• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Code related to writing an iolog of what a thread is doing, and to
3  * later read that back and replay
4  */
5 #include <stdio.h>
6 #include <stdlib.h>
7 #include <libgen.h>
8 #include <assert.h>
9 #include <sys/types.h>
10 #include <sys/stat.h>
11 #include <unistd.h>
12 #ifdef CONFIG_ZLIB
13 #include <zlib.h>
14 #endif
15 
16 #include "flist.h"
17 #include "fio.h"
18 #include "verify.h"
19 #include "trim.h"
20 #include "filelock.h"
21 #include "smalloc.h"
22 
23 static int iolog_flush(struct io_log *log);
24 
25 static const char iolog_ver2[] = "fio version 2 iolog";
26 
queue_io_piece(struct thread_data * td,struct io_piece * ipo)27 void queue_io_piece(struct thread_data *td, struct io_piece *ipo)
28 {
29 	flist_add_tail(&ipo->list, &td->io_log_list);
30 	td->total_io_size += ipo->len;
31 }
32 
log_io_u(const struct thread_data * td,const struct io_u * io_u)33 void log_io_u(const struct thread_data *td, const struct io_u *io_u)
34 {
35 	if (!td->o.write_iolog_file)
36 		return;
37 
38 	fprintf(td->iolog_f, "%s %s %llu %lu\n", io_u->file->file_name,
39 						io_ddir_name(io_u->ddir),
40 						io_u->offset, io_u->buflen);
41 }
42 
log_file(struct thread_data * td,struct fio_file * f,enum file_log_act what)43 void log_file(struct thread_data *td, struct fio_file *f,
44 	      enum file_log_act what)
45 {
46 	const char *act[] = { "add", "open", "close" };
47 
48 	assert(what < 3);
49 
50 	if (!td->o.write_iolog_file)
51 		return;
52 
53 
54 	/*
55 	 * this happens on the pre-open/close done before the job starts
56 	 */
57 	if (!td->iolog_f)
58 		return;
59 
60 	fprintf(td->iolog_f, "%s %s\n", f->file_name, act[what]);
61 }
62 
iolog_delay(struct thread_data * td,unsigned long delay)63 static void iolog_delay(struct thread_data *td, unsigned long delay)
64 {
65 	uint64_t usec = utime_since_now(&td->last_issue);
66 	uint64_t this_delay;
67 	struct timeval tv;
68 
69 	if (delay < td->time_offset) {
70 		td->time_offset = 0;
71 		return;
72 	}
73 
74 	delay -= td->time_offset;
75 	if (delay < usec)
76 		return;
77 
78 	delay -= usec;
79 
80 	fio_gettime(&tv, NULL);
81 	while (delay && !td->terminate) {
82 		this_delay = delay;
83 		if (this_delay > 500000)
84 			this_delay = 500000;
85 
86 		usec_sleep(td, this_delay);
87 		delay -= this_delay;
88 	}
89 
90 	usec = utime_since_now(&tv);
91 	if (usec > delay)
92 		td->time_offset = usec - delay;
93 	else
94 		td->time_offset = 0;
95 }
96 
ipo_special(struct thread_data * td,struct io_piece * ipo)97 static int ipo_special(struct thread_data *td, struct io_piece *ipo)
98 {
99 	struct fio_file *f;
100 	int ret;
101 
102 	/*
103 	 * Not a special ipo
104 	 */
105 	if (ipo->ddir != DDIR_INVAL)
106 		return 0;
107 
108 	f = td->files[ipo->fileno];
109 
110 	switch (ipo->file_action) {
111 	case FIO_LOG_OPEN_FILE:
112 		if (td->o.replay_redirect && fio_file_open(f)) {
113 			dprint(FD_FILE, "iolog: ignoring re-open of file %s\n",
114 					f->file_name);
115 			break;
116 		}
117 		ret = td_io_open_file(td, f);
118 		if (!ret)
119 			break;
120 		td_verror(td, ret, "iolog open file");
121 		return -1;
122 	case FIO_LOG_CLOSE_FILE:
123 		td_io_close_file(td, f);
124 		break;
125 	case FIO_LOG_UNLINK_FILE:
126 		td_io_unlink_file(td, f);
127 		break;
128 	default:
129 		log_err("fio: bad file action %d\n", ipo->file_action);
130 		break;
131 	}
132 
133 	return 1;
134 }
135 
read_iolog_get(struct thread_data * td,struct io_u * io_u)136 int read_iolog_get(struct thread_data *td, struct io_u *io_u)
137 {
138 	struct io_piece *ipo;
139 	unsigned long elapsed;
140 
141 	while (!flist_empty(&td->io_log_list)) {
142 		int ret;
143 
144 		ipo = flist_first_entry(&td->io_log_list, struct io_piece, list);
145 		flist_del(&ipo->list);
146 		remove_trim_entry(td, ipo);
147 
148 		ret = ipo_special(td, ipo);
149 		if (ret < 0) {
150 			free(ipo);
151 			break;
152 		} else if (ret > 0) {
153 			free(ipo);
154 			continue;
155 		}
156 
157 		io_u->ddir = ipo->ddir;
158 		if (ipo->ddir != DDIR_WAIT) {
159 			io_u->offset = ipo->offset;
160 			io_u->buflen = ipo->len;
161 			io_u->file = td->files[ipo->fileno];
162 			get_file(io_u->file);
163 			dprint(FD_IO, "iolog: get %llu/%lu/%s\n", io_u->offset,
164 						io_u->buflen, io_u->file->file_name);
165 			if (ipo->delay)
166 				iolog_delay(td, ipo->delay);
167 		} else {
168 			elapsed = mtime_since_genesis();
169 			if (ipo->delay > elapsed)
170 				usec_sleep(td, (ipo->delay - elapsed) * 1000);
171 		}
172 
173 		free(ipo);
174 
175 		if (io_u->ddir != DDIR_WAIT)
176 			return 0;
177 	}
178 
179 	td->done = 1;
180 	return 1;
181 }
182 
prune_io_piece_log(struct thread_data * td)183 void prune_io_piece_log(struct thread_data *td)
184 {
185 	struct io_piece *ipo;
186 	struct rb_node *n;
187 
188 	while ((n = rb_first(&td->io_hist_tree)) != NULL) {
189 		ipo = rb_entry(n, struct io_piece, rb_node);
190 		rb_erase(n, &td->io_hist_tree);
191 		remove_trim_entry(td, ipo);
192 		td->io_hist_len--;
193 		free(ipo);
194 	}
195 
196 	while (!flist_empty(&td->io_hist_list)) {
197 		ipo = flist_first_entry(&td->io_hist_list, struct io_piece, list);
198 		flist_del(&ipo->list);
199 		remove_trim_entry(td, ipo);
200 		td->io_hist_len--;
201 		free(ipo);
202 	}
203 }
204 
205 /*
206  * log a successful write, so we can unwind the log for verify
207  */
log_io_piece(struct thread_data * td,struct io_u * io_u)208 void log_io_piece(struct thread_data *td, struct io_u *io_u)
209 {
210 	struct rb_node **p, *parent;
211 	struct io_piece *ipo, *__ipo;
212 
213 	ipo = malloc(sizeof(struct io_piece));
214 	init_ipo(ipo);
215 	ipo->file = io_u->file;
216 	ipo->offset = io_u->offset;
217 	ipo->len = io_u->buflen;
218 	ipo->numberio = io_u->numberio;
219 	ipo->flags = IP_F_IN_FLIGHT;
220 
221 	io_u->ipo = ipo;
222 
223 	if (io_u_should_trim(td, io_u)) {
224 		flist_add_tail(&ipo->trim_list, &td->trim_list);
225 		td->trim_entries++;
226 	}
227 
228 	/*
229 	 * We don't need to sort the entries, if:
230 	 *
231 	 *	Sequential writes, or
232 	 *	Random writes that lay out the file as it goes along
233 	 *
234 	 * For both these cases, just reading back data in the order we
235 	 * wrote it out is the fastest.
