1 /*
2 * Copyright © 2011 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
22 */
23
24 /**
25 * \file lower_varyings_to_packed.cpp
26 *
27 * This lowering pass generates GLSL code that manually packs varyings into
28 * vec4 slots, for the benefit of back-ends that don't support packed varyings
29 * natively.
30 *
31 * For example, the following shader:
32 *
33 * out mat3x2 foo; // location=4, location_frac=0
34 * out vec3 bar[2]; // location=5, location_frac=2
35 *
36 * main()
37 * {
38 * ...
39 * }
40 *
41 * Is rewritten to:
42 *
43 * mat3x2 foo;
44 * vec3 bar[2];
45 * out vec4 packed4; // location=4, location_frac=0
46 * out vec4 packed5; // location=5, location_frac=0
47 * out vec4 packed6; // location=6, location_frac=0
48 *
49 * main()
50 * {
51 * ...
52 * packed4.xy = foo[0];
53 * packed4.zw = foo[1];
54 * packed5.xy = foo[2];
55 * packed5.zw = bar[0].xy;
56 * packed6.x = bar[0].z;
57 * packed6.yzw = bar[1];
58 * }
59 *
60 * This lowering pass properly handles "double parking" of a varying vector
61 * across two varying slots. For example, in the code above, two of the
62 * components of bar[0] are stored in packed5, and the remaining component is
63 * stored in packed6.
64 *
65 * Note that in theory, the extra instructions may cause some loss of
66 * performance. However, hopefully in most cases the performance loss will
67 * either be absorbed by a later optimization pass, or it will be offset by
68 * memory bandwidth savings (because fewer varyings are used).
69 *
70 * This lowering pass also packs flat floats, ints, and uints together, by
71 * using ivec4 as the base type of flat "varyings", and using appropriate
72 * casts to convert floats and uints into ints.
73 *
74 * This lowering pass also handles varyings whose type is a struct or an array
75 * of struct. Structs are packed in order and with no gaps, so there may be a
76 * performance penalty due to structure elements being double-parked.
77 *
78 * Lowering of geometry shader inputs is slightly more complex, since geometry
79 * inputs are always arrays, so we need to lower arrays to arrays. For
80 * example, the following input:
81 *
82 * in struct Foo {
83 * float f;
84 * vec3 v;
85 * vec2 a[2];
86 * } arr[3]; // location=4, location_frac=0
87 *
88 * Would get lowered like this if it occurred in a fragment shader:
89 *
90 * struct Foo {
91 * float f;
92 * vec3 v;
93 * vec2 a[2];
94 * } arr[3];
95 * in vec4 packed4; // location=4, location_frac=0
96 * in vec4 packed5; // location=5, location_frac=0
97 * in vec4 packed6; // location=6, location_frac=0
98 * in vec4 packed7; // location=7, location_frac=0
99 * in vec4 packed8; // location=8, location_frac=0
100 * in vec4 packed9; // location=9, location_frac=0
101 *
102 * main()
103 * {
104 * arr[0].f = packed4.x;
105 * arr[0].v = packed4.yzw;
106 * arr[0].a[0] = packed5.xy;
107 * arr[0].a[1] = packed5.zw;
108 * arr[1].f = packed6.x;
109 * arr[1].v = packed6.yzw;
110 * arr[1].a[0] = packed7.xy;
111 * arr[1].a[1] = packed7.zw;
112 * arr[2].f = packed8.x;
113 * arr[2].v = packed8.yzw;
114 * arr[2].a[0] = packed9.xy;
115 * arr[2].a[1] = packed9.zw;
116 * ...
117 * }
118 *
119 * But it would get lowered like this if it occurred in a geometry shader:
120 *
121 * struct Foo {
122 * float f;
123 * vec3 v;
124 * vec2 a[2];
125 * } arr[3];
126 * in vec4 packed4[3]; // location=4, location_frac=0
127 * in vec4 packed5[3]; // location=5, location_frac=0
128 *
129 * main()
130 * {
131 * arr[0].f = packed4[0].x;
132 * arr[0].v = packed4[0].yzw;
133 * arr[0].a[0] = packed5[0].xy;
134 * arr[0].a[1] = packed5[0].zw;
135 * arr[1].f = packed4[1].x;
136 * arr[1].v = packed4[1].yzw;
137 * arr[1].a[0] = packed5[1].xy;
138 * arr[1].a[1] = packed5[1].zw;
139 * arr[2].f = packed4[2].x;
140 * arr[2].v = packed4[2].yzw;
141 * arr[2].a[0] = packed5[2].xy;
142 * arr[2].a[1] = packed5[2].zw;
143 * ...
