• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright © 2011 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21  * DEALINGS IN THE SOFTWARE.
22  */
23 
24 /**
25  * \file lower_varyings_to_packed.cpp
26  *
27  * This lowering pass generates GLSL code that manually packs varyings into
28  * vec4 slots, for the benefit of back-ends that don't support packed varyings
29  * natively.
30  *
31  * For example, the following shader:
32  *
33  *   out mat3x2 foo;  // location=4, location_frac=0
34  *   out vec3 bar[2]; // location=5, location_frac=2
35  *
36  *   main()
37  *   {
38  *     ...
39  *   }
40  *
41  * Is rewritten to:
42  *
43  *   mat3x2 foo;
44  *   vec3 bar[2];
45  *   out vec4 packed4; // location=4, location_frac=0
46  *   out vec4 packed5; // location=5, location_frac=0
47  *   out vec4 packed6; // location=6, location_frac=0
48  *
49  *   main()
50  *   {
51  *     ...
52  *     packed4.xy = foo[0];
53  *     packed4.zw = foo[1];
54  *     packed5.xy = foo[2];
55  *     packed5.zw = bar[0].xy;
56  *     packed6.x = bar[0].z;
57  *     packed6.yzw = bar[1];
58  *   }
59  *
60  * This lowering pass properly handles "double parking" of a varying vector
61  * across two varying slots.  For example, in the code above, two of the
62  * components of bar[0] are stored in packed5, and the remaining component is
63  * stored in packed6.
64  *
65  * Note that in theory, the extra instructions may cause some loss of
66  * performance.  However, hopefully in most cases the performance loss will
67  * either be absorbed by a later optimization pass, or it will be offset by
68  * memory bandwidth savings (because fewer varyings are used).
69  *
70  * This lowering pass also packs flat floats, ints, and uints together, by
71  * using ivec4 as the base type of flat "varyings", and using appropriate
72  * casts to convert floats and uints into ints.
73  *
74  * This lowering pass also handles varyings whose type is a struct or an array
75  * of struct.  Structs are packed in order and with no gaps, so there may be a
76  * performance penalty due to structure elements being double-parked.
77  *
78  * Lowering of geometry shader inputs is slightly more complex, since geometry
79  * inputs are always arrays, so we need to lower arrays to arrays.  For
80  * example, the following input:
81  *
82  *   in struct Foo {
83  *     float f;
84  *     vec3 v;
85  *     vec2 a[2];
86  *   } arr[3];         // location=4, location_frac=0
87  *
88  * Would get lowered like this if it occurred in a fragment shader:
89  *
90  *   struct Foo {
91  *     float f;
92  *     vec3 v;
93  *     vec2 a[2];
94  *   } arr[3];
95  *   in vec4 packed4;  // location=4, location_frac=0
96  *   in vec4 packed5;  // location=5, location_frac=0
97  *   in vec4 packed6;  // location=6, location_frac=0
98  *   in vec4 packed7;  // location=7, location_frac=0
99  *   in vec4 packed8;  // location=8, location_frac=0
100  *   in vec4 packed9;  // location=9, location_frac=0
101  *
102  *   main()
103  *   {
104  *     arr[0].f = packed4.x;
105  *     arr[0].v = packed4.yzw;
106  *     arr[0].a[0] = packed5.xy;
107  *     arr[0].a[1] = packed5.zw;
108  *     arr[1].f = packed6.x;
109  *     arr[1].v = packed6.yzw;
110  *     arr[1].a[0] = packed7.xy;
111  *     arr[1].a[1] = packed7.zw;
112  *     arr[2].f = packed8.x;
113  *     arr[2].v = packed8.yzw;
114  *     arr[2].a[0] = packed9.xy;
115  *     arr[2].a[1] = packed9.zw;
116  *     ...
117  *   }
118  *
119  * But it would get lowered like this if it occurred in a geometry shader:
120  *
121  *   struct Foo {
122  *     float f;
123  *     vec3 v;
124  *     vec2 a[2];
125  *   } arr[3];
126  *   in vec4 packed4[3];  // location=4, location_frac=0
127  *   in vec4 packed5[3];  // location=5, location_frac=0
128  *
129  *   main()
130  *   {
131  *     arr[0].f = packed4[0].x;
132  *     arr[0].v = packed4[0].yzw;
133  *     arr[0].a[0] = packed5[0].xy;
134  *     arr[0].a[1] = packed5[0].zw;
135  *     arr[1].f = packed4[1].x;
136  *     arr[1].v = packed4[1].yzw;
137  *     arr[1].a[0] = packed5[1].xy;
138  *     arr[1].a[1] = packed5[1].zw;
139  *     arr[2].f = packed4[2].x;
140  *     arr[2].v = packed4[2].yzw;
141  *     arr[2].a[0] = packed5[2].xy;
142  *     arr[2].a[1] = packed5[2].zw;
143  *     ...
