
212		g100 *= norm0.z;
213		g110 *= norm0.w;
214		detail::tvec4<T, P> norm1 = taylorInvSqrt(detail::tvec4<T, P>(dot(g001, g001), dot(g011, g011), dot(g101, g101), dot(g111, g111)));
215		g001 *= norm1.x;
216		g011 *= norm1.y;
217		g101 *= norm1.z;
218		g111 *= norm1.w;
219
220		T n000 = dot(g000, Pf0);
221		T n100 = dot(g100, detail::tvec3<T, P>(Pf1.x, Pf0.y, Pf0.z));
222		T n010 = dot(g010, detail::tvec3<T, P>(Pf0.x, Pf1.y, Pf0.z));
223		T n110 = dot(g110, detail::tvec3<T, P>(Pf1.x, Pf1.y, Pf0.z));
224		T n001 = dot(g001, detail::tvec3<T, P>(Pf0.x, Pf0.y, Pf1.z));
225		T n101 = dot(g101, detail::tvec3<T, P>(Pf1.x, Pf0.y, Pf1.z));
226		T n011 = dot(g011, detail::tvec3<T, P>(Pf0.x, Pf1.y, Pf1.z));
227		T n111 = dot(g111, Pf1);
228
229		detail::tvec3<T, P> fade_xyz = fade(Pf0);
230		detail::tvec4<T, P> n_z = mix(detail::tvec4<T, P>(n000, n100, n010, n110), detail::tvec4<T, P>(n001, n101, n011, n111), fade_xyz.z);
231		detail::tvec2<T, P> n_yz = mix(
232			detail::tvec2<T, P>(n_z.x, n_z.y),
233			detail::tvec2<T, P>(n_z.z, n_z.w), fade_xyz.y);
234		T n_xyz = mix(n_yz.x, n_yz.y, fade_xyz.x);
235		return T(2.2) * n_xyz;
236	}
237	*/
238	// Classic Perlin noise
239	template <typename T, precision P>
240	GLM_FUNC_QUALIFIER T perlin(detail::tvec4<T, P> const & Position)
241	{
242		detail::tvec4<T, P> Pi0 = floor(Position);	// Integer part for indexing
243		detail::tvec4<T, P> Pi1 = Pi0 + T(1);		// Integer part + 1
244		Pi0 = mod(Pi0, detail::tvec4<T, P>(289));
245		Pi1 = mod(Pi1, detail::tvec4<T, P>(289));
246		detail::tvec4<T, P> Pf0 = fract(Position);	// Fractional part for interpolation
247		detail::tvec4<T, P> Pf1 = Pf0 - T(1);		// Fractional part - 1.0
248		detail::tvec4<T, P> ix(Pi0.x, Pi1.x, Pi0.x, Pi1.x);
249		detail::tvec4<T, P> iy(Pi0.y, Pi0.y, Pi1.y, Pi1.y);
250		detail::tvec4<T, P> iz0(Pi0.z);
251		detail::tvec4<T, P> iz1(Pi1.z);
252		detail::tvec4<T, P> iw0(Pi0.w);
253		detail::tvec4<T, P> iw1(Pi1.w);
254
255		detail::tvec4<T, P> ixy = detail::permute(detail::permute(ix) + iy);
256		detail::tvec4<T, P> ixy0 = detail::permute(ixy + iz0);
257		detail::tvec4<T, P> ixy1 = detail::permute(ixy + iz1);
258		detail::tvec4<T, P> ixy00 = detail::permute(ixy0 + iw0);
259		detail::tvec4<T, P> ixy01 = detail::permute(ixy0 + iw1);
260		detail::tvec4<T, P> ixy10 = detail::permute(ixy1 + iw0);
261		detail::tvec4<T, P> ixy11 = detail::permute(ixy1 + iw1);
262
263		detail::tvec4<T, P> gx00 = ixy00 / T(7);
264		detail::tvec4<T, P> gy00 = floor(gx00) / T(7);
265		detail::tvec4<T, P> gz00 = floor(gy00) / T(6);
266		gx00 = fract(gx00) - T(0.5);
267		gy00 = fract(gy00) - T(0.5);
268		gz00 = fract(gz00) - T(0.5);
269		detail::tvec4<T, P> gw00 = detail::tvec4<T, P>(0.75) - abs(gx00) - abs(gy00) - abs(gz00);
270		detail::tvec4<T, P> sw00 = step(gw00, detail::tvec4<T, P>(0.0));
271		gx00 -= sw00 * (step(T(0), gx00) - T(0.5));
272		gy00 -= sw00 * (step(T(0), gy00) - T(0.5));
273
274		detail::tvec4<T, P> gx01 = ixy01 / T(7);
275		detail::tvec4<T, P> gy01 = floor(gx01) / T(7);
276		detail::tvec4<T, P> gz01 = floor(gy01) / T(6);
277		gx01 = fract(gx01) - T(0.5);
278		gy01 = fract(gy01) - T(0.5);
279		gz01 = fract(gz01) - T(0.5);
280		detail::tvec4<T, P> gw01 = detail::tvec4<T, P>(0.75) - abs(gx01) - abs(gy01) - abs(gz01);
281		detail::tvec4<T, P> sw01 = step(gw01, detail::tvec4<T, P>(0.0));
282		gx01 -= sw01 * (step(T(0), gx01) - T(0.5));
283		gy01 -= sw01 * (step(T(0), gy01) - T(0.5));
284
285		detail::tvec4<T, P> gx10 = ixy10 / T(7);
286		detail::tvec4<T, P> gy10 = floor(gx10) / T(7);
287		detail::tvec4<T, P> gz10 = floor(gy10) / T(6);
288		gx10 = fract(gx10) - T(0.5);
289		gy10 = fract(gy10) - T(0.5);
290		gz10 = fract(gz10) - T(0.5);
291		detail::tvec4<T, P> gw10 = detail::tvec4<T, P>(0.75) - abs(gx10) - abs(gy10) - abs(gz10);
292		detail::tvec4<T, P> sw10 = step(gw10, detail::tvec4<T, P>(0));
