1 /*
2 * Code related to writing an iolog of what a thread is doing, and to
3 * later read that back and replay
4 */
5 #include <stdio.h>
6 #include <stdlib.h>
7 #include <libgen.h>
8 #include <assert.h>
9 #include <sys/types.h>
10 #include <sys/stat.h>
11 #include <unistd.h>
12 #ifdef CONFIG_ZLIB
13 #include <zlib.h>
14 #endif
15
16 #include "flist.h"
17 #include "fio.h"
18 #include "verify.h"
19 #include "trim.h"
20 #include "filelock.h"
21 #include "smalloc.h"
22
23 static int iolog_flush(struct io_log *log);
24
25 static const char iolog_ver2[] = "fio version 2 iolog";
26
queue_io_piece(struct thread_data * td,struct io_piece * ipo)27 void queue_io_piece(struct thread_data *td, struct io_piece *ipo)
28 {
29 flist_add_tail(&ipo->list, &td->io_log_list);
30 td->total_io_size += ipo->len;
31 }
32
log_io_u(const struct thread_data * td,const struct io_u * io_u)33 void log_io_u(const struct thread_data *td, const struct io_u *io_u)
34 {
35 if (!td->o.write_iolog_file)
36 return;
37
38 fprintf(td->iolog_f, "%s %s %llu %lu\n", io_u->file->file_name,
39 io_ddir_name(io_u->ddir),
40 io_u->offset, io_u->buflen);
41 }
42
log_file(struct thread_data * td,struct fio_file * f,enum file_log_act what)43 void log_file(struct thread_data *td, struct fio_file *f,
44 enum file_log_act what)
45 {
46 const char *act[] = { "add", "open", "close" };
47
48 assert(what < 3);
49
50 if (!td->o.write_iolog_file)
51 return;
52
53
54 /*
55 * this happens on the pre-open/close done before the job starts
56 */
57 if (!td->iolog_f)
58 return;
59
60 fprintf(td->iolog_f, "%s %s\n", f->file_name, act[what]);
61 }
62
iolog_delay(struct thread_data * td,unsigned long delay)63 static void iolog_delay(struct thread_data *td, unsigned long delay)
64 {
65 uint64_t usec = utime_since_now(&td->last_issue);
66 uint64_t this_delay;
67 struct timeval tv;
68
69 if (delay < td->time_offset) {
70 td->time_offset = 0;
71 return;
72 }
73
74 delay -= td->time_offset;
75 if (delay < usec)
76 return;
77
78 delay -= usec;
79
80 fio_gettime(&tv, NULL);
81 while (delay && !td->terminate) {
82 this_delay = delay;
83 if (this_delay > 500000)
84 this_delay = 500000;
85
86 usec_sleep(td, this_delay);
87 delay -= this_delay;
88 }
89
90 usec = utime_since_now(&tv);
91 if (usec > delay)
92 td->time_offset = usec - delay;
93 else
94 td->time_offset = 0;
95 }
96
ipo_special(struct thread_data * td,struct io_piece * ipo)97 static int ipo_special(struct thread_data *td, struct io_piece *ipo)
98 {
99 struct fio_file *f;
100 int ret;
101
102 /*
103 * Not a special ipo
104 */
105 if (ipo->ddir != DDIR_INVAL)
106 return 0;
107
108 f = td->files[ipo->fileno];
109
110 switch (ipo->file_action) {
111 case FIO_LOG_OPEN_FILE:
112 if (td->o.replay_redirect && fio_file_open(f)) {
113 dprint(FD_FILE, "iolog: ignoring re-open of file %s\n",
114 f->file_name);
115 break;
116 }
117 ret = td_io_open_file(td, f);
118 if (!ret)
119 break;
120 td_verror(td, ret, "iolog open file");
121 return -1;
122 case FIO_LOG_CLOSE_FILE:
123 td_io_close_file(td, f);
124 break;
125 case FIO_LOG_UNLINK_FILE:
126 td_io_unlink_file(td, f);
127 break;
128 default:
129 log_err("fio: bad file action %d\n", ipo->file_action);
130 break;
131 }
132
133 return 1;
134 }
135
read_iolog_get(struct thread_data * td,struct io_u * io_u)136 int read_iolog_get(struct thread_data *td, struct io_u *io_u)
137 {
138 struct io_piece *ipo;
139 unsigned long elapsed;
140
141 while (!flist_empty(&td->io_log_list)) {
142 int ret;
143
144 ipo = flist_first_entry(&td->io_log_list, struct io_piece, list);
145 flist_del(&ipo->list);
146 remove_trim_entry(td, ipo);
147
148 ret = ipo_special(td, ipo);
149 if (ret < 0) {
150 free(ipo);
151 break;
152 } else if (ret > 0) {
153 free(ipo);
154 continue;
155 }
156
157 io_u->ddir = ipo->ddir;
158 if (ipo->ddir != DDIR_WAIT) {
159 io_u->offset = ipo->offset;
160 io_u->buflen = ipo->len;
161 io_u->file = td->files[ipo->fileno];
162 get_file(io_u->file);
163 dprint(FD_IO, "iolog: get %llu/%lu/%s\n", io_u->offset,
164 io_u->buflen, io_u->file->file_name);
165 if (ipo->delay)
166 iolog_delay(td, ipo->delay);
167 } else {
168 elapsed = mtime_since_genesis();
169 if (ipo->delay > elapsed)
170 usec_sleep(td, (ipo->delay - elapsed) * 1000);
171 }
172
173 free(ipo);
174
175 if (io_u->ddir != DDIR_WAIT)
176 return 0;
177 }
178
179 td->done = 1;
180 return 1;
181 }
182
prune_io_piece_log(struct thread_data * td)183 void prune_io_piece_log(struct thread_data *td)
184 {
185 struct io_piece *ipo;
186 struct rb_node *n;
187
188 while ((n = rb_first(&td->io_hist_tree)) != NULL) {
189 ipo = rb_entry(n, struct io_piece, rb_node);
190 rb_erase(n, &td->io_hist_tree);
191 remove_trim_entry(td, ipo);
192 td->io_hist_len--;
193 free(ipo);
194 }
195
196 while (!flist_empty(&td->io_hist_list)) {
197 ipo = flist_first_entry(&td->io_hist_list, struct io_piece, list);
198 flist_del(&ipo->list);
199 remove_trim_entry(td, ipo);
200 td->io_hist_len--;
201 free(ipo);
202 }
203 }
204
205 /*
206 * log a successful write, so we can unwind the log for verify
207 */
log_io_piece(struct thread_data * td,struct io_u * io_u)208 void log_io_piece(struct thread_data *td, struct io_u *io_u)
209 {
210 struct rb_node **p, *parent;
211 struct io_piece *ipo, *__ipo;
212
213 ipo = malloc(sizeof(struct io_piece));
214 init_ipo(ipo);
215 ipo->file = io_u->file;
216 ipo->offset = io_u->offset;
217 ipo->len = io_u->buflen;
218 ipo->numberio = io_u->numberio;
219 ipo->flags = IP_F_IN_FLIGHT;
220
221 io_u->ipo = ipo;
222
223 if (io_u_should_trim(td, io_u)) {
224 flist_add_tail(&ipo->trim_list, &td->trim_list);
225 td->trim_entries++;
226 }
227
228 /*
229 * We don't need to sort the entries, if:
230 *
231 * Sequential writes, or
232 * Random writes that lay out the file as it goes along
233 *
234 * For both these cases, just reading back data in the order we
235 * wrote it out is the fastest.
