• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /**************************************************************************
2  *
3  * Copyright 2003 VMware, Inc.
4  * All Rights Reserved.
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a
7  * copy of this software and associated documentation files (the
8  * "Software"), to deal in the Software without restriction, including
9  * without limitation the rights to use, copy, modify, merge, publish,
10  * distribute, sub license, and/or sell copies of the Software, and to
11  * permit persons to whom the Software is furnished to do so, subject to
12  * the following conditions:
13  *
14  * The above copyright notice and this permission notice (including the
15  * next paragraph) shall be included in all copies or substantial portions
16  * of the Software.
17  *
18  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
19  * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
20  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
21  * IN NO EVENT SHALL VMWARE AND/OR ITS SUPPLIERS BE LIABLE FOR
22  * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
23  * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
24  * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
25  *
26  **************************************************************************/
27 
28 /** @file intel_tris.c
29  *
30  * This file contains functions for managing the vertex buffer and emitting
31  * primitives into it.
32  */
33 
34 #include "main/glheader.h"
35 #include "main/context.h"
36 #include "main/macros.h"
37 #include "main/enums.h"
38 #include "main/texobj.h"
39 #include "main/state.h"
40 #include "main/dd.h"
41 #include "main/fbobject.h"
42 
43 #include "swrast/swrast.h"
44 #include "swrast_setup/swrast_setup.h"
45 #include "tnl/t_context.h"
46 #include "tnl/t_pipeline.h"
47 #include "tnl/t_vertex.h"
48 
49 #include "intel_screen.h"
50 #include "intel_context.h"
51 #include "intel_tris.h"
52 #include "intel_batchbuffer.h"
53 #include "intel_buffers.h"
54 #include "intel_reg.h"
55 #include "i830_context.h"
56 #include "i830_reg.h"
57 #include "i915_context.h"
58 
59 static void intelRenderPrimitive(struct gl_context * ctx, GLenum prim);
60 static void intelRasterPrimitive(struct gl_context * ctx, GLenum rprim,
61                                  GLuint hwprim);
62 
63 static void
intel_flush_inline_primitive(struct intel_context * intel)64 intel_flush_inline_primitive(struct intel_context *intel)
65 {
66    GLuint used = intel->batch.used - intel->prim.start_ptr;
67 
68    assert(intel->prim.primitive != ~0);
69 
70 /*    printf("/\n"); */
71 
72    if (used < 2)
73       goto do_discard;
74 
75    intel->batch.map[intel->prim.start_ptr] =
76       _3DPRIMITIVE | intel->prim.primitive | (used - 2);
77 
78    goto finished;
79 
80  do_discard:
81    intel->batch.used = intel->prim.start_ptr;
82 
83  finished:
84    intel->prim.primitive = ~0;
85    intel->prim.start_ptr = 0;
86    intel->prim.flush = 0;
87 }
88 
intel_start_inline(struct intel_context * intel,uint32_t prim)89 static void intel_start_inline(struct intel_context *intel, uint32_t prim)
90 {
91    BATCH_LOCALS;
92 
93    intel->vtbl.emit_state(intel);
94 
95    intel->no_batch_wrap = true;
96 
97    /* Emit a slot which will be filled with the inline primitive
98     * command later.
99     */
100    BEGIN_BATCH(1);
101 
102    intel->prim.start_ptr = intel->batch.used;
103    intel->prim.primitive = prim;
104    intel->prim.flush = intel_flush_inline_primitive;
105 
106    OUT_BATCH(0);
107    ADVANCE_BATCH();
108 
109    intel->no_batch_wrap = false;
110 /*    printf(">"); */
111 }
112 
intel_wrap_inline(struct intel_context * intel)113 static void intel_wrap_inline(struct intel_context *intel)
114 {
115    GLuint prim = intel->prim.primitive;
116 
117    intel_flush_inline_primitive(intel);
118    intel_batchbuffer_flush(intel);
119    intel_start_inline(intel, prim);  /* ??? */
120 }
121 
intel_extend_inline(struct intel_context * intel,GLuint dwords)122 static GLuint *intel_extend_inline(struct intel_context *intel, GLuint dwords)
123 {
124    GLuint *ptr;
125 
126    assert(intel->prim.flush == intel_flush_inline_primitive);
127 
128    if (intel_batchbuffer_space(intel) < dwords * sizeof(GLuint))
129       intel_wrap_inline(intel);
130 
131 /*    printf("."); */
132 
133    intel->vtbl.assert_not_dirty(intel);
134 
135    ptr = intel->batch.map + intel->batch.used;
136    intel->batch.used += dwords;
137 
138    return ptr;
139 }
140 
141 /** Sets the primitive type for a primitive sequence, flushing as needed. */
intel_set_prim(struct intel_context * intel,uint32_t prim)142 void intel_set_prim(struct intel_context *intel, uint32_t prim)
143 {
144    /* if we have no VBOs */
145 
146    if (intel->intelScreen->no_vbo) {
147       intel_start_inline(intel, prim);
148       return;
149    }
150    if (prim != intel->prim.primitive) {
151       INTEL_FIREVERTICES(intel);
152       intel->prim.primitive = prim;
153    }
154 }
155 
156 /** Returns mapped VB space for the given number of vertices */
intel_get_prim_space(struct intel_context * intel,unsigned int count)157 uint32_t *intel_get_prim_space(struct intel_context *intel, unsigned int count)
158 {
159    uint32_t *addr;
160 
161    if (intel->intelScreen->no_vbo) {
162       return intel_extend_inline(intel, count * intel->vertex_size);
163    }
164 
165    /* Check for space in the existing VB */
166    if (intel->prim.vb_bo == NULL ||
167        (intel->prim.current_offset +
168 	count * intel->vertex_size * 4) > INTEL_VB_SIZE ||
169        (intel->prim.count + count) >= (1 << 16)) {
170       /* Flush existing prim if any */
171       INTEL_FIREVERTICES(intel);
172 
173       intel_finish_vb(intel);
174 
175       /* Start a new VB */
176       if (intel->prim.vb == NULL)
177 	 intel->prim.vb = malloc(INTEL_VB_SIZE);
178       intel->prim.vb_bo = drm_intel_bo_alloc(intel->bufmgr, "vb",
179 					     INTEL_VB_SIZE, 4);
180       intel->prim.start_offset = 0;
181       intel->prim.current_offset = 0;
182    }
183 
184    intel->prim.flush = intel_flush_prim;
185 
186    addr = (uint32_t *)(intel->prim.vb + intel->prim.current_offset);
187    intel->prim.current_offset += intel->vertex_size * 4 * count;
188    intel->prim.count += count;
189 
190    return addr;
191 }
192 
193 /** Dispatches the accumulated primitive to the batchbuffer. */
intel_flush_prim(struct intel_context * intel)194 void intel_flush_prim(struct intel_context *intel)
195 {
196    drm_intel_bo *aper_array[2];
197    drm_intel_bo *vb_bo;
198    unsigned int offset, count;
199    BATCH_LOCALS;
200 
201    /* Must be called after an intel_start_prim. */
202    assert(intel->prim.primitive != ~0);
203 
204    if (intel->prim.count == 0)
205       return;
206 
207    /* Clear the current prims out of the context state so that a batch flush
208     * flush triggered by emit_state doesn't loop back to flush_prim again.
