• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * jquant1.c
3  *
4  * This file was part of the Independent JPEG Group's software:
5  * Copyright (C) 1991-1996, Thomas G. Lane.
6  * libjpeg-turbo Modifications:
7  * Copyright (C) 2009, 2015, D. R. Commander.
8  * For conditions of distribution and use, see the accompanying README.ijg
9  * file.
10  *
11  * This file contains 1-pass color quantization (color mapping) routines.
12  * These routines provide mapping to a fixed color map using equally spaced
13  * color values.  Optional Floyd-Steinberg or ordered dithering is available.
14  */
15 
16 #define JPEG_INTERNALS
17 #include "jinclude.h"
18 #include "jpeglib.h"
19 
20 #ifdef QUANT_1PASS_SUPPORTED
21 
22 
23 /*
24  * The main purpose of 1-pass quantization is to provide a fast, if not very
25  * high quality, colormapped output capability.  A 2-pass quantizer usually
26  * gives better visual quality; however, for quantized grayscale output this
27  * quantizer is perfectly adequate.  Dithering is highly recommended with this
28  * quantizer, though you can turn it off if you really want to.
29  *
30  * In 1-pass quantization the colormap must be chosen in advance of seeing the
31  * image.  We use a map consisting of all combinations of Ncolors[i] color
32  * values for the i'th component.  The Ncolors[] values are chosen so that
33  * their product, the total number of colors, is no more than that requested.
34  * (In most cases, the product will be somewhat less.)
35  *
36  * Since the colormap is orthogonal, the representative value for each color
37  * component can be determined without considering the other components;
38  * then these indexes can be combined into a colormap index by a standard
39  * N-dimensional-array-subscript calculation.  Most of the arithmetic involved
40  * can be precalculated and stored in the lookup table colorindex[].
41  * colorindex[i][j] maps pixel value j in component i to the nearest
42  * representative value (grid plane) for that component; this index is
43  * multiplied by the array stride for component i, so that the
44  * index of the colormap entry closest to a given pixel value is just
45  *    sum( colorindex[component-number][pixel-component-value] )
46  * Aside from being fast, this scheme allows for variable spacing between
47  * representative values with no additional lookup cost.
48  *
49  * If gamma correction has been applied in color conversion, it might be wise
50  * to adjust the color grid spacing so that the representative colors are
51  * equidistant in linear space.  At this writing, gamma correction is not
52  * implemented by jdcolor, so nothing is done here.
53  */
54 
55 
56 /* Declarations for ordered dithering.
57  *
58  * We use a standard 16x16 ordered dither array.  The basic concept of ordered
59  * dithering is described in many references, for instance Dale Schumacher's
60  * chapter II.2 of Graphics Gems II (James Arvo, ed. Academic Press, 1991).
61  * In place of Schumacher's comparisons against a "threshold" value, we add a
62  * "dither" value to the input pixel and then round the result to the nearest
63  * output value.  The dither value is equivalent to (0.5 - threshold) times
64  * the distance between output values.  For ordered dithering, we assume that
65  * the output colors are equally spaced; if not, results will probably be
66  * worse, since the dither may be too much or too little at a given point.
67  *
68  * The normal calculation would be to form pixel value + dither, range-limit
69  * this to 0..MAXJSAMPLE, and then index into the colorindex table as usual.
70  * We can skip the separate range-limiting step by extending the colorindex
71  * table in both directions.
72  */
73 
74 #define ODITHER_SIZE  16        /* dimension of dither matrix */
75 /* NB: if ODITHER_SIZE is not a power of 2, ODITHER_MASK uses will break */
76 #define ODITHER_CELLS (ODITHER_SIZE*ODITHER_SIZE)       /* # cells in matrix */
77 #define ODITHER_MASK  (ODITHER_SIZE-1) /* mask for wrapping around counters */
78 
79 typedef int ODITHER_MATRIX[ODITHER_SIZE][ODITHER_SIZE];
80 typedef int (*ODITHER_MATRIX_PTR)[ODITHER_SIZE];
81 
82 static const UINT8 base_dither_matrix[ODITHER_SIZE][ODITHER_SIZE] = {
83   /* Bayer's order-4 dither array.  Generated by the code given in
84    * Stephen Hawley's article "Ordered Dithering" in Graphics Gems I.
85    * The values in this array must range from 0 to ODITHER_CELLS-1.