144 * }
145 */
146
147 #include "glsl_symbol_table.h"
148 #include "ir.h"
149 #include "ir_builder.h"
150 #include "ir_optimization.h"
151 #include "program/prog_instruction.h"
152
153 using namespace ir_builder;
154
155 namespace {
156
157 /**
158 * Visitor that performs varying packing. For each varying declared in the
159 * shader, this visitor determines whether it needs to be packed. If so, it
160 * demotes it to an ordinary global, creates new packed varyings, and
161 * generates assignments to convert between the original varying and the
162 * packed varying.
163 */
164 class lower_packed_varyings_visitor
165 {
166 public:
167 lower_packed_varyings_visitor(void *mem_ctx,
168 unsigned locations_used,
169 const uint8_t *components,
170 ir_variable_mode mode,
171 unsigned gs_input_vertices,
172 exec_list *out_instructions,
173 exec_list *out_variables,
174 bool disable_varying_packing,
175 bool xfb_enabled);
176
177 void run(struct gl_linked_shader *shader);
178
179 private:
180 void bitwise_assign_pack(ir_rvalue *lhs, ir_rvalue *rhs);
181 void bitwise_assign_unpack(ir_rvalue *lhs, ir_rvalue *rhs);
182 unsigned lower_rvalue(ir_rvalue *rvalue, unsigned fine_location,
183 ir_variable *unpacked_var, const char *name,
184 bool gs_input_toplevel, unsigned vertex_index);
185 unsigned lower_arraylike(ir_rvalue *rvalue, unsigned array_size,
186 unsigned fine_location,
187 ir_variable *unpacked_var, const char *name,
188 bool gs_input_toplevel, unsigned vertex_index);
189 ir_dereference *get_packed_varying_deref(unsigned location,
190 ir_variable *unpacked_var,
191 const char *name,
192 unsigned vertex_index);
193 bool needs_lowering(ir_variable *var);
194
195 /**
196 * Memory context used to allocate new instructions for the shader.
197 */
198 void * const mem_ctx;
199
200 /**
201 * Number of generic varying slots which are used by this shader. This is
202 * used to allocate temporary intermediate data structures. If any varying
203 * used by this shader has a location greater than or equal to
204 * VARYING_SLOT_VAR0 + locations_used, an assertion will fire.
205 */
206 const unsigned locations_used;
207
208 const uint8_t* components;
209
210 /**
211 * Array of pointers to the packed varyings that have been created for each
212 * generic varying slot. NULL entries in this array indicate varying slots
213 * for which a packed varying has not been created yet.
214 */
215 ir_variable **packed_varyings;
216
217 /**
218 * Type of varying which is being lowered in this pass (either
219 * ir_var_shader_in or ir_var_shader_out).
220 */
221 const ir_variable_mode mode;
222
223 /**
224 * If we are currently lowering geometry shader inputs, the number of input
225 * vertices the geometry shader accepts. Otherwise zero.
226 */
227 const unsigned gs_input_vertices;
228
229 /**
230 * Exec list into which the visitor should insert the packing instructions.
231 * Caller provides this list; it should insert the instructions into the
232 * appropriate place in the shader once the visitor has finished running.
233 */
234 exec_list *out_instructions;
235
236 /**
237 * Exec list into which the visitor should insert any new variables.