293		gx10 -= sw10 * (step(T(0), gx10) - T(0.5));
294		gy10 -= sw10 * (step(T(0), gy10) - T(0.5));
295
296		detail::tvec4<T, P> gx11 = ixy11 / T(7);
297		detail::tvec4<T, P> gy11 = floor(gx11) / T(7);
298		detail::tvec4<T, P> gz11 = floor(gy11) / T(6);
299		gx11 = fract(gx11) - T(0.5);
300		gy11 = fract(gy11) - T(0.5);
301		gz11 = fract(gz11) - T(0.5);
302		detail::tvec4<T, P> gw11 = detail::tvec4<T, P>(0.75) - abs(gx11) - abs(gy11) - abs(gz11);
303		detail::tvec4<T, P> sw11 = step(gw11, detail::tvec4<T, P>(0.0));
304		gx11 -= sw11 * (step(T(0), gx11) - T(0.5));
305		gy11 -= sw11 * (step(T(0), gy11) - T(0.5));
306
307		detail::tvec4<T, P> g0000(gx00.x, gy00.x, gz00.x, gw00.x);
308		detail::tvec4<T, P> g1000(gx00.y, gy00.y, gz00.y, gw00.y);
309		detail::tvec4<T, P> g0100(gx00.z, gy00.z, gz00.z, gw00.z);
310		detail::tvec4<T, P> g1100(gx00.w, gy00.w, gz00.w, gw00.w);
311		detail::tvec4<T, P> g0010(gx10.x, gy10.x, gz10.x, gw10.x);
312		detail::tvec4<T, P> g1010(gx10.y, gy10.y, gz10.y, gw10.y);
313		detail::tvec4<T, P> g0110(gx10.z, gy10.z, gz10.z, gw10.z);
314		detail::tvec4<T, P> g1110(gx10.w, gy10.w, gz10.w, gw10.w);
315		detail::tvec4<T, P> g0001(gx01.x, gy01.x, gz01.x, gw01.x);
316		detail::tvec4<T, P> g1001(gx01.y, gy01.y, gz01.y, gw01.y);
317		detail::tvec4<T, P> g0101(gx01.z, gy01.z, gz01.z, gw01.z);
318		detail::tvec4<T, P> g1101(gx01.w, gy01.w, gz01.w, gw01.w);
319		detail::tvec4<T, P> g0011(gx11.x, gy11.x, gz11.x, gw11.x);
320		detail::tvec4<T, P> g1011(gx11.y, gy11.y, gz11.y, gw11.y);
321		detail::tvec4<T, P> g0111(gx11.z, gy11.z, gz11.z, gw11.z);
322		detail::tvec4<T, P> g1111(gx11.w, gy11.w, gz11.w, gw11.w);
323
324		detail::tvec4<T, P> norm00 = detail::taylorInvSqrt(detail::tvec4<T, P>(dot(g0000, g0000), dot(g0100, g0100), dot(g1000, g1000), dot(g1100, g1100)));
325		g0000 *= norm00.x;
326		g0100 *= norm00.y;
327		g1000 *= norm00.z;
328		g1100 *= norm00.w;
329
330		detail::tvec4<T, P> norm01 = detail::taylorInvSqrt(detail::tvec4<T, P>(dot(g0001, g0001), dot(g0101, g0101), dot(g1001, g1001), dot(g1101, g1101)));
331		g0001 *= norm01.x;
332		g0101 *= norm01.y;
333		g1001 *= norm01.z;
334		g1101 *= norm01.w;
335
336		detail::tvec4<T, P> norm10 = detail::taylorInvSqrt(detail::tvec4<T, P>(dot(g0010, g0010), dot(g0110, g0110), dot(g1010, g1010), dot(g1110, g1110)));
337		g0010 *= norm10.x;
338		g0110 *= norm10.y;
339		g1010 *= norm10.z;
340		g1110 *= norm10.w;
341
342		detail::tvec4<T, P> norm11 = detail::taylorInvSqrt(detail::tvec4<T, P>(dot(g0011, g0011), dot(g0111, g0111), dot(g1011, g1011), dot(g1111, g1111)));
343		g0011 *= norm11.x;
344		g0111 *= norm11.y;
345		g1011 *= norm11.z;
346		g1111 *= norm11.w;
347
348		T n0000 = dot(g0000, Pf0);
349		T n1000 = dot(g1000, detail::tvec4<T, P>(Pf1.x, Pf0.y, Pf0.z, Pf0.w));
350		T n0100 = dot(g0100, detail::tvec4<T, P>(Pf0.x, Pf1.y, Pf0.z, Pf0.w));
351		T n1100 = dot(g1100, detail::tvec4<T, P>(Pf1.x, Pf1.y, Pf0.z, Pf0.w));
352		T n0010 = dot(g0010, detail::tvec4<T, P>(Pf0.x, Pf0.y, Pf1.z, Pf0.w));
353		T n1010 = dot(g1010, detail::tvec4<T, P>(Pf1.x, Pf0.y, Pf1.z, Pf0.w));
354		T n0110 = dot(g0110, detail::tvec4<T, P>(Pf0.x, Pf1.y, Pf1.z, Pf0.w));
355		T n1110 = dot(g1110, detail::tvec4<T, P>(Pf1.x, Pf1.y, Pf1.z, Pf0.w));
356		T n0001 = dot(g0001, detail::tvec4<T, P>(Pf0.x, Pf0.y, Pf0.z, Pf1.w));
357		T n1001 = dot(g1001, detail::tvec4<T, P>(Pf1.x, Pf0.y, Pf0.z, Pf1.w));
358		T n0101 = dot(g0101, detail::tvec4<T, P>(Pf0.x, Pf1.y, Pf0.z, Pf1.w));
359		T n1101 = dot(g1101, detail::tvec4<T, P>(Pf1.x, Pf1.y, Pf0.z, Pf1.w));
360		T n0011 = dot(g0011, detail::tvec4<T, P>(Pf0.x, Pf0.y, Pf1.z, Pf1.w));
361		T n1011 = dot(g1011, detail::tvec4<T, P>(Pf1.x, Pf0.y, Pf1.z, Pf1.w));
362		T n0111 = dot(g0111, detail::tvec4<T, P>(Pf0.x, Pf1.y, Pf1.z, Pf1.w));
363		T n1111 = dot(g1111, Pf1);
364