86    */
87   {   0,192, 48,240, 12,204, 60,252,  3,195, 51,243, 15,207, 63,255 },
88   { 128, 64,176,112,140, 76,188,124,131, 67,179,115,143, 79,191,127 },
89   {  32,224, 16,208, 44,236, 28,220, 35,227, 19,211, 47,239, 31,223 },
90   { 160, 96,144, 80,172,108,156, 92,163, 99,147, 83,175,111,159, 95 },
91   {   8,200, 56,248,  4,196, 52,244, 11,203, 59,251,  7,199, 55,247 },
92   { 136, 72,184,120,132, 68,180,116,139, 75,187,123,135, 71,183,119 },
93   {  40,232, 24,216, 36,228, 20,212, 43,235, 27,219, 39,231, 23,215 },
94   { 168,104,152, 88,164,100,148, 84,171,107,155, 91,167,103,151, 87 },
95   {   2,194, 50,242, 14,206, 62,254,  1,193, 49,241, 13,205, 61,253 },
96   { 130, 66,178,114,142, 78,190,126,129, 65,177,113,141, 77,189,125 },
97   {  34,226, 18,210, 46,238, 30,222, 33,225, 17,209, 45,237, 29,221 },
98   { 162, 98,146, 82,174,110,158, 94,161, 97,145, 81,173,109,157, 93 },
99   {  10,202, 58,250,  6,198, 54,246,  9,201, 57,249,  5,197, 53,245 },
100   { 138, 74,186,122,134, 70,182,118,137, 73,185,121,133, 69,181,117 },
101   {  42,234, 26,218, 38,230, 22,214, 41,233, 25,217, 37,229, 21,213 },
102   { 170,106,154, 90,166,102,150, 86,169,105,153, 89,165,101,149, 85 }
103 };
104 
105 
106 /* Declarations for Floyd-Steinberg dithering.
107  *
108  * Errors are accumulated into the array fserrors[], at a resolution of
109  * 1/16th of a pixel count.  The error at a given pixel is propagated
110  * to its not-yet-processed neighbors using the standard F-S fractions,
111  *              ...     (here)  7/16
112  *              3/16    5/16    1/16
113  * We work left-to-right on even rows, right-to-left on odd rows.
114  *
115  * We can get away with a single array (holding one row's worth of errors)
116  * by using it to store the current row's errors at pixel columns not yet
117  * processed, but the next row's errors at columns already processed.  We
118  * need only a few extra variables to hold the errors immediately around the
119  * current column.  (If we are lucky, those variables are in registers, but
120  * even if not, they're probably cheaper to access than array elements are.)
121  *
122  * The fserrors[] array is indexed [component#][position].
123  * We provide (#columns + 2) entries per component; the extra entry at each
124  * end saves us from special-casing the first and last pixels.
125  */
126 
127 #if BITS_IN_JSAMPLE == 8
128 typedef INT16 FSERROR;          /* 16 bits should be enough */
129 typedef int LOCFSERROR;         /* use 'int' for calculation temps */
130 #else
131 typedef JLONG FSERROR;          /* may need more than 16 bits */
132 typedef JLONG LOCFSERROR;       /* be sure calculation temps are big enough */
133 #endif
134 
135 typedef FSERROR *FSERRPTR;  /* pointer to error array */
136 
137 
138 /* Private subobject */
139 
140 #define MAX_Q_COMPS 4           /* max components I can handle */
141 
142 typedef struct {
143   struct jpeg_color_quantizer pub; /* public fields */
144 
145   /* Initially allocated colormap is saved here */
146   JSAMPARRAY sv_colormap;       /* The color map as a 2-D pixel array */
147   int sv_actual;                /* number of entries in use */
148 
149   JSAMPARRAY colorindex;        /* Precomputed mapping for speed */
150   /* colorindex[i][j] = index of color closest to pixel value j in component i,
151    * premultiplied as described above.  Since colormap indexes must fit into
152    * JSAMPLEs, the entries of this array will too.
153    */
154   boolean is_padded;            /* is the colorindex padded for odither? */
155 
156   int Ncolors[MAX_Q_COMPS];     /* # of values alloced to each component */
157 
158   /* Variables for ordered dithering */
159   int row_index;                /* cur row's vertical index in dither matrix */
160   ODITHER_MATRIX_PTR odither[MAX_Q_COMPS]; /* one dither array per component */
161 
162   /* Variables for Floyd-Steinberg dithering */
163   FSERRPTR fserrors[MAX_Q_COMPS]; /* accumulated errors */
164   boolean on_odd_row;           /* flag to remember which row we are on */
165 } my_cquantizer;
166 
167 typedef my_cquantizer *my_cquantize_ptr;
168 
169 
170 /*
171  * Policy-making subroutines for create_colormap and create_colorindex.
172  * These routines determine the colormap to be used.  The rest of the module
173  * only assumes that the colormap is orthogonal.
174  *
175  *  * select_ncolors decides how to divvy up the available colors
176  *    among the components.
177  *  * output_value defines the set of representative values for a component.
178  *  * largest_input_value defines the mapping from input values to
179  *    representative values for a component.
180  * Note that the latter two routines may impose different policies for
181  * different components, though this is not currently done.