236 	 *
237 	 * One exception is if we don't have a random map AND we are doing
238 	 * verifies, in that case we need to check for duplicate blocks and
239 	 * drop the old one, which we rely on the rb insert/lookup for
240 	 * handling.
241 	 */
242 	if (((!td->o.verifysort) || !td_random(td) || !td->o.overwrite) &&
243 	      (file_randommap(td, ipo->file) || td->o.verify == VERIFY_NONE)) {
244 		INIT_FLIST_HEAD(&ipo->list);
245 		flist_add_tail(&ipo->list, &td->io_hist_list);
246 		ipo->flags |= IP_F_ONLIST;
247 		td->io_hist_len++;
248 		return;
249 	}
250 
251 	RB_CLEAR_NODE(&ipo->rb_node);
252 
253 	/*
254 	 * Sort the entry into the verification list
255 	 */
256 restart:
257 	p = &td->io_hist_tree.rb_node;
258 	parent = NULL;
259 	while (*p) {
260 		int overlap = 0;
261 		parent = *p;
262 
263 		__ipo = rb_entry(parent, struct io_piece, rb_node);
264 		if (ipo->file < __ipo->file)
265 			p = &(*p)->rb_left;
266 		else if (ipo->file > __ipo->file)
267 			p = &(*p)->rb_right;
268 		else if (ipo->offset < __ipo->offset) {
269 			p = &(*p)->rb_left;
270 			overlap = ipo->offset + ipo->len > __ipo->offset;
271 		}
272 		else if (ipo->offset > __ipo->offset) {
273 			p = &(*p)->rb_right;
274 			overlap = __ipo->offset + __ipo->len > ipo->offset;
275 		}
276 		else
277 			overlap = 1;
278 
279 		if (overlap) {
280 			dprint(FD_IO, "iolog: overlap %llu/%lu, %llu/%lu\n",
281 				__ipo->offset, __ipo->len,
282 				ipo->offset, ipo->len);
283 			td->io_hist_len--;
284 			rb_erase(parent, &td->io_hist_tree);
285 			remove_trim_entry(td, __ipo);
286 			free(__ipo);
287 			goto restart;
288 		}
289 	}
290 
291 	rb_link_node(&ipo->rb_node, parent, p);
292 	rb_insert_color(&ipo->rb_node, &td->io_hist_tree);
293 	ipo->flags |= IP_F_ONRB;
294 	td->io_hist_len++;
295 }
296 
unlog_io_piece(struct thread_data * td,struct io_u * io_u)297 void unlog_io_piece(struct thread_data *td, struct io_u *io_u)
298 {
299 	struct io_piece *ipo = io_u->ipo;
300 
301 	if (td->ts.nr_block_infos) {
302 		uint32_t *info = io_u_block_info(td, io_u);
303 		if (BLOCK_INFO_STATE(*info) < BLOCK_STATE_TRIM_FAILURE) {
304 			if (io_u->ddir == DDIR_TRIM)
305 				*info = BLOCK_INFO_SET_STATE(*info,
306 						BLOCK_STATE_TRIM_FAILURE);
307 			else if (io_u->ddir == DDIR_WRITE)
308 				*info = BLOCK_INFO_SET_STATE(*info,
309 						BLOCK_STATE_WRITE_FAILURE);
310 		}
311 	}
312 
313 	if (!ipo)
314 		return;
315 
316 	if (ipo->flags & IP_F_ONRB)
317 		rb_erase(&ipo->rb_node, &td->io_hist_tree);
318 	else if (ipo->flags & IP_F_ONLIST)
319 		flist_del(&ipo->list);
320 
321 	free(ipo);
322 	io_u->ipo = NULL;
323 	td->io_hist_len--;
324 }
325 
trim_io_piece(struct thread_data * td,const struct io_u * io_u)326 void trim_io_piece(struct thread_data *td, const struct io_u *io_u)
327 {
328 	struct io_piece *ipo = io_u->ipo;
329 
330 	if (!ipo)
331 		return;
332 
333 	ipo->len = io_u->xfer_buflen - io_u->resid;
334 }
335 
write_iolog_close(struct thread_data * td)336 void write_iolog_close(struct thread_data *td)
337 {
338 	fflush(td->iolog_f);
339 	fclose(td->iolog_f);
340 	free(td->iolog_buf);
341 	td->iolog_f = NULL;
342 	td->iolog_buf = NULL;
343 }
344 
345 /*
346  * Read version 2 iolog data. It is enhanced to include per-file logging,
347  * syncs, etc.
348  */
read_iolog2(struct thread_data * td,FILE * f)349 static int read_iolog2(struct thread_data *td, FILE *f)
350 {
351 	unsigned long long offset;
352 	unsigned int bytes;
353 	int reads, writes, waits, fileno = 0, file_action = 0; /* stupid gcc */
354 	char *rfname, *fname, *act;
355 	char *str, *p;
356 	enum fio_ddir rw;
357 
358 	free_release_files(td);
359 
360 	/*
361 	 * Read in the read iolog and store it, reuse the infrastructure
362 	 * for doing verifications.