236 *
237 * One exception is if we don't have a random map AND we are doing
238 * verifies, in that case we need to check for duplicate blocks and
239 * drop the old one, which we rely on the rb insert/lookup for
240 * handling.
241 */
242 if (((!td->o.verifysort) || !td_random(td) || !td->o.overwrite) &&
243 (file_randommap(td, ipo->file) || td->o.verify == VERIFY_NONE)) {
244 INIT_FLIST_HEAD(&ipo->list);
245 flist_add_tail(&ipo->list, &td->io_hist_list);
246 ipo->flags |= IP_F_ONLIST;
247 td->io_hist_len++;
248 return;
249 }
250
251 RB_CLEAR_NODE(&ipo->rb_node);
252
253 /*
254 * Sort the entry into the verification list
255 */
256 restart:
257 p = &td->io_hist_tree.rb_node;
258 parent = NULL;
259 while (*p) {
260 int overlap = 0;
261 parent = *p;
262
263 __ipo = rb_entry(parent, struct io_piece, rb_node);
264 if (ipo->file < __ipo->file)
265 p = &(*p)->rb_left;
266 else if (ipo->file > __ipo->file)
267 p = &(*p)->rb_right;
268 else if (ipo->offset < __ipo->offset) {
269 p = &(*p)->rb_left;
270 overlap = ipo->offset + ipo->len > __ipo->offset;
271 }
272 else if (ipo->offset > __ipo->offset) {
273 p = &(*p)->rb_right;
274 overlap = __ipo->offset + __ipo->len > ipo->offset;
275 }
276 else
277 overlap = 1;
278
279 if (overlap) {
280 dprint(FD_IO, "iolog: overlap %llu/%lu, %llu/%lu\n",
281 __ipo->offset, __ipo->len,
282 ipo->offset, ipo->len);
283 td->io_hist_len--;
284 rb_erase(parent, &td->io_hist_tree);
285 remove_trim_entry(td, __ipo);
286 free(__ipo);
287 goto restart;
288 }
289 }
290
291 rb_link_node(&ipo->rb_node, parent, p);
292 rb_insert_color(&ipo->rb_node, &td->io_hist_tree);
293 ipo->flags |= IP_F_ONRB;
294 td->io_hist_len++;
295 }
296
unlog_io_piece(struct thread_data * td,struct io_u * io_u)297 void unlog_io_piece(struct thread_data *td, struct io_u *io_u)
298 {
299 struct io_piece *ipo = io_u->ipo;
300
301 if (td->ts.nr_block_infos) {
302 uint32_t *info = io_u_block_info(td, io_u);
303 if (BLOCK_INFO_STATE(*info) < BLOCK_STATE_TRIM_FAILURE) {
304 if (io_u->ddir == DDIR_TRIM)
305 *info = BLOCK_INFO_SET_STATE(*info,
306 BLOCK_STATE_TRIM_FAILURE);
307 else if (io_u->ddir == DDIR_WRITE)
308 *info = BLOCK_INFO_SET_STATE(*info,
309 BLOCK_STATE_WRITE_FAILURE);
310 }
311 }
312
313 if (!ipo)
314 return;
315
316 if (ipo->flags & IP_F_ONRB)
317 rb_erase(&ipo->rb_node, &td->io_hist_tree);
318 else if (ipo->flags & IP_F_ONLIST)
319 flist_del(&ipo->list);
320
321 free(ipo);
322 io_u->ipo = NULL;
323 td->io_hist_len--;
324 }
325
trim_io_piece(struct thread_data * td,const struct io_u * io_u)326 void trim_io_piece(struct thread_data *td, const struct io_u *io_u)
327 {
328 struct io_piece *ipo = io_u->ipo;
329
330 if (!ipo)
331 return;
332
333 ipo->len = io_u->xfer_buflen - io_u->resid;
334 }
335
write_iolog_close(struct thread_data * td)336 void write_iolog_close(struct thread_data *td)
337 {
338 fflush(td->iolog_f);
339 fclose(td->iolog_f);
340 free(td->iolog_buf);
341 td->iolog_f = NULL;
342 td->iolog_buf = NULL;
343 }
344
345 /*
346 * Read version 2 iolog data. It is enhanced to include per-file logging,
347 * syncs, etc.
348 */
read_iolog2(struct thread_data * td,FILE * f)349 static int read_iolog2(struct thread_data *td, FILE *f)
350 {
351 unsigned long long offset;
352 unsigned int bytes;
353 int reads, writes, waits, fileno = 0, file_action = 0; /* stupid gcc */
354 char *rfname, *fname, *act;
355 char *str, *p;
356 enum fio_ddir rw;
357
358 free_release_files(td);
359
360 /*
361 * Read in the read iolog and store it, reuse the infrastructure
362 * for doing verifications.