209     */
210    vb_bo = intel->prim.vb_bo;
211    drm_intel_bo_reference(vb_bo);
212    count = intel->prim.count;
213    intel->prim.count = 0;
214    offset = intel->prim.start_offset;
215    intel->prim.start_offset = intel->prim.current_offset;
216    if (intel->gen < 3)
217       intel->prim.current_offset = intel->prim.start_offset = ALIGN(intel->prim.start_offset, 128);
218    intel->prim.flush = NULL;
219 
220    intel->vtbl.emit_state(intel);
221 
222    aper_array[0] = intel->batch.bo;
223    aper_array[1] = vb_bo;
224    if (dri_bufmgr_check_aperture_space(aper_array, 2)) {
225       intel_batchbuffer_flush(intel);
226       intel->vtbl.emit_state(intel);
227    }
228 
229    /* Ensure that we don't start a new batch for the following emit, which
230     * depends on the state just emitted. emit_state should be making sure we
231     * have the space for this.
232     */
233    intel->no_batch_wrap = true;
234 
235    if (intel->always_flush_cache) {
236       intel_batchbuffer_emit_mi_flush(intel);
237    }
238 
239 #if 0
240    printf("emitting %d..%d=%d vertices size %d\n", offset,
241 	  intel->prim.current_offset, count,
242 	  intel->vertex_size * 4);
243 #endif
244 
245    if (intel->gen >= 3) {
246       struct i915_context *i915 = i915_context(&intel->ctx);
247       unsigned int cmd = 0, len = 0;
248 
249       if (vb_bo != i915->current_vb_bo) {
250 	 cmd |= I1_LOAD_S(0);
251 	 len++;
252       }
253 
254       if (intel->vertex_size != i915->current_vertex_size) {
255 	 cmd |= I1_LOAD_S(1);
256 	 len++;
257       }
258       if (len)
259 	 len++;
260 
261       BEGIN_BATCH(2+len);
262       if (cmd)
263 	 OUT_BATCH(_3DSTATE_LOAD_STATE_IMMEDIATE_1 | cmd | (len - 2));
264       if (vb_bo != i915->current_vb_bo) {
265 	 OUT_RELOC(vb_bo, I915_GEM_DOMAIN_VERTEX, 0, 0);
266 	 i915->current_vb_bo = vb_bo;
267       }
268       if (intel->vertex_size != i915->current_vertex_size) {
269 	 OUT_BATCH((intel->vertex_size << S1_VERTEX_WIDTH_SHIFT) |
270 		   (intel->vertex_size << S1_VERTEX_PITCH_SHIFT));
271 	 i915->current_vertex_size = intel->vertex_size;
272       }
273       OUT_BATCH(_3DPRIMITIVE |
274 		PRIM_INDIRECT |
275 		PRIM_INDIRECT_SEQUENTIAL |
276 		intel->prim.primitive |
277 		count);
278       OUT_BATCH(offset / (intel->vertex_size * 4));
279       ADVANCE_BATCH();
280    } else {
281       struct i830_context *i830 = i830_context(&intel->ctx);
282 
283       BEGIN_BATCH(5);
284       OUT_BATCH(_3DSTATE_LOAD_STATE_IMMEDIATE_1 |
285 		I1_LOAD_S(0) | I1_LOAD_S(2) | 1);
286       /* S0 */
287       assert((offset & ~S0_VB_OFFSET_MASK_830) == 0);
288       OUT_RELOC(vb_bo, I915_GEM_DOMAIN_VERTEX, 0,
289 		offset | (intel->vertex_size << S0_VB_PITCH_SHIFT_830) |
290 		S0_VB_ENABLE_830);
291       /* S2
292        * This is somewhat unfortunate -- VB width is tied up with
293        * vertex format data that we've already uploaded through
294        * _3DSTATE_VFT[01]_CMD.  We may want to replace emits of VFT state with
295        * STATE_IMMEDIATE_1 like this to avoid duplication.
296        */
297       OUT_BATCH((i830->state.Ctx[I830_CTXREG_VF] & VFT0_TEX_COUNT_MASK) >>
298 		VFT0_TEX_COUNT_SHIFT << S2_TEX_COUNT_SHIFT_830 |
299 		(i830->state.Ctx[I830_CTXREG_VF2] << 16) |
300 		intel->vertex_size << S2_VERTEX_0_WIDTH_SHIFT_830);
301 
302       OUT_BATCH(_3DPRIMITIVE |
303 		PRIM_INDIRECT |
304 		PRIM_INDIRECT_SEQUENTIAL |
305 		intel->prim.primitive |
306 		count);
307       OUT_BATCH(0); /* Beginning vertex index */
308       ADVANCE_BATCH();
309    }
310 
311    if (intel->always_flush_cache) {
312       intel_batchbuffer_emit_mi_flush(intel);
313    }
314 
315    intel->no_batch_wrap = false;
316 
317    drm_intel_bo_unreference(vb_bo);
318 }
319 
320 /**
321  * Uploads the locally-accumulated VB into the buffer object.
322  *
323  * This avoids us thrashing the cachelines in and out as the buffer gets
324  * filled, dispatched, then reused as the hardware completes rendering from it,
325  * and also lets us clflush less if we dispatch with a partially-filled VB.
326  *
327  * This is called normally from get_space when we're finishing a BO, but also
328  * at batch flush time so that we don't try accessing the contents of a
329  * just-dispatched buffer.