363 	 */
364 	str = malloc(4096);
365 	rfname = fname = malloc(256+16);
366 	act = malloc(256+16);
367 
368 	reads = writes = waits = 0;
369 	while ((p = fgets(str, 4096, f)) != NULL) {
370 		struct io_piece *ipo;
371 		int r;
372 
373 		r = sscanf(p, "%256s %256s %llu %u", rfname, act, &offset,
374 									&bytes);
375 
376 		if (td->o.replay_redirect)
377 			fname = td->o.replay_redirect;
378 
379 		if (r == 4) {
380 			/*
381 			 * Check action first
382 			 */
383 			if (!strcmp(act, "wait"))
384 				rw = DDIR_WAIT;
385 			else if (!strcmp(act, "read"))
386 				rw = DDIR_READ;
387 			else if (!strcmp(act, "write"))
388 				rw = DDIR_WRITE;
389 			else if (!strcmp(act, "sync"))
390 				rw = DDIR_SYNC;
391 			else if (!strcmp(act, "datasync"))
392 				rw = DDIR_DATASYNC;
393 			else if (!strcmp(act, "trim"))
394 				rw = DDIR_TRIM;
395 			else {
396 				log_err("fio: bad iolog file action: %s\n",
397 									act);
398 				continue;
399 			}
400 			fileno = get_fileno(td, fname);
401 		} else if (r == 2) {
402 			rw = DDIR_INVAL;
403 			if (!strcmp(act, "add")) {
404 				if (td->o.replay_redirect &&
405 				    get_fileno(td, fname) != -1) {
406 					dprint(FD_FILE, "iolog: ignoring"
407 						" re-add of file %s\n", fname);
408 				} else {
409 					fileno = add_file(td, fname, 0, 1);
410 					file_action = FIO_LOG_ADD_FILE;
411 				}
412 				continue;
413 			} else if (!strcmp(act, "open")) {
414 				fileno = get_fileno(td, fname);
415 				file_action = FIO_LOG_OPEN_FILE;
416 			} else if (!strcmp(act, "close")) {
417 				fileno = get_fileno(td, fname);
418 				file_action = FIO_LOG_CLOSE_FILE;
419 			} else {
420 				log_err("fio: bad iolog file action: %s\n",
421 									act);
422 				continue;
423 			}
424 		} else {
425 			log_err("bad iolog2: %s\n", p);
426 			continue;
427 		}
428 
429 		if (rw == DDIR_READ)
430 			reads++;
431 		else if (rw == DDIR_WRITE) {
432 			/*
433 			 * Don't add a write for ro mode
434 			 */
435 			if (read_only)
436 				continue;
437 			writes++;
438 		} else if (rw == DDIR_WAIT) {
439 			if (td->o.no_stall)
440 				continue;
441 			waits++;
442 		} else if (rw == DDIR_INVAL) {
443 		} else if (!ddir_sync(rw)) {
444 			log_err("bad ddir: %d\n", rw);
445 			continue;
446 		}
447 
448 		/*
449 		 * Make note of file
450 		 */
451 		ipo = malloc(sizeof(*ipo));
452 		init_ipo(ipo);
453 		ipo->ddir = rw;
454 		if (rw == DDIR_WAIT) {
455 			ipo->delay = offset;
456 		} else {
457 			if (td->o.replay_scale)
458 				ipo->offset = offset / td->o.replay_scale;
459 			else
460 				ipo->offset = offset;
461 			ipo_bytes_align(td->o.replay_align, ipo);
462 
463 			ipo->len = bytes;
464 			if (rw != DDIR_INVAL && bytes > td->o.max_bs[rw])
465 				td->o.max_bs[rw] = bytes;
466 			ipo->fileno = fileno;
467 			ipo->file_action = file_action;
468 			td->o.size += bytes;
469 		}
470 
471 		queue_io_piece(td, ipo);
472 	}
473 
474 	free(str);
475 	free(act);
476 	free(rfname);
477 
478 	if (writes && read_only) {
479 		log_err("fio: <%s> skips replay of %d writes due to"
480 			" read-only\n", td->o.name, writes);
481 		writes = 0;
482 	}
483 
484 	if (!reads && !writes && !waits)
485 		return 1;
486 	else if (reads && !writes)
487 		td->o.td_ddir = TD_DDIR_READ;
488 	else if (!reads && writes)
489 		td->o.td_ddir = TD_DDIR_WRITE;
490 	else
491 		td->o.td_ddir = TD_DDIR_RW;
492 
493 	return 0;
494 }
495 
496 /*
497  * open iolog, check version, and call appropriate parser
498  */
init_iolog_read(struct thread_data * td)499 static int init_iolog_read(struct thread_data *td)
500 {
501 	char buffer[256], *p;
502 	FILE *f;
503 	int ret;
504 
505 	f = fopen(td->o.read_iolog_file, "r");
506 	if (!f) {
507 		perror("fopen read iolog");
508 		return 1;
509 	}
510 
511 	p = fgets(buffer, sizeof(buffer), f);
512 	if (!p) {
513 		td_verror(td, errno, "iolog read");
514 		log_err("fio: unable to read iolog\n");
515 		fclose(f);
516 		return 1;
517 	}
518 
519 	/*
520 	 * version 2 of the iolog stores a specific string as the
521 	 * first line, check for that
522 	 */
523 	if (!strncmp(iolog_ver2, buffer, strlen(iolog_ver2)))
524 		ret = read_iolog2(td, f);
525 	else {
526 		log_err("fio: iolog version 1 is no longer supported\n");
527 		ret = 1;
528 	}
529 
530 	fclose(f);
531 	return ret;
532 }
533 
534 /*
535  * Set up a log for storing io patterns.
536  */
init_iolog_write(struct thread_data * td)537 static int init_iolog_write(struct thread_data *td)
538 {
539 	struct fio_file *ff;
540 	FILE *f;
541 	unsigned int i;
542 
543 	f = fopen(td->o.write_iolog_file, "a");
544 	if (!f) {
545 		perror("fopen write iolog");
546 		return 1;
547 	}
548 
549 	/*
550 	 * That's it for writing, setup a log buffer and we're done.
551 	  */
552 	td->iolog_f = f;
553 	td->iolog_buf = malloc(8192);
554 	setvbuf(f, td->iolog_buf, _IOFBF, 8192);
555 
556 	/*
557 	 * write our version line
558 	 */
559 	if (fprintf(f, "%s\n", iolog_ver2) < 0) {
560 		perror("iolog init\n");
561 		return 1;
562 	}
563 
564 	/*
565 	 * add all known files
566 	 */
567 	for_each_file(td, ff, i)
568 		log_file(td, ff, FIO_LOG_ADD_FILE);
569 
570 	return 0;
571 }
572 
init_iolog(struct thread_data * td)573 int init_iolog(struct thread_data *td)
574 {
575 	int ret = 0;
576 
577 	if (td->o.read_iolog_file) {
578 		int need_swap;
579 
580 		/*
581 		 * Check if it's a blktrace file and load that if possible.
582 		 * Otherwise assume it's a normal log file and load that.