144  *   }
145  */
146 
147 #include "glsl_symbol_table.h"
148 #include "ir.h"
149 #include "ir_builder.h"
150 #include "ir_optimization.h"
151 #include "program/prog_instruction.h"
152 
153 using namespace ir_builder;
154 
155 namespace {
156 
157 /**
158  * Visitor that performs varying packing.  For each varying declared in the
159  * shader, this visitor determines whether it needs to be packed.  If so, it
160  * demotes it to an ordinary global, creates new packed varyings, and
161  * generates assignments to convert between the original varying and the
162  * packed varying.
163  */
164 class lower_packed_varyings_visitor
165 {
166 public:
167    lower_packed_varyings_visitor(void *mem_ctx,
168                                  unsigned locations_used,
169                                  const uint8_t *components,
170                                  ir_variable_mode mode,
171                                  unsigned gs_input_vertices,
172                                  exec_list *out_instructions,
173                                  exec_list *out_variables,
174                                  bool disable_varying_packing,
175                                  bool xfb_enabled);
176 
177    void run(struct gl_linked_shader *shader);
178 
179 private:
180    void bitwise_assign_pack(ir_rvalue *lhs, ir_rvalue *rhs);
181    void bitwise_assign_unpack(ir_rvalue *lhs, ir_rvalue *rhs);
182    unsigned lower_rvalue(ir_rvalue *rvalue, unsigned fine_location,
183                          ir_variable *unpacked_var, const char *name,
184                          bool gs_input_toplevel, unsigned vertex_index);
185    unsigned lower_arraylike(ir_rvalue *rvalue, unsigned array_size,
186                             unsigned fine_location,
187                             ir_variable *unpacked_var, const char *name,
188                             bool gs_input_toplevel, unsigned vertex_index);
189    ir_dereference *get_packed_varying_deref(unsigned location,
190                                             ir_variable *unpacked_var,
191                                             const char *name,
192                                             unsigned vertex_index);
193    bool needs_lowering(ir_variable *var);
194 
195    /**
196     * Memory context used to allocate new instructions for the shader.
197     */
198    void * const mem_ctx;
199 
200    /**
201     * Number of generic varying slots which are used by this shader.  This is
202     * used to allocate temporary intermediate data structures.  If any varying
203     * used by this shader has a location greater than or equal to
204     * VARYING_SLOT_VAR0 + locations_used, an assertion will fire.
205     */
206    const unsigned locations_used;
207 
208    const uint8_t* components;
209 
210    /**
211     * Array of pointers to the packed varyings that have been created for each
212     * generic varying slot.  NULL entries in this array indicate varying slots
213     * for which a packed varying has not been created yet.
214     */
215    ir_variable **packed_varyings;
216 
217    /**
218     * Type of varying which is being lowered in this pass (either
219     * ir_var_shader_in or ir_var_shader_out).
220     */
221    const ir_variable_mode mode;
222 
223    /**
224     * If we are currently lowering geometry shader inputs, the number of input
225     * vertices the geometry shader accepts.  Otherwise zero.
226     */
227    const unsigned gs_input_vertices;
228 
229    /**
230     * Exec list into which the visitor should insert the packing instructions.
231     * Caller provides this list; it should insert the instructions into the
232     * appropriate place in the shader once the visitor has finished running.
233     */
234    exec_list *out_instructions;
235 
236    /**
237     * Exec list into which the visitor should insert any new variables.