330  */
intel_finish_vb(struct intel_context * intel)331 void intel_finish_vb(struct intel_context *intel)
332 {
333    if (intel->prim.vb_bo == NULL)
334       return;
335 
336    drm_intel_bo_subdata(intel->prim.vb_bo, 0, intel->prim.start_offset,
337 			intel->prim.vb);
338    drm_intel_bo_unreference(intel->prim.vb_bo);
339    intel->prim.vb_bo = NULL;
340 }
341 
342 /***********************************************************************
343  *                    Emit primitives as inline vertices               *
344  ***********************************************************************/
345 
346 #ifdef __i386__
347 #define COPY_DWORDS( j, vb, vertsize, v )			\
348 do {								\
349    int __tmp;							\
350    __asm__ __volatile__( "rep ; movsl"				\
351 			 : "=%c" (j), "=D" (vb), "=S" (__tmp)	\
352 			 : "0" (vertsize),			\
353 			 "D" ((long)vb),			\
354 			 "S" ((long)v) );			\
355 } while (0)
356 #else
357 #define COPY_DWORDS( j, vb, vertsize, v )	\
358 do {						\
359    for ( j = 0 ; j < vertsize ; j++ ) {		\
360       vb[j] = ((GLuint *)v)[j];			\
361    }						\
362    vb += vertsize;				\
363 } while (0)
364 #endif
365 
366 static void
intel_draw_quad(struct intel_context * intel,intelVertexPtr v0,intelVertexPtr v1,intelVertexPtr v2,intelVertexPtr v3)367 intel_draw_quad(struct intel_context *intel,
368                 intelVertexPtr v0,
369                 intelVertexPtr v1, intelVertexPtr v2, intelVertexPtr v3)
370 {
371    GLuint vertsize = intel->vertex_size;
372    GLuint *vb = intel_get_prim_space(intel, 6);
373    int j;
374 
375    COPY_DWORDS(j, vb, vertsize, v0);
376    COPY_DWORDS(j, vb, vertsize, v1);
377 
378    /* If smooth shading, draw like a trifan which gives better
379     * rasterization.  Otherwise draw as two triangles with provoking
380     * vertex in third position as required for flat shading.
381     */
382    if (intel->ctx.Light.ShadeModel == GL_FLAT) {
383       COPY_DWORDS(j, vb, vertsize, v3);
384       COPY_DWORDS(j, vb, vertsize, v1);
385    }
386    else {
387       COPY_DWORDS(j, vb, vertsize, v2);
388       COPY_DWORDS(j, vb, vertsize, v0);
389    }
390 
391    COPY_DWORDS(j, vb, vertsize, v2);
392    COPY_DWORDS(j, vb, vertsize, v3);
393 }
394 
395 static void
intel_draw_triangle(struct intel_context * intel,intelVertexPtr v0,intelVertexPtr v1,intelVertexPtr v2)396 intel_draw_triangle(struct intel_context *intel,
397                     intelVertexPtr v0, intelVertexPtr v1, intelVertexPtr v2)
398 {
399    GLuint vertsize = intel->vertex_size;
400    GLuint *vb = intel_get_prim_space(intel, 3);
401    int j;
402 
403    COPY_DWORDS(j, vb, vertsize, v0);
404    COPY_DWORDS(j, vb, vertsize, v1);
405    COPY_DWORDS(j, vb, vertsize, v2);
406 }
407 
408 
409 static void
intel_draw_line(struct intel_context * intel,intelVertexPtr v0,intelVertexPtr v1)410 intel_draw_line(struct intel_context *intel,
411                 intelVertexPtr v0, intelVertexPtr v1)
412 {
413    GLuint vertsize = intel->vertex_size;
414    GLuint *vb = intel_get_prim_space(intel, 2);
415    int j;
416 
417    COPY_DWORDS(j, vb, vertsize, v0);
418    COPY_DWORDS(j, vb, vertsize, v1);
419 }
420 
421 
422 static void
intel_draw_point(struct intel_context * intel,intelVertexPtr v0)423 intel_draw_point(struct intel_context *intel, intelVertexPtr v0)
424 {
425    GLuint vertsize = intel->vertex_size;
426    GLuint *vb = intel_get_prim_space(intel, 1);
427    int j;
428 
429    COPY_DWORDS(j, vb, vertsize, v0);
430 }
431 
432 
433 
434 /***********************************************************************
435  *                Fixup for ARB_point_parameters                       *
436  ***********************************************************************/
437 
438 /* Currently not working - VERT_ATTRIB_POINTSIZE isn't correctly
439  * represented in the fragment program info.inputs_read field.
440  */
441 static void
intel_atten_point(struct intel_context * intel,intelVertexPtr v0)442 intel_atten_point(struct intel_context *intel, intelVertexPtr v0)
443 {
444    struct gl_context *ctx = &intel->ctx;
445    GLfloat psz[4], col[4], restore_psz, restore_alpha;
446 
447    _tnl_get_attr(ctx, v0, _TNL_ATTRIB_POINTSIZE, psz);
448    _tnl_get_attr(ctx, v0, _TNL_ATTRIB_COLOR0, col);
449 
450    restore_psz = psz[0];
451    restore_alpha = col[3];
452 
453    if (psz[0] >= ctx->Point.Threshold) {
454       psz[0] = MIN2(psz[0], ctx->Point.MaxSize);
455    }
456    else {
457       GLfloat dsize = psz[0] / ctx->Point.Threshold;
458       psz[0] = MAX2(ctx->Point.Threshold, ctx->Point.MinSize);
459       col[3] *= dsize * dsize;
460    }
461 
462    if (psz[0] < 1.0)
463       psz[0] = 1.0;
464 
465    if (restore_psz != psz[0] || restore_alpha != col[3]) {
466       _tnl_set_attr(ctx, v0, _TNL_ATTRIB_POINTSIZE, psz);
467       _tnl_set_attr(ctx, v0, _TNL_ATTRIB_COLOR0, col);
468 
469       intel_draw_point(intel, v0);
470 
471       psz[0] = restore_psz;
472       col[3] = restore_alpha;
473 
474       _tnl_set_attr(ctx, v0, _TNL_ATTRIB_POINTSIZE, psz);
475       _tnl_set_attr(ctx, v0, _TNL_ATTRIB_COLOR0, col);
476    }
477    else
478       intel_draw_point(intel, v0);
479 }
480 
481 
482 
483 
484 
485 /***********************************************************************
486  *                Fixup for I915 WPOS texture coordinate                *