238 */
239 exec_list *out_variables;
240
241 bool disable_varying_packing;
242 bool xfb_enabled;
243 };
244
245 } /* anonymous namespace */
246
lower_packed_varyings_visitor(void * mem_ctx,unsigned locations_used,const uint8_t * components,ir_variable_mode mode,unsigned gs_input_vertices,exec_list * out_instructions,exec_list * out_variables,bool disable_varying_packing,bool xfb_enabled)247 lower_packed_varyings_visitor::lower_packed_varyings_visitor(
248 void *mem_ctx, unsigned locations_used, const uint8_t *components,
249 ir_variable_mode mode,
250 unsigned gs_input_vertices, exec_list *out_instructions,
251 exec_list *out_variables, bool disable_varying_packing,
252 bool xfb_enabled)
253 : mem_ctx(mem_ctx),
254 locations_used(locations_used),
255 components(components),
256 packed_varyings((ir_variable **)
257 rzalloc_array_size(mem_ctx, sizeof(*packed_varyings),
258 locations_used)),
259 mode(mode),
260 gs_input_vertices(gs_input_vertices),
261 out_instructions(out_instructions),
262 out_variables(out_variables),
263 disable_varying_packing(disable_varying_packing),
264 xfb_enabled(xfb_enabled)
265 {
266 }
267
268 void
run(struct gl_linked_shader * shader)269 lower_packed_varyings_visitor::run(struct gl_linked_shader *shader)
270 {
271 foreach_in_list(ir_instruction, node, shader->ir) {
272 ir_variable *var = node->as_variable();
273 if (var == NULL)
274 continue;
275
276 if (var->data.mode != this->mode ||
277 var->data.location < VARYING_SLOT_VAR0 ||
278 !this->needs_lowering(var))
279 continue;
280
281 /* This lowering pass is only capable of packing floats and ints
282 * together when their interpolation mode is "flat". Treat integers as
283 * being flat when the interpolation mode is none.
284 */
285 assert(var->data.interpolation == INTERP_MODE_FLAT ||
286 var->data.interpolation == INTERP_MODE_NONE ||
287 !var->type->contains_integer());
288
289 /* Clone the variable for program resource list before
290 * it gets modified and lost.
291 */
292 if (!shader->packed_varyings)
293 shader->packed_varyings = new (shader) exec_list;
294
295 shader->packed_varyings->push_tail(var->clone(shader, NULL));
296
297 /* Change the old varying into an ordinary global. */
298 assert(var->data.mode != ir_var_temporary);
299 var->data.mode = ir_var_auto;
300
301 /* Create a reference to the old varying. */
302 ir_dereference_variable *deref
303 = new(this->mem_ctx) ir_dereference_variable(var);
304
305 /* Recursively pack or unpack it. */
306 this->lower_rvalue(deref, var->data.location * 4 + var->data.location_frac, var,
307 var->name, this->gs_input_vertices != 0, 0);
308 }
309 }
310
311 #define SWIZZLE_ZWZW MAKE_SWIZZLE4(SWIZZLE_Z, SWIZZLE_W, SWIZZLE_Z, SWIZZLE_W)
312
313 /**
314 * Make an ir_assignment from \c rhs to \c lhs, performing appropriate
315 * bitcasts if necessary to match up types.
316 *
317 * This function is called when packing varyings.
318 */
319 void
bitwise_assign_pack(ir_rvalue * lhs,ir_rvalue * rhs)320 lower_packed_varyings_visitor::bitwise_assign_pack(ir_rvalue *lhs,
321 ir_rvalue *rhs)
322 {
323 if (lhs->type->base_type != rhs->type->base_type) {
324 /* Since we only mix types in flat varyings, and we always store flat
325 * varyings as type ivec4, we need only produce conversions from (uint
326 * or float) to int.
327 */
328 assert(lhs->type->base_type == GLSL_TYPE_INT);
329 switch (rhs->type->base_type) {
330 case GLSL_TYPE_UINT:
331 rhs = new(this->mem_ctx)
332 ir_expression(ir_unop_u2i, lhs->type, rhs);
333 break;
334 case GLSL_TYPE_FLOAT:
335 rhs = new(this->mem_ctx)
336 ir_expression(ir_unop_bitcast_f2i, lhs->type, rhs);
337 break;
338 case GLSL_TYPE_DOUBLE:
339 assert(rhs->type->vector_elements <= 2);
340 if (rhs->type->vector_elements == 2) {
341 ir_variable *t = new(mem_ctx) ir_variable(lhs->type, "pack", ir_var_temporary);
342
343 assert(lhs->type->vector_elements == 4);
344 this->out_variables->push_tail(t);
345 this->out_instructions->push_tail(
346 assign(t, u2i(expr(ir_unop_unpack_double_2x32, swizzle_x(rhs->clone(mem_ctx, NULL)))), 0x3));
347 this->out_instructions->push_tail(
348 assign(t, u2i(expr(ir_unop_unpack_double_2x32, swizzle_y(rhs))), 0xc));
349 rhs = deref(t).val;
350 } else {
351 rhs = u2i(expr(ir_unop_unpack_double_2x32, rhs));
352 }
353 break;
354 default:
355 assert(!"Unexpected type conversion while lowering varyings");
356 break;
357 }
358 }
359 this->out_instructions->push_tail(new (this->mem_ctx) ir_assignment(lhs, rhs));
360 }
361
362
363 /**
364 * Make an ir_assignment from \c rhs to \c lhs, performing appropriate
365 * bitcasts if necessary to match up types.