363 */
364 str = malloc(4096);
365 rfname = fname = malloc(256+16);
366 act = malloc(256+16);
367
368 reads = writes = waits = 0;
369 while ((p = fgets(str, 4096, f)) != NULL) {
370 struct io_piece *ipo;
371 int r;
372
373 r = sscanf(p, "%256s %256s %llu %u", rfname, act, &offset,
374 &bytes);
375
376 if (td->o.replay_redirect)
377 fname = td->o.replay_redirect;
378
379 if (r == 4) {
380 /*
381 * Check action first
382 */
383 if (!strcmp(act, "wait"))
384 rw = DDIR_WAIT;
385 else if (!strcmp(act, "read"))
386 rw = DDIR_READ;
387 else if (!strcmp(act, "write"))
388 rw = DDIR_WRITE;
389 else if (!strcmp(act, "sync"))
390 rw = DDIR_SYNC;
391 else if (!strcmp(act, "datasync"))
392 rw = DDIR_DATASYNC;
393 else if (!strcmp(act, "trim"))
394 rw = DDIR_TRIM;
395 else {
396 log_err("fio: bad iolog file action: %s\n",
397 act);
398 continue;
399 }
400 fileno = get_fileno(td, fname);
401 } else if (r == 2) {
402 rw = DDIR_INVAL;
403 if (!strcmp(act, "add")) {
404 if (td->o.replay_redirect &&
405 get_fileno(td, fname) != -1) {
406 dprint(FD_FILE, "iolog: ignoring"
407 " re-add of file %s\n", fname);
408 } else {
409 fileno = add_file(td, fname, 0, 1);
410 file_action = FIO_LOG_ADD_FILE;
411 }
412 continue;
413 } else if (!strcmp(act, "open")) {
414 fileno = get_fileno(td, fname);
415 file_action = FIO_LOG_OPEN_FILE;
416 } else if (!strcmp(act, "close")) {
417 fileno = get_fileno(td, fname);
418 file_action = FIO_LOG_CLOSE_FILE;
419 } else {
420 log_err("fio: bad iolog file action: %s\n",
421 act);
422 continue;
423 }
424 } else {
425 log_err("bad iolog2: %s\n", p);
426 continue;
427 }
428
429 if (rw == DDIR_READ)
430 reads++;
431 else if (rw == DDIR_WRITE) {
432 /*
433 * Don't add a write for ro mode
434 */
435 if (read_only)
436 continue;
437 writes++;
438 } else if (rw == DDIR_WAIT) {
439 if (td->o.no_stall)
440 continue;
441 waits++;
442 } else if (rw == DDIR_INVAL) {
443 } else if (!ddir_sync(rw)) {
444 log_err("bad ddir: %d\n", rw);
445 continue;
446 }
447
448 /*
449 * Make note of file
450 */
451 ipo = malloc(sizeof(*ipo));
452 init_ipo(ipo);
453 ipo->ddir = rw;
454 if (rw == DDIR_WAIT) {
455 ipo->delay = offset;
456 } else {
457 if (td->o.replay_scale)
458 ipo->offset = offset / td->o.replay_scale;
459 else
460 ipo->offset = offset;
461 ipo_bytes_align(td->o.replay_align, ipo);
462
463 ipo->len = bytes;
464 if (rw != DDIR_INVAL && bytes > td->o.max_bs[rw])
465 td->o.max_bs[rw] = bytes;
466 ipo->fileno = fileno;
467 ipo->file_action = file_action;
468 td->o.size += bytes;
469 }
470
471 queue_io_piece(td, ipo);
472 }
473
474 free(str);
475 free(act);
476 free(rfname);
477
478 if (writes && read_only) {
479 log_err("fio: <%s> skips replay of %d writes due to"
480 " read-only\n", td->o.name, writes);
481 writes = 0;
482 }
483
484 if (!reads && !writes && !waits)
485 return 1;
486 else if (reads && !writes)
487 td->o.td_ddir = TD_DDIR_READ;
488 else if (!reads && writes)
489 td->o.td_ddir = TD_DDIR_WRITE;
490 else
491 td->o.td_ddir = TD_DDIR_RW;
492
493 return 0;
494 }
495
496 /*
497 * open iolog, check version, and call appropriate parser
498 */
init_iolog_read(struct thread_data * td)499 static int init_iolog_read(struct thread_data *td)
500 {
501 char buffer[256], *p;
502 FILE *f;
503 int ret;
504
505 f = fopen(td->o.read_iolog_file, "r");
506 if (!f) {
507 perror("fopen read iolog");
508 return 1;
509 }
510
511 p = fgets(buffer, sizeof(buffer), f);
512 if (!p) {
513 td_verror(td, errno, "iolog read");
514 log_err("fio: unable to read iolog\n");
515 fclose(f);
516 return 1;
517 }
518
519 /*
520 * version 2 of the iolog stores a specific string as the
521 * first line, check for that
522 */
523 if (!strncmp(iolog_ver2, buffer, strlen(iolog_ver2)))
524 ret = read_iolog2(td, f);
525 else {
526 log_err("fio: iolog version 1 is no longer supported\n");
527 ret = 1;
528 }
529
530 fclose(f);
531 return ret;
532 }
533
534 /*
535 * Set up a log for storing io patterns.
536 */
init_iolog_write(struct thread_data * td)537 static int init_iolog_write(struct thread_data *td)
538 {
539 struct fio_file *ff;
540 FILE *f;
541 unsigned int i;
542
543 f = fopen(td->o.write_iolog_file, "a");
544 if (!f) {
545 perror("fopen write iolog");
546 return 1;
547 }
548
549 /*
550 * That's it for writing, setup a log buffer and we're done.
551 */
552 td->iolog_f = f;
553 td->iolog_buf = malloc(8192);
554 setvbuf(f, td->iolog_buf, _IOFBF, 8192);
555
556 /*
557 * write our version line
558 */
559 if (fprintf(f, "%s\n", iolog_ver2) < 0) {
560 perror("iolog init\n");
561 return 1;
562 }
563
564 /*
565 * add all known files
566 */
567 for_each_file(td, ff, i)
568 log_file(td, ff, FIO_LOG_ADD_FILE);
569
570 return 0;
571 }
572
init_iolog(struct thread_data * td)573 int init_iolog(struct thread_data *td)
574 {
575 int ret = 0;
576
577 if (td->o.read_iolog_file) {
578 int need_swap;
579
580 /*
581 * Check if it's a blktrace file and load that if possible.
582 * Otherwise assume it's a normal log file and load that.