487  ***********************************************************************/
488 
489 static void
intel_emit_fragcoord(struct intel_context * intel,intelVertexPtr v)490 intel_emit_fragcoord(struct intel_context *intel, intelVertexPtr v)
491 {
492    struct gl_context *ctx = &intel->ctx;
493    struct gl_framebuffer *fb = ctx->DrawBuffer;
494    GLuint offset = intel->wpos_offset;
495    float *vertex_position = (float *)v;
496    float *fragcoord = (float *)((char *)v + offset);
497 
498    fragcoord[0] = vertex_position[0];
499 
500    if (_mesa_is_user_fbo(fb))
501       fragcoord[1] = vertex_position[1];
502    else
503       fragcoord[1] = fb->Height - vertex_position[1];
504 
505    fragcoord[2] = vertex_position[2];
506    fragcoord[3] = vertex_position[3];
507 }
508 
509 static void
intel_wpos_triangle(struct intel_context * intel,intelVertexPtr v0,intelVertexPtr v1,intelVertexPtr v2)510 intel_wpos_triangle(struct intel_context *intel,
511                     intelVertexPtr v0, intelVertexPtr v1, intelVertexPtr v2)
512 {
513    intel_emit_fragcoord(intel, v0);
514    intel_emit_fragcoord(intel, v1);
515    intel_emit_fragcoord(intel, v2);
516 
517    intel_draw_triangle(intel, v0, v1, v2);
518 }
519 
520 
521 static void
intel_wpos_line(struct intel_context * intel,intelVertexPtr v0,intelVertexPtr v1)522 intel_wpos_line(struct intel_context *intel,
523                 intelVertexPtr v0, intelVertexPtr v1)
524 {
525    intel_emit_fragcoord(intel, v0);
526    intel_emit_fragcoord(intel, v1);
527    intel_draw_line(intel, v0, v1);
528 }
529 
530 
531 static void
intel_wpos_point(struct intel_context * intel,intelVertexPtr v0)532 intel_wpos_point(struct intel_context *intel, intelVertexPtr v0)
533 {
534    intel_emit_fragcoord(intel, v0);
535    intel_draw_point(intel, v0);
536 }
537 
538 
539 
540 
541 
542 
543 /***********************************************************************
544  *          Macros for t_dd_tritmp.h to draw basic primitives          *
545  ***********************************************************************/
546 
547 #define TRI( a, b, c )				\
548 do { 						\
549    if (DO_FALLBACK)				\
550       intel->draw_tri( intel, a, b, c );	\
551    else						\
552       intel_draw_triangle( intel, a, b, c );	\
553 } while (0)
554 
555 #define QUAD( a, b, c, d )			\
556 do { 						\
557    if (DO_FALLBACK) {				\
558       intel->draw_tri( intel, a, b, d );	\
559       intel->draw_tri( intel, b, c, d );	\
560    } else					\
561       intel_draw_quad( intel, a, b, c, d );	\
562 } while (0)
563 
564 #define LINE( v0, v1 )				\
565 do { 						\
566    if (DO_FALLBACK)				\
567       intel->draw_line( intel, v0, v1 );	\
568    else						\
569       intel_draw_line( intel, v0, v1 );		\
570 } while (0)
571 
572 #define POINT( v0 )				\
573 do { 						\
574    if (DO_FALLBACK)				\
575       intel->draw_point( intel, v0 );		\
576    else						\
577       intel_draw_point( intel, v0 );		\
578 } while (0)
579 
580 
581 /***********************************************************************
582  *              Build render functions from dd templates               *
583  ***********************************************************************/
584 
585 #define INTEL_OFFSET_BIT 	0x01
586 #define INTEL_TWOSIDE_BIT	0x02
587 #define INTEL_UNFILLED_BIT	0x04
588 #define INTEL_FALLBACK_BIT	0x08
589 #define INTEL_MAX_TRIFUNC	0x10
590 
591 
592 static struct
593 {
594    tnl_points_func points;
595    tnl_line_func line;
596    tnl_triangle_func triangle;
597    tnl_quad_func quad;
598 } rast_tab[INTEL_MAX_TRIFUNC];
599 
600 
601 #define DO_FALLBACK ((IND & INTEL_FALLBACK_BIT) != 0)
602 #define DO_OFFSET   ((IND & INTEL_OFFSET_BIT) != 0)
603 #define DO_UNFILLED ((IND & INTEL_UNFILLED_BIT) != 0)
604 #define DO_TWOSIDE  ((IND & INTEL_TWOSIDE_BIT) != 0)
605 #define DO_FLAT      0
606 #define DO_TRI       1
607 #define DO_QUAD      1
608 #define DO_LINE      1
609 #define DO_POINTS    1
610 #define DO_FULL_QUAD 1
611 
612 #define HAVE_SPEC         1
613 #define HAVE_BACK_COLORS  0
614 #define HAVE_HW_FLATSHADE 1
615 #define VERTEX            intelVertex
616 #define TAB               rast_tab
617 
618 /* Only used to pull back colors into vertices (ie, we know color is
619  * floating point).
620  */
621 #define INTEL_COLOR( dst, src )				\
622 do {							\
623    UNCLAMPED_FLOAT_TO_UBYTE((dst)[0], (src)[2]);	\
624    UNCLAMPED_FLOAT_TO_UBYTE((dst)[1], (src)[1]);	\
625    UNCLAMPED_FLOAT_TO_UBYTE((dst)[2], (src)[0]);	\
626    UNCLAMPED_FLOAT_TO_UBYTE((dst)[3], (src)[3]);	\
627 } while (0)
628 
629 #define INTEL_SPEC( dst, src )				\
630 do {							\
631    UNCLAMPED_FLOAT_TO_UBYTE((dst)[0], (src)[2]);	\
632    UNCLAMPED_FLOAT_TO_UBYTE((dst)[1], (src)[1]);	\
633    UNCLAMPED_FLOAT_TO_UBYTE((dst)[2], (src)[0]);	\
634 } while (0)
635 
636 
637 #define DEPTH_SCALE (ctx->DrawBuffer->Visual.depthBits == 16 ? 1.0 : 2.0)
638 #define UNFILLED_TRI unfilled_tri
639 #define UNFILLED_QUAD unfilled_quad
640 #define VERT_X(_v) _v->v.x
641 #define VERT_Y(_v) _v->v.y
642 #define VERT_Z(_v) _v->v.z
643 #define AREA_IS_CCW( a ) (a > 0)
644 #define GET_VERTEX(e) (intel->verts + (e * intel->vertex_size * sizeof(GLuint)))
645 
646 #define VERT_SET_RGBA( v, c )    if (coloroffset) INTEL_COLOR( v->ub4[coloroffset], c )