238     */
239    exec_list *out_variables;
240 
241    bool disable_varying_packing;
242    bool xfb_enabled;
243 };
244 
245 } /* anonymous namespace */
246 
lower_packed_varyings_visitor(void * mem_ctx,unsigned locations_used,const uint8_t * components,ir_variable_mode mode,unsigned gs_input_vertices,exec_list * out_instructions,exec_list * out_variables,bool disable_varying_packing,bool xfb_enabled)247 lower_packed_varyings_visitor::lower_packed_varyings_visitor(
248       void *mem_ctx, unsigned locations_used, const uint8_t *components,
249       ir_variable_mode mode,
250       unsigned gs_input_vertices, exec_list *out_instructions,
251       exec_list *out_variables, bool disable_varying_packing,
252       bool xfb_enabled)
253    : mem_ctx(mem_ctx),
254      locations_used(locations_used),
255      components(components),
256      packed_varyings((ir_variable **)
257                      rzalloc_array_size(mem_ctx, sizeof(*packed_varyings),
258                                         locations_used)),
259      mode(mode),
260      gs_input_vertices(gs_input_vertices),
261      out_instructions(out_instructions),
262      out_variables(out_variables),
263      disable_varying_packing(disable_varying_packing),
264      xfb_enabled(xfb_enabled)
265 {
266 }
267 
268 void
run(struct gl_linked_shader * shader)269 lower_packed_varyings_visitor::run(struct gl_linked_shader *shader)
270 {
271    foreach_in_list(ir_instruction, node, shader->ir) {
272       ir_variable *var = node->as_variable();
273       if (var == NULL)
274          continue;
275 
276       if (var->data.mode != this->mode ||
277           var->data.location < VARYING_SLOT_VAR0 ||
278           !this->needs_lowering(var))
279          continue;
280 
281       /* This lowering pass is only capable of packing floats and ints
282        * together when their interpolation mode is "flat".  Treat integers as
283        * being flat when the interpolation mode is none.
284        */
285       assert(var->data.interpolation == INTERP_MODE_FLAT ||
286              var->data.interpolation == INTERP_MODE_NONE ||
287              !var->type->contains_integer());
288 
289       /* Clone the variable for program resource list before
290        * it gets modified and lost.
291        */
292       if (!shader->packed_varyings)
293          shader->packed_varyings = new (shader) exec_list;
294 
295       shader->packed_varyings->push_tail(var->clone(shader, NULL));
296 
297       /* Change the old varying into an ordinary global. */
298       assert(var->data.mode != ir_var_temporary);
299       var->data.mode = ir_var_auto;
300 
301       /* Create a reference to the old varying. */
302       ir_dereference_variable *deref
303          = new(this->mem_ctx) ir_dereference_variable(var);
304 
305       /* Recursively pack or unpack it. */
306       this->lower_rvalue(deref, var->data.location * 4 + var->data.location_frac, var,
307                          var->name, this->gs_input_vertices != 0, 0);
308    }
309 }
310 
311 #define SWIZZLE_ZWZW MAKE_SWIZZLE4(SWIZZLE_Z, SWIZZLE_W, SWIZZLE_Z, SWIZZLE_W)
312 
313 /**
314  * Make an ir_assignment from \c rhs to \c lhs, performing appropriate
315  * bitcasts if necessary to match up types.
316  *
317  * This function is called when packing varyings.
318  */
319 void
bitwise_assign_pack(ir_rvalue * lhs,ir_rvalue * rhs)320 lower_packed_varyings_visitor::bitwise_assign_pack(ir_rvalue *lhs,
321                                                    ir_rvalue *rhs)
322 {
323    if (lhs->type->base_type != rhs->type->base_type) {
324       /* Since we only mix types in flat varyings, and we always store flat
325        * varyings as type ivec4, we need only produce conversions from (uint
326        * or float) to int.
327        */
328       assert(lhs->type->base_type == GLSL_TYPE_INT);
329       switch (rhs->type->base_type) {
330       case GLSL_TYPE_UINT:
331          rhs = new(this->mem_ctx)
332             ir_expression(ir_unop_u2i, lhs->type, rhs);
333          break;
334       case GLSL_TYPE_FLOAT:
335          rhs = new(this->mem_ctx)
336             ir_expression(ir_unop_bitcast_f2i, lhs->type, rhs);
337          break;
338       case GLSL_TYPE_DOUBLE:
339          assert(rhs->type->vector_elements <= 2);
340          if (rhs->type->vector_elements == 2) {
341             ir_variable *t = new(mem_ctx) ir_variable(lhs->type, "pack", ir_var_temporary);
342 
343             assert(lhs->type->vector_elements == 4);
344             this->out_variables->push_tail(t);
345             this->out_instructions->push_tail(
346                   assign(t, u2i(expr(ir_unop_unpack_double_2x32, swizzle_x(rhs->clone(mem_ctx, NULL)))), 0x3));
347             this->out_instructions->push_tail(
348                   assign(t,  u2i(expr(ir_unop_unpack_double_2x32, swizzle_y(rhs))), 0xc));
349             rhs = deref(t).val;
350          } else {
351             rhs = u2i(expr(ir_unop_unpack_double_2x32, rhs));
352          }
353          break;
354       default:
355          assert(!"Unexpected type conversion while lowering varyings");
356          break;
357       }
358    }
359    this->out_instructions->push_tail(new (this->mem_ctx) ir_assignment(lhs, rhs));
360 }
361 
362 
363 /**
364  * Make an ir_assignment from \c rhs to \c lhs, performing appropriate
365  * bitcasts if necessary to match up types.