583 */
584 if (is_blktrace(td->o.read_iolog_file, &need_swap))
585 ret = load_blktrace(td, td->o.read_iolog_file, need_swap);
586 else
587 ret = init_iolog_read(td);
588 } else if (td->o.write_iolog_file)
589 ret = init_iolog_write(td);
590
591 if (ret)
592 td_verror(td, EINVAL, "failed initializing iolog");
593
594 return ret;
595 }
596
setup_log(struct io_log ** log,struct log_params * p,const char * filename)597 void setup_log(struct io_log **log, struct log_params *p,
598 const char *filename)
599 {
600 struct io_log *l;
601 int i;
602 struct io_u_plat_entry *entry;
603 struct flist_head *list;
604
605 l = scalloc(1, sizeof(*l));
606 INIT_FLIST_HEAD(&l->io_logs);
607 l->log_type = p->log_type;
608 l->log_offset = p->log_offset;
609 l->log_gz = p->log_gz;
610 l->log_gz_store = p->log_gz_store;
611 l->avg_msec = p->avg_msec;
612 l->hist_msec = p->hist_msec;
613 l->hist_coarseness = p->hist_coarseness;
614 l->filename = strdup(filename);
615 l->td = p->td;
616
617 /* Initialize histogram lists for each r/w direction,
618 * with initial io_u_plat of all zeros:
619 */
620 for (i = 0; i < DDIR_RWDIR_CNT; i++) {
621 list = &l->hist_window[i].list;
622 INIT_FLIST_HEAD(list);
623 entry = calloc(1, sizeof(struct io_u_plat_entry));
624 flist_add(&entry->list, list);
625 }
626
627 if (l->td && l->td->o.io_submit_mode != IO_MODE_OFFLOAD) {
628 struct io_logs *p;
629
630 p = calloc(1, sizeof(*l->pending));
631 p->max_samples = DEF_LOG_ENTRIES;
632 p->log = calloc(p->max_samples, log_entry_sz(l));
633 l->pending = p;
634 }
635
636 if (l->log_offset)
637 l->log_ddir_mask = LOG_OFFSET_SAMPLE_BIT;
638
639 INIT_FLIST_HEAD(&l->chunk_list);
640
641 if (l->log_gz && !p->td)
642 l->log_gz = 0;
643 else if (l->log_gz || l->log_gz_store) {
644 mutex_init_pshared(&l->chunk_lock);
645 p->td->flags |= TD_F_COMPRESS_LOG;
646 }
647
648 *log = l;
649 }
650
651 #ifdef CONFIG_SETVBUF
set_file_buffer(FILE * f)652 static void *set_file_buffer(FILE *f)
653 {
654 size_t size = 1048576;
655 void *buf;
656
657 buf = malloc(size);
658 setvbuf(f, buf, _IOFBF, size);
659 return buf;
660 }
661
clear_file_buffer(void * buf)662 static void clear_file_buffer(void *buf)
663 {
664 free(buf);
665 }
666 #else
set_file_buffer(FILE * f)667 static void *set_file_buffer(FILE *f)
668 {
669 return NULL;
670 }
671
clear_file_buffer(void * buf)672 static void clear_file_buffer(void *buf)
673 {
674 }
675 #endif
676
free_log(struct io_log * log)677 void free_log(struct io_log *log)
678 {
679 while (!flist_empty(&log->io_logs)) {
680 struct io_logs *cur_log;
681
682 cur_log = flist_first_entry(&log->io_logs, struct io_logs, list);
683 flist_del_init(&cur_log->list);
684 free(cur_log->log);
685 sfree(cur_log);
686 }
687
688 if (log->pending) {
689 free(log->pending->log);
690 free(log->pending);
691 log->pending = NULL;
692 }
693
694 free(log->pending);
695 free(log->filename);
696 sfree(log);
697 }
698
hist_sum(int j,int stride,unsigned int * io_u_plat,unsigned int * io_u_plat_last)699 unsigned long hist_sum(int j, int stride, unsigned int *io_u_plat,
700 unsigned int *io_u_plat_last)
701 {
702 unsigned long sum;
703 int k;
704
705 if (io_u_plat_last) {
706 for (k = sum = 0; k < stride; k++)
707 sum += io_u_plat[j + k] - io_u_plat_last[j + k];
708 } else {
709 for (k = sum = 0; k < stride; k++)
710 sum += io_u_plat[j + k];
711 }
712
713 return sum;
714 }
715
flush_hist_samples(FILE * f,int hist_coarseness,void * samples,uint64_t sample_size)716 static void flush_hist_samples(FILE *f, int hist_coarseness, void *samples,
717 uint64_t sample_size)
718 {
719 struct io_sample *s;
720 int log_offset;
721 uint64_t i, j, nr_samples;
722 struct io_u_plat_entry *entry, *entry_before;
723 unsigned int *io_u_plat;
724 unsigned int *io_u_plat_before;
725
726 int stride = 1 << hist_coarseness;
727
728 if (!sample_size)
729 return;
730
731 s = __get_sample(samples, 0, 0);
732 log_offset = (s->__ddir & LOG_OFFSET_SAMPLE_BIT) != 0;
733
734 nr_samples = sample_size / __log_entry_sz(log_offset);
735
736 for (i = 0; i < nr_samples; i++) {
737 s = __get_sample(samples, log_offset, i);
738
739 entry = s->data.plat_entry;
740 io_u_plat = entry->io_u_plat;
741
742 entry_before = flist_first_entry(&entry->list, struct io_u_plat_entry, list);
743 io_u_plat_before = entry_before->io_u_plat;
744
745 fprintf(f, "%lu, %u, %u, ", (unsigned long) s->time,
746 io_sample_ddir(s), s->bs);
747 for (j = 0; j < FIO_IO_U_PLAT_NR - stride; j += stride) {
748 fprintf(f, "%lu, ", hist_sum(j, stride, io_u_plat,
749 io_u_plat_before));
750 }
751 fprintf(f, "%lu\n", (unsigned long)
752 hist_sum(FIO_IO_U_PLAT_NR - stride, stride, io_u_plat,
753 io_u_plat_before));
754
755 flist_del(&entry_before->list);
756 free(entry_before);
757 }
758 }
759
flush_samples(FILE * f,void * samples,uint64_t sample_size)760 void flush_samples(FILE *f, void *samples, uint64_t sample_size)
761 {
762 struct io_sample *s;
763 int log_offset;
764 uint64_t i, nr_samples;
765
766 if (!sample_size)
767 return;
768
769 s = __get_sample(samples, 0, 0);
770 log_offset = (s->__ddir & LOG_OFFSET_SAMPLE_BIT) != 0;
771
772 nr_samples = sample_size / __log_entry_sz(log_offset);
773
774 for (i = 0; i < nr_samples; i++) {
775 s = __get_sample(samples, log_offset, i);
776
777 if (!log_offset) {
778 fprintf(f, "%lu, %" PRId64 ", %u, %u\n",
779 (unsigned long) s->time,
780 s->data.val,
781 io_sample_ddir(s), s->bs);
782 } else {
783 struct io_sample_offset *so = (void *) s;
784
785 fprintf(f, "%lu, %" PRId64 ", %u, %u, %llu\n",
786 (unsigned long) s->time,
787 s->data.val,
788 io_sample_ddir(s), s->bs,
789 (unsigned long long) so->offset);
790 }
791 }
792 }
793
794 #ifdef CONFIG_ZLIB
795
796 struct iolog_flush_data {
797 struct workqueue_work work;
798 struct io_log *log;
799 void *samples;
800 uint32_t nr_samples;
801 bool free;
802 };
803
804 #define GZ_CHUNK 131072
805
get_new_chunk(unsigned int seq)806 static struct iolog_compress *get_new_chunk(unsigned int seq)
807 {
808 struct iolog_compress *c;
809
810 c = malloc(sizeof(*c));
811 INIT_FLIST_HEAD(&c->list);
812 c->buf = malloc(GZ_CHUNK);
813 c->len = 0;
814 c->seq = seq;
815 return c;
816 }
817
free_chunk(struct iolog_compress * ic)818 static void free_chunk(struct iolog_compress *ic)
819 {
820 free(ic->buf);
821 free(ic);
822 }
823
z_stream_init(z_stream * stream,int gz_hdr)824 static int z_stream_init(z_stream *stream, int gz_hdr)
825 {
826 int wbits = 15;
827
828 memset(stream, 0, sizeof(*stream));
829 stream->zalloc = Z_NULL;
830 stream->zfree = Z_NULL;
831 stream->opaque = Z_NULL;
832 stream->next_in = Z_NULL;
833
834 /*
835 * zlib magic - add 32 for auto-detection of gz header or not,
836 * if we decide to store files in a gzip friendly format.