647 #define VERT_COPY_RGBA( v0, v1 ) if (coloroffset) v0->ui[coloroffset] = v1->ui[coloroffset]
648 #define VERT_SAVE_RGBA( idx )    if (coloroffset) color[idx] = v[idx]->ui[coloroffset]
649 #define VERT_RESTORE_RGBA( idx ) if (coloroffset) v[idx]->ui[coloroffset] = color[idx]
650 
651 #define VERT_SET_SPEC( v, c )    if (specoffset) INTEL_SPEC( v->ub4[specoffset], c )
652 #define VERT_COPY_SPEC( v0, v1 ) if (specoffset) COPY_3V(v0->ub4[specoffset], v1->ub4[specoffset])
653 #define VERT_SAVE_SPEC( idx )    if (specoffset) spec[idx] = v[idx]->ui[specoffset]
654 #define VERT_RESTORE_SPEC( idx ) if (specoffset) v[idx]->ui[specoffset] = spec[idx]
655 
656 #define LOCAL_VARS(n)							\
657    struct intel_context *intel = intel_context(ctx);			\
658    GLuint color[n] = { 0, }, spec[n] = { 0, };				\
659    GLuint coloroffset = intel->coloroffset;				\
660    GLuint specoffset = intel->specoffset;				\
661    (void) color; (void) spec; (void) coloroffset; (void) specoffset;
662 
663 
664 /***********************************************************************
665  *                Helpers for rendering unfilled primitives            *
666  ***********************************************************************/
667 
668 static const GLuint hw_prim[GL_POLYGON + 1] = {
669    [GL_POINTS] = PRIM3D_POINTLIST,
670    [GL_LINES] = PRIM3D_LINELIST,
671    [GL_LINE_LOOP] = PRIM3D_LINELIST,
672    [GL_LINE_STRIP] = PRIM3D_LINELIST,
673    [GL_TRIANGLES] = PRIM3D_TRILIST,
674    [GL_TRIANGLE_STRIP] = PRIM3D_TRILIST,
675    [GL_TRIANGLE_FAN] = PRIM3D_TRILIST,
676    [GL_QUADS] = PRIM3D_TRILIST,
677    [GL_QUAD_STRIP] = PRIM3D_TRILIST,
678    [GL_POLYGON] = PRIM3D_TRILIST,
679 };
680 
681 #define RASTERIZE(x) intelRasterPrimitive( ctx, x, hw_prim[x] )
682 #define RENDER_PRIMITIVE intel->render_primitive
683 #define TAG(x) x
684 #define IND INTEL_FALLBACK_BIT
685 #include "tnl_dd/t_dd_unfilled.h"
686 #undef IND
687 
688 /***********************************************************************
689  *                      Generate GL render functions                   *
690  ***********************************************************************/
691 
692 #define IND (0)
693 #define TAG(x) x
694 #include "tnl_dd/t_dd_tritmp.h"
695 
696 #define IND (INTEL_OFFSET_BIT)
697 #define TAG(x) x##_offset
698 #include "tnl_dd/t_dd_tritmp.h"
699 
700 #define IND (INTEL_TWOSIDE_BIT)
701 #define TAG(x) x##_twoside
702 #include "tnl_dd/t_dd_tritmp.h"
703 
704 #define IND (INTEL_TWOSIDE_BIT|INTEL_OFFSET_BIT)
705 #define TAG(x) x##_twoside_offset
706 #include "tnl_dd/t_dd_tritmp.h"
707 
708 #define IND (INTEL_UNFILLED_BIT)
709 #define TAG(x) x##_unfilled
710 #include "tnl_dd/t_dd_tritmp.h"
711 
712 #define IND (INTEL_OFFSET_BIT|INTEL_UNFILLED_BIT)
713 #define TAG(x) x##_offset_unfilled
714 #include "tnl_dd/t_dd_tritmp.h"
715 
716 #define IND (INTEL_TWOSIDE_BIT|INTEL_UNFILLED_BIT)
717 #define TAG(x) x##_twoside_unfilled
718 #include "tnl_dd/t_dd_tritmp.h"
719 
720 #define IND (INTEL_TWOSIDE_BIT|INTEL_OFFSET_BIT|INTEL_UNFILLED_BIT)
721 #define TAG(x) x##_twoside_offset_unfilled
722 #include "tnl_dd/t_dd_tritmp.h"
723 
724 #define IND (INTEL_FALLBACK_BIT)
725 #define TAG(x) x##_fallback
726 #include "tnl_dd/t_dd_tritmp.h"
727 
728 #define IND (INTEL_OFFSET_BIT|INTEL_FALLBACK_BIT)
729 #define TAG(x) x##_offset_fallback
730 #include "tnl_dd/t_dd_tritmp.h"
731 
732 #define IND (INTEL_TWOSIDE_BIT|INTEL_FALLBACK_BIT)
733 #define TAG(x) x##_twoside_fallback
734 #include "tnl_dd/t_dd_tritmp.h"
735 
736 #define IND (INTEL_TWOSIDE_BIT|INTEL_OFFSET_BIT|INTEL_FALLBACK_BIT)
737 #define TAG(x) x##_twoside_offset_fallback
738 #include "tnl_dd/t_dd_tritmp.h"
739 
740 #define IND (INTEL_UNFILLED_BIT|INTEL_FALLBACK_BIT)
741 #define TAG(x) x##_unfilled_fallback
742 #include "tnl_dd/t_dd_tritmp.h"
743 
744 #define IND (INTEL_OFFSET_BIT|INTEL_UNFILLED_BIT|INTEL_FALLBACK_BIT)
745 #define TAG(x) x##_offset_unfilled_fallback
746 #include "tnl_dd/t_dd_tritmp.h"
747 
748 #define IND (INTEL_TWOSIDE_BIT|INTEL_UNFILLED_BIT|INTEL_FALLBACK_BIT)
749 #define TAG(x) x##_twoside_unfilled_fallback
750 #include "tnl_dd/t_dd_tritmp.h"
751 
752 #define IND (INTEL_TWOSIDE_BIT|INTEL_OFFSET_BIT|INTEL_UNFILLED_BIT| \
753 	     INTEL_FALLBACK_BIT)
754 #define TAG(x) x##_twoside_offset_unfilled_fallback
755 #include "tnl_dd/t_dd_tritmp.h"
756 
757 
758 static void
init_rast_tab(void)759 init_rast_tab(void)
760 {
761    init();
762    init_offset();
763    init_twoside();
764    init_twoside_offset();
765    init_unfilled();
766    init_offset_unfilled();
767    init_twoside_unfilled();
768    init_twoside_offset_unfilled();
769    init_fallback();
770    init_offset_fallback();
771    init_twoside_fallback();
772    init_twoside_offset_fallback();
773    init_unfilled_fallback();
774    init_offset_unfilled_fallback();
775    init_twoside_unfilled_fallback();
776    init_twoside_offset_unfilled_fallback();
777 }
778 
779 
780 /***********************************************************************
781  *                    Rasterization fallback helpers                   *
782  ***********************************************************************/
783 
784 
785 /* This code is hit only when a mix of accelerated and unaccelerated
786  * primitives are being drawn, and only for the unaccelerated
787  * primitives.