365		detail::tvec4<T, P> fade_xyzw = fade(Pf0);
366		detail::tvec4<T, P> n_0w = mix(detail::tvec4<T, P>(n0000, n1000, n0100, n1100), detail::tvec4<T, P>(n0001, n1001, n0101, n1101), fade_xyzw.w);
367		detail::tvec4<T, P> n_1w = mix(detail::tvec4<T, P>(n0010, n1010, n0110, n1110), detail::tvec4<T, P>(n0011, n1011, n0111, n1111), fade_xyzw.w);
368		detail::tvec4<T, P> n_zw = mix(n_0w, n_1w, fade_xyzw.z);
369		detail::tvec2<T, P> n_yzw = mix(detail::tvec2<T, P>(n_zw.x, n_zw.y), detail::tvec2<T, P>(n_zw.z, n_zw.w), fade_xyzw.y);
370		T n_xyzw = mix(n_yzw.x, n_yzw.y, fade_xyzw.x);
371		return T(2.2) * n_xyzw;
372	}
373
374	// Classic Perlin noise, periodic variant
375	template <typename T, precision P>
376	GLM_FUNC_QUALIFIER T perlin(detail::tvec2<T, P> const & Position, detail::tvec2<T, P> const & rep)
377	{
378		detail::tvec4<T, P> Pi = floor(detail::tvec4<T, P>(Position.x, Position.y, Position.x, Position.y)) + detail::tvec4<T, P>(0.0, 0.0, 1.0, 1.0);
379		detail::tvec4<T, P> Pf = fract(detail::tvec4<T, P>(Position.x, Position.y, Position.x, Position.y)) - detail::tvec4<T, P>(0.0, 0.0, 1.0, 1.0);
380		Pi = mod(Pi, detail::tvec4<T, P>(rep.x, rep.y, rep.x, rep.y)); // To create noise with explicit period
381		Pi = mod(Pi, detail::tvec4<T, P>(289)); // To avoid truncation effects in permutation
382		detail::tvec4<T, P> ix(Pi.x, Pi.z, Pi.x, Pi.z);
383		detail::tvec4<T, P> iy(Pi.y, Pi.y, Pi.w, Pi.w);
384		detail::tvec4<T, P> fx(Pf.x, Pf.z, Pf.x, Pf.z);
385		detail::tvec4<T, P> fy(Pf.y, Pf.y, Pf.w, Pf.w);
386
387		detail::tvec4<T, P> i = detail::permute(detail::permute(ix) + iy);
388
389		detail::tvec4<T, P> gx = static_cast<T>(2) * fract(i / T(41)) - T(1);
390		detail::tvec4<T, P> gy = abs(gx) - T(0.5);
391		detail::tvec4<T, P> tx = floor(gx + T(0.5));
392		gx = gx - tx;
393
394		detail::tvec2<T, P> g00(gx.x, gy.x);
395		detail::tvec2<T, P> g10(gx.y, gy.y);
396		detail::tvec2<T, P> g01(gx.z, gy.z);
397		detail::tvec2<T, P> g11(gx.w, gy.w);
398
399		detail::tvec4<T, P> norm = detail::taylorInvSqrt(detail::tvec4<T, P>(dot(g00, g00), dot(g01, g01), dot(g10, g10), dot(g11, g11)));
400		g00 *= norm.x;
401		g01 *= norm.y;
402		g10 *= norm.z;
403		g11 *= norm.w;
404
405		T n00 = dot(g00, detail::tvec2<T, P>(fx.x, fy.x));
406		T n10 = dot(g10, detail::tvec2<T, P>(fx.y, fy.y));
407		T n01 = dot(g01, detail::tvec2<T, P>(fx.z, fy.z));
408		T n11 = dot(g11, detail::tvec2<T, P>(fx.w, fy.w));
409
410		detail::tvec2<T, P> fade_xy = fade(detail::tvec2<T, P>(Pf.x, Pf.y));
411		detail::tvec2<T, P> n_x = mix(detail::tvec2<T, P>(n00, n01), detail::tvec2<T, P>(n10, n11), fade_xy.x);
412		T n_xy = mix(n_x.x, n_x.y, fade_xy.y);
413		return T(2.3) * n_xy;
414	}
415
416	// Classic Perlin noise, periodic variant
417	template <typename T, precision P>
418	GLM_FUNC_QUALIFIER T perlin(detail::tvec3<T, P> const & Position, detail::tvec3<T, P> const & rep)
419	{
420		detail::tvec3<T, P> Pi0 = mod(floor(Position), rep); // Integer part, modulo period
421		detail::tvec3<T, P> Pi1 = mod(Pi0 + detail::tvec3<T, P>(T(1)), rep); // Integer part + 1, mod period
422		Pi0 = mod(Pi0, detail::tvec3<T, P>(289));
423		Pi1 = mod(Pi1, detail::tvec3<T, P>(289));
424		detail::tvec3<T, P> Pf0 = fract(Position); // Fractional part for interpolation
425		detail::tvec3<T, P> Pf1 = Pf0 - detail::tvec3<T, P>(T(1)); // Fractional part - 1.0
426		detail::tvec4<T, P> ix = detail::tvec4<T, P>(Pi0.x, Pi1.x, Pi0.x, Pi1.x);
427		detail::tvec4<T, P> iy = detail::tvec4<T, P>(Pi0.y, Pi0.y, Pi1.y, Pi1.y);
428		detail::tvec4<T, P> iz0(Pi0.z);
429		detail::tvec4<T, P> iz1(Pi1.z);
430
431		detail::tvec4<T, P> ixy = detail::permute(detail::permute(ix) + iy);
432		detail::tvec4<T, P> ixy0 = detail::permute(ixy + iz0);
433		detail::tvec4<T, P> ixy1 = detail::permute(ixy + iz1);
434
435		detail::tvec4<T, P> gx0 = ixy0 / T(7);