366  *
367  * This function is called when unpacking varyings.
368  */
369 void
bitwise_assign_unpack(ir_rvalue * lhs,ir_rvalue * rhs)370 lower_packed_varyings_visitor::bitwise_assign_unpack(ir_rvalue *lhs,
371                                                      ir_rvalue *rhs)
372 {
373    if (lhs->type->base_type != rhs->type->base_type) {
374       /* Since we only mix types in flat varyings, and we always store flat
375        * varyings as type ivec4, we need only produce conversions from int to
376        * (uint or float).
377        */
378       assert(rhs->type->base_type == GLSL_TYPE_INT);
379       switch (lhs->type->base_type) {
380       case GLSL_TYPE_UINT:
381          rhs = new(this->mem_ctx)
382             ir_expression(ir_unop_i2u, lhs->type, rhs);
383          break;
384       case GLSL_TYPE_FLOAT:
385          rhs = new(this->mem_ctx)
386             ir_expression(ir_unop_bitcast_i2f, lhs->type, rhs);
387          break;
388       case GLSL_TYPE_DOUBLE:
389          assert(lhs->type->vector_elements <= 2);
390          if (lhs->type->vector_elements == 2) {
391             ir_variable *t = new(mem_ctx) ir_variable(lhs->type, "unpack", ir_var_temporary);
392             assert(rhs->type->vector_elements == 4);
393             this->out_variables->push_tail(t);
394             this->out_instructions->push_tail(
395                   assign(t, expr(ir_unop_pack_double_2x32, i2u(swizzle_xy(rhs->clone(mem_ctx, NULL)))), 0x1));
396             this->out_instructions->push_tail(
397                   assign(t, expr(ir_unop_pack_double_2x32, i2u(swizzle(rhs->clone(mem_ctx, NULL), SWIZZLE_ZWZW, 2))), 0x2));
398             rhs = deref(t).val;
399          } else {
400             rhs = expr(ir_unop_pack_double_2x32, i2u(rhs));
401          }
402          break;
403       default:
404          assert(!"Unexpected type conversion while lowering varyings");
405          break;
406       }
407    }
408    this->out_instructions->push_tail(new(this->mem_ctx) ir_assignment(lhs, rhs));
409 }
410 
411 
412 /**
413  * Recursively pack or unpack the given varying (or portion of a varying) by
414  * traversing all of its constituent vectors.
415  *
416  * \param fine_location is the location where the first constituent vector
417  * should be packed--the word "fine" indicates that this location is expressed
418  * in multiples of a float, rather than multiples of a vec4 as is used
419  * elsewhere in Mesa.
420  *
421  * \param gs_input_toplevel should be set to true if we are lowering geometry
422  * shader inputs, and we are currently lowering the whole input variable
423  * (i.e. we are lowering the array whose index selects the vertex).
424  *
425  * \param vertex_index: if we are lowering geometry shader inputs, and the
426  * level of the array that we are currently lowering is *not* the top level,
427  * then this indicates which vertex we are currently lowering.  Otherwise it
428  * is ignored.
429  *
430  * \return the location where the next constituent vector (after this one)
431  * should be packed.
432  */
433 unsigned
lower_rvalue(ir_rvalue * rvalue,unsigned fine_location,ir_variable * unpacked_var,const char * name,bool gs_input_toplevel,unsigned vertex_index)434 lower_packed_varyings_visitor::lower_rvalue(ir_rvalue *rvalue,
435                                             unsigned fine_location,
436                                             ir_variable *unpacked_var,
437                                             const char *name,
438                                             bool gs_input_toplevel,
439                                             unsigned vertex_index)
440 {
441    unsigned dmul = rvalue->type->is_64bit() ? 2 : 1;
442    /* When gs_input_toplevel is set, we should be looking at a geometry shader
443     * input array.