788  */
789 static void
intel_fallback_tri(struct intel_context * intel,intelVertex * v0,intelVertex * v1,intelVertex * v2)790 intel_fallback_tri(struct intel_context *intel,
791                    intelVertex * v0, intelVertex * v1, intelVertex * v2)
792 {
793    struct gl_context *ctx = &intel->ctx;
794    SWvertex v[3];
795 
796    if (0)
797       fprintf(stderr, "\n%s\n", __func__);
798 
799    INTEL_FIREVERTICES(intel);
800 
801    _swsetup_Translate(ctx, v0, &v[0]);
802    _swsetup_Translate(ctx, v1, &v[1]);
803    _swsetup_Translate(ctx, v2, &v[2]);
804    _swrast_render_start(ctx);
805    _swrast_Triangle(ctx, &v[0], &v[1], &v[2]);
806    _swrast_render_finish(ctx);
807 }
808 
809 
810 static void
intel_fallback_line(struct intel_context * intel,intelVertex * v0,intelVertex * v1)811 intel_fallback_line(struct intel_context *intel,
812                     intelVertex * v0, intelVertex * v1)
813 {
814    struct gl_context *ctx = &intel->ctx;
815    SWvertex v[2];
816 
817    if (0)
818       fprintf(stderr, "\n%s\n", __func__);
819 
820    INTEL_FIREVERTICES(intel);
821 
822    _swsetup_Translate(ctx, v0, &v[0]);
823    _swsetup_Translate(ctx, v1, &v[1]);
824    _swrast_render_start(ctx);
825    _swrast_Line(ctx, &v[0], &v[1]);
826    _swrast_render_finish(ctx);
827 }
828 
829 static void
intel_fallback_point(struct intel_context * intel,intelVertex * v0)830 intel_fallback_point(struct intel_context *intel,
831 		     intelVertex * v0)
832 {
833    struct gl_context *ctx = &intel->ctx;
834    SWvertex v[1];
835 
836    if (0)
837       fprintf(stderr, "\n%s\n", __func__);
838 
839    INTEL_FIREVERTICES(intel);
840 
841    _swsetup_Translate(ctx, v0, &v[0]);
842    _swrast_render_start(ctx);
843    _swrast_Point(ctx, &v[0]);
844    _swrast_render_finish(ctx);
845 }
846 
847 
848 /**********************************************************************/
849 /*               Render unclipped begin/end objects                   */
850 /**********************************************************************/
851 
852 #define IND 0
853 #define V(x) (intelVertex *)(vertptr + ((x)*vertsize*sizeof(GLuint)))
854 #define RENDER_POINTS( start, count )	\
855    for ( ; start < count ; start++) POINT( V(ELT(start)) );
856 #define RENDER_LINE( v0, v1 )         LINE( V(v0), V(v1) )
857 #define RENDER_TRI(  v0, v1, v2 )     TRI(  V(v0), V(v1), V(v2) )
858 #define RENDER_QUAD( v0, v1, v2, v3 ) QUAD( V(v0), V(v1), V(v2), V(v3) )
859 #define INIT(x) intelRenderPrimitive( ctx, x )
860 #undef LOCAL_VARS
861 #define LOCAL_VARS						\
862     struct intel_context *intel = intel_context(ctx);			\
863     GLubyte *vertptr = (GLubyte *)intel->verts;			\
864     const GLuint vertsize = intel->vertex_size;       	\
865     const GLuint * const elt = TNL_CONTEXT(ctx)->vb.Elts;	\
866     (void) elt;
867 #define RESET_STIPPLE
868 #define RESET_OCCLUSION
869 #define PRESERVE_VB_DEFS
870 #define ELT(x) x
871 #define TAG(x) intel_##x##_verts
872 #include "tnl/t_vb_rendertmp.h"
873 #undef ELT
874 #undef TAG
875 #define TAG(x) intel_##x##_elts
876 #define ELT(x) elt[x]
877 #include "tnl/t_vb_rendertmp.h"
878 
879 /**********************************************************************/
880 /*                   Render clipped primitives                        */
881 /**********************************************************************/
882 
883 
884 
885 static void
intelRenderClippedPoly(struct gl_context * ctx,const GLuint * elts,GLuint n)886 intelRenderClippedPoly(struct gl_context * ctx, const GLuint * elts, GLuint n)
887 {
888    struct intel_context *intel = intel_context(ctx);
889    TNLcontext *tnl = TNL_CONTEXT(ctx);
890    GLuint prim = intel->render_primitive;
891 
892    /* Render the new vertices as an unclipped polygon.
893     */
894    _tnl_RenderClippedPolygon(ctx, elts, n);
895 
896    /* Restore the render primitive
897     */
898    if (prim != GL_POLYGON)
899       tnl->Driver.Render.PrimitiveNotify(ctx, prim);
900 }
901 
902 static void
intelFastRenderClippedPoly(struct gl_context * ctx,const GLuint * elts,GLuint n)903 intelFastRenderClippedPoly(struct gl_context * ctx, const GLuint * elts, GLuint n)
904 {
905    struct intel_context *intel = intel_context(ctx);
906    const GLuint vertsize = intel->vertex_size;
907    GLuint *vb = intel_get_prim_space(intel, (n - 2) * 3);
908    GLubyte *vertptr = (GLubyte *) intel->verts;
909    const GLuint *start = (const GLuint *) V(elts[0]);
910    int i, j;
911 
912    if (ctx->Light.ProvokingVertex == GL_LAST_VERTEX_CONVENTION) {
913       for (i = 2; i < n; i++) {
914          COPY_DWORDS(j, vb, vertsize, V(elts[i - 1]));
915          COPY_DWORDS(j, vb, vertsize, V(elts[i]));
916          COPY_DWORDS(j, vb, vertsize, start);
917       }
918    } else {
919       for (i = 2; i < n; i++) {
920          COPY_DWORDS(j, vb, vertsize, start);
921          COPY_DWORDS(j, vb, vertsize, V(elts[i - 1]));
922          COPY_DWORDS(j, vb, vertsize, V(elts[i]));
923       }
924    }
925 }
926 
927 /**********************************************************************/
928 /*                    Choose render functions                         */
929 /**********************************************************************/
930 
931 
932 #define DD_TRI_LIGHT_TWOSIDE (1 << 1)
933 #define DD_TRI_UNFILLED (1 << 2)
934 #define DD_TRI_STIPPLE  (1 << 4)
935 #define DD_TRI_OFFSET   (1 << 5)
936 #define DD_LINE_STIPPLE (1 << 7)
937 #define DD_POINT_ATTEN  (1 << 9)
938 
939 #define ANY_FALLBACK_FLAGS (DD_LINE_STIPPLE | DD_TRI_STIPPLE | DD_POINT_ATTEN)
940 #define ANY_RASTER_FLAGS (DD_TRI_LIGHT_TWOSIDE | DD_TRI_OFFSET | DD_TRI_UNFILLED)
941 
942 void
intelChooseRenderState(struct gl_context * ctx)943 intelChooseRenderState(struct gl_context * ctx)
944 {
945    TNLcontext *tnl = TNL_CONTEXT(ctx);
946    struct intel_context *intel = intel_context(ctx);
947    GLuint flags =
948       ((ctx->Light.Enabled &&
949         ctx->Light.Model.TwoSide) ? DD_TRI_LIGHT_TWOSIDE : 0) |
950       ((ctx->Polygon.FrontMode != GL_FILL ||
951         ctx->Polygon.BackMode != GL_FILL) ? DD_TRI_UNFILLED : 0) |
952       (ctx->Polygon.StippleFlag ? DD_TRI_STIPPLE : 0) |
953       ((ctx->Polygon.OffsetPoint ||
954         ctx->Polygon.OffsetLine ||
955         ctx->Polygon.OffsetFill) ? DD_TRI_OFFSET : 0) |
956       (ctx->Line.StippleFlag ? DD_LINE_STIPPLE : 0) |
957       (ctx->Point._Attenuated ? DD_POINT_ATTEN : 0);
958    const struct gl_program *fprog = ctx->FragmentProgram._Current;
959    bool have_wpos = (fprog && (fprog->info.inputs_read & VARYING_BIT_POS));
960    GLuint index = 0;
961 
962    if (INTEL_DEBUG & DEBUG_STATE)
963       fprintf(stderr, "\n%s\n", __func__);
964 
965    if ((flags & (ANY_FALLBACK_FLAGS | ANY_RASTER_FLAGS)) || have_wpos) {
966 
967       if (flags & ANY_RASTER_FLAGS) {
968          if (flags & DD_TRI_LIGHT_TWOSIDE)
969             index |= INTEL_TWOSIDE_BIT;
970          if (flags & DD_TRI_OFFSET)
971             index |= INTEL_OFFSET_BIT;
972          if (flags & DD_TRI_UNFILLED)
973             index |= INTEL_UNFILLED_BIT;
974       }
975 
976       if (have_wpos) {
977          intel->draw_point = intel_wpos_point;
978          intel->draw_line = intel_wpos_line;
979          intel->draw_tri = intel_wpos_triangle;
980 
981          /* Make sure these get called:
982           */
983          index |= INTEL_FALLBACK_BIT;
984       }
985       else {
986          intel->draw_point = intel_draw_point;
987          intel->draw_line = intel_draw_line;
988          intel->draw_tri = intel_draw_triangle;
989       }
990 
991       /* Hook in fallbacks for specific primitives.