583 		 */
584 		if (is_blktrace(td->o.read_iolog_file, &need_swap))
585 			ret = load_blktrace(td, td->o.read_iolog_file, need_swap);
586 		else
587 			ret = init_iolog_read(td);
588 	} else if (td->o.write_iolog_file)
589 		ret = init_iolog_write(td);
590 
591 	if (ret)
592 		td_verror(td, EINVAL, "failed initializing iolog");
593 
594 	return ret;
595 }
596 
setup_log(struct io_log ** log,struct log_params * p,const char * filename)597 void setup_log(struct io_log **log, struct log_params *p,
598 	       const char *filename)
599 {
600 	struct io_log *l;
601 	int i;
602 	struct io_u_plat_entry *entry;
603 	struct flist_head *list;
604 
605 	l = scalloc(1, sizeof(*l));
606 	INIT_FLIST_HEAD(&l->io_logs);
607 	l->log_type = p->log_type;
608 	l->log_offset = p->log_offset;
609 	l->log_gz = p->log_gz;
610 	l->log_gz_store = p->log_gz_store;
611 	l->avg_msec = p->avg_msec;
612 	l->hist_msec = p->hist_msec;
613 	l->hist_coarseness = p->hist_coarseness;
614 	l->filename = strdup(filename);
615 	l->td = p->td;
616 
617 	/* Initialize histogram lists for each r/w direction,
618 	 * with initial io_u_plat of all zeros:
619 	 */
620 	for (i = 0; i < DDIR_RWDIR_CNT; i++) {
621 		list = &l->hist_window[i].list;
622 		INIT_FLIST_HEAD(list);
623 		entry = calloc(1, sizeof(struct io_u_plat_entry));
624 		flist_add(&entry->list, list);
625 	}
626 
627 	if (l->td && l->td->o.io_submit_mode != IO_MODE_OFFLOAD) {
628 		struct io_logs *p;
629 
630 		p = calloc(1, sizeof(*l->pending));
631 		p->max_samples = DEF_LOG_ENTRIES;
632 		p->log = calloc(p->max_samples, log_entry_sz(l));
633 		l->pending = p;
634 	}
635 
636 	if (l->log_offset)
637 		l->log_ddir_mask = LOG_OFFSET_SAMPLE_BIT;
638 
639 	INIT_FLIST_HEAD(&l->chunk_list);
640 
641 	if (l->log_gz && !p->td)
642 		l->log_gz = 0;
643 	else if (l->log_gz || l->log_gz_store) {
644 		mutex_init_pshared(&l->chunk_lock);
645 		p->td->flags |= TD_F_COMPRESS_LOG;
646 	}
647 
648 	*log = l;
649 }
650 
651 #ifdef CONFIG_SETVBUF
set_file_buffer(FILE * f)652 static void *set_file_buffer(FILE *f)
653 {
654 	size_t size = 1048576;
655 	void *buf;
656 
657 	buf = malloc(size);
658 	setvbuf(f, buf, _IOFBF, size);
659 	return buf;
660 }
661 
clear_file_buffer(void * buf)662 static void clear_file_buffer(void *buf)
663 {
664 	free(buf);
665 }
666 #else
set_file_buffer(FILE * f)667 static void *set_file_buffer(FILE *f)
668 {
669 	return NULL;
670 }
671 
clear_file_buffer(void * buf)672 static void clear_file_buffer(void *buf)
673 {
674 }
675 #endif
676 
free_log(struct io_log * log)677 void free_log(struct io_log *log)
678 {
679 	while (!flist_empty(&log->io_logs)) {
680 		struct io_logs *cur_log;
681 
682 		cur_log = flist_first_entry(&log->io_logs, struct io_logs, list);
683 		flist_del_init(&cur_log->list);
684 		free(cur_log->log);
685 		sfree(cur_log);
686 	}
687 
688 	if (log->pending) {
689 		free(log->pending->log);
690 		free(log->pending);
691 		log->pending = NULL;
692 	}
693 
694 	free(log->pending);
695 	free(log->filename);
696 	sfree(log);
697 }
698 
hist_sum(int j,int stride,unsigned int * io_u_plat,unsigned int * io_u_plat_last)699 unsigned long hist_sum(int j, int stride, unsigned int *io_u_plat,
700 		unsigned int *io_u_plat_last)
701 {
702 	unsigned long sum;
703 	int k;
704 
705 	if (io_u_plat_last) {
706 		for (k = sum = 0; k < stride; k++)
707 			sum += io_u_plat[j + k] - io_u_plat_last[j + k];
708 	} else {
709 		for (k = sum = 0; k < stride; k++)
710 			sum += io_u_plat[j + k];
711 	}
712 
713 	return sum;
714 }
715 
flush_hist_samples(FILE * f,int hist_coarseness,void * samples,uint64_t sample_size)716 static void flush_hist_samples(FILE *f, int hist_coarseness, void *samples,
717 			       uint64_t sample_size)
718 {
719 	struct io_sample *s;
720 	int log_offset;
721 	uint64_t i, j, nr_samples;
722 	struct io_u_plat_entry *entry, *entry_before;
723 	unsigned int *io_u_plat;
724 	unsigned int *io_u_plat_before;
725 
726 	int stride = 1 << hist_coarseness;
727 
728 	if (!sample_size)
729 		return;
730 
731 	s = __get_sample(samples, 0, 0);
732 	log_offset = (s->__ddir & LOG_OFFSET_SAMPLE_BIT) != 0;
733 
734 	nr_samples = sample_size / __log_entry_sz(log_offset);
735 
736 	for (i = 0; i < nr_samples; i++) {
737 		s = __get_sample(samples, log_offset, i);
738 
739 		entry = s->data.plat_entry;
740 		io_u_plat = entry->io_u_plat;
741 
742 		entry_before = flist_first_entry(&entry->list, struct io_u_plat_entry, list);
743 		io_u_plat_before = entry_before->io_u_plat;
744 
745 		fprintf(f, "%lu, %u, %u, ", (unsigned long) s->time,
746 						io_sample_ddir(s), s->bs);
747 		for (j = 0; j < FIO_IO_U_PLAT_NR - stride; j += stride) {
748 			fprintf(f, "%lu, ", hist_sum(j, stride, io_u_plat,
749 						io_u_plat_before));
750 		}
751 		fprintf(f, "%lu\n", (unsigned long)
752 		        hist_sum(FIO_IO_U_PLAT_NR - stride, stride, io_u_plat,
753 					io_u_plat_before));
754 
755 		flist_del(&entry_before->list);
756 		free(entry_before);
757 	}
758 }
759 
flush_samples(FILE * f,void * samples,uint64_t sample_size)760 void flush_samples(FILE *f, void *samples, uint64_t sample_size)
761 {
762 	struct io_sample *s;
763 	int log_offset;
764 	uint64_t i, nr_samples;
765 
766 	if (!sample_size)
767 		return;
768 
769 	s = __get_sample(samples, 0, 0);
770 	log_offset = (s->__ddir & LOG_OFFSET_SAMPLE_BIT) != 0;
771 
772 	nr_samples = sample_size / __log_entry_sz(log_offset);
773 
774 	for (i = 0; i < nr_samples; i++) {
775 		s = __get_sample(samples, log_offset, i);
776 
777 		if (!log_offset) {
778 			fprintf(f, "%lu, %" PRId64 ", %u, %u\n",
779 					(unsigned long) s->time,
780 					s->data.val,
781 					io_sample_ddir(s), s->bs);
782 		} else {
783 			struct io_sample_offset *so = (void *) s;
784 
785 			fprintf(f, "%lu, %" PRId64 ", %u, %u, %llu\n",
786 					(unsigned long) s->time,
787 					s->data.val,
788 					io_sample_ddir(s), s->bs,
789 					(unsigned long long) so->offset);
790 		}
791 	}
792 }
793 
794 #ifdef CONFIG_ZLIB
795 
796 struct iolog_flush_data {
797 	struct workqueue_work work;
798 	struct io_log *log;
799 	void *samples;
800 	uint32_t nr_samples;
801 	bool free;
802 };
803 
804 #define GZ_CHUNK	131072
805 
get_new_chunk(unsigned int seq)806 static struct iolog_compress *get_new_chunk(unsigned int seq)
807 {
808 	struct iolog_compress *c;
809 
810 	c = malloc(sizeof(*c));
811 	INIT_FLIST_HEAD(&c->list);
812 	c->buf = malloc(GZ_CHUNK);
813 	c->len = 0;
814 	c->seq = seq;
815 	return c;
816 }
817 
free_chunk(struct iolog_compress * ic)818 static void free_chunk(struct iolog_compress *ic)
819 {
820 	free(ic->buf);
821 	free(ic);
822 }
823 
z_stream_init(z_stream * stream,int gz_hdr)824 static int z_stream_init(z_stream *stream, int gz_hdr)
825 {
826 	int wbits = 15;
827 
828 	memset(stream, 0, sizeof(*stream));
829 	stream->zalloc = Z_NULL;
830 	stream->zfree = Z_NULL;
831 	stream->opaque = Z_NULL;
832 	stream->next_in = Z_NULL;
833 
834 	/*
835 	 * zlib magic - add 32 for auto-detection of gz header or not,
836 	 * if we decide to store files in a gzip friendly format.