436		detail::tvec4<T, P> gy0 = fract(floor(gx0) / T(7)) - T(0.5);
437		gx0 = fract(gx0);
438		detail::tvec4<T, P> gz0 = detail::tvec4<T, P>(0.5) - abs(gx0) - abs(gy0);
439		detail::tvec4<T, P> sz0 = step(gz0, detail::tvec4<T, P>(0));
440		gx0 -= sz0 * (step(T(0), gx0) - T(0.5));
441		gy0 -= sz0 * (step(T(0), gy0) - T(0.5));
442
443		detail::tvec4<T, P> gx1 = ixy1 / T(7);
444		detail::tvec4<T, P> gy1 = fract(floor(gx1) / T(7)) - T(0.5);
445		gx1 = fract(gx1);
446		detail::tvec4<T, P> gz1 = detail::tvec4<T, P>(0.5) - abs(gx1) - abs(gy1);
447		detail::tvec4<T, P> sz1 = step(gz1, detail::tvec4<T, P>(T(0)));
448		gx1 -= sz1 * (step(T(0), gx1) - T(0.5));
449		gy1 -= sz1 * (step(T(0), gy1) - T(0.5));
450
451		detail::tvec3<T, P> g000 = detail::tvec3<T, P>(gx0.x, gy0.x, gz0.x);
452		detail::tvec3<T, P> g100 = detail::tvec3<T, P>(gx0.y, gy0.y, gz0.y);
453		detail::tvec3<T, P> g010 = detail::tvec3<T, P>(gx0.z, gy0.z, gz0.z);
454		detail::tvec3<T, P> g110 = detail::tvec3<T, P>(gx0.w, gy0.w, gz0.w);
455		detail::tvec3<T, P> g001 = detail::tvec3<T, P>(gx1.x, gy1.x, gz1.x);
456		detail::tvec3<T, P> g101 = detail::tvec3<T, P>(gx1.y, gy1.y, gz1.y);
457		detail::tvec3<T, P> g011 = detail::tvec3<T, P>(gx1.z, gy1.z, gz1.z);
458		detail::tvec3<T, P> g111 = detail::tvec3<T, P>(gx1.w, gy1.w, gz1.w);
459
460		detail::tvec4<T, P> norm0 = detail::taylorInvSqrt(detail::tvec4<T, P>(dot(g000, g000), dot(g010, g010), dot(g100, g100), dot(g110, g110)));
461		g000 *= norm0.x;
462		g010 *= norm0.y;
463		g100 *= norm0.z;
464		g110 *= norm0.w;
465		detail::tvec4<T, P> norm1 = detail::taylorInvSqrt(detail::tvec4<T, P>(dot(g001, g001), dot(g011, g011), dot(g101, g101), dot(g111, g111)));
466		g001 *= norm1.x;
467		g011 *= norm1.y;
468		g101 *= norm1.z;
469		g111 *= norm1.w;
470
471		T n000 = dot(g000, Pf0);
472		T n100 = dot(g100, detail::tvec3<T, P>(Pf1.x, Pf0.y, Pf0.z));
473		T n010 = dot(g010, detail::tvec3<T, P>(Pf0.x, Pf1.y, Pf0.z));
474		T n110 = dot(g110, detail::tvec3<T, P>(Pf1.x, Pf1.y, Pf0.z));
475		T n001 = dot(g001, detail::tvec3<T, P>(Pf0.x, Pf0.y, Pf1.z));
476		T n101 = dot(g101, detail::tvec3<T, P>(Pf1.x, Pf0.y, Pf1.z));
477		T n011 = dot(g011, detail::tvec3<T, P>(Pf0.x, Pf1.y, Pf1.z));
478		T n111 = dot(g111, Pf1);
479
480		detail::tvec3<T, P> fade_xyz = fade(Pf0);
481		detail::tvec4<T, P> n_z = mix(detail::tvec4<T, P>(n000, n100, n010, n110), detail::tvec4<T, P>(n001, n101, n011, n111), fade_xyz.z);
482		detail::tvec2<T, P> n_yz = mix(detail::tvec2<T, P>(n_z.x, n_z.y), detail::tvec2<T, P>(n_z.z, n_z.w), fade_xyz.y);
483		T n_xyz = mix(n_yz.x, n_yz.y, fade_xyz.x);
484		return T(2.2) * n_xyz;
485	}
486
487	// Classic Perlin noise, periodic version
488	template <typename T, precision P>
489	GLM_FUNC_QUALIFIER T perlin(detail::tvec4<T, P> const & Position, detail::tvec4<T, P> const & rep)
490	{
491		detail::tvec4<T, P> Pi0 = mod(floor(Position), rep); // Integer part modulo rep
492		detail::tvec4<T, P> Pi1 = mod(Pi0 + T(1), rep); // Integer part + 1 mod rep
493		detail::tvec4<T, P> Pf0 = fract(Position); // Fractional part for interpolation
494		detail::tvec4<T, P> Pf1 = Pf0 - T(1); // Fractional part - 1.0
495		detail::tvec4<T, P> ix = detail::tvec4<T, P>(Pi0.x, Pi1.x, Pi0.x, Pi1.x);
496		detail::tvec4<T, P> iy = detail::tvec4<T, P>(Pi0.y, Pi0.y, Pi1.y, Pi1.y);
497		detail::tvec4<T, P> iz0(Pi0.z);
498		detail::tvec4<T, P> iz1(Pi1.z);
499		detail::tvec4<T, P> iw0(Pi0.w);
500		detail::tvec4<T, P> iw1(Pi1.w);
501
502		detail::tvec4<T, P> ixy = detail::permute(detail::permute(ix) + iy);
503		detail::tvec4<T, P> ixy0 = detail::permute(ixy + iz0);
504		detail::tvec4<T, P> ixy1 = detail::permute(ixy + iz1);
505		detail::tvec4<T, P> ixy00 = detail::permute(ixy0 + iw0);
506		detail::tvec4<T, P> ixy01 = detail::permute(ixy0 + iw1);
507		detail::tvec4<T, P> ixy10 = detail::permute(ixy1 + iw0);