837 */
838 if (gz_hdr)
839 wbits += 32;
840
841 if (inflateInit2(stream, wbits) != Z_OK)
842 return 1;
843
844 return 0;
845 }
846
847 struct inflate_chunk_iter {
848 unsigned int seq;
849 int err;
850 void *buf;
851 size_t buf_size;
852 size_t buf_used;
853 size_t chunk_sz;
854 };
855
finish_chunk(z_stream * stream,FILE * f,struct inflate_chunk_iter * iter)856 static void finish_chunk(z_stream *stream, FILE *f,
857 struct inflate_chunk_iter *iter)
858 {
859 int ret;
860
861 ret = inflateEnd(stream);
862 if (ret != Z_OK)
863 log_err("fio: failed to end log inflation seq %d (%d)\n",
864 iter->seq, ret);
865
866 flush_samples(f, iter->buf, iter->buf_used);
867 free(iter->buf);
868 iter->buf = NULL;
869 iter->buf_size = iter->buf_used = 0;
870 }
871
872 /*
873 * Iterative chunk inflation. Handles cases where we cross into a new
874 * sequence, doing flush finish of previous chunk if needed.
875 */
inflate_chunk(struct iolog_compress * ic,int gz_hdr,FILE * f,z_stream * stream,struct inflate_chunk_iter * iter)876 static size_t inflate_chunk(struct iolog_compress *ic, int gz_hdr, FILE *f,
877 z_stream *stream, struct inflate_chunk_iter *iter)
878 {
879 size_t ret;
880
881 dprint(FD_COMPRESS, "inflate chunk size=%lu, seq=%u\n",
882 (unsigned long) ic->len, ic->seq);
883
884 if (ic->seq != iter->seq) {
885 if (iter->seq)
886 finish_chunk(stream, f, iter);
887
888 z_stream_init(stream, gz_hdr);
889 iter->seq = ic->seq;
890 }
891
892 stream->avail_in = ic->len;
893 stream->next_in = ic->buf;
894
895 if (!iter->buf_size) {
896 iter->buf_size = iter->chunk_sz;
897 iter->buf = malloc(iter->buf_size);
898 }
899
900 while (stream->avail_in) {
901 size_t this_out = iter->buf_size - iter->buf_used;
902 int err;
903
904 stream->avail_out = this_out;
905 stream->next_out = iter->buf + iter->buf_used;
906
907 err = inflate(stream, Z_NO_FLUSH);
908 if (err < 0) {
909 log_err("fio: failed inflating log: %d\n", err);
910 iter->err = err;
911 break;
912 }
913
914 iter->buf_used += this_out - stream->avail_out;
915
916 if (!stream->avail_out) {
917 iter->buf_size += iter->chunk_sz;
918 iter->buf = realloc(iter->buf, iter->buf_size);
919 continue;
920 }
921
922 if (err == Z_STREAM_END)
923 break;
924 }
925
926 ret = (void *) stream->next_in - ic->buf;
927
928 dprint(FD_COMPRESS, "inflated to size=%lu\n", (unsigned long) iter->buf_size);
929
930 return ret;
931 }
932
933 /*
934 * Inflate stored compressed chunks, or write them directly to the log
935 * file if so instructed.
936 */
inflate_gz_chunks(struct io_log * log,FILE * f)937 static int inflate_gz_chunks(struct io_log *log, FILE *f)
938 {
939 struct inflate_chunk_iter iter = { .chunk_sz = log->log_gz, };
940 z_stream stream;
941
942 while (!flist_empty(&log->chunk_list)) {
943 struct iolog_compress *ic;
944
945 ic = flist_first_entry(&log->chunk_list, struct iolog_compress, list);
946 flist_del(&ic->list);
947
948 if (log->log_gz_store) {
949 size_t ret;
950
951 dprint(FD_COMPRESS, "log write chunk size=%lu, "
952 "seq=%u\n", (unsigned long) ic->len, ic->seq);
953
954 ret = fwrite(ic->buf, ic->len, 1, f);
955 if (ret != 1 || ferror(f)) {
956 iter.err = errno;
957 log_err("fio: error writing compressed log\n");
958 }
959 } else
960 inflate_chunk(ic, log->log_gz_store, f, &stream, &iter);
961
962 free_chunk(ic);
963 }
964
965 if (iter.seq) {
966 finish_chunk(&stream, f, &iter);
967 free(iter.buf);
968 }
969
970 return iter.err;
971 }
972
973 /*
974 * Open compressed log file and decompress the stored chunks and
975 * write them to stdout. The chunks are stored sequentially in the
976 * file, so we iterate over them and do them one-by-one.