837 	 */
838 	if (gz_hdr)
839 		wbits += 32;
840 
841 	if (inflateInit2(stream, wbits) != Z_OK)
842 		return 1;
843 
844 	return 0;
845 }
846 
847 struct inflate_chunk_iter {
848 	unsigned int seq;
849 	int err;
850 	void *buf;
851 	size_t buf_size;
852 	size_t buf_used;
853 	size_t chunk_sz;
854 };
855 
finish_chunk(z_stream * stream,FILE * f,struct inflate_chunk_iter * iter)856 static void finish_chunk(z_stream *stream, FILE *f,
857 			 struct inflate_chunk_iter *iter)
858 {
859 	int ret;
860 
861 	ret = inflateEnd(stream);
862 	if (ret != Z_OK)
863 		log_err("fio: failed to end log inflation seq %d (%d)\n",
864 				iter->seq, ret);
865 
866 	flush_samples(f, iter->buf, iter->buf_used);
867 	free(iter->buf);
868 	iter->buf = NULL;
869 	iter->buf_size = iter->buf_used = 0;
870 }
871 
872 /*
873  * Iterative chunk inflation. Handles cases where we cross into a new
874  * sequence, doing flush finish of previous chunk if needed.
875  */
inflate_chunk(struct iolog_compress * ic,int gz_hdr,FILE * f,z_stream * stream,struct inflate_chunk_iter * iter)876 static size_t inflate_chunk(struct iolog_compress *ic, int gz_hdr, FILE *f,
877 			    z_stream *stream, struct inflate_chunk_iter *iter)
878 {
879 	size_t ret;
880 
881 	dprint(FD_COMPRESS, "inflate chunk size=%lu, seq=%u\n",
882 				(unsigned long) ic->len, ic->seq);
883 
884 	if (ic->seq != iter->seq) {
885 		if (iter->seq)
886 			finish_chunk(stream, f, iter);
887 
888 		z_stream_init(stream, gz_hdr);
889 		iter->seq = ic->seq;
890 	}
891 
892 	stream->avail_in = ic->len;
893 	stream->next_in = ic->buf;
894 
895 	if (!iter->buf_size) {
896 		iter->buf_size = iter->chunk_sz;
897 		iter->buf = malloc(iter->buf_size);
898 	}
899 
900 	while (stream->avail_in) {
901 		size_t this_out = iter->buf_size - iter->buf_used;
902 		int err;
903 
904 		stream->avail_out = this_out;
905 		stream->next_out = iter->buf + iter->buf_used;
906 
907 		err = inflate(stream, Z_NO_FLUSH);
908 		if (err < 0) {
909 			log_err("fio: failed inflating log: %d\n", err);
910 			iter->err = err;
911 			break;
912 		}
913 
914 		iter->buf_used += this_out - stream->avail_out;
915 
916 		if (!stream->avail_out) {
917 			iter->buf_size += iter->chunk_sz;
918 			iter->buf = realloc(iter->buf, iter->buf_size);
919 			continue;
920 		}
921 
922 		if (err == Z_STREAM_END)
923 			break;
924 	}
925 
926 	ret = (void *) stream->next_in - ic->buf;
927 
928 	dprint(FD_COMPRESS, "inflated to size=%lu\n", (unsigned long) iter->buf_size);
929 
930 	return ret;
931 }
932 
933 /*
934  * Inflate stored compressed chunks, or write them directly to the log
935  * file if so instructed.
936  */
inflate_gz_chunks(struct io_log * log,FILE * f)937 static int inflate_gz_chunks(struct io_log *log, FILE *f)
938 {
939 	struct inflate_chunk_iter iter = { .chunk_sz = log->log_gz, };
940 	z_stream stream;
941 
942 	while (!flist_empty(&log->chunk_list)) {
943 		struct iolog_compress *ic;
944 
945 		ic = flist_first_entry(&log->chunk_list, struct iolog_compress, list);
946 		flist_del(&ic->list);
947 
948 		if (log->log_gz_store) {
949 			size_t ret;
950 
951 			dprint(FD_COMPRESS, "log write chunk size=%lu, "
952 				"seq=%u\n", (unsigned long) ic->len, ic->seq);
953 
954 			ret = fwrite(ic->buf, ic->len, 1, f);
955 			if (ret != 1 || ferror(f)) {
956 				iter.err = errno;
957 				log_err("fio: error writing compressed log\n");
958 			}
959 		} else
960 			inflate_chunk(ic, log->log_gz_store, f, &stream, &iter);
961 
962 		free_chunk(ic);
963 	}
964 
965 	if (iter.seq) {
966 		finish_chunk(&stream, f, &iter);
967 		free(iter.buf);
968 	}
969 
970 	return iter.err;
971 }
972 
973 /*
974  * Open compressed log file and decompress the stored chunks and
975  * write them to stdout. The chunks are stored sequentially in the
976  * file, so we iterate over them and do them one-by-one.