366 *
367 * This function is called when unpacking varyings.
368 */
369 void
bitwise_assign_unpack(ir_rvalue * lhs,ir_rvalue * rhs)370 lower_packed_varyings_visitor::bitwise_assign_unpack(ir_rvalue *lhs,
371 ir_rvalue *rhs)
372 {
373 if (lhs->type->base_type != rhs->type->base_type) {
374 /* Since we only mix types in flat varyings, and we always store flat
375 * varyings as type ivec4, we need only produce conversions from int to
376 * (uint or float).
377 */
378 assert(rhs->type->base_type == GLSL_TYPE_INT);
379 switch (lhs->type->base_type) {
380 case GLSL_TYPE_UINT:
381 rhs = new(this->mem_ctx)
382 ir_expression(ir_unop_i2u, lhs->type, rhs);
383 break;
384 case GLSL_TYPE_FLOAT:
385 rhs = new(this->mem_ctx)
386 ir_expression(ir_unop_bitcast_i2f, lhs->type, rhs);
387 break;
388 case GLSL_TYPE_DOUBLE:
389 assert(lhs->type->vector_elements <= 2);
390 if (lhs->type->vector_elements == 2) {
391 ir_variable *t = new(mem_ctx) ir_variable(lhs->type, "unpack", ir_var_temporary);
392 assert(rhs->type->vector_elements == 4);
393 this->out_variables->push_tail(t);
394 this->out_instructions->push_tail(
395 assign(t, expr(ir_unop_pack_double_2x32, i2u(swizzle_xy(rhs->clone(mem_ctx, NULL)))), 0x1));
396 this->out_instructions->push_tail(
397 assign(t, expr(ir_unop_pack_double_2x32, i2u(swizzle(rhs->clone(mem_ctx, NULL), SWIZZLE_ZWZW, 2))), 0x2));
398 rhs = deref(t).val;
399 } else {
400 rhs = expr(ir_unop_pack_double_2x32, i2u(rhs));
401 }
402 break;
403 default:
404 assert(!"Unexpected type conversion while lowering varyings");
405 break;
406 }
407 }
408 this->out_instructions->push_tail(new(this->mem_ctx) ir_assignment(lhs, rhs));
409 }
410
411
412 /**
413 * Recursively pack or unpack the given varying (or portion of a varying) by
414 * traversing all of its constituent vectors.
415 *
416 * \param fine_location is the location where the first constituent vector
417 * should be packed--the word "fine" indicates that this location is expressed
418 * in multiples of a float, rather than multiples of a vec4 as is used
419 * elsewhere in Mesa.
420 *
421 * \param gs_input_toplevel should be set to true if we are lowering geometry
422 * shader inputs, and we are currently lowering the whole input variable
423 * (i.e. we are lowering the array whose index selects the vertex).
424 *
425 * \param vertex_index: if we are lowering geometry shader inputs, and the
426 * level of the array that we are currently lowering is *not* the top level,
427 * then this indicates which vertex we are currently lowering. Otherwise it
428 * is ignored.
429 *
430 * \return the location where the next constituent vector (after this one)
431 * should be packed.
432 */
433 unsigned
lower_rvalue(ir_rvalue * rvalue,unsigned fine_location,ir_variable * unpacked_var,const char * name,bool gs_input_toplevel,unsigned vertex_index)434 lower_packed_varyings_visitor::lower_rvalue(ir_rvalue *rvalue,
435 unsigned fine_location,
436 ir_variable *unpacked_var,
437 const char *name,
438 bool gs_input_toplevel,
439 unsigned vertex_index)
440 {
441 unsigned dmul = rvalue->type->is_64bit() ? 2 : 1;
442 /* When gs_input_toplevel is set, we should be looking at a geometry shader
443 * input array.