444     */
445    assert(!gs_input_toplevel || rvalue->type->is_array());
446 
447    if (rvalue->type->is_record()) {
448       for (unsigned i = 0; i < rvalue->type->length; i++) {
449          if (i != 0)
450             rvalue = rvalue->clone(this->mem_ctx, NULL);
451          const char *field_name = rvalue->type->fields.structure[i].name;
452          ir_dereference_record *dereference_record = new(this->mem_ctx)
453             ir_dereference_record(rvalue, field_name);
454          char *deref_name
455             = ralloc_asprintf(this->mem_ctx, "%s.%s", name, field_name);
456          fine_location = this->lower_rvalue(dereference_record, fine_location,
457                                             unpacked_var, deref_name, false,
458                                             vertex_index);
459       }
460       return fine_location;
461    } else if (rvalue->type->is_array()) {
462       /* Arrays are packed/unpacked by considering each array element in
463        * sequence.
464        */
465       return this->lower_arraylike(rvalue, rvalue->type->array_size(),
466                                    fine_location, unpacked_var, name,
467                                    gs_input_toplevel, vertex_index);
468    } else if (rvalue->type->is_matrix()) {
469       /* Matrices are packed/unpacked by considering each column vector in
470        * sequence.
471        */
472       return this->lower_arraylike(rvalue, rvalue->type->matrix_columns,
473                                    fine_location, unpacked_var, name,
474                                    false, vertex_index);
475    } else if (rvalue->type->vector_elements * dmul +
476               fine_location % 4 > 4) {
477       /* This vector is going to be "double parked" across two varying slots,
478        * so handle it as two separate assignments. For doubles, a dvec3/dvec4
479        * can end up being spread over 3 slots. However the second splitting
480        * will happen later, here we just always want to split into 2.
481        */
482       unsigned left_components, right_components;
483       unsigned left_swizzle_values[4] = { 0, 0, 0, 0 };
484       unsigned right_swizzle_values[4] = { 0, 0, 0, 0 };
485       char left_swizzle_name[4] = { 0, 0, 0, 0 };
486       char right_swizzle_name[4] = { 0, 0, 0, 0 };
487 
488       left_components = 4 - fine_location % 4;
489       if (rvalue->type->is_64bit()) {
490          /* We might actually end up with 0 left components! */
491          left_components /= 2;
492       }
493       right_components = rvalue->type->vector_elements - left_components;
494 
495       for (unsigned i = 0; i < left_components; i++) {
496          left_swizzle_values[i] = i;
497          left_swizzle_name[i] = "xyzw"[i];
498       }
499       for (unsigned i = 0; i < right_components; i++) {
500          right_swizzle_values[i] = i + left_components;
501          right_swizzle_name[i] = "xyzw"[i + left_components];
502       }
503       ir_swizzle *left_swizzle = new(this->mem_ctx)
504          ir_swizzle(rvalue, left_swizzle_values, left_components);
505       ir_swizzle *right_swizzle = new(this->mem_ctx)
506          ir_swizzle(rvalue->clone(this->mem_ctx, NULL), right_swizzle_values,
507                     right_components);
508       char *left_name
509          = ralloc_asprintf(this->mem_ctx, "%s.%s", name, left_swizzle_name);
510       char *right_name
511          = ralloc_asprintf(this->mem_ctx, "%s.%s", name, right_swizzle_name);
512       if (left_components)
513          fine_location = this->lower_rvalue(left_swizzle, fine_location,
514                                             unpacked_var, left_name, false,
515                                             vertex_index);
516       else
517          /* Top up the fine location to the next slot */
518          fine_location++;
519       return this->lower_rvalue(right_swizzle, fine_location, unpacked_var,
520                                 right_name, false, vertex_index);
521    } else {
522       /* No special handling is necessary; pack the rvalue into the
523        * varying.