977 */
iolog_file_inflate(const char * file)978 int iolog_file_inflate(const char *file)
979 {
980 struct inflate_chunk_iter iter = { .chunk_sz = 64 * 1024 * 1024, };
981 struct iolog_compress ic;
982 z_stream stream;
983 struct stat sb;
984 ssize_t ret;
985 size_t total;
986 void *buf;
987 FILE *f;
988
989 f = fopen(file, "r");
990 if (!f) {
991 perror("fopen");
992 return 1;
993 }
994
995 if (stat(file, &sb) < 0) {
996 fclose(f);
997 perror("stat");
998 return 1;
999 }
1000
1001 ic.buf = buf = malloc(sb.st_size);
1002 ic.len = sb.st_size;
1003 ic.seq = 1;
1004
1005 ret = fread(ic.buf, ic.len, 1, f);
1006 if (ret < 0) {
1007 perror("fread");
1008 fclose(f);
1009 free(buf);
1010 return 1;
1011 } else if (ret != 1) {
1012 log_err("fio: short read on reading log\n");
1013 fclose(f);
1014 free(buf);
1015 return 1;
1016 }
1017
1018 fclose(f);
1019
1020 /*
1021 * Each chunk will return Z_STREAM_END. We don't know how many
1022 * chunks are in the file, so we just keep looping and incrementing
1023 * the sequence number until we have consumed the whole compressed
1024 * file.
1025 */
1026 total = ic.len;
1027 do {
1028 size_t iret;
1029
1030 iret = inflate_chunk(&ic, 1, stdout, &stream, &iter);
1031 total -= iret;
1032 if (!total)
1033 break;
1034 if (iter.err)
1035 break;
1036
1037 ic.seq++;
1038 ic.len -= iret;
1039 ic.buf += iret;
1040 } while (1);
1041
1042 if (iter.seq) {
1043 finish_chunk(&stream, stdout, &iter);
1044 free(iter.buf);
1045 }
1046
1047 free(buf);
1048 return iter.err;
1049 }
1050
1051 #else
1052
inflate_gz_chunks(struct io_log * log,FILE * f)1053 static int inflate_gz_chunks(struct io_log *log, FILE *f)
1054 {
1055 return 0;
1056 }
1057
iolog_file_inflate(const char * file)1058 int iolog_file_inflate(const char *file)
1059 {
1060 log_err("fio: log inflation not possible without zlib\n");
1061 return 1;
1062 }
1063
1064 #endif
1065
flush_log(struct io_log * log,bool do_append)1066 void flush_log(struct io_log *log, bool do_append)
1067 {
1068 void *buf;
1069 FILE *f;
1070
1071 if (!do_append)
1072 f = fopen(log->filename, "w");
1073 else
1074 f = fopen(log->filename, "a");
1075 if (!f) {
1076 perror("fopen log");
1077 return;
1078 }
1079
1080 buf = set_file_buffer(f);
1081
1082 inflate_gz_chunks(log, f);
1083
1084 while (!flist_empty(&log->io_logs)) {
1085 struct io_logs *cur_log;
1086
1087 cur_log = flist_first_entry(&log->io_logs, struct io_logs, list);
1088 flist_del_init(&cur_log->list);
1089
1090 if (log->td && log == log->td->clat_hist_log)
1091 flush_hist_samples(f, log->hist_coarseness, cur_log->log,
1092 log_sample_sz(log, cur_log));
1093 else
1094 flush_samples(f, cur_log->log, log_sample_sz(log, cur_log));
1095
1096 sfree(cur_log);
1097 }
1098
1099 fclose(f);
1100 clear_file_buffer(buf);
1101 }
1102
finish_log(struct thread_data * td,struct io_log * log,int trylock)1103 static int finish_log(struct thread_data *td, struct io_log *log, int trylock)
1104 {
1105 if (td->flags & TD_F_COMPRESS_LOG)
1106 iolog_flush(log);
1107
1108 if (trylock) {
1109 if (fio_trylock_file(log->filename))
1110 return 1;
1111 } else
1112 fio_lock_file(log->filename);
1113
1114 if (td->client_type == FIO_CLIENT_TYPE_GUI || is_backend)
1115 fio_send_iolog(td, log, log->filename);
1116 else
1117 flush_log(log, !td->o.per_job_logs);
1118
1119 fio_unlock_file(log->filename);
1120 free_log(log);
1121 return 0;
1122 }
1123
log_chunk_sizes(struct io_log * log)1124 size_t log_chunk_sizes(struct io_log *log)
1125 {
1126 struct flist_head *entry;
1127 size_t ret;
1128
1129 if (flist_empty(&log->chunk_list))
1130 return 0;
1131
1132 ret = 0;
1133 pthread_mutex_lock(&log->chunk_lock);
1134 flist_for_each(entry, &log->chunk_list) {
1135 struct iolog_compress *c;
1136
1137 c = flist_entry(entry, struct iolog_compress, list);
1138 ret += c->len;
1139 }
1140 pthread_mutex_unlock(&log->chunk_lock);
1141 return ret;
1142 }
1143
1144 #ifdef CONFIG_ZLIB
1145
gz_work(struct iolog_flush_data * data)1146 static int gz_work(struct iolog_flush_data *data)
1147 {
1148 struct iolog_compress *c = NULL;
1149 struct flist_head list;
1150 unsigned int seq;
1151 z_stream stream;
1152 size_t total = 0;
1153 int ret;
1154
1155 INIT_FLIST_HEAD(&list);
1156
1157 memset(&stream, 0, sizeof(stream));
1158 stream.zalloc = Z_NULL;
1159 stream.zfree = Z_NULL;
1160 stream.opaque = Z_NULL;
1161
1162 ret = deflateInit(&stream, Z_DEFAULT_COMPRESSION);
1163 if (ret != Z_OK) {
1164 log_err("fio: failed to init gz stream\n");
1165 goto err;
1166 }
1167
1168 seq = ++data->log->chunk_seq;
1169
1170 stream.next_in = (void *) data->samples;
1171 stream.avail_in = data->nr_samples * log_entry_sz(data->log);
1172
1173 dprint(FD_COMPRESS, "deflate input size=%lu, seq=%u, log=%s\n",
1174 (unsigned long) stream.avail_in, seq,
1175 data->log->filename);
1176 do {
1177 if (c)
1178 dprint(FD_COMPRESS, "seq=%d, chunk=%lu\n", seq,
1179 (unsigned long) c->len);
1180 c = get_new_chunk(seq);
1181 stream.avail_out = GZ_CHUNK;
1182 stream.next_out = c->buf;
1183 ret = deflate(&stream, Z_NO_FLUSH);
1184 if (ret < 0) {
1185 log_err("fio: deflate log (%d)\n", ret);
1186 free_chunk(c);
1187 goto err;
1188 }
1189
1190 c->len = GZ_CHUNK - stream.avail_out;
1191 flist_add_tail(&c->list, &list);
1192 total += c->len;
1193 } while (stream.avail_in);
1194
1195 stream.next_out = c->buf + c->len;
1196 stream.avail_out = GZ_CHUNK - c->len;
1197
1198 ret = deflate(&stream, Z_FINISH);
1199 if (ret < 0) {
1200 /*
1201 * Z_BUF_ERROR is special, it just means we need more
1202 * output space. We'll handle that below. Treat any other
1203 * error as fatal.