444 */
445 assert(!gs_input_toplevel || rvalue->type->is_array());
446
447 if (rvalue->type->is_record()) {
448 for (unsigned i = 0; i < rvalue->type->length; i++) {
449 if (i != 0)
450 rvalue = rvalue->clone(this->mem_ctx, NULL);
451 const char *field_name = rvalue->type->fields.structure[i].name;
452 ir_dereference_record *dereference_record = new(this->mem_ctx)
453 ir_dereference_record(rvalue, field_name);
454 char *deref_name
455 = ralloc_asprintf(this->mem_ctx, "%s.%s", name, field_name);
456 fine_location = this->lower_rvalue(dereference_record, fine_location,
457 unpacked_var, deref_name, false,
458 vertex_index);
459 }
460 return fine_location;
461 } else if (rvalue->type->is_array()) {
462 /* Arrays are packed/unpacked by considering each array element in
463 * sequence.
464 */
465 return this->lower_arraylike(rvalue, rvalue->type->array_size(),
466 fine_location, unpacked_var, name,
467 gs_input_toplevel, vertex_index);
468 } else if (rvalue->type->is_matrix()) {
469 /* Matrices are packed/unpacked by considering each column vector in
470 * sequence.
471 */
472 return this->lower_arraylike(rvalue, rvalue->type->matrix_columns,
473 fine_location, unpacked_var, name,
474 false, vertex_index);
475 } else if (rvalue->type->vector_elements * dmul +
476 fine_location % 4 > 4) {
477 /* This vector is going to be "double parked" across two varying slots,
478 * so handle it as two separate assignments. For doubles, a dvec3/dvec4
479 * can end up being spread over 3 slots. However the second splitting
480 * will happen later, here we just always want to split into 2.
481 */
482 unsigned left_components, right_components;
483 unsigned left_swizzle_values[4] = { 0, 0, 0, 0 };
484 unsigned right_swizzle_values[4] = { 0, 0, 0, 0 };
485 char left_swizzle_name[4] = { 0, 0, 0, 0 };
486 char right_swizzle_name[4] = { 0, 0, 0, 0 };
487
488 left_components = 4 - fine_location % 4;
489 if (rvalue->type->is_64bit()) {
490 /* We might actually end up with 0 left components! */
491 left_components /= 2;
492 }
493 right_components = rvalue->type->vector_elements - left_components;
494
495 for (unsigned i = 0; i < left_components; i++) {
496 left_swizzle_values[i] = i;
497 left_swizzle_name[i] = "xyzw"[i];
498 }
499 for (unsigned i = 0; i < right_components; i++) {
500 right_swizzle_values[i] = i + left_components;
501 right_swizzle_name[i] = "xyzw"[i + left_components];
502 }
503 ir_swizzle *left_swizzle = new(this->mem_ctx)
504 ir_swizzle(rvalue, left_swizzle_values, left_components);
505 ir_swizzle *right_swizzle = new(this->mem_ctx)
506 ir_swizzle(rvalue->clone(this->mem_ctx, NULL), right_swizzle_values,
507 right_components);
508 char *left_name
509 = ralloc_asprintf(this->mem_ctx, "%s.%s", name, left_swizzle_name);
510 char *right_name
511 = ralloc_asprintf(this->mem_ctx, "%s.%s", name, right_swizzle_name);
512 if (left_components)
513 fine_location = this->lower_rvalue(left_swizzle, fine_location,
514 unpacked_var, left_name, false,
515 vertex_index);
516 else
517 /* Top up the fine location to the next slot */
518 fine_location++;
519 return this->lower_rvalue(right_swizzle, fine_location, unpacked_var,
520 right_name, false, vertex_index);
521 } else {
522 /* No special handling is necessary; pack the rvalue into the
523 * varying.