524        */
525       unsigned swizzle_values[4] = { 0, 0, 0, 0 };
526       unsigned components = rvalue->type->vector_elements * dmul;
527       unsigned location = fine_location / 4;
528       unsigned location_frac = fine_location % 4;
529       for (unsigned i = 0; i < components; ++i)
530          swizzle_values[i] = i + location_frac;
531       ir_dereference *packed_deref =
532          this->get_packed_varying_deref(location, unpacked_var, name,
533                                         vertex_index);
534       if (unpacked_var->data.stream != 0) {
535          assert(unpacked_var->data.stream < 4);
536          ir_variable *packed_var = packed_deref->variable_referenced();
537          for (unsigned i = 0; i < components; ++i) {
538             packed_var->data.stream |=
539                unpacked_var->data.stream << (2 * (location_frac + i));
540          }
541       }
542       ir_swizzle *swizzle = new(this->mem_ctx)
543          ir_swizzle(packed_deref, swizzle_values, components);
544       if (this->mode == ir_var_shader_out) {
545          this->bitwise_assign_pack(swizzle, rvalue);
546       } else {
547          this->bitwise_assign_unpack(rvalue, swizzle);
548       }
549       return fine_location + components;
550    }
551 }
552 
553 /**
554  * Recursively pack or unpack a varying for which we need to iterate over its
555  * constituent elements, accessing each one using an ir_dereference_array.
556  * This takes care of both arrays and matrices, since ir_dereference_array
557  * treats a matrix like an array of its column vectors.
558  *
559  * \param gs_input_toplevel should be set to true if we are lowering geometry
560  * shader inputs, and we are currently lowering the whole input variable
561  * (i.e. we are lowering the array whose index selects the vertex).
562  *
563  * \param vertex_index: if we are lowering geometry shader inputs, and the
564  * level of the array that we are currently lowering is *not* the top level,
565  * then this indicates which vertex we are currently lowering.  Otherwise it
566  * is ignored.
567  */
568 unsigned
lower_arraylike(ir_rvalue * rvalue,unsigned array_size,unsigned fine_location,ir_variable * unpacked_var,const char * name,bool gs_input_toplevel,unsigned vertex_index)569 lower_packed_varyings_visitor::lower_arraylike(ir_rvalue *rvalue,
570                                                unsigned array_size,
571                                                unsigned fine_location,
572                                                ir_variable *unpacked_var,
573                                                const char *name,
574                                                bool gs_input_toplevel,
575                                                unsigned vertex_index)
576 {
577    for (unsigned i = 0; i < array_size; i++) {
578       if (i != 0)
579          rvalue = rvalue->clone(this->mem_ctx, NULL);
580       ir_constant *constant = new(this->mem_ctx) ir_constant(i);
581       ir_dereference_array *dereference_array = new(this->mem_ctx)
582          ir_dereference_array(rvalue, constant);
583       if (gs_input_toplevel) {
584          /* Geometry shader inputs are a special case.  Instead of storing
585           * each element of the array at a different location, all elements
586           * are at the same location, but with a different vertex index.
587           */
588          (void) this->lower_rvalue(dereference_array, fine_location,
589                                    unpacked_var, name, false, i);
590       } else {
591          char *subscripted_name
592             = ralloc_asprintf(this->mem_ctx, "%s[%d]", name, i);
593          fine_location =
594             this->lower_rvalue(dereference_array, fine_location,
595                                unpacked_var, subscripted_name,
596                                false, vertex_index);
597       }
598    }
599    return fine_location;
600 }
601 
602 /**
603  * Retrieve the packed varying corresponding to the given varying location.
604  * If no packed varying has been created for the given varying location yet,
605  * create it and add it to the shader before returning it.
606  *
607  * The newly created varying inherits its interpolation parameters from \c
608  * unpacked_var.  Its base type is ivec4 if we are lowering a flat varying,
609  * vec4 otherwise.
610  *
611  * \param vertex_index: if we are lowering geometry shader inputs, then this
612  * indicates which vertex we are currently lowering.  Otherwise it is ignored.
613  */
614 ir_dereference *
get_packed_varying_deref(unsigned location,ir_variable * unpacked_var,const char * name,unsigned vertex_index)615 lower_packed_varyings_visitor::get_packed_varying_deref(
616       unsigned location, ir_variable *unpacked_var, const char *name,
617       unsigned vertex_index)
618 {
619    unsigned slot = location - VARYING_SLOT_VAR0;
620    assert(slot < locations_used);
621    if (this->packed_varyings[slot] == NULL) {
622       char *packed_name = ralloc_asprintf(this->mem_ctx, "packed:%s", name);
623       const glsl_type *packed_type;
624       assert(components[slot] != 0);
625       if (unpacked_var->is_interpolation_flat())
626          packed_type = glsl_type::get_instance(GLSL_TYPE_INT, components[slot], 1);
627       else
628          packed_type = glsl_type::get_instance(GLSL_TYPE_FLOAT, components[slot], 1);
629       if (this->gs_input_vertices != 0) {
630          packed_type =
631             glsl_type::get_array_instance(packed_type,
632                                           this->gs_input_vertices);
633       }
634       ir_variable *packed_var = new(this->mem_ctx)
635          ir_variable(packed_type, packed_name, this->mode);
636       if (this->gs_input_vertices != 0) {
637          /* Prevent update_array_sizes() from messing with the size of the
638           * array.