182  */
183 
184 
185 LOCAL(int)
select_ncolors(j_decompress_ptr cinfo,int Ncolors[])186 select_ncolors (j_decompress_ptr cinfo, int Ncolors[])
187 /* Determine allocation of desired colors to components, */
188 /* and fill in Ncolors[] array to indicate choice. */
189 /* Return value is total number of colors (product of Ncolors[] values). */
190 {
191   int nc = cinfo->out_color_components; /* number of color components */
192   int max_colors = cinfo->desired_number_of_colors;
193   int total_colors, iroot, i, j;
194   boolean changed;
195   long temp;
196   int RGB_order[3] = { RGB_GREEN, RGB_RED, RGB_BLUE };
197   RGB_order[0] = rgb_green[cinfo->out_color_space];
198   RGB_order[1] = rgb_red[cinfo->out_color_space];
199   RGB_order[2] = rgb_blue[cinfo->out_color_space];
200 
201   /* We can allocate at least the nc'th root of max_colors per component. */
202   /* Compute floor(nc'th root of max_colors). */
203   iroot = 1;
204   do {
205     iroot++;
206     temp = iroot;               /* set temp = iroot ** nc */
207     for (i = 1; i < nc; i++)
208       temp *= iroot;
209   } while (temp <= (long) max_colors); /* repeat till iroot exceeds root */
210   iroot--;                      /* now iroot = floor(root) */
211 
212   /* Must have at least 2 color values per component */
213   if (iroot < 2)
214     ERREXIT1(cinfo, JERR_QUANT_FEW_COLORS, (int) temp);
215 
216   /* Initialize to iroot color values for each component */
217   total_colors = 1;
218   for (i = 0; i < nc; i++) {
219     Ncolors[i] = iroot;
220     total_colors *= iroot;
221   }
222   /* We may be able to increment the count for one or more components without
223    * exceeding max_colors, though we know not all can be incremented.
224    * Sometimes, the first component can be incremented more than once!
225    * (Example: for 16 colors, we start at 2*2*2, go to 3*2*2, then 4*2*2.)
226    * In RGB colorspace, try to increment G first, then R, then B.
227    */
228   do {
229     changed = FALSE;
230     for (i = 0; i < nc; i++) {
231       j = (cinfo->out_color_space == JCS_RGB ? RGB_order[i] : i);
232       /* calculate new total_colors if Ncolors[j] is incremented */
233       temp = total_colors / Ncolors[j];
234       temp *= Ncolors[j]+1;     /* done in long arith to avoid oflo */
235       if (temp > (long) max_colors)
236         break;                  /* won't fit, done with this pass */
237       Ncolors[j]++;             /* OK, apply the increment */
238       total_colors = (int) temp;
239       changed = TRUE;
240     }
241   } while (changed);
242 
243   return total_colors;
244 }
245 
246 
247 LOCAL(int)
output_value(j_decompress_ptr cinfo,int ci,int j,int maxj)248 output_value (j_decompress_ptr cinfo, int ci, int j, int maxj)
249 /* Return j'th output value, where j will range from 0 to maxj */
250 /* The output values must fall in 0..MAXJSAMPLE in increasing order */
251 {
252   /* We always provide values 0 and MAXJSAMPLE for each component;
253    * any additional values are equally spaced between these limits.
254    * (Forcing the upper and lower values to the limits ensures that
255    * dithering can't produce a color outside the selected gamut.)
256    */
257   return (int) (((JLONG) j * MAXJSAMPLE + maxj/2) / maxj);
258 }
259 
260 
261 LOCAL(int)
largest_input_value(j_decompress_ptr cinfo,int ci,int j,int maxj)262 largest_input_value (j_decompress_ptr cinfo, int ci, int j, int maxj)
263 /* Return largest input value that should map to j'th output value */
264 /* Must have largest(j=0) >= 0, and largest(j=maxj) >= MAXJSAMPLE */
265 {
266   /* Breakpoints are halfway between values returned by output_value */
267   return (int) (((JLONG) (2*j + 1) * MAXJSAMPLE + maxj) / (2*maxj));
268 }
269 
270 
271 /*
272  * Create the colormap.