1204 */
1205 if (ret != Z_BUF_ERROR) {
1206 log_err("fio: deflate log (%d)\n", ret);
1207 flist_del(&c->list);
1208 free_chunk(c);
1209 goto err;
1210 }
1211 }
1212
1213 total -= c->len;
1214 c->len = GZ_CHUNK - stream.avail_out;
1215 total += c->len;
1216 dprint(FD_COMPRESS, "seq=%d, chunk=%lu\n", seq, (unsigned long) c->len);
1217
1218 if (ret != Z_STREAM_END) {
1219 do {
1220 c = get_new_chunk(seq);
1221 stream.avail_out = GZ_CHUNK;
1222 stream.next_out = c->buf;
1223 ret = deflate(&stream, Z_FINISH);
1224 c->len = GZ_CHUNK - stream.avail_out;
1225 total += c->len;
1226 flist_add_tail(&c->list, &list);
1227 dprint(FD_COMPRESS, "seq=%d, chunk=%lu\n", seq,
1228 (unsigned long) c->len);
1229 } while (ret != Z_STREAM_END);
1230 }
1231
1232 dprint(FD_COMPRESS, "deflated to size=%lu\n", (unsigned long) total);
1233
1234 ret = deflateEnd(&stream);
1235 if (ret != Z_OK)
1236 log_err("fio: deflateEnd %d\n", ret);
1237
1238 free(data->samples);
1239
1240 if (!flist_empty(&list)) {
1241 pthread_mutex_lock(&data->log->chunk_lock);
1242 flist_splice_tail(&list, &data->log->chunk_list);
1243 pthread_mutex_unlock(&data->log->chunk_lock);
1244 }
1245
1246 ret = 0;
1247 done:
1248 if (data->free)
1249 free(data);
1250 return ret;
1251 err:
1252 while (!flist_empty(&list)) {
1253 c = flist_first_entry(list.next, struct iolog_compress, list);
1254 flist_del(&c->list);
1255 free_chunk(c);
1256 }
1257 ret = 1;
1258 goto done;
1259 }
1260
1261 /*
1262 * Invoked from our compress helper thread, when logging would have exceeded
1263 * the specified memory limitation. Compresses the previously stored
1264 * entries.
1265 */
gz_work_async(struct submit_worker * sw,struct workqueue_work * work)1266 static int gz_work_async(struct submit_worker *sw, struct workqueue_work *work)
1267 {
1268 return gz_work(container_of(work, struct iolog_flush_data, work));
1269 }
1270
gz_init_worker(struct submit_worker * sw)1271 static int gz_init_worker(struct submit_worker *sw)
1272 {
1273 struct thread_data *td = sw->wq->td;
1274
1275 if (!fio_option_is_set(&td->o, log_gz_cpumask))
1276 return 0;
1277
1278 if (fio_setaffinity(gettid(), td->o.log_gz_cpumask) == -1) {
1279 log_err("gz: failed to set CPU affinity\n");
1280 return 1;
1281 }
1282
1283 return 0;
1284 }
1285
1286 static struct workqueue_ops log_compress_wq_ops = {
1287 .fn = gz_work_async,
1288 .init_worker_fn = gz_init_worker,
1289 .nice = 1,
1290 };
1291
iolog_compress_init(struct thread_data * td,struct sk_out * sk_out)1292 int iolog_compress_init(struct thread_data *td, struct sk_out *sk_out)
1293 {
1294 if (!(td->flags & TD_F_COMPRESS_LOG))
1295 return 0;
1296
1297 workqueue_init(td, &td->log_compress_wq, &log_compress_wq_ops, 1, sk_out);
1298 return 0;
1299 }
1300
iolog_compress_exit(struct thread_data * td)1301 void iolog_compress_exit(struct thread_data *td)
1302 {
1303 if (!(td->flags & TD_F_COMPRESS_LOG))
1304 return;
1305
1306 workqueue_exit(&td->log_compress_wq);
1307 }
1308
1309 /*
1310 * Queue work item to compress the existing log entries. We reset the
1311 * current log to a small size, and reference the existing log in the
1312 * data that we queue for compression. Once compression has been done,
1313 * this old log is freed. If called with finish == true, will not return
1314 * until the log compression has completed, and will flush all previous
1315 * logs too
1316 */
iolog_flush(struct io_log * log)1317 static int iolog_flush(struct io_log *log)
1318 {
1319 struct iolog_flush_data *data;
1320
1321 data = malloc(sizeof(*data));
1322 if (!data)
1323 return 1;
1324
1325 data->log = log;
1326 data->free = false;
1327
1328 while (!flist_empty(&log->io_logs)) {
1329 struct io_logs *cur_log;
1330
1331 cur_log = flist_first_entry(&log->io_logs, struct io_logs, list);
1332 flist_del_init(&cur_log->list);
1333
1334 data->samples = cur_log->log;
1335 data->nr_samples = cur_log->nr_samples;
1336
1337 sfree(cur_log);
1338
1339 gz_work(data);
1340 }
1341
1342 free(data);
1343 return 0;
1344 }
1345
iolog_cur_flush(struct io_log * log,struct io_logs * cur_log)1346 int iolog_cur_flush(struct io_log *log, struct io_logs *cur_log)
1347 {
1348 struct iolog_flush_data *data;
1349
1350 data = malloc(sizeof(*data));
1351 if (!data)
1352 return 1;
1353
1354 data->log = log;
1355
1356 data->samples = cur_log->log;
1357 data->nr_samples = cur_log->nr_samples;
1358 data->free = true;
1359
1360 cur_log->nr_samples = cur_log->max_samples = 0;
1361 cur_log->log = NULL;
1362
1363 workqueue_enqueue(&log->td->log_compress_wq, &data->work);
1364 return 0;
1365 }
1366 #else
1367
iolog_flush(struct io_log * log)1368 static int iolog_flush(struct io_log *log)
1369 {
1370 return 1;
1371 }
1372
iolog_cur_flush(struct io_log * log,struct io_logs * cur_log)1373 int iolog_cur_flush(struct io_log *log, struct io_logs *cur_log)
1374 {
1375 return 1;
1376 }
1377