639           */
640          packed_var->data.max_array_access = this->gs_input_vertices - 1;
641       }
642       packed_var->data.centroid = unpacked_var->data.centroid;
643       packed_var->data.sample = unpacked_var->data.sample;
644       packed_var->data.patch = unpacked_var->data.patch;
645       packed_var->data.interpolation = packed_type == glsl_type::ivec4_type
646          ? unsigned(INTERP_MODE_FLAT) : unpacked_var->data.interpolation;
647       packed_var->data.location = location;
648       packed_var->data.precision = unpacked_var->data.precision;
649       packed_var->data.always_active_io = unpacked_var->data.always_active_io;
650       packed_var->data.stream = 1u << 31;
651       unpacked_var->insert_before(packed_var);
652       this->packed_varyings[slot] = packed_var;
653    } else {
654       /* For geometry shader inputs, only update the packed variable name the
655        * first time we visit each component.
656        */
657       if (this->gs_input_vertices == 0 || vertex_index == 0) {
658          ir_variable *var = this->packed_varyings[slot];
659 
660          if (var->is_name_ralloced())
661             ralloc_asprintf_append((char **) &var->name, ",%s", name);
662          else
663             var->name = ralloc_asprintf(var, "%s,%s", var->name, name);
664       }
665    }
666 
667    ir_dereference *deref = new(this->mem_ctx)
668       ir_dereference_variable(this->packed_varyings[slot]);
669    if (this->gs_input_vertices != 0) {
670       /* When lowering GS inputs, the packed variable is an array, so we need
671        * to dereference it using vertex_index.
672        */
673       ir_constant *constant = new(this->mem_ctx) ir_constant(vertex_index);
674       deref = new(this->mem_ctx) ir_dereference_array(deref, constant);
675    }
676    return deref;
677 }
678 
679 bool
needs_lowering(ir_variable * var)680 lower_packed_varyings_visitor::needs_lowering(ir_variable *var)
681 {
682    /* Things composed of vec4's and varyings with explicitly assigned
683     * locations don't need lowering.  Everything else does.
684     */
685    if (var->data.explicit_location)
686       return false;
687 
688    /* Override disable_varying_packing if the var is only used by transform
689     * feedback. Also override it if transform feedback is enabled and the
690     * variable is an array, struct or matrix as the elements of these types
691     * will always has the same interpolation and therefore asre safe to pack.
692     */
693    const glsl_type *type = var->type;
694    if (disable_varying_packing && !var->data.is_xfb_only &&
695        !((type->is_array() || type->is_record() || type->is_matrix()) &&
696          xfb_enabled))
697       return false;
698 
699    type = type->without_array();
700    if (type->vector_elements == 4 && !type->is_64bit())
701       return false;
702    return true;
703 }
704 
705 
706 /**
707  * Visitor that splices varying packing code before every use of EmitVertex()
708  * in a geometry shader.
709  */
710 class lower_packed_varyings_gs_splicer : public ir_hierarchical_visitor
711 {
712 public:
713    explicit lower_packed_varyings_gs_splicer(void *mem_ctx,
714                                              const exec_list *instructions);
715 
716    virtual ir_visitor_status visit_leave(ir_emit_vertex *ev);
717 
718 private:
719    /**
720     * Memory context used to allocate new instructions for the shader.
721     */
722    void * const mem_ctx;
723 
724    /**
725     * Instructions that should be spliced into place before each EmitVertex()
726     * call.