524 */
525 unsigned swizzle_values[4] = { 0, 0, 0, 0 };
526 unsigned components = rvalue->type->vector_elements * dmul;
527 unsigned location = fine_location / 4;
528 unsigned location_frac = fine_location % 4;
529 for (unsigned i = 0; i < components; ++i)
530 swizzle_values[i] = i + location_frac;
531 ir_dereference *packed_deref =
532 this->get_packed_varying_deref(location, unpacked_var, name,
533 vertex_index);
534 if (unpacked_var->data.stream != 0) {
535 assert(unpacked_var->data.stream < 4);
536 ir_variable *packed_var = packed_deref->variable_referenced();
537 for (unsigned i = 0; i < components; ++i) {
538 packed_var->data.stream |=
539 unpacked_var->data.stream << (2 * (location_frac + i));
540 }
541 }
542 ir_swizzle *swizzle = new(this->mem_ctx)
543 ir_swizzle(packed_deref, swizzle_values, components);
544 if (this->mode == ir_var_shader_out) {
545 this->bitwise_assign_pack(swizzle, rvalue);
546 } else {
547 this->bitwise_assign_unpack(rvalue, swizzle);
548 }
549 return fine_location + components;
550 }
551 }
552
553 /**
554 * Recursively pack or unpack a varying for which we need to iterate over its
555 * constituent elements, accessing each one using an ir_dereference_array.
556 * This takes care of both arrays and matrices, since ir_dereference_array
557 * treats a matrix like an array of its column vectors.
558 *
559 * \param gs_input_toplevel should be set to true if we are lowering geometry
560 * shader inputs, and we are currently lowering the whole input variable
561 * (i.e. we are lowering the array whose index selects the vertex).
562 *
563 * \param vertex_index: if we are lowering geometry shader inputs, and the
564 * level of the array that we are currently lowering is *not* the top level,
565 * then this indicates which vertex we are currently lowering. Otherwise it
566 * is ignored.
567 */
568 unsigned
lower_arraylike(ir_rvalue * rvalue,unsigned array_size,unsigned fine_location,ir_variable * unpacked_var,const char * name,bool gs_input_toplevel,unsigned vertex_index)569 lower_packed_varyings_visitor::lower_arraylike(ir_rvalue *rvalue,
570 unsigned array_size,
571 unsigned fine_location,
572 ir_variable *unpacked_var,
573 const char *name,
574 bool gs_input_toplevel,
575 unsigned vertex_index)
576 {
577 for (unsigned i = 0; i < array_size; i++) {
578 if (i != 0)
579 rvalue = rvalue->clone(this->mem_ctx, NULL);
580 ir_constant *constant = new(this->mem_ctx) ir_constant(i);
581 ir_dereference_array *dereference_array = new(this->mem_ctx)
582 ir_dereference_array(rvalue, constant);
583 if (gs_input_toplevel) {
584 /* Geometry shader inputs are a special case. Instead of storing
585 * each element of the array at a different location, all elements
586 * are at the same location, but with a different vertex index.
587 */
588 (void) this->lower_rvalue(dereference_array, fine_location,
589 unpacked_var, name, false, i);
590 } else {
591 char *subscripted_name
592 = ralloc_asprintf(this->mem_ctx, "%s[%d]", name, i);
593 fine_location =
594 this->lower_rvalue(dereference_array, fine_location,
595 unpacked_var, subscripted_name,
596 false, vertex_index);
597 }
598 }
599 return fine_location;
600 }
601
602 /**
603 * Retrieve the packed varying corresponding to the given varying location.
604 * If no packed varying has been created for the given varying location yet,
605 * create it and add it to the shader before returning it.
606 *
607 * The newly created varying inherits its interpolation parameters from \c
608 * unpacked_var. Its base type is ivec4 if we are lowering a flat varying,
609 * vec4 otherwise.
610 *
611 * \param vertex_index: if we are lowering geometry shader inputs, then this
612 * indicates which vertex we are currently lowering. Otherwise it is ignored.
613 */
614 ir_dereference *
get_packed_varying_deref(unsigned location,ir_variable * unpacked_var,const char * name,unsigned vertex_index)615 lower_packed_varyings_visitor::get_packed_varying_deref(
616 unsigned location, ir_variable *unpacked_var, const char *name,
617 unsigned vertex_index)
618 {
619 unsigned slot = location - VARYING_SLOT_VAR0;
620 assert(slot < locations_used);
621 if (this->packed_varyings[slot] == NULL) {
622 char *packed_name = ralloc_asprintf(this->mem_ctx, "packed:%s", name);
623 const glsl_type *packed_type;
624 assert(components[slot] != 0);
625 if (unpacked_var->is_interpolation_flat())
626 packed_type = glsl_type::get_instance(GLSL_TYPE_INT, components[slot], 1);
627 else
628 packed_type = glsl_type::get_instance(GLSL_TYPE_FLOAT, components[slot], 1);
629 if (this->gs_input_vertices != 0) {
630 packed_type =
631 glsl_type::get_array_instance(packed_type,
632 this->gs_input_vertices);
633 }
634 ir_variable *packed_var = new(this->mem_ctx)
635 ir_variable(packed_type, packed_name, this->mode);
636 if (this->gs_input_vertices != 0) {
637 /* Prevent update_array_sizes() from messing with the size of the
638 * array.