508		detail::tvec4<T, P> ixy11 = detail::permute(ixy1 + iw1);
509
510		detail::tvec4<T, P> gx00 = ixy00 / T(7);
511		detail::tvec4<T, P> gy00 = floor(gx00) / T(7);
512		detail::tvec4<T, P> gz00 = floor(gy00) / T(6);
513		gx00 = fract(gx00) - T(0.5);
514		gy00 = fract(gy00) - T(0.5);
515		gz00 = fract(gz00) - T(0.5);
516		detail::tvec4<T, P> gw00 = detail::tvec4<T, P>(0.75) - abs(gx00) - abs(gy00) - abs(gz00);
517		detail::tvec4<T, P> sw00 = step(gw00, detail::tvec4<T, P>(0));
518		gx00 -= sw00 * (step(T(0), gx00) - T(0.5));
519		gy00 -= sw00 * (step(T(0), gy00) - T(0.5));
520
521		detail::tvec4<T, P> gx01 = ixy01 / T(7);
522		detail::tvec4<T, P> gy01 = floor(gx01) / T(7);
523		detail::tvec4<T, P> gz01 = floor(gy01) / T(6);
524		gx01 = fract(gx01) - T(0.5);
525		gy01 = fract(gy01) - T(0.5);
526		gz01 = fract(gz01) - T(0.5);
527		detail::tvec4<T, P> gw01 = detail::tvec4<T, P>(0.75) - abs(gx01) - abs(gy01) - abs(gz01);
528		detail::tvec4<T, P> sw01 = step(gw01, detail::tvec4<T, P>(0.0));
529		gx01 -= sw01 * (step(T(0), gx01) - T(0.5));
530		gy01 -= sw01 * (step(T(0), gy01) - T(0.5));
531
532		detail::tvec4<T, P> gx10 = ixy10 / T(7);
533		detail::tvec4<T, P> gy10 = floor(gx10) / T(7);
534		detail::tvec4<T, P> gz10 = floor(gy10) / T(6);
535		gx10 = fract(gx10) - T(0.5);
536		gy10 = fract(gy10) - T(0.5);
537		gz10 = fract(gz10) - T(0.5);
538		detail::tvec4<T, P> gw10 = detail::tvec4<T, P>(0.75) - abs(gx10) - abs(gy10) - abs(gz10);
539		detail::tvec4<T, P> sw10 = step(gw10, detail::tvec4<T, P>(0.0));
540		gx10 -= sw10 * (step(T(0), gx10) - T(0.5));
541		gy10 -= sw10 * (step(T(0), gy10) - T(0.5));
542
543		detail::tvec4<T, P> gx11 = ixy11 / T(7);
544		detail::tvec4<T, P> gy11 = floor(gx11) / T(7);
545		detail::tvec4<T, P> gz11 = floor(gy11) / T(6);
546		gx11 = fract(gx11) - T(0.5);
547		gy11 = fract(gy11) - T(0.5);
548		gz11 = fract(gz11) - T(0.5);
549		detail::tvec4<T, P> gw11 = detail::tvec4<T, P>(0.75) - abs(gx11) - abs(gy11) - abs(gz11);
550		detail::tvec4<T, P> sw11 = step(gw11, detail::tvec4<T, P>(T(0)));
551		gx11 -= sw11 * (step(T(0), gx11) - T(0.5));
552		gy11 -= sw11 * (step(T(0), gy11) - T(0.5));
553
554		detail::tvec4<T, P> g0000(gx00.x, gy00.x, gz00.x, gw00.x);
555		detail::tvec4<T, P> g1000(gx00.y, gy00.y, gz00.y, gw00.y);
556		detail::tvec4<T, P> g0100(gx00.z, gy00.z, gz00.z, gw00.z);
557		detail::tvec4<T, P> g1100(gx00.w, gy00.w, gz00.w, gw00.w);
558		detail::tvec4<T, P> g0010(gx10.x, gy10.x, gz10.x, gw10.x);
559		detail::tvec4<T, P> g1010(gx10.y, gy10.y, gz10.y, gw10.y);
560		detail::tvec4<T, P> g0110(gx10.z, gy10.z, gz10.z, gw10.z);
561		detail::tvec4<T, P> g1110(gx10.w, gy10.w, gz10.w, gw10.w);
562		detail::tvec4<T, P> g0001(gx01.x, gy01.x, gz01.x, gw01.x);
563		detail::tvec4<T, P> g1001(gx01.y, gy01.y, gz01.y, gw01.y);
564		detail::tvec4<T, P> g0101(gx01.z, gy01.z, gz01.z, gw01.z);
565		detail::tvec4<T, P> g1101(gx01.w, gy01.w, gz01.w, gw01.w);
566		detail::tvec4<T, P> g0011(gx11.x, gy11.x, gz11.x, gw11.x);
567		detail::tvec4<T, P> g1011(gx11.y, gy11.y, gz11.y, gw11.y);
568		detail::tvec4<T, P> g0111(gx11.z, gy11.z, gz11.z, gw11.z);
569		detail::tvec4<T, P> g1111(gx11.w, gy11.w, gz11.w, gw11.w);
570
571		detail::tvec4<T, P> norm00 = detail::taylorInvSqrt(detail::tvec4<T, P>(dot(g0000, g0000), dot(g0100, g0100), dot(g1000, g1000), dot(g1100, g1100)));
572		g0000 *= norm00.x;
573		g0100 *= norm00.y;
574		g1000 *= norm00.z;
575		g1100 *= norm00.w;
576
577		detail::tvec4<T, P> norm01 = detail::taylorInvSqrt(detail::tvec4<T, P>(dot(g0001, g0001), dot(g0101, g0101), dot(g1001, g1001), dot(g1101, g1101)));
578		g0001 *= norm01.x;
579		g0101 *= norm01.y;
580		g1001 *= norm01.z;
581		g1101 *= norm01.w;
582
583		detail::tvec4<T, P> norm10 = taylorInvSqrt(detail::tvec4<T, P>(dot(g0010, g0010), dot(g0110, g0110), dot(g1010, g1010), dot(g1110, g1110)));
584		g0010 *= norm10.x;