273  */
274 
275 LOCAL(void)
create_colormap(j_decompress_ptr cinfo)276 create_colormap (j_decompress_ptr cinfo)
277 {
278   my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
279   JSAMPARRAY colormap;          /* Created colormap */
280   int total_colors;             /* Number of distinct output colors */
281   int i,j,k, nci, blksize, blkdist, ptr, val;
282 
283   /* Select number of colors for each component */
284   total_colors = select_ncolors(cinfo, cquantize->Ncolors);
285 
286   /* Report selected color counts */
287   if (cinfo->out_color_components == 3)
288     TRACEMS4(cinfo, 1, JTRC_QUANT_3_NCOLORS,
289              total_colors, cquantize->Ncolors[0],
290              cquantize->Ncolors[1], cquantize->Ncolors[2]);
291   else
292     TRACEMS1(cinfo, 1, JTRC_QUANT_NCOLORS, total_colors);
293 
294   /* Allocate and fill in the colormap. */
295   /* The colors are ordered in the map in standard row-major order, */
296   /* i.e. rightmost (highest-indexed) color changes most rapidly. */
297 
298   colormap = (*cinfo->mem->alloc_sarray)
299     ((j_common_ptr) cinfo, JPOOL_IMAGE,
300      (JDIMENSION) total_colors, (JDIMENSION) cinfo->out_color_components);
301 
302   /* blksize is number of adjacent repeated entries for a component */
303   /* blkdist is distance between groups of identical entries for a component */
304   blkdist = total_colors;
305 
306   for (i = 0; i < cinfo->out_color_components; i++) {
307     /* fill in colormap entries for i'th color component */
308     nci = cquantize->Ncolors[i]; /* # of distinct values for this color */
309     blksize = blkdist / nci;
310     for (j = 0; j < nci; j++) {
311       /* Compute j'th output value (out of nci) for component */
312       val = output_value(cinfo, i, j, nci-1);
313       /* Fill in all colormap entries that have this value of this component */
314       for (ptr = j * blksize; ptr < total_colors; ptr += blkdist) {
315         /* fill in blksize entries beginning at ptr */
316         for (k = 0; k < blksize; k++)
317           colormap[i][ptr+k] = (JSAMPLE) val;
318       }
319     }
320     blkdist = blksize;          /* blksize of this color is blkdist of next */
321   }
322 
323   /* Save the colormap in private storage,
324    * where it will survive color quantization mode changes.
325    */
326   cquantize->sv_colormap = colormap;
327   cquantize->sv_actual = total_colors;
328 }
329 
330 
331 /*
332  * Create the color index table.
333  */
334 
335 LOCAL(void)
create_colorindex(j_decompress_ptr cinfo)336 create_colorindex (j_decompress_ptr cinfo)
337 {
338   my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
339   JSAMPROW indexptr;
340   int i,j,k, nci, blksize, val, pad;
341 
342   /* For ordered dither, we pad the color index tables by MAXJSAMPLE in
343    * each direction (input index values can be -MAXJSAMPLE .. 2*MAXJSAMPLE).
344    * This is not necessary in the other dithering modes.  However, we
345    * flag whether it was done in case user changes dithering mode.
346    */
347   if (cinfo->dither_mode == JDITHER_ORDERED) {
348     pad = MAXJSAMPLE*2;
349     cquantize->is_padded = TRUE;
350   } else {
351     pad = 0;
352     cquantize->is_padded = FALSE;
353   }
354 
355   cquantize->colorindex = (*cinfo->mem->alloc_sarray)
356     ((j_common_ptr) cinfo, JPOOL_IMAGE,
357      (JDIMENSION) (MAXJSAMPLE+1 + pad),
358      (JDIMENSION) cinfo->out_color_components);
359 
360   /* blksize is number of adjacent repeated entries for a component */
361   blksize = cquantize->sv_actual;
362 
363   for (i = 0; i < cinfo->out_color_components; i++) {
364     /* fill in colorindex entries for i'th color component */
365     nci = cquantize->Ncolors[i]; /* # of distinct values for this color */
366     blksize = blksize / nci;
367 
368     /* adjust colorindex pointers to provide padding at negative indexes. */
369     if (pad)
370       cquantize->colorindex[i] += MAXJSAMPLE;
371 
372     /* in loop, val = index of current output value, */
373     /* and k = largest j that maps to current val */
374     indexptr = cquantize->colorindex[i];
375     val = 0;
376     k = largest_input_value(cinfo, i, 0, nci-1);
377     for (j = 0; j <= MAXJSAMPLE; j++) {
378       while (j > k)             /* advance val if past boundary */
379         k = largest_input_value(cinfo, i, ++val, nci-1);
380       /* premultiply so that no multiplication needed in main processing */
381       indexptr[j] = (JSAMPLE) (val * blksize);
382     }
383     /* Pad at both ends if necessary */
384     if (pad)
385       for (j = 1; j <= MAXJSAMPLE; j++) {
386         indexptr[-j] = indexptr[0];
387         indexptr[MAXJSAMPLE+j] = indexptr[MAXJSAMPLE];
388       }
389   }
390 }
391 
392 
393 /*
394  * Create an ordered-dither array for a component having ncolors
395  * distinct output values.
396  */
397 
398 LOCAL(ODITHER_MATRIX_PTR)
make_odither_array(j_decompress_ptr cinfo,int ncolors)399 make_odither_array (j_decompress_ptr cinfo, int ncolors)
400 {
401   ODITHER_MATRIX_PTR odither;
402   int j,k;
403   JLONG num,den;
404 
405   odither = (ODITHER_MATRIX_PTR)
406     (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
407                                 sizeof(ODITHER_MATRIX));
408   /* The inter-value distance for this color is MAXJSAMPLE/(ncolors-1).
409    * Hence the dither value for the matrix cell with fill order f
410    * (f=0..N-1) should be (N-1-2*f)/(2*N) * MAXJSAMPLE/(ncolors-1).