992        */
993       if (flags & ANY_FALLBACK_FLAGS) {
994          if (flags & DD_LINE_STIPPLE)
995             intel->draw_line = intel_fallback_line;
996 
997          if ((flags & DD_TRI_STIPPLE) && !intel->hw_stipple)
998             intel->draw_tri = intel_fallback_tri;
999 
1000          if (flags & DD_POINT_ATTEN) {
1001 	    if (0)
1002 	       intel->draw_point = intel_atten_point;
1003 	    else
1004 	       intel->draw_point = intel_fallback_point;
1005 	 }
1006 
1007          index |= INTEL_FALLBACK_BIT;
1008       }
1009    }
1010 
1011    if (intel->RenderIndex != index) {
1012       intel->RenderIndex = index;
1013 
1014       tnl->Driver.Render.Points = rast_tab[index].points;
1015       tnl->Driver.Render.Line = rast_tab[index].line;
1016       tnl->Driver.Render.Triangle = rast_tab[index].triangle;
1017       tnl->Driver.Render.Quad = rast_tab[index].quad;
1018 
1019       if (index == 0) {
1020          tnl->Driver.Render.PrimTabVerts = intel_render_tab_verts;
1021          tnl->Driver.Render.PrimTabElts = intel_render_tab_elts;
1022          tnl->Driver.Render.ClippedLine = line; /* from tritmp.h */
1023          tnl->Driver.Render.ClippedPolygon = intelFastRenderClippedPoly;
1024       }
1025       else {
1026          tnl->Driver.Render.PrimTabVerts = _tnl_render_tab_verts;
1027          tnl->Driver.Render.PrimTabElts = _tnl_render_tab_elts;
1028          tnl->Driver.Render.ClippedLine = _tnl_RenderClippedLine;
1029          tnl->Driver.Render.ClippedPolygon = intelRenderClippedPoly;
1030       }
1031    }
1032 }
1033 
1034 static const GLenum reduced_prim[GL_POLYGON + 1] = {
1035    [GL_POINTS] = GL_POINTS,
1036    [GL_LINES] = GL_LINES,
1037    [GL_LINE_LOOP] = GL_LINES,
1038    [GL_LINE_STRIP] = GL_LINES,
1039    [GL_TRIANGLES] = GL_TRIANGLES,
1040    [GL_TRIANGLE_STRIP] = GL_TRIANGLES,
1041    [GL_TRIANGLE_FAN] = GL_TRIANGLES,
1042    [GL_QUADS] = GL_TRIANGLES,
1043    [GL_QUAD_STRIP] = GL_TRIANGLES,
1044    [GL_POLYGON] = GL_TRIANGLES
1045 };
1046 
1047 
1048 /**********************************************************************/
1049 /*                 High level hooks for t_vb_render.c                 */
1050 /**********************************************************************/
1051 
1052 
1053 
1054 
1055 static void
intelRunPipeline(struct gl_context * ctx)1056 intelRunPipeline(struct gl_context * ctx)
1057 {
1058    struct intel_context *intel = intel_context(ctx);
1059 
1060    _mesa_lock_context_textures(ctx);
1061 
1062    if (ctx->NewState)
1063       _mesa_update_state_locked(ctx);
1064 
1065    /* We need to get this done before we start the pipeline, or a
1066     * change in the INTEL_FALLBACK() of its intel_draw_buffers() call
1067     * while the pipeline is running will result in mismatched swrast
1068     * map/unmaps, and later assertion failures.
1069     */
1070    intel_prepare_render(intel);
1071 
1072    if (intel->NewGLState) {
1073       if (intel->NewGLState & _NEW_TEXTURE) {
1074          intel->vtbl.update_texture_state(intel);
1075       }
1076 
1077       if (!intel->Fallback) {
1078          if (intel->NewGLState & _INTEL_NEW_RENDERSTATE)
1079             intelChooseRenderState(ctx);
1080       }
1081 
1082       intel->NewGLState = 0;
1083    }
1084 
1085    intel->tnl_pipeline_running = true;
1086    _tnl_run_pipeline(ctx);
1087    intel->tnl_pipeline_running = false;
1088 
1089    _mesa_unlock_context_textures(ctx);
1090 }
1091 
1092 static void
intelRenderStart(struct gl_context * ctx)1093 intelRenderStart(struct gl_context * ctx)
1094 {
1095    struct intel_context *intel = intel_context(ctx);
1096 
1097    intel_check_front_buffer_rendering(intel);
1098    intel->vtbl.render_start(intel_context(ctx));
1099    intel->vtbl.emit_state(intel);
1100 }
1101 
1102 static void
intelRenderFinish(struct gl_context * ctx)1103 intelRenderFinish(struct gl_context * ctx)
1104 {
1105    struct intel_context *intel = intel_context(ctx);
1106 
1107    if (intel->RenderIndex & INTEL_FALLBACK_BIT)
1108       _swrast_flush(ctx);
1109 
1110    INTEL_FIREVERTICES(intel);
1111 }
1112 
1113 
1114 
1115 
1116  /* System to flush dma and emit state changes based on the rasterized
1117   * primitive.