977  */
iolog_file_inflate(const char * file)978 int iolog_file_inflate(const char *file)
979 {
980 	struct inflate_chunk_iter iter = { .chunk_sz = 64 * 1024 * 1024, };
981 	struct iolog_compress ic;
982 	z_stream stream;
983 	struct stat sb;
984 	ssize_t ret;
985 	size_t total;
986 	void *buf;
987 	FILE *f;
988 
989 	f = fopen(file, "r");
990 	if (!f) {
991 		perror("fopen");
992 		return 1;
993 	}
994 
995 	if (stat(file, &sb) < 0) {
996 		fclose(f);
997 		perror("stat");
998 		return 1;
999 	}
1000 
1001 	ic.buf = buf = malloc(sb.st_size);
1002 	ic.len = sb.st_size;
1003 	ic.seq = 1;
1004 
1005 	ret = fread(ic.buf, ic.len, 1, f);
1006 	if (ret < 0) {
1007 		perror("fread");
1008 		fclose(f);
1009 		free(buf);
1010 		return 1;
1011 	} else if (ret != 1) {
1012 		log_err("fio: short read on reading log\n");
1013 		fclose(f);
1014 		free(buf);
1015 		return 1;
1016 	}
1017 
1018 	fclose(f);
1019 
1020 	/*
1021 	 * Each chunk will return Z_STREAM_END. We don't know how many
1022 	 * chunks are in the file, so we just keep looping and incrementing
1023 	 * the sequence number until we have consumed the whole compressed
1024 	 * file.
1025 	 */
1026 	total = ic.len;
1027 	do {
1028 		size_t iret;
1029 
1030 		iret = inflate_chunk(&ic,  1, stdout, &stream, &iter);
1031 		total -= iret;
1032 		if (!total)
1033 			break;
1034 		if (iter.err)
1035 			break;
1036 
1037 		ic.seq++;
1038 		ic.len -= iret;
1039 		ic.buf += iret;
1040 	} while (1);
1041 
1042 	if (iter.seq) {
1043 		finish_chunk(&stream, stdout, &iter);
1044 		free(iter.buf);
1045 	}
1046 
1047 	free(buf);
1048 	return iter.err;
1049 }
1050 
1051 #else
1052 
inflate_gz_chunks(struct io_log * log,FILE * f)1053 static int inflate_gz_chunks(struct io_log *log, FILE *f)
1054 {
1055 	return 0;
1056 }
1057 
iolog_file_inflate(const char * file)1058 int iolog_file_inflate(const char *file)
1059 {
1060 	log_err("fio: log inflation not possible without zlib\n");
1061 	return 1;
1062 }
1063 
1064 #endif
1065 
flush_log(struct io_log * log,bool do_append)1066 void flush_log(struct io_log *log, bool do_append)
1067 {
1068 	void *buf;
1069 	FILE *f;
1070 
1071 	if (!do_append)
1072 		f = fopen(log->filename, "w");
1073 	else
1074 		f = fopen(log->filename, "a");
1075 	if (!f) {
1076 		perror("fopen log");
1077 		return;
1078 	}
1079 
1080 	buf = set_file_buffer(f);
1081 
1082 	inflate_gz_chunks(log, f);
1083 
1084 	while (!flist_empty(&log->io_logs)) {
1085 		struct io_logs *cur_log;
1086 
1087 		cur_log = flist_first_entry(&log->io_logs, struct io_logs, list);
1088 		flist_del_init(&cur_log->list);
1089 
1090 		if (log->td && log == log->td->clat_hist_log)
1091 			flush_hist_samples(f, log->hist_coarseness, cur_log->log,
1092 			                   log_sample_sz(log, cur_log));
1093 		else
1094 			flush_samples(f, cur_log->log, log_sample_sz(log, cur_log));
1095 
1096 		sfree(cur_log);
1097 	}
1098 
1099 	fclose(f);
1100 	clear_file_buffer(buf);
1101 }
1102 
finish_log(struct thread_data * td,struct io_log * log,int trylock)1103 static int finish_log(struct thread_data *td, struct io_log *log, int trylock)
1104 {
1105 	if (td->flags & TD_F_COMPRESS_LOG)
1106 		iolog_flush(log);
1107 
1108 	if (trylock) {
1109 		if (fio_trylock_file(log->filename))
1110 			return 1;
1111 	} else
1112 		fio_lock_file(log->filename);
1113 
1114 	if (td->client_type == FIO_CLIENT_TYPE_GUI || is_backend)
1115 		fio_send_iolog(td, log, log->filename);
1116 	else
1117 		flush_log(log, !td->o.per_job_logs);
1118 
1119 	fio_unlock_file(log->filename);
1120 	free_log(log);
1121 	return 0;
1122 }
1123 
log_chunk_sizes(struct io_log * log)1124 size_t log_chunk_sizes(struct io_log *log)
1125 {
1126 	struct flist_head *entry;
1127 	size_t ret;
1128 
1129 	if (flist_empty(&log->chunk_list))
1130 		return 0;
1131 
1132 	ret = 0;
1133 	pthread_mutex_lock(&log->chunk_lock);
1134 	flist_for_each(entry, &log->chunk_list) {
1135 		struct iolog_compress *c;
1136 
1137 		c = flist_entry(entry, struct iolog_compress, list);
1138 		ret += c->len;
1139 	}
1140 	pthread_mutex_unlock(&log->chunk_lock);
1141 	return ret;
1142 }
1143 
1144 #ifdef CONFIG_ZLIB
1145 
gz_work(struct iolog_flush_data * data)1146 static int gz_work(struct iolog_flush_data *data)
1147 {
1148 	struct iolog_compress *c = NULL;
1149 	struct flist_head list;
1150 	unsigned int seq;
1151 	z_stream stream;
1152 	size_t total = 0;
1153 	int ret;
1154 
1155 	INIT_FLIST_HEAD(&list);
1156 
1157 	memset(&stream, 0, sizeof(stream));
1158 	stream.zalloc = Z_NULL;
1159 	stream.zfree = Z_NULL;
1160 	stream.opaque = Z_NULL;
1161 
1162 	ret = deflateInit(&stream, Z_DEFAULT_COMPRESSION);
1163 	if (ret != Z_OK) {
1164 		log_err("fio: failed to init gz stream\n");
1165 		goto err;
1166 	}
1167 
1168 	seq = ++data->log->chunk_seq;
1169 
1170 	stream.next_in = (void *) data->samples;
1171 	stream.avail_in = data->nr_samples * log_entry_sz(data->log);
1172 
1173 	dprint(FD_COMPRESS, "deflate input size=%lu, seq=%u, log=%s\n",
1174 				(unsigned long) stream.avail_in, seq,
1175 				data->log->filename);
1176 	do {
1177 		if (c)
1178 			dprint(FD_COMPRESS, "seq=%d, chunk=%lu\n", seq,
1179 				(unsigned long) c->len);
1180 		c = get_new_chunk(seq);
1181 		stream.avail_out = GZ_CHUNK;
1182 		stream.next_out = c->buf;
1183 		ret = deflate(&stream, Z_NO_FLUSH);
1184 		if (ret < 0) {
1185 			log_err("fio: deflate log (%d)\n", ret);
1186 			free_chunk(c);
1187 			goto err;
1188 		}
1189 
1190 		c->len = GZ_CHUNK - stream.avail_out;
1191 		flist_add_tail(&c->list, &list);
1192 		total += c->len;
1193 	} while (stream.avail_in);
1194 
1195 	stream.next_out = c->buf + c->len;
1196 	stream.avail_out = GZ_CHUNK - c->len;
1197 
1198 	ret = deflate(&stream, Z_FINISH);
1199 	if (ret < 0) {
1200 		/*
1201 		 * Z_BUF_ERROR is special, it just means we need more
1202 		 * output space. We'll handle that below. Treat any other
1203 		 * error as fatal.