411    * On 16-bit-int machine, be careful to avoid overflow.
412    */
413   den = 2 * ODITHER_CELLS * ((JLONG) (ncolors - 1));
414   for (j = 0; j < ODITHER_SIZE; j++) {
415     for (k = 0; k < ODITHER_SIZE; k++) {
416       num = ((JLONG) (ODITHER_CELLS-1 - 2*((int)base_dither_matrix[j][k])))
417             * MAXJSAMPLE;
418       /* Ensure round towards zero despite C's lack of consistency
419        * about rounding negative values in integer division...
420        */
421       odither[j][k] = (int) (num<0 ? -((-num)/den) : num/den);
422     }
423   }
424   return odither;
425 }
426 
427 
428 /*
429  * Create the ordered-dither tables.
430  * Components having the same number of representative colors may
431  * share a dither table.
432  */
433 
434 LOCAL(void)
create_odither_tables(j_decompress_ptr cinfo)435 create_odither_tables (j_decompress_ptr cinfo)
436 {
437   my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
438   ODITHER_MATRIX_PTR odither;
439   int i, j, nci;
440 
441   for (i = 0; i < cinfo->out_color_components; i++) {
442     nci = cquantize->Ncolors[i]; /* # of distinct values for this color */
443     odither = NULL;             /* search for matching prior component */
444     for (j = 0; j < i; j++) {
445       if (nci == cquantize->Ncolors[j]) {
446         odither = cquantize->odither[j];
447         break;
448       }
449     }
450     if (odither == NULL)        /* need a new table? */
451       odither = make_odither_array(cinfo, nci);
452     cquantize->odither[i] = odither;
453   }
454 }
455 
456 
457 /*
458  * Map some rows of pixels to the output colormapped representation.
459  */
460 
461 METHODDEF(void)
color_quantize(j_decompress_ptr cinfo,JSAMPARRAY input_buf,JSAMPARRAY output_buf,int num_rows)462 color_quantize (j_decompress_ptr cinfo, JSAMPARRAY input_buf,
463                 JSAMPARRAY output_buf, int num_rows)
464 /* General case, no dithering */
465 {
466   my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
467   JSAMPARRAY colorindex = cquantize->colorindex;
468   register int pixcode, ci;
469   register JSAMPROW ptrin, ptrout;
470   int row;
471   JDIMENSION col;
472   JDIMENSION width = cinfo->output_width;
473   register int nc = cinfo->out_color_components;
474 
475   for (row = 0; row < num_rows; row++) {
476     ptrin = input_buf[row];
477     ptrout = output_buf[row];
478     for (col = width; col > 0; col--) {
479       pixcode = 0;
480       for (ci = 0; ci < nc; ci++) {
481         pixcode += GETJSAMPLE(colorindex[ci][GETJSAMPLE(*ptrin++)]);
482       }
483       *ptrout++ = (JSAMPLE) pixcode;
484     }
485   }
486 }
487 
488 
489 METHODDEF(void)
color_quantize3(j_decompress_ptr cinfo,JSAMPARRAY input_buf,JSAMPARRAY output_buf,int num_rows)490 color_quantize3 (j_decompress_ptr cinfo, JSAMPARRAY input_buf,
491                  JSAMPARRAY output_buf, int num_rows)
492 /* Fast path for out_color_components==3, no dithering */
493 {
494   my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
495   register int pixcode;
496   register JSAMPROW ptrin, ptrout;
497   JSAMPROW colorindex0 = cquantize->colorindex[0];
498   JSAMPROW colorindex1 = cquantize->colorindex[1];
499   JSAMPROW colorindex2 = cquantize->colorindex[2];
500   int row;
501   JDIMENSION col;
502   JDIMENSION width = cinfo->output_width;
503 
504   for (row = 0; row < num_rows; row++) {
505     ptrin = input_buf[row];
506     ptrout = output_buf[row];
507     for (col = width; col > 0; col--) {
508       pixcode  = GETJSAMPLE(colorindex0[GETJSAMPLE(*ptrin++)]);
509       pixcode += GETJSAMPLE(colorindex1[GETJSAMPLE(*ptrin++)]);
510       pixcode += GETJSAMPLE(colorindex2[GETJSAMPLE(*ptrin++)]);
511       *ptrout++ = (JSAMPLE) pixcode;
512     }
513   }
514 }
515 
516 
517 METHODDEF(void)
quantize_ord_dither(j_decompress_ptr cinfo,JSAMPARRAY input_buf,JSAMPARRAY output_buf,int num_rows)518 quantize_ord_dither (j_decompress_ptr cinfo, JSAMPARRAY input_buf,
519                      JSAMPARRAY output_buf, int num_rows)
520 /* General case, with ordered dithering */
521 {
522   my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
523   register JSAMPROW input_ptr;
524   register JSAMPROW output_ptr;
525   JSAMPROW colorindex_ci;
526   int *dither;                  /* points to active row of dither matrix */
527   int row_index, col_index;     /* current indexes into dither matrix */
528   int nc = cinfo->out_color_components;
529   int ci;
530   int row;
531   JDIMENSION col;
532   JDIMENSION width = cinfo->output_width;
533 
534   for (row = 0; row < num_rows; row++) {
535     /* Initialize output values to 0 so can process components separately */
536     jzero_far((void *) output_buf[row], (size_t) (width * sizeof(JSAMPLE)));
537     row_index = cquantize->row_index;
538     for (ci = 0; ci < nc; ci++) {
539       input_ptr = input_buf[row] + ci;
540       output_ptr = output_buf[row];
541       colorindex_ci = cquantize->colorindex[ci];
542       dither = cquantize->odither[ci][row_index];
543       col_index = 0;
544 
545       for (col = width; col > 0; col--) {
546         /* Form pixel value + dither, range-limit to 0..MAXJSAMPLE,
547          * select output value, accumulate into output code for this pixel.