639 */
640 packed_var->data.max_array_access = this->gs_input_vertices - 1;
641 }
642 packed_var->data.centroid = unpacked_var->data.centroid;
643 packed_var->data.sample = unpacked_var->data.sample;
644 packed_var->data.patch = unpacked_var->data.patch;
645 packed_var->data.interpolation = packed_type == glsl_type::ivec4_type
646 ? unsigned(INTERP_MODE_FLAT) : unpacked_var->data.interpolation;
647 packed_var->data.location = location;
648 packed_var->data.precision = unpacked_var->data.precision;
649 packed_var->data.always_active_io = unpacked_var->data.always_active_io;
650 packed_var->data.stream = 1u << 31;
651 unpacked_var->insert_before(packed_var);
652 this->packed_varyings[slot] = packed_var;
653 } else {
654 /* For geometry shader inputs, only update the packed variable name the
655 * first time we visit each component.
656 */
657 if (this->gs_input_vertices == 0 || vertex_index == 0) {
658 ir_variable *var = this->packed_varyings[slot];
659
660 if (var->is_name_ralloced())
661 ralloc_asprintf_append((char **) &var->name, ",%s", name);
662 else
663 var->name = ralloc_asprintf(var, "%s,%s", var->name, name);
664 }
665 }
666
667 ir_dereference *deref = new(this->mem_ctx)
668 ir_dereference_variable(this->packed_varyings[slot]);
669 if (this->gs_input_vertices != 0) {
670 /* When lowering GS inputs, the packed variable is an array, so we need
671 * to dereference it using vertex_index.
672 */
673 ir_constant *constant = new(this->mem_ctx) ir_constant(vertex_index);
674 deref = new(this->mem_ctx) ir_dereference_array(deref, constant);
675 }
676 return deref;
677 }
678
679 bool
needs_lowering(ir_variable * var)680 lower_packed_varyings_visitor::needs_lowering(ir_variable *var)
681 {
682 /* Things composed of vec4's and varyings with explicitly assigned
683 * locations don't need lowering. Everything else does.
684 */
685 if (var->data.explicit_location)
686 return false;
687
688 /* Override disable_varying_packing if the var is only used by transform
689 * feedback. Also override it if transform feedback is enabled and the
690 * variable is an array, struct or matrix as the elements of these types
691 * will always has the same interpolation and therefore asre safe to pack.
692 */
693 const glsl_type *type = var->type;
694 if (disable_varying_packing && !var->data.is_xfb_only &&
695 !((type->is_array() || type->is_record() || type->is_matrix()) &&
696 xfb_enabled))
697 return false;
698
699 type = type->without_array();
700 if (type->vector_elements == 4 && !type->is_64bit())
701 return false;
702 return true;
703 }
704
705
706 /**
707 * Visitor that splices varying packing code before every use of EmitVertex()
708 * in a geometry shader.
709 */
710 class lower_packed_varyings_gs_splicer : public ir_hierarchical_visitor
711 {
712 public:
713 explicit lower_packed_varyings_gs_splicer(void *mem_ctx,
714 const exec_list *instructions);
715
716 virtual ir_visitor_status visit_leave(ir_emit_vertex *ev);
717
718 private:
719 /**
720 * Memory context used to allocate new instructions for the shader.
721 */
722 void * const mem_ctx;
723
724 /**
725 * Instructions that should be spliced into place before each EmitVertex()
726 * call.