1204 		 */
1205 		if (ret != Z_BUF_ERROR) {
1206 			log_err("fio: deflate log (%d)\n", ret);
1207 			flist_del(&c->list);
1208 			free_chunk(c);
1209 			goto err;
1210 		}
1211 	}
1212 
1213 	total -= c->len;
1214 	c->len = GZ_CHUNK - stream.avail_out;
1215 	total += c->len;
1216 	dprint(FD_COMPRESS, "seq=%d, chunk=%lu\n", seq, (unsigned long) c->len);
1217 
1218 	if (ret != Z_STREAM_END) {
1219 		do {
1220 			c = get_new_chunk(seq);
1221 			stream.avail_out = GZ_CHUNK;
1222 			stream.next_out = c->buf;
1223 			ret = deflate(&stream, Z_FINISH);
1224 			c->len = GZ_CHUNK - stream.avail_out;
1225 			total += c->len;
1226 			flist_add_tail(&c->list, &list);
1227 			dprint(FD_COMPRESS, "seq=%d, chunk=%lu\n", seq,
1228 				(unsigned long) c->len);
1229 		} while (ret != Z_STREAM_END);
1230 	}
1231 
1232 	dprint(FD_COMPRESS, "deflated to size=%lu\n", (unsigned long) total);
1233 
1234 	ret = deflateEnd(&stream);
1235 	if (ret != Z_OK)
1236 		log_err("fio: deflateEnd %d\n", ret);
1237 
1238 	free(data->samples);
1239 
1240 	if (!flist_empty(&list)) {
1241 		pthread_mutex_lock(&data->log->chunk_lock);
1242 		flist_splice_tail(&list, &data->log->chunk_list);
1243 		pthread_mutex_unlock(&data->log->chunk_lock);
1244 	}
1245 
1246 	ret = 0;
1247 done:
1248 	if (data->free)
1249 		free(data);
1250 	return ret;
1251 err:
1252 	while (!flist_empty(&list)) {
1253 		c = flist_first_entry(list.next, struct iolog_compress, list);
1254 		flist_del(&c->list);
1255 		free_chunk(c);
1256 	}
1257 	ret = 1;
1258 	goto done;
1259 }
1260 
1261 /*
1262  * Invoked from our compress helper thread, when logging would have exceeded
1263  * the specified memory limitation. Compresses the previously stored
1264  * entries.
1265  */
gz_work_async(struct submit_worker * sw,struct workqueue_work * work)1266 static int gz_work_async(struct submit_worker *sw, struct workqueue_work *work)
1267 {
1268 	return gz_work(container_of(work, struct iolog_flush_data, work));
1269 }
1270 
gz_init_worker(struct submit_worker * sw)1271 static int gz_init_worker(struct submit_worker *sw)
1272 {
1273 	struct thread_data *td = sw->wq->td;
1274 
1275 	if (!fio_option_is_set(&td->o, log_gz_cpumask))
1276 		return 0;
1277 
1278 	if (fio_setaffinity(gettid(), td->o.log_gz_cpumask) == -1) {
1279 		log_err("gz: failed to set CPU affinity\n");
1280 		return 1;
1281 	}
1282 
1283 	return 0;
1284 }
1285 
1286 static struct workqueue_ops log_compress_wq_ops = {
1287 	.fn		= gz_work_async,
1288 	.init_worker_fn	= gz_init_worker,
1289 	.nice		= 1,
1290 };
1291 
iolog_compress_init(struct thread_data * td,struct sk_out * sk_out)1292 int iolog_compress_init(struct thread_data *td, struct sk_out *sk_out)
1293 {
1294 	if (!(td->flags & TD_F_COMPRESS_LOG))
1295 		return 0;
1296 
1297 	workqueue_init(td, &td->log_compress_wq, &log_compress_wq_ops, 1, sk_out);
1298 	return 0;
1299 }
1300 
iolog_compress_exit(struct thread_data * td)1301 void iolog_compress_exit(struct thread_data *td)
1302 {
1303 	if (!(td->flags & TD_F_COMPRESS_LOG))
1304 		return;
1305 
1306 	workqueue_exit(&td->log_compress_wq);
1307 }
1308 
1309 /*
1310  * Queue work item to compress the existing log entries. We reset the
1311  * current log to a small size, and reference the existing log in the
1312  * data that we queue for compression. Once compression has been done,
1313  * this old log is freed. If called with finish == true, will not return
1314  * until the log compression has completed, and will flush all previous
1315  * logs too
1316  */
iolog_flush(struct io_log * log)1317 static int iolog_flush(struct io_log *log)
1318 {
1319 	struct iolog_flush_data *data;
1320 
1321 	data = malloc(sizeof(*data));
1322 	if (!data)
1323 		return 1;
1324 
1325 	data->log = log;
1326 	data->free = false;
1327 
1328 	while (!flist_empty(&log->io_logs)) {
1329 		struct io_logs *cur_log;
1330 
1331 		cur_log = flist_first_entry(&log->io_logs, struct io_logs, list);
1332 		flist_del_init(&cur_log->list);
1333 
1334 		data->samples = cur_log->log;
1335 		data->nr_samples = cur_log->nr_samples;
1336 
1337 		sfree(cur_log);
1338 
1339 		gz_work(data);
1340 	}
1341 
1342 	free(data);
1343 	return 0;
1344 }
1345 
iolog_cur_flush(struct io_log * log,struct io_logs * cur_log)1346 int iolog_cur_flush(struct io_log *log, struct io_logs *cur_log)
1347 {
1348 	struct iolog_flush_data *data;
1349 
1350 	data = malloc(sizeof(*data));
1351 	if (!data)
1352 		return 1;
1353 
1354 	data->log = log;
1355 
1356 	data->samples = cur_log->log;
1357 	data->nr_samples = cur_log->nr_samples;
1358 	data->free = true;
1359 
1360 	cur_log->nr_samples = cur_log->max_samples = 0;
1361 	cur_log->log = NULL;
1362 
1363 	workqueue_enqueue(&log->td->log_compress_wq, &data->work);
1364 	return 0;
1365 }
1366 #else
1367 
iolog_flush(struct io_log * log)1368 static int iolog_flush(struct io_log *log)
1369 {
1370 	return 1;
1371 }
1372 
iolog_cur_flush(struct io_log * log,struct io_logs * cur_log)1373 int iolog_cur_flush(struct io_log *log, struct io_logs *cur_log)
1374 {
1375 	return 1;
1376 }
1377 
iolog_compress_init(struct thread_data * td,struct sk_out * sk_out)1378 int iolog_compress_init(struct thread_data *td, struct sk_out *sk_out)