548          * Range-limiting need not be done explicitly, as we have extended
549          * the colorindex table to produce the right answers for out-of-range
550          * inputs.  The maximum dither is +- MAXJSAMPLE; this sets the
551          * required amount of padding.
552          */
553         *output_ptr += colorindex_ci[GETJSAMPLE(*input_ptr)+dither[col_index]];
554         input_ptr += nc;
555         output_ptr++;
556         col_index = (col_index + 1) & ODITHER_MASK;
557       }
558     }
559     /* Advance row index for next row */
560     row_index = (row_index + 1) & ODITHER_MASK;
561     cquantize->row_index = row_index;
562   }
563 }
564 
565 
566 METHODDEF(void)
quantize3_ord_dither(j_decompress_ptr cinfo,JSAMPARRAY input_buf,JSAMPARRAY output_buf,int num_rows)567 quantize3_ord_dither (j_decompress_ptr cinfo, JSAMPARRAY input_buf,
568                       JSAMPARRAY output_buf, int num_rows)
569 /* Fast path for out_color_components==3, with ordered dithering */
570 {
571   my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
572   register int pixcode;
573   register JSAMPROW input_ptr;
574   register JSAMPROW output_ptr;
575   JSAMPROW colorindex0 = cquantize->colorindex[0];
576   JSAMPROW colorindex1 = cquantize->colorindex[1];
577   JSAMPROW colorindex2 = cquantize->colorindex[2];
578   int *dither0;                 /* points to active row of dither matrix */
579   int *dither1;
580   int *dither2;
581   int row_index, col_index;     /* current indexes into dither matrix */
582   int row;
583   JDIMENSION col;
584   JDIMENSION width = cinfo->output_width;
585 
586   for (row = 0; row < num_rows; row++) {
587     row_index = cquantize->row_index;
588     input_ptr = input_buf[row];
589     output_ptr = output_buf[row];
590     dither0 = cquantize->odither[0][row_index];
591     dither1 = cquantize->odither[1][row_index];
592     dither2 = cquantize->odither[2][row_index];
593     col_index = 0;
594 
595     for (col = width; col > 0; col--) {
596       pixcode  = GETJSAMPLE(colorindex0[GETJSAMPLE(*input_ptr++) +
597                                         dither0[col_index]]);
598       pixcode += GETJSAMPLE(colorindex1[GETJSAMPLE(*input_ptr++) +
599                                         dither1[col_index]]);
600       pixcode += GETJSAMPLE(colorindex2[GETJSAMPLE(*input_ptr++) +
601                                         dither2[col_index]]);
602       *output_ptr++ = (JSAMPLE) pixcode;
603       col_index = (col_index + 1) & ODITHER_MASK;
604     }
605     row_index = (row_index + 1) & ODITHER_MASK;
606     cquantize->row_index = row_index;
607   }
608 }
609 
610 
611 METHODDEF(void)
quantize_fs_dither(j_decompress_ptr cinfo,JSAMPARRAY input_buf,JSAMPARRAY output_buf,int num_rows)612 quantize_fs_dither (j_decompress_ptr cinfo, JSAMPARRAY input_buf,
613                     JSAMPARRAY output_buf, int num_rows)
614 /* General case, with Floyd-Steinberg dithering */
615 {
616   my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
617   register LOCFSERROR cur;      /* current error or pixel value */
618   LOCFSERROR belowerr;          /* error for pixel below cur */
619   LOCFSERROR bpreverr;          /* error for below/prev col */
620   LOCFSERROR bnexterr;          /* error for below/next col */
621   LOCFSERROR delta;
622   register FSERRPTR errorptr;   /* => fserrors[] at column before current */
623   register JSAMPROW input_ptr;
624   register JSAMPROW output_ptr;
625   JSAMPROW colorindex_ci;
626   JSAMPROW colormap_ci;
627   int pixcode;
628   int nc = cinfo->out_color_components;
629   int dir;                      /* 1 for left-to-right, -1 for right-to-left */
630   int dirnc;                    /* dir * nc */
631   int ci;
632   int row;
633   JDIMENSION col;
634   JDIMENSION width = cinfo->output_width;
635   JSAMPLE *range_limit = cinfo->sample_range_limit;
636   SHIFT_TEMPS
637 
638   for (row = 0; row < num_rows; row++) {
639     /* Initialize output values to 0 so can process components separately */
640     jzero_far((void *) output_buf[row], (size_t) (width * sizeof(JSAMPLE)));
641     for (ci = 0; ci < nc; ci++) {
642       input_ptr = input_buf[row] + ci;
643       output_ptr = output_buf[row];
644       if (cquantize->on_odd_row) {
645         /* work right to left in this row */