727 */
728 const exec_list *instructions;
729 };
730
731
lower_packed_varyings_gs_splicer(void * mem_ctx,const exec_list * instructions)732 lower_packed_varyings_gs_splicer::lower_packed_varyings_gs_splicer(
733 void *mem_ctx, const exec_list *instructions)
734 : mem_ctx(mem_ctx), instructions(instructions)
735 {
736 }
737
738
739 ir_visitor_status
visit_leave(ir_emit_vertex * ev)740 lower_packed_varyings_gs_splicer::visit_leave(ir_emit_vertex *ev)
741 {
742 foreach_in_list(ir_instruction, ir, this->instructions) {
743 ev->insert_before(ir->clone(this->mem_ctx, NULL));
744 }
745 return visit_continue;
746 }
747
748 /**
749 * Visitor that splices varying packing code before every return.
750 */
751 class lower_packed_varyings_return_splicer : public ir_hierarchical_visitor
752 {
753 public:
754 explicit lower_packed_varyings_return_splicer(void *mem_ctx,
755 const exec_list *instructions);
756
757 virtual ir_visitor_status visit_leave(ir_return *ret);
758
759 private:
760 /**
761 * Memory context used to allocate new instructions for the shader.
762 */
763 void * const mem_ctx;
764
765 /**
766 * Instructions that should be spliced into place before each return.
767 */
768 const exec_list *instructions;
769 };
770
771
lower_packed_varyings_return_splicer(void * mem_ctx,const exec_list * instructions)772 lower_packed_varyings_return_splicer::lower_packed_varyings_return_splicer(
773 void *mem_ctx, const exec_list *instructions)
774 : mem_ctx(mem_ctx), instructions(instructions)
775 {
776 }
777
778
779 ir_visitor_status
visit_leave(ir_return * ret)780 lower_packed_varyings_return_splicer::visit_leave(ir_return *ret)
781 {
782 foreach_in_list(ir_instruction, ir, this->instructions) {
783 ret->insert_before(ir->clone(this->mem_ctx, NULL));
784 }
785 return visit_continue;
786 }
787
788 void
lower_packed_varyings(void * mem_ctx,unsigned locations_used,const uint8_t * components,ir_variable_mode mode,unsigned gs_input_vertices,gl_linked_shader * shader,bool disable_varying_packing,bool xfb_enabled)789 lower_packed_varyings(void *mem_ctx, unsigned locations_used,
790 const uint8_t *components,
791 ir_variable_mode mode, unsigned gs_input_vertices,
792 gl_linked_shader *shader, bool disable_varying_packing,
793 bool xfb_enabled)
794 {
795 exec_list *instructions = shader->ir;
796 ir_function *main_func = shader->symbols->get_function("main");
797 exec_list void_parameters;
798 ir_function_signature *main_func_sig
799 = main_func->matching_signature(NULL, &void_parameters, false);
800 exec_list new_instructions, new_variables;
801 lower_packed_varyings_visitor visitor(mem_ctx,
802 locations_used,
803 components,
804 mode,
805 gs_input_vertices,
806 &new_instructions,
807 &new_variables,
808 disable_varying_packing,
809 xfb_enabled);
810 visitor.run(shader);
811 if (mode == ir_var_shader_out) {
812 if (shader->Stage == MESA_SHADER_GEOMETRY) {
813 /* For geometry shaders, outputs need to be lowered before each call
814 * to EmitVertex()
815 */
816 lower_packed_varyings_gs_splicer splicer(mem_ctx, &new_instructions);
817
818 /* Add all the variables in first. */
819 main_func_sig->body.get_head_raw()->insert_before(&new_variables);
820
821 /* Now update all the EmitVertex instances */
822 splicer.run(instructions);
823 } else {
824 /* For other shader types, outputs need to be lowered before each
825 * return statement and at the end of main()
826 */
827
828 lower_packed_varyings_return_splicer splicer(mem_ctx, &new_instructions);
829
830 main_func_sig->body.get_head_raw()->insert_before(&new_variables);
831
832 splicer.run(instructions);
833
834 /* Lower outputs at the end of main() if the last instruction is not
835 * a return statement
836 */
837 if (((ir_instruction*)instructions->get_tail())->ir_type != ir_type_return) {
838 main_func_sig->body.append_list(&new_instructions);
839 }
840 }
841 } else {
842 /* Shader inputs need to be lowered at the beginning of main() */
843 main_func_sig->body.get_head_raw()->insert_before(&new_instructions);
844 main_func_sig->body.get_head_raw()->insert_before(&new_variables);
845 }
846 }
847