585		g0110 *= norm10.y;
586		g1010 *= norm10.z;
587		g1110 *= norm10.w;
588
589		detail::tvec4<T, P> norm11 = taylorInvSqrt(detail::tvec4<T, P>(dot(g0011, g0011), dot(g0111, g0111), dot(g1011, g1011), dot(g1111, g1111)));
590		g0011 *= norm11.x;
591		g0111 *= norm11.y;
592		g1011 *= norm11.z;
593		g1111 *= norm11.w;
594
595		T n0000 = dot(g0000, Pf0);
596		T n1000 = dot(g1000, detail::tvec4<T, P>(Pf1.x, Pf0.y, Pf0.z, Pf0.w));
597		T n0100 = dot(g0100, detail::tvec4<T, P>(Pf0.x, Pf1.y, Pf0.z, Pf0.w));
598		T n1100 = dot(g1100, detail::tvec4<T, P>(Pf1.x, Pf1.y, Pf0.z, Pf0.w));
599		T n0010 = dot(g0010, detail::tvec4<T, P>(Pf0.x, Pf0.y, Pf1.z, Pf0.w));
600		T n1010 = dot(g1010, detail::tvec4<T, P>(Pf1.x, Pf0.y, Pf1.z, Pf0.w));
601		T n0110 = dot(g0110, detail::tvec4<T, P>(Pf0.x, Pf1.y, Pf1.z, Pf0.w));
602		T n1110 = dot(g1110, detail::tvec4<T, P>(Pf1.x, Pf1.y, Pf1.z, Pf0.w));
603		T n0001 = dot(g0001, detail::tvec4<T, P>(Pf0.x, Pf0.y, Pf0.z, Pf1.w));
604		T n1001 = dot(g1001, detail::tvec4<T, P>(Pf1.x, Pf0.y, Pf0.z, Pf1.w));
605		T n0101 = dot(g0101, detail::tvec4<T, P>(Pf0.x, Pf1.y, Pf0.z, Pf1.w));
606		T n1101 = dot(g1101, detail::tvec4<T, P>(Pf1.x, Pf1.y, Pf0.z, Pf1.w));
607		T n0011 = dot(g0011, detail::tvec4<T, P>(Pf0.x, Pf0.y, Pf1.z, Pf1.w));
608		T n1011 = dot(g1011, detail::tvec4<T, P>(Pf1.x, Pf0.y, Pf1.z, Pf1.w));
609		T n0111 = dot(g0111, detail::tvec4<T, P>(Pf0.x, Pf1.y, Pf1.z, Pf1.w));
610		T n1111 = dot(g1111, Pf1);
611
612		detail::tvec4<T, P> fade_xyzw = fade(Pf0);
613		detail::tvec4<T, P> n_0w = mix(detail::tvec4<T, P>(n0000, n1000, n0100, n1100), detail::tvec4<T, P>(n0001, n1001, n0101, n1101), fade_xyzw.w);
614		detail::tvec4<T, P> n_1w = mix(detail::tvec4<T, P>(n0010, n1010, n0110, n1110), detail::tvec4<T, P>(n0011, n1011, n0111, n1111), fade_xyzw.w);
615		detail::tvec4<T, P> n_zw = mix(n_0w, n_1w, fade_xyzw.z);
616		detail::tvec2<T, P> n_yzw = mix(detail::tvec2<T, P>(n_zw.x, n_zw.y), detail::tvec2<T, P>(n_zw.z, n_zw.w), fade_xyzw.y);
617		T n_xyzw = mix(n_yzw.x, n_yzw.y, fade_xyzw.x);
618		return T(2.2) * n_xyzw;
619	}
620
621	template <typename T, precision P>
622	GLM_FUNC_QUALIFIER T simplex(glm::detail::tvec2<T, P> const & v)
623	{
624		detail::tvec4<T, P> const C = detail::tvec4<T, P>(
625			T( 0.211324865405187),  // (3.0 -  sqrt(3.0)) / 6.0
626			T( 0.366025403784439),  //  0.5 * (sqrt(3.0)  - 1.0)
627			T(-0.577350269189626),	// -1.0 + 2.0 * C.x
628			T( 0.024390243902439)); //  1.0 / 41.0
629
630		// First corner
631		detail::tvec2<T, P> i  = floor(v + dot(v, detail::tvec2<T, P>(C[1])));
632		detail::tvec2<T, P> x0 = v -   i + dot(i, detail::tvec2<T, P>(C[0]));
633
634		// Other corners
635		//i1.x = step( x0.y, x0.x ); // x0.x > x0.y ? 1.0 : 0.0
636		//i1.y = 1.0 - i1.x;
637		detail::tvec2<T, P> i1 = (x0.x > x0.y) ? detail::tvec2<T, P>(1, 0) : detail::tvec2<T, P>(0, 1);
638		// x0 = x0 - 0.0 + 0.0 * C.xx ;
639		// x1 = x0 - i1 + 1.0 * C.xx ;
640		// x2 = x0 - 1.0 + 2.0 * C.xx ;
641		detail::tvec4<T, P> x12 = detail::tvec4<T, P>(x0.x, x0.y, x0.x, x0.y) + detail::tvec4<T, P>(C.x, C.x, C.z, C.z);
642		x12 = detail::tvec4<T, P>(detail::tvec2<T, P>(x12) - i1, x12.z, x12.w);
643
644		// Permutations
645		i = mod(i, detail::tvec2<T, P>(289)); // Avoid truncation effects in permutation
646		detail::tvec3<T, P> p = detail::permute(
647			detail::permute(i.y + detail::tvec3<T, P>(T(0), i1.y, T(1)))
648			+ i.x + detail::tvec3<T, P>(T(0), i1.x, T(1)));
649
650		detail::tvec3<T, P> m = max(detail::tvec3<T, P>(0.5) - detail::tvec3<T, P>(
651			dot(x0, x0),
652			dot(detail::tvec2<T, P>(x12.x, x12.y), detail::tvec2<T, P>(x12.x, x12.y)),
653			dot(detail::tvec2<T, P>(x12.z, x12.w), detail::tvec2<T, P>(x12.z, x12.w))), detail::tvec3<T, P>(0));
654		m = m * m ;
655		m = m * m ;
656
657		// Gradients: 41 points uniformly over a line, mapped onto a diamond.