646         input_ptr += (width-1) * nc; /* so point to rightmost pixel */
647         output_ptr += width-1;
648         dir = -1;
649         dirnc = -nc;
650         errorptr = cquantize->fserrors[ci] + (width+1); /* => entry after last column */
651       } else {
652         /* work left to right in this row */
653         dir = 1;
654         dirnc = nc;
655         errorptr = cquantize->fserrors[ci]; /* => entry before first column */
656       }
657       colorindex_ci = cquantize->colorindex[ci];
658       colormap_ci = cquantize->sv_colormap[ci];
659       /* Preset error values: no error propagated to first pixel from left */
660       cur = 0;
661       /* and no error propagated to row below yet */
662       belowerr = bpreverr = 0;
663 
664       for (col = width; col > 0; col--) {
665         /* cur holds the error propagated from the previous pixel on the
666          * current line.  Add the error propagated from the previous line
667          * to form the complete error correction term for this pixel, and
668          * round the error term (which is expressed * 16) to an integer.
669          * RIGHT_SHIFT rounds towards minus infinity, so adding 8 is correct
670          * for either sign of the error value.
671          * Note: errorptr points to *previous* column's array entry.
672          */
673         cur = RIGHT_SHIFT(cur + errorptr[dir] + 8, 4);
674         /* Form pixel value + error, and range-limit to 0..MAXJSAMPLE.
675          * The maximum error is +- MAXJSAMPLE; this sets the required size
676          * of the range_limit array.
677          */
678         cur += GETJSAMPLE(*input_ptr);
679         cur = GETJSAMPLE(range_limit[cur]);
680         /* Select output value, accumulate into output code for this pixel */
681         pixcode = GETJSAMPLE(colorindex_ci[cur]);
682         *output_ptr += (JSAMPLE) pixcode;
683         /* Compute actual representation error at this pixel */
684         /* Note: we can do this even though we don't have the final */
685         /* pixel code, because the colormap is orthogonal. */
686         cur -= GETJSAMPLE(colormap_ci[pixcode]);
687         /* Compute error fractions to be propagated to adjacent pixels.
688          * Add these into the running sums, and simultaneously shift the
689          * next-line error sums left by 1 column.
690          */
691         bnexterr = cur;
692         delta = cur * 2;
693         cur += delta;           /* form error * 3 */
694         errorptr[0] = (FSERROR) (bpreverr + cur);
695         cur += delta;           /* form error * 5 */
696         bpreverr = belowerr + cur;
697         belowerr = bnexterr;
698         cur += delta;           /* form error * 7 */
699         /* At this point cur contains the 7/16 error value to be propagated
700          * to the next pixel on the current line, and all the errors for the
701          * next line have been shifted over. We are therefore ready to move on.
702          */
703         input_ptr += dirnc;     /* advance input ptr to next column */
704         output_ptr += dir;      /* advance output ptr to next column */
705         errorptr += dir;        /* advance errorptr to current column */
706       }
707       /* Post-loop cleanup: we must unload the final error value into the
708        * final fserrors[] entry.  Note we need not unload belowerr because
709        * it is for the dummy column before or after the actual array.
710        */
711       errorptr[0] = (FSERROR) bpreverr; /* unload prev err into array */
712     }
713     cquantize->on_odd_row = (cquantize->on_odd_row ? FALSE : TRUE);
714   }
715 }
716 
717 
718 /*
719  * Allocate workspace for Floyd-Steinberg errors.
720  */
721 
722 LOCAL(void)
alloc_fs_workspace(j_decompress_ptr cinfo)723 alloc_fs_workspace (j_decompress_ptr cinfo)
724 {
725   my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
726   size_t arraysize;
727   int i;
728 
729   arraysize = (size_t) ((cinfo->output_width + 2) * sizeof(FSERROR));
730   for (i = 0; i < cinfo->out_color_components; i++) {
731     cquantize->fserrors[i] = (FSERRPTR)
732       (*cinfo->mem->alloc_large)((j_common_ptr) cinfo, JPOOL_IMAGE, arraysize);
733   }
734 }
735 
736 
737 /*
738  * Initialize for one-pass color quantization.