1118   */
1119 static void
intelRasterPrimitive(struct gl_context * ctx,GLenum rprim,GLuint hwprim)1120 intelRasterPrimitive(struct gl_context * ctx, GLenum rprim, GLuint hwprim)
1121 {
1122    struct intel_context *intel = intel_context(ctx);
1123 
1124    if (0)
1125       fprintf(stderr, "%s %s %x\n", __func__,
1126               _mesa_enum_to_string(rprim), hwprim);
1127 
1128    intel->vtbl.reduced_primitive_state(intel, rprim);
1129 
1130    /* Start a new primitive.  Arrange to have it flushed later on.
1131     */
1132    if (hwprim != intel->prim.primitive) {
1133       INTEL_FIREVERTICES(intel);
1134 
1135       intel_set_prim(intel, hwprim);
1136    }
1137 }
1138 
1139 
1140  /*
1141   */
1142 static void
intelRenderPrimitive(struct gl_context * ctx,GLenum prim)1143 intelRenderPrimitive(struct gl_context * ctx, GLenum prim)
1144 {
1145    struct intel_context *intel = intel_context(ctx);
1146    GLboolean unfilled = (ctx->Polygon.FrontMode != GL_FILL ||
1147                          ctx->Polygon.BackMode != GL_FILL);
1148 
1149    if (0)
1150       fprintf(stderr, "%s %s\n", __func__, _mesa_enum_to_string(prim));
1151 
1152    /* Let some clipping routines know which primitive they're dealing
1153     * with.
1154     */
1155    intel->render_primitive = prim;
1156 
1157    /* Shortcircuit this when called for unfilled triangles.  The rasterized
1158     * primitive will always be reset by lower level functions in that case,
1159     * potentially pingponging the state:
1160     */
1161    if (reduced_prim[prim] == GL_TRIANGLES && unfilled)
1162       return;
1163 
1164    /* Set some primitive-dependent state and Start? a new primitive.
1165     */
1166    intelRasterPrimitive(ctx, reduced_prim[prim], hw_prim[prim]);
1167 }
1168 
1169 
1170  /**********************************************************************/
1171  /*           Transition to/from hardware rasterization.               */
1172  /**********************************************************************/
1173 
1174 static char *fallbackStrings[] = {
1175    [0] = "Draw buffer",
1176    [1] = "Read buffer",
1177    [2] = "Depth buffer",
1178    [3] = "Stencil buffer",
1179    [4] = "User disable",
1180    [5] = "Render mode",
1181 
1182    [12] = "Texture",
1183    [13] = "Color mask",
1184    [14] = "Stencil",
1185    [15] = "Stipple",
1186    [16] = "Program",
1187    [17] = "Logic op",
1188    [18] = "Smooth polygon",
1189    [19] = "Smooth point",
1190    [20] = "point sprite coord origin",
1191    [21] = "depth/color drawing offset",
1192    [22] = "coord replace(SPRITE POINT ENABLE)",
1193 };
1194 
1195 
1196 static char *
getFallbackString(GLuint bit)1197 getFallbackString(GLuint bit)
1198 {
1199    int i = 0;
1200    while (bit > 1) {
1201       i++;
1202       bit >>= 1;
1203    }
1204    return fallbackStrings[i];
1205 }
1206 
1207 
1208 
1209 /**
1210  * Enable/disable a fallback flag.
1211  * \param bit  one of INTEL_FALLBACK_x flags.
1212  */
1213 void
intelFallback(struct intel_context * intel,GLbitfield bit,bool mode)1214 intelFallback(struct intel_context *intel, GLbitfield bit, bool mode)
1215 {
1216    struct gl_context *ctx = &intel->ctx;
1217    TNLcontext *tnl = TNL_CONTEXT(ctx);
1218    const GLbitfield oldfallback = intel->Fallback;
1219 
1220    if (mode) {
1221       intel->Fallback |= bit;
1222       if (oldfallback == 0) {
1223 	 assert(!intel->tnl_pipeline_running);
1224 
1225          intel_flush(ctx);
1226          if (INTEL_DEBUG & DEBUG_PERF)
1227             fprintf(stderr, "ENTER FALLBACK %x: %s\n",
1228                     bit, getFallbackString(bit));
1229          _swsetup_Wakeup(ctx);
1230          intel->RenderIndex = ~0;
1231       }
1232    }
1233    else {
1234       intel->Fallback &= ~bit;
1235       if (oldfallback == bit) {
1236 	 assert(!intel->tnl_pipeline_running);
1237 
1238          _swrast_flush(ctx);
1239          if (INTEL_DEBUG & DEBUG_PERF)
1240             fprintf(stderr, "LEAVE FALLBACK %s\n", getFallbackString(bit));
1241          tnl->Driver.Render.Start = intelRenderStart;
1242          tnl->Driver.Render.PrimitiveNotify = intelRenderPrimitive;
1243          tnl->Driver.Render.Finish = intelRenderFinish;
1244          tnl->Driver.Render.BuildVertices = _tnl_build_vertices;
1245          tnl->Driver.Render.CopyPV = _tnl_copy_pv;
1246          tnl->Driver.Render.Interp = _tnl_interp;
1247 
1248          _tnl_invalidate_vertex_state(ctx, ~0);
1249          _tnl_invalidate_vertices(ctx, ~0);
1250          _tnl_install_attrs(ctx,
1251                             intel->vertex_attrs,
1252                             intel->vertex_attr_count,
1253                             intel->ViewportMatrix.m, 0);
1254 
1255          intel->NewGLState |= _INTEL_NEW_RENDERSTATE;
1256       }
1257    }
1258 }
1259 
1260 /**********************************************************************/
1261 /*                            Initialization.                         */
1262 /**********************************************************************/
1263 
1264 
1265 void
intelInitTriFuncs(struct gl_context * ctx)1266 intelInitTriFuncs(struct gl_context * ctx)
1267 {
1268    TNLcontext *tnl = TNL_CONTEXT(ctx);
1269    static int firsttime = 1;
1270 
1271    if (firsttime) {
1272       init_rast_tab();
1273       firsttime = 0;
1274    }
1275 
1276    tnl->Driver.RunPipeline = intelRunPipeline;
1277    tnl->Driver.Render.Start = intelRenderStart;
1278    tnl->Driver.Render.Finish = intelRenderFinish;
1279    tnl->Driver.Render.PrimitiveNotify = intelRenderPrimitive;
1280    tnl->Driver.Render.ResetLineStipple = _swrast_ResetLineStipple;
1281    tnl->Driver.Render.BuildVertices = _tnl_build_vertices;
1282    tnl->Driver.Render.CopyPV = _tnl_copy_pv;
1283    tnl->Driver.Render.Interp = _tnl_interp;
1284 }
1285