658		// The ring size 17*17 = 289 is close to a multiple of 41 (41*7 = 287)
659
660		detail::tvec3<T, P> x = static_cast<T>(2) * fract(p * C.w) - T(1);
661		detail::tvec3<T, P> h = abs(x) - T(0.5);
662		detail::tvec3<T, P> ox = floor(x + T(0.5));
663		detail::tvec3<T, P> a0 = x - ox;
664
665		// Normalise gradients implicitly by scaling m
666		// Inlined for speed: m *= taylorInvSqrt( a0*a0 + h*h );
667		m *= static_cast<T>(1.79284291400159) - T(0.85373472095314) * (a0 * a0 + h * h);
668
669		// Compute final noise value at P
670		detail::tvec3<T, P> g;
671		g.x  = a0.x  * x0.x  + h.x  * x0.y;
672		//g.yz = a0.yz * x12.xz + h.yz * x12.yw;
673		g.y = a0.y * x12.x + h.y * x12.y;
674		g.z = a0.z * x12.z + h.z * x12.w;
675		return T(130) * dot(m, g);
676	}
677
678	template <typename T, precision P>
679	GLM_FUNC_QUALIFIER T simplex(detail::tvec3<T, P> const & v)
680	{
681		detail::tvec2<T, P> const C(1.0 / 6.0, 1.0 / 3.0);
682		detail::tvec4<T, P> const D(0.0, 0.5, 1.0, 2.0);
683
684		// First corner
685		detail::tvec3<T, P> i(floor(v + dot(v, detail::tvec3<T, P>(C.y))));
686		detail::tvec3<T, P> x0(v - i + dot(i, detail::tvec3<T, P>(C.x)));
687
688		// Other corners
689		detail::tvec3<T, P> g(step(detail::tvec3<T, P>(x0.y, x0.z, x0.x), x0));
690		detail::tvec3<T, P> l(T(1) - g);
691		detail::tvec3<T, P> i1(min(g, detail::tvec3<T, P>(l.z, l.x, l.y)));
692		detail::tvec3<T, P> i2(max(g, detail::tvec3<T, P>(l.z, l.x, l.y)));
693
694		//   x0 = x0 - 0.0 + 0.0 * C.xxx;
695		//   x1 = x0 - i1  + 1.0 * C.xxx;
696		//   x2 = x0 - i2  + 2.0 * C.xxx;
697		//   x3 = x0 - 1.0 + 3.0 * C.xxx;
698		detail::tvec3<T, P> x1(x0 - i1 + C.x);
699		detail::tvec3<T, P> x2(x0 - i2 + C.y); // 2.0*C.x = 1/3 = C.y
700		detail::tvec3<T, P> x3(x0 - D.y);      // -1.0+3.0*C.x = -0.5 = -D.y
701
702		// Permutations
703		i = mod289(i);
704		detail::tvec4<T, P> p(detail::permute(detail::permute(detail::permute(
705			i.z + detail::tvec4<T, P>(T(0), i1.z, i2.z, T(1))) +
706			i.y + detail::tvec4<T, P>(T(0), i1.y, i2.y, T(1))) +
707			i.x + detail::tvec4<T, P>(T(0), i1.x, i2.x, T(1))));
708
709		// Gradients: 7x7 points over a square, mapped onto an octahedron.
710		// The ring size 17*17 = 289 is close to a multiple of 49 (49*6 = 294)
711		T n_ = static_cast<T>(0.142857142857); // 1.0/7.0
712		detail::tvec3<T, P> ns(n_ * detail::tvec3<T, P>(D.w, D.y, D.z) - detail::tvec3<T, P>(D.x, D.z, D.x));
713
714		detail::tvec4<T, P> j(p - T(49) * floor(p * ns.z * ns.z));  //  mod(p,7*7)
715
716		detail::tvec4<T, P> x_(floor(j * ns.z));
717		detail::tvec4<T, P> y_(floor(j - T(7) * x_));    // mod(j,N)
718
719		detail::tvec4<T, P> x(x_ * ns.x + ns.y);
720		detail::tvec4<T, P> y(y_ * ns.x + ns.y);
721		detail::tvec4<T, P> h(T(1) - abs(x) - abs(y));
722
723		detail::tvec4<T, P> b0(x.x, x.y, y.x, y.y);
724		detail::tvec4<T, P> b1(x.z, x.w, y.z, y.w);
725
726		// vec4 s0 = vec4(lessThan(b0,0.0))*2.0 - 1.0;
727		// vec4 s1 = vec4(lessThan(b1,0.0))*2.0 - 1.0;
728		detail::tvec4<T, P> s0(floor(b0) * T(2) + T(1));
729		detail::tvec4<T, P> s1(floor(b1) * T(2) + T(1));
730		detail::tvec4<T, P> sh(-step(h, detail::tvec4<T, P>(0.0)));
731
732		detail::tvec4<T, P> a0 = detail::tvec4<T, P>(b0.x, b0.z, b0.y, b0.w) + detail::tvec4<T, P>(s0.x, s0.z, s0.y, s0.w) * detail::tvec4<T, P>(sh.x, sh.x, sh.y, sh.y);
733		detail::tvec4<T, P> a1 = detail::tvec4<T, P>(b1.x, b1.z, b1.y, b1.w) + detail::tvec4<T, P>(s1.x, s1.z, s1.y, s1.w) * detail::tvec4<T, P>(sh.z, sh.z, sh.w, sh.w);
734
735		detail::tvec3<T, P> p0(a0.x, a0.y, h.x);
736		detail::tvec3<T, P> p1(a0.z, a0.w, h.y);
737		detail::tvec3<T, P> p2(a1.x, a1.y, h.z);
738		detail::tvec3<T, P> p3(a1.z, a1.w, h.w);
739
740		// Normalise gradients
741		detail::tvec4<T, P> norm = detail::taylorInvSqrt(detail::tvec4<T, P>(dot(p0, p0), dot(p1, p1), dot(p2, p2), dot(p3, p3)));
742		p0 *= norm.x;
743		p1 *= norm.y;
744		p2 *= norm.z;
745		p3 *= norm.w;
746
747		// Mix final noise value
748		detail::tvec4<T, P> m = max(T(0.6) - detail::tvec4<T, P>(dot(x0, x0), dot(x1, x1), dot(x2, x2), dot(x3, x3)), detail::tvec4<T, P>(0));