739  */
740 
741 METHODDEF(void)
start_pass_1_quant(j_decompress_ptr cinfo,boolean is_pre_scan)742 start_pass_1_quant (j_decompress_ptr cinfo, boolean is_pre_scan)
743 {
744   my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
745   size_t arraysize;
746   int i;
747 
748   /* Install my colormap. */
749   cinfo->colormap = cquantize->sv_colormap;
750   cinfo->actual_number_of_colors = cquantize->sv_actual;
751 
752   /* Initialize for desired dithering mode. */
753   switch (cinfo->dither_mode) {
754   case JDITHER_NONE:
755     if (cinfo->out_color_components == 3)
756       cquantize->pub.color_quantize = color_quantize3;
757     else
758       cquantize->pub.color_quantize = color_quantize;
759     break;
760   case JDITHER_ORDERED:
761     if (cinfo->out_color_components == 3)
762       cquantize->pub.color_quantize = quantize3_ord_dither;
763     else
764       cquantize->pub.color_quantize = quantize_ord_dither;
765     cquantize->row_index = 0;   /* initialize state for ordered dither */
766     /* If user changed to ordered dither from another mode,
767      * we must recreate the color index table with padding.
768      * This will cost extra space, but probably isn't very likely.
769      */
770     if (! cquantize->is_padded)
771       create_colorindex(cinfo);
772     /* Create ordered-dither tables if we didn't already. */
773     if (cquantize->odither[0] == NULL)
774       create_odither_tables(cinfo);
775     break;
776   case JDITHER_FS:
777     cquantize->pub.color_quantize = quantize_fs_dither;
778     cquantize->on_odd_row = FALSE; /* initialize state for F-S dither */
779     /* Allocate Floyd-Steinberg workspace if didn't already. */
780     if (cquantize->fserrors[0] == NULL)
781       alloc_fs_workspace(cinfo);
782     /* Initialize the propagated errors to zero. */
783     arraysize = (size_t) ((cinfo->output_width + 2) * sizeof(FSERROR));
784     for (i = 0; i < cinfo->out_color_components; i++)
785       jzero_far((void *) cquantize->fserrors[i], arraysize);
786     break;
787   default:
788     ERREXIT(cinfo, JERR_NOT_COMPILED);
789     break;
790   }
791 }
792 
793 
794 /*
795  * Finish up at the end of the pass.
796  */
797 
798 METHODDEF(void)
finish_pass_1_quant(j_decompress_ptr cinfo)799 finish_pass_1_quant (j_decompress_ptr cinfo)
800 {
801   /* no work in 1-pass case */
802 }
803 
804 
805 /*
806  * Switch to a new external colormap between output passes.
807  * Shouldn't get to this module!
808  */
809 
810 METHODDEF(void)
new_color_map_1_quant(j_decompress_ptr cinfo)811 new_color_map_1_quant (j_decompress_ptr cinfo)
812 {
813   ERREXIT(cinfo, JERR_MODE_CHANGE);
814 }
815 
816 
817 /*
818  * Module initialization routine for 1-pass color quantization.
819  */
820 
821 GLOBAL(void)
jinit_1pass_quantizer(j_decompress_ptr cinfo)822 jinit_1pass_quantizer (j_decompress_ptr cinfo)
823 {
824   my_cquantize_ptr cquantize;
825 
826   cquantize = (my_cquantize_ptr)
827     (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
828                                 sizeof(my_cquantizer));
829   cinfo->cquantize = (struct jpeg_color_quantizer *) cquantize;
830   cquantize->pub.start_pass = start_pass_1_quant;
831   cquantize->pub.finish_pass = finish_pass_1_quant;
832   cquantize->pub.new_color_map = new_color_map_1_quant;
833   cquantize->fserrors[0] = NULL; /* Flag FS workspace not allocated */
834   cquantize->odither[0] = NULL; /* Also flag odither arrays not allocated */
835 
836   /* Make sure my internal arrays won't overflow */
837   if (cinfo->out_color_components > MAX_Q_COMPS)
838     ERREXIT1(cinfo, JERR_QUANT_COMPONENTS, MAX_Q_COMPS);
839   /* Make sure colormap indexes can be represented by JSAMPLEs */
840   if (cinfo->desired_number_of_colors > (MAXJSAMPLE+1))
841     ERREXIT1(cinfo, JERR_QUANT_MANY_COLORS, MAXJSAMPLE+1);
842 
843   /* Create the colormap and color index table. */
844   create_colormap(cinfo);
845   create_colorindex(cinfo);
846 
847   /* Allocate Floyd-Steinberg workspace now if requested.
848    * We do this now since it may affect the memory manager's space
849    * calculations.  If the user changes to FS dither mode in a later pass, we
850    * will allocate the space then, and will possibly overrun the
851    * max_memory_to_use setting.
852    */
853   if (cinfo->dither_mode == JDITHER_FS)
854     alloc_fs_workspace(cinfo);
855 }
856 
857 #endif /* QUANT_1PASS_SUPPORTED */
858