iolog_compress_init(struct thread_data * td,struct sk_out * sk_out)1378 int iolog_compress_init(struct thread_data *td, struct sk_out *sk_out)
1379 {
1380 return 0;
1381 }
1382
iolog_compress_exit(struct thread_data * td)1383 void iolog_compress_exit(struct thread_data *td)
1384 {
1385 }
1386
1387 #endif
1388
iolog_cur_log(struct io_log * log)1389 struct io_logs *iolog_cur_log(struct io_log *log)
1390 {
1391 if (flist_empty(&log->io_logs))
1392 return NULL;
1393
1394 return flist_last_entry(&log->io_logs, struct io_logs, list);
1395 }
1396
iolog_nr_samples(struct io_log * iolog)1397 uint64_t iolog_nr_samples(struct io_log *iolog)
1398 {
1399 struct flist_head *entry;
1400 uint64_t ret = 0;
1401
1402 flist_for_each(entry, &iolog->io_logs) {
1403 struct io_logs *cur_log;
1404
1405 cur_log = flist_entry(entry, struct io_logs, list);
1406 ret += cur_log->nr_samples;
1407 }
1408
1409 return ret;
1410 }
1411
__write_log(struct thread_data * td,struct io_log * log,int try)1412 static int __write_log(struct thread_data *td, struct io_log *log, int try)
1413 {
1414 if (log)
1415 return finish_log(td, log, try);
1416
1417 return 0;
1418 }
1419
write_iops_log(struct thread_data * td,int try,bool unit_log)1420 static int write_iops_log(struct thread_data *td, int try, bool unit_log)
1421 {
1422 int ret;
1423
1424 if (per_unit_log(td->iops_log) != unit_log)
1425 return 0;
1426
1427 ret = __write_log(td, td->iops_log, try);
1428 if (!ret)
1429 td->iops_log = NULL;
1430
1431 return ret;
1432 }
1433
write_slat_log(struct thread_data * td,int try,bool unit_log)1434 static int write_slat_log(struct thread_data *td, int try, bool unit_log)
1435 {
1436 int ret;
1437
1438 if (!unit_log)
1439 return 0;
1440
1441 ret = __write_log(td, td->slat_log, try);
1442 if (!ret)
1443 td->slat_log = NULL;
1444
1445 return ret;
1446 }
1447
write_clat_log(struct thread_data * td,int try,bool unit_log)1448 static int write_clat_log(struct thread_data *td, int try, bool unit_log)
1449 {
1450 int ret;
1451
1452 if (!unit_log)
1453 return 0;
1454
1455 ret = __write_log(td, td->clat_log, try);
1456 if (!ret)
1457 td->clat_log = NULL;
1458
1459 return ret;
1460 }
1461
write_clat_hist_log(struct thread_data * td,int try,bool unit_log)1462 static int write_clat_hist_log(struct thread_data *td, int try, bool unit_log)
1463 {
1464 int ret;
1465
1466 if (!unit_log)
1467 return 0;
1468
1469 ret = __write_log(td, td->clat_hist_log, try);
1470 if (!ret)
1471 td->clat_hist_log = NULL;
1472
1473 return ret;
1474 }
1475
write_lat_log(struct thread_data * td,int try,bool unit_log)1476 static int write_lat_log(struct thread_data *td, int try, bool unit_log)
1477 {
1478 int ret;
1479
1480 if (!unit_log)
1481 return 0;
1482
1483 ret = __write_log(td, td->lat_log, try);
1484 if (!ret)
1485 td->lat_log = NULL;
1486
1487 return ret;
1488 }
1489
write_bandw_log(struct thread_data * td,int try,bool unit_log)1490 static int write_bandw_log(struct thread_data *td, int try, bool unit_log)
1491 {
1492 int ret;
1493
1494 if (per_unit_log(td->bw_log) != unit_log)
1495 return 0;
1496
1497 ret = __write_log(td, td->bw_log, try);
1498 if (!ret)
1499 td->bw_log = NULL;
1500
1501 return ret;
1502 }
1503
1504 enum {
1505 BW_LOG_MASK = 1,
1506 LAT_LOG_MASK = 2,
1507 SLAT_LOG_MASK = 4,
1508 CLAT_LOG_MASK = 8,
1509 IOPS_LOG_MASK = 16,
1510 CLAT_HIST_LOG_MASK = 32,
1511
1512 ALL_LOG_NR = 6,
1513 };
1514
1515 struct log_type {
1516 unsigned int mask;
1517 int (*fn)(struct thread_data *, int, bool);
1518 };
1519
1520 static struct log_type log_types[] = {
1521 {
1522 .mask = BW_LOG_MASK,
1523 .fn = write_bandw_log,
1524 },
1525 {
1526 .mask = LAT_LOG_MASK,
1527 .fn = write_lat_log,
1528 },
1529 {
1530 .mask = SLAT_LOG_MASK,
1531 .fn = write_slat_log,
1532 },
1533 {
1534 .mask = CLAT_LOG_MASK,
1535 .fn = write_clat_log,
1536 },
1537 {
1538 .mask = IOPS_LOG_MASK,
1539 .fn = write_iops_log,
1540 },
1541 {
1542 .mask = CLAT_HIST_LOG_MASK,
1543 .fn = write_clat_hist_log,
1544 }
1545 };
1546
td_writeout_logs(struct thread_data * td,bool unit_logs)1547 void td_writeout_logs(struct thread_data *td, bool unit_logs)
1548 {
1549 unsigned int log_mask = 0;
1550 unsigned int log_left = ALL_LOG_NR;
1551 int old_state, i;
1552
1553 old_state = td_bump_runstate(td, TD_FINISHING);
1554
1555 finalize_logs(td, unit_logs);
1556
1557 while (log_left) {
1558 int prev_log_left = log_left;
1559
1560 for (i = 0; i < ALL_LOG_NR && log_left; i++) {
1561 struct log_type *lt = &log_types[i];
1562 int ret;
1563
1564 if (!(log_mask & lt->mask)) {
1565 ret = lt->fn(td, log_left != 1, unit_logs);
1566 if (!ret) {
1567 log_left--;
1568 log_mask |= lt->mask;
1569 }
1570 }
1571 }
1572
1573 if (prev_log_left == log_left)
1574 usleep(5000);
1575 }
1576
1577 td_restore_runstate(td, old_state);
1578 }
1579
fio_writeout_logs(bool unit_logs)1580 void fio_writeout_logs(bool unit_logs)
1581 {
1582 struct thread_data *td;
1583 int i;
1584
1585 for_each_td(td, i)
1586 td_writeout_logs(td, unit_logs);
1587 }
1588