1379 {
1380 	return 0;
1381 }
1382 
iolog_compress_exit(struct thread_data * td)1383 void iolog_compress_exit(struct thread_data *td)
1384 {
1385 }
1386 
1387 #endif
1388 
iolog_cur_log(struct io_log * log)1389 struct io_logs *iolog_cur_log(struct io_log *log)
1390 {
1391 	if (flist_empty(&log->io_logs))
1392 		return NULL;
1393 
1394 	return flist_last_entry(&log->io_logs, struct io_logs, list);
1395 }
1396 
iolog_nr_samples(struct io_log * iolog)1397 uint64_t iolog_nr_samples(struct io_log *iolog)
1398 {
1399 	struct flist_head *entry;
1400 	uint64_t ret = 0;
1401 
1402 	flist_for_each(entry, &iolog->io_logs) {
1403 		struct io_logs *cur_log;
1404 
1405 		cur_log = flist_entry(entry, struct io_logs, list);
1406 		ret += cur_log->nr_samples;
1407 	}
1408 
1409 	return ret;
1410 }
1411 
__write_log(struct thread_data * td,struct io_log * log,int try)1412 static int __write_log(struct thread_data *td, struct io_log *log, int try)
1413 {
1414 	if (log)
1415 		return finish_log(td, log, try);
1416 
1417 	return 0;
1418 }
1419 
write_iops_log(struct thread_data * td,int try,bool unit_log)1420 static int write_iops_log(struct thread_data *td, int try, bool unit_log)
1421 {
1422 	int ret;
1423 
1424 	if (per_unit_log(td->iops_log) != unit_log)
1425 		return 0;
1426 
1427 	ret = __write_log(td, td->iops_log, try);
1428 	if (!ret)
1429 		td->iops_log = NULL;
1430 
1431 	return ret;
1432 }
1433 
write_slat_log(struct thread_data * td,int try,bool unit_log)1434 static int write_slat_log(struct thread_data *td, int try, bool unit_log)
1435 {
1436 	int ret;
1437 
1438 	if (!unit_log)
1439 		return 0;
1440 
1441 	ret = __write_log(td, td->slat_log, try);
1442 	if (!ret)
1443 		td->slat_log = NULL;
1444 
1445 	return ret;
1446 }
1447 
write_clat_log(struct thread_data * td,int try,bool unit_log)1448 static int write_clat_log(struct thread_data *td, int try, bool unit_log)
1449 {
1450 	int ret;
1451 
1452 	if (!unit_log)
1453 		return 0;
1454 
1455 	ret = __write_log(td, td->clat_log, try);
1456 	if (!ret)
1457 		td->clat_log = NULL;
1458 
1459 	return ret;
1460 }
1461 
write_clat_hist_log(struct thread_data * td,int try,bool unit_log)1462 static int write_clat_hist_log(struct thread_data *td, int try, bool unit_log)
1463 {
1464 	int ret;
1465 
1466 	if (!unit_log)
1467 		return 0;
1468 
1469 	ret = __write_log(td, td->clat_hist_log, try);
1470 	if (!ret)
1471 		td->clat_hist_log = NULL;
1472 
1473 	return ret;
1474 }
1475 
write_lat_log(struct thread_data * td,int try,bool unit_log)1476 static int write_lat_log(struct thread_data *td, int try, bool unit_log)
1477 {
1478 	int ret;
1479 
1480 	if (!unit_log)
1481 		return 0;
1482 
1483 	ret = __write_log(td, td->lat_log, try);
1484 	if (!ret)
1485 		td->lat_log = NULL;
1486 
1487 	return ret;
1488 }
1489 
write_bandw_log(struct thread_data * td,int try,bool unit_log)1490 static int write_bandw_log(struct thread_data *td, int try, bool unit_log)
1491 {
1492 	int ret;
1493 
1494 	if (per_unit_log(td->bw_log) != unit_log)
1495 		return 0;
1496 
1497 	ret = __write_log(td, td->bw_log, try);
1498 	if (!ret)
1499 		td->bw_log = NULL;
1500 
1501 	return ret;
1502 }
1503 
1504 enum {
1505 	BW_LOG_MASK	= 1,
1506 	LAT_LOG_MASK	= 2,
1507 	SLAT_LOG_MASK	= 4,
1508 	CLAT_LOG_MASK	= 8,
1509 	IOPS_LOG_MASK	= 16,
1510 	CLAT_HIST_LOG_MASK = 32,
1511 
1512 	ALL_LOG_NR	= 6,
1513 };
1514 
1515 struct log_type {
1516 	unsigned int mask;
1517 	int (*fn)(struct thread_data *, int, bool);
1518 };
1519 
1520 static struct log_type log_types[] = {
1521 	{
1522 		.mask	= BW_LOG_MASK,
1523 		.fn	= write_bandw_log,
1524 	},
1525 	{
1526 		.mask	= LAT_LOG_MASK,
1527 		.fn	= write_lat_log,
1528 	},
1529 	{
1530 		.mask	= SLAT_LOG_MASK,
1531 		.fn	= write_slat_log,
1532 	},
1533 	{
1534 		.mask	= CLAT_LOG_MASK,
1535 		.fn	= write_clat_log,
1536 	},
1537 	{
1538 		.mask	= IOPS_LOG_MASK,
1539 		.fn	= write_iops_log,
1540 	},
1541 	{
1542 		.mask	= CLAT_HIST_LOG_MASK,
1543 		.fn	= write_clat_hist_log,
1544 	}
1545 };
1546 
td_writeout_logs(struct thread_data * td,bool unit_logs)1547 void td_writeout_logs(struct thread_data *td, bool unit_logs)
1548 {
1549 	unsigned int log_mask = 0;
1550 	unsigned int log_left = ALL_LOG_NR;
1551 	int old_state, i;
1552 
1553 	old_state = td_bump_runstate(td, TD_FINISHING);
1554 
1555 	finalize_logs(td, unit_logs);
1556 
1557 	while (log_left) {
1558 		int prev_log_left = log_left;
1559 
1560 		for (i = 0; i < ALL_LOG_NR && log_left; i++) {
1561 			struct log_type *lt = &log_types[i];
1562 			int ret;
1563 
1564 			if (!(log_mask & lt->mask)) {
1565 				ret = lt->fn(td, log_left != 1, unit_logs);
1566 				if (!ret) {
1567 					log_left--;
1568 					log_mask |= lt->mask;
1569 				}
1570 			}
1571 		}
1572 
1573 		if (prev_log_left == log_left)
1574 			usleep(5000);
1575 	}
1576 
1577 	td_restore_runstate(td, old_state);
1578 }
1579 
fio_writeout_logs(bool unit_logs)1580 void fio_writeout_logs(bool unit_logs)
1581 {
1582 	struct thread_data *td;
1583 	int i;
1584 
1585 	for_each_td(td, i)
1586 		td_writeout_logs(td, unit_logs);
1587 }
1588