749		m = m * m;
750		return T(42) * dot(m * m, detail::tvec4<T, P>(dot(p0, x0), dot(p1, x1), dot(p2, x2), dot(p3, x3)));
751	}
752
753	template <typename T, precision P>
754	GLM_FUNC_QUALIFIER T simplex(detail::tvec4<T, P> const & v)
755	{
756		detail::tvec4<T, P> const C(
757			0.138196601125011,  // (5 - sqrt(5))/20  G4
758			0.276393202250021,  // 2 * G4
759			0.414589803375032,  // 3 * G4
760			-0.447213595499958); // -1 + 4 * G4
761
762		// (sqrt(5) - 1)/4 = F4, used once below
763		T const F4 = static_cast<T>(0.309016994374947451);
764
765		// First corner
766		detail::tvec4<T, P> i  = floor(v + dot(v, vec4(F4)));
767		detail::tvec4<T, P> x0 = v -   i + dot(i, vec4(C.x));
768
769		// Other corners
770
771		// Rank sorting originally contributed by Bill Licea-Kane, AMD (formerly ATI)
772		detail::tvec4<T, P> i0;
773		detail::tvec3<T, P> isX = step(detail::tvec3<T, P>(x0.y, x0.z, x0.w), detail::tvec3<T, P>(x0.x));
774		detail::tvec3<T, P> isYZ = step(detail::tvec3<T, P>(x0.z, x0.w, x0.w), detail::tvec3<T, P>(x0.y, x0.y, x0.z));
775		//  i0.x = dot(isX, vec3(1.0));
776		//i0.x = isX.x + isX.y + isX.z;
777		//i0.yzw = static_cast<T>(1) - isX;
778		i0 = detail::tvec4<T, P>(isX.x + isX.y + isX.z, T(1) - isX);
779		//  i0.y += dot(isYZ.xy, vec2(1.0));
780		i0.y += isYZ.x + isYZ.y;
781		//i0.zw += 1.0 - detail::tvec2<T, P>(isYZ.x, isYZ.y);
782		i0.z += static_cast<T>(1) - isYZ.x;
783		i0.w += static_cast<T>(1) - isYZ.y;
784		i0.z += isYZ.z;
785		i0.w += static_cast<T>(1) - isYZ.z;
786
787		// i0 now contains the unique values 0,1,2,3 in each channel
788		detail::tvec4<T, P> i3 = clamp(i0, T(0), T(1));
789		detail::tvec4<T, P> i2 = clamp(i0 - T(1), T(0), T(1));
790		detail::tvec4<T, P> i1 = clamp(i0 - T(2), T(0), T(1));
791
792		//  x0 = x0 - 0.0 + 0.0 * C.xxxx
793		//  x1 = x0 - i1  + 0.0 * C.xxxx
794		//  x2 = x0 - i2  + 0.0 * C.xxxx
795		//  x3 = x0 - i3  + 0.0 * C.xxxx
796		//  x4 = x0 - 1.0 + 4.0 * C.xxxx
797		detail::tvec4<T, P> x1 = x0 - i1 + C.x;
798		detail::tvec4<T, P> x2 = x0 - i2 + C.y;
799		detail::tvec4<T, P> x3 = x0 - i3 + C.z;
800		detail::tvec4<T, P> x4 = x0 + C.w;
801
802		// Permutations
803		i = mod(i, detail::tvec4<T, P>(289));
804		T j0 = detail::permute(detail::permute(detail::permute(detail::permute(i.w) + i.z) + i.y) + i.x);
805		detail::tvec4<T, P> j1 = detail::permute(detail::permute(detail::permute(detail::permute(
806			i.w + detail::tvec4<T, P>(i1.w, i2.w, i3.w, T(1))) +
807			i.z + detail::tvec4<T, P>(i1.z, i2.z, i3.z, T(1))) +
808			i.y + detail::tvec4<T, P>(i1.y, i2.y, i3.y, T(1))) +
809			i.x + detail::tvec4<T, P>(i1.x, i2.x, i3.x, T(1)));
810
811		// Gradients: 7x7x6 points over a cube, mapped onto a 4-cross polytope
812		// 7*7*6 = 294, which is close to the ring size 17*17 = 289.
813		detail::tvec4<T, P> ip = detail::tvec4<T, P>(T(1) / T(294), T(1) / T(49), T(1) / T(7), T(0));
814
815		detail::tvec4<T, P> p0 = gtc::grad4(j0,   ip);
816		detail::tvec4<T, P> p1 = gtc::grad4(j1.x, ip);
817		detail::tvec4<T, P> p2 = gtc::grad4(j1.y, ip);
818		detail::tvec4<T, P> p3 = gtc::grad4(j1.z, ip);
819		detail::tvec4<T, P> p4 = gtc::grad4(j1.w, ip);
820
821		// Normalise gradients
822		detail::tvec4<T, P> norm = detail::taylorInvSqrt(detail::tvec4<T, P>(dot(p0, p0), dot(p1, p1), dot(p2, p2), dot(p3, p3)));
823		p0 *= norm.x;
824		p1 *= norm.y;
825		p2 *= norm.z;
826		p3 *= norm.w;
827		p4 *= detail::taylorInvSqrt(dot(p4, p4));
828
829		// Mix contributions from the five corners
830		detail::tvec3<T, P> m0 = max(T(0.6) - detail::tvec3<T, P>(dot(x0, x0), dot(x1, x1), dot(x2, x2)), detail::tvec3<T, P>(0));
831		detail::tvec2<T, P> m1 = max(T(0.6) - detail::tvec2<T, P>(dot(x3, x3), dot(x4, x4)             ), detail::tvec2<T, P>(0));
832		m0 = m0 * m0;
833		m1 = m1 * m1;
834		return T(49) *
835			(dot(m0 * m0, detail::tvec3<T, P>(dot(p0, x0), dot(p1, x1), dot(p2, x2))) +
836			dot(m1 * m1, detail::tvec2<T, P>(dot(p3, x3), dot(p4, x4))));
837	}
838}//namespace glm
839