727     */
728    const exec_list *instructions;
729 };
730 
731 
lower_packed_varyings_gs_splicer(void * mem_ctx,const exec_list * instructions)732 lower_packed_varyings_gs_splicer::lower_packed_varyings_gs_splicer(
733       void *mem_ctx, const exec_list *instructions)
734    : mem_ctx(mem_ctx), instructions(instructions)
735 {
736 }
737 
738 
739 ir_visitor_status
visit_leave(ir_emit_vertex * ev)740 lower_packed_varyings_gs_splicer::visit_leave(ir_emit_vertex *ev)
741 {
742    foreach_in_list(ir_instruction, ir, this->instructions) {
743       ev->insert_before(ir->clone(this->mem_ctx, NULL));
744    }
745    return visit_continue;
746 }
747 
748 /**
749  * Visitor that splices varying packing code before every return.
750  */
751 class lower_packed_varyings_return_splicer : public ir_hierarchical_visitor
752 {
753 public:
754    explicit lower_packed_varyings_return_splicer(void *mem_ctx,
755                                                  const exec_list *instructions);
756 
757    virtual ir_visitor_status visit_leave(ir_return *ret);
758 
759 private:
760    /**
761     * Memory context used to allocate new instructions for the shader.
762     */
763    void * const mem_ctx;
764 
765    /**
766     * Instructions that should be spliced into place before each return.
767     */
768    const exec_list *instructions;
769 };
770 
771 
lower_packed_varyings_return_splicer(void * mem_ctx,const exec_list * instructions)772 lower_packed_varyings_return_splicer::lower_packed_varyings_return_splicer(
773       void *mem_ctx, const exec_list *instructions)
774    : mem_ctx(mem_ctx), instructions(instructions)
775 {
776 }
777 
778 
779 ir_visitor_status
visit_leave(ir_return * ret)780 lower_packed_varyings_return_splicer::visit_leave(ir_return *ret)
781 {
782    foreach_in_list(ir_instruction, ir, this->instructions) {
783       ret->insert_before(ir->clone(this->mem_ctx, NULL));
784    }
785    return visit_continue;
786 }
787 
788 void
lower_packed_varyings(void * mem_ctx,unsigned locations_used,const uint8_t * components,ir_variable_mode mode,unsigned gs_input_vertices,gl_linked_shader * shader,bool disable_varying_packing,bool xfb_enabled)789 lower_packed_varyings(void *mem_ctx, unsigned locations_used,
790                       const uint8_t *components,
791                       ir_variable_mode mode, unsigned gs_input_vertices,
792                       gl_linked_shader *shader, bool disable_varying_packing,
793                       bool xfb_enabled)
794 {
795    exec_list *instructions = shader->ir;
796    ir_function *main_func = shader->symbols->get_function("main");
797    exec_list void_parameters;
798    ir_function_signature *main_func_sig
799       = main_func->matching_signature(NULL, &void_parameters, false);
800    exec_list new_instructions, new_variables;
801    lower_packed_varyings_visitor visitor(mem_ctx,
802                                          locations_used,
803                                          components,
804                                          mode,
805                                          gs_input_vertices,
806                                          &new_instructions,
807                                          &new_variables,
808                                          disable_varying_packing,
809                                          xfb_enabled);
810    visitor.run(shader);
811    if (mode == ir_var_shader_out) {
812       if (shader->Stage == MESA_SHADER_GEOMETRY) {
813          /* For geometry shaders, outputs need to be lowered before each call
814           * to EmitVertex()
815           */
816          lower_packed_varyings_gs_splicer splicer(mem_ctx, &new_instructions);
817 
818          /* Add all the variables in first. */
819          main_func_sig->body.get_head_raw()->insert_before(&new_variables);
820 
821          /* Now update all the EmitVertex instances */
822          splicer.run(instructions);
823       } else {
824          /* For other shader types, outputs need to be lowered before each
825           * return statement and at the end of main()
826           */
827 
828          lower_packed_varyings_return_splicer splicer(mem_ctx, &new_instructions);
829 
830          main_func_sig->body.get_head_raw()->insert_before(&new_variables);
831 
832          splicer.run(instructions);
833 
834          /* Lower outputs at the end of main() if the last instruction is not
835           * a return statement
836           */
837          if (((ir_instruction*)instructions->get_tail())->ir_type != ir_type_return) {
838             main_func_sig->body.append_list(&new_instructions);
839          }
840       }
841    } else {
842       /* Shader inputs need to be lowered at the beginning of main() */
843       main_func_sig->body.get_head_raw()->insert_before(&new_instructions);
844       main_func_sig->body.get_head_raw()->insert_before(&new_variables);
845    }
846 }
847