1 //===-- RegAllocLinearScan.cpp - Linear Scan register allocator -----------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements a linear scan register allocator.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #define DEBUG_TYPE "regalloc"
15 #include "LiveDebugVariables.h"
16 #include "LiveRangeEdit.h"
17 #include "VirtRegMap.h"
18 #include "VirtRegRewriter.h"
19 #include "RegisterClassInfo.h"
20 #include "Spiller.h"
21 #include "llvm/Analysis/AliasAnalysis.h"
22 #include "llvm/Function.h"
23 #include "llvm/CodeGen/CalcSpillWeights.h"
24 #include "llvm/CodeGen/LiveIntervalAnalysis.h"
25 #include "llvm/CodeGen/MachineFunctionPass.h"
26 #include "llvm/CodeGen/MachineInstr.h"
27 #include "llvm/CodeGen/MachineLoopInfo.h"
28 #include "llvm/CodeGen/MachineRegisterInfo.h"
29 #include "llvm/CodeGen/Passes.h"
30 #include "llvm/CodeGen/RegAllocRegistry.h"
31 #include "llvm/Target/TargetRegisterInfo.h"
32 #include "llvm/Target/TargetMachine.h"
33 #include "llvm/Target/TargetOptions.h"
34 #include "llvm/Target/TargetInstrInfo.h"
35 #include "llvm/ADT/EquivalenceClasses.h"
36 #include "llvm/ADT/SmallSet.h"
37 #include "llvm/ADT/Statistic.h"
38 #include "llvm/ADT/STLExtras.h"
39 #include "llvm/Support/Debug.h"
40 #include "llvm/Support/ErrorHandling.h"
41 #include "llvm/Support/raw_ostream.h"
42 #include <algorithm>
43 #include <queue>
44 #include <memory>
45 #include <cmath>
46
47 using namespace llvm;
48
49 STATISTIC(NumIters , "Number of iterations performed");
50 STATISTIC(NumBacktracks, "Number of times we had to backtrack");
51 STATISTIC(NumCoalesce, "Number of copies coalesced");
52 STATISTIC(NumDowngrade, "Number of registers downgraded");
53
54 static cl::opt<bool>
55 NewHeuristic("new-spilling-heuristic",
56 cl::desc("Use new spilling heuristic"),
57 cl::init(false), cl::Hidden);
58
59 static cl::opt<bool>
60 TrivCoalesceEnds("trivial-coalesce-ends",
61 cl::desc("Attempt trivial coalescing of interval ends"),
62 cl::init(false), cl::Hidden);
63
64 static cl::opt<bool>
65 AvoidWAWHazard("avoid-waw-hazard",
66 cl::desc("Avoid write-write hazards for some register classes"),
67 cl::init(false), cl::Hidden);
68
69 static RegisterRegAlloc
70 linearscanRegAlloc("linearscan", "linear scan register allocator",
71 createLinearScanRegisterAllocator);
72
73 namespace {
74 // When we allocate a register, add it to a fixed-size queue of
75 // registers to skip in subsequent allocations. This trades a small
76 // amount of register pressure and increased spills for flexibility in
77 // the post-pass scheduler.
78 //
79 // Note that in a the number of registers used for reloading spills
80 // will be one greater than the value of this option.
81 //
82 // One big limitation of this is that it doesn't differentiate between
83 // different register classes. So on x86-64, if there is xmm register
84 // pressure, it can caused fewer GPRs to be held in the queue.
85 static cl::opt<unsigned>
86 NumRecentlyUsedRegs("linearscan-skip-count",
87 cl::desc("Number of registers for linearscan to remember"
88 "to skip."),
89 cl::init(0),
90 cl::Hidden);
91
92 struct RALinScan : public MachineFunctionPass {
93 static char ID;
RALinScan__anon11fdba0a0111::RALinScan94 RALinScan() : MachineFunctionPass(ID) {
95 initializeLiveDebugVariablesPass(*PassRegistry::getPassRegistry());
96 initializeLiveIntervalsPass(*PassRegistry::getPassRegistry());
97 initializeStrongPHIEliminationPass(*PassRegistry::getPassRegistry());
98 initializeRegisterCoalescerPass(
99 *PassRegistry::getPassRegistry());
100 initializeCalculateSpillWeightsPass(*PassRegistry::getPassRegistry());
101 initializeLiveStacksPass(*PassRegistry::getPassRegistry());
102 initializeMachineDominatorTreePass(*PassRegistry::getPassRegistry());
103 initializeMachineLoopInfoPass(*PassRegistry::getPassRegistry());
104 initializeVirtRegMapPass(*PassRegistry::getPassRegistry());
105 initializeMachineDominatorTreePass(*PassRegistry::getPassRegistry());
106
107 // Initialize the queue to record recently-used registers.
108 if (NumRecentlyUsedRegs > 0)
109 RecentRegs.resize(NumRecentlyUsedRegs, 0);
110 RecentNext = RecentRegs.begin();
111 avoidWAW_ = 0;
112 }
113
114 typedef std::pair<LiveInterval*, LiveInterval::iterator> IntervalPtr;
115 typedef SmallVector<IntervalPtr, 32> IntervalPtrs;
116 private:
117 /// RelatedRegClasses - This structure is built the first time a function is
118 /// compiled, and keeps track of which register classes have registers that
119 /// belong to multiple classes or have aliases that are in other classes.
120 EquivalenceClasses<const TargetRegisterClass*> RelatedRegClasses;
121 DenseMap<unsigned, const TargetRegisterClass*> OneClassForEachPhysReg;
122
123 // NextReloadMap - For each register in the map, it maps to the another
124 // register which is defined by a reload from the same stack slot and
125 // both reloads are in the same basic block.
126 DenseMap<unsigned, unsigned> NextReloadMap;
127
128 // DowngradedRegs - A set of registers which are being "downgraded", i.e.
129 // un-favored for allocation.
130 SmallSet<unsigned, 8> DowngradedRegs;
131
132 // DowngradeMap - A map from virtual registers to physical registers being
133 // downgraded for the virtual registers.
134 DenseMap<unsigned, unsigned> DowngradeMap;
135
136 MachineFunction* mf_;
137 MachineRegisterInfo* mri_;
138 const TargetMachine* tm_;
139 const TargetRegisterInfo* tri_;
140 const TargetInstrInfo* tii_;
141 BitVector allocatableRegs_;
142 BitVector reservedRegs_;
143 LiveIntervals* li_;
144 MachineLoopInfo *loopInfo;
145 RegisterClassInfo RegClassInfo;
146
147 /// handled_ - Intervals are added to the handled_ set in the order of their
148 /// start value. This is uses for backtracking.
149 std::vector<LiveInterval*> handled_;
150
151 /// fixed_ - Intervals that correspond to machine registers.
152 ///
153 IntervalPtrs fixed_;
154
155 /// active_ - Intervals that are currently being processed, and which have a
156 /// live range active for the current point.
157 IntervalPtrs active_;
158
159 /// inactive_ - Intervals that are currently being processed, but which have
160 /// a hold at the current point.
161 IntervalPtrs inactive_;
162
163 typedef std::priority_queue<LiveInterval*,
164 SmallVector<LiveInterval*, 64>,
165 greater_ptr<LiveInterval> > IntervalHeap;
166 IntervalHeap unhandled_;
167
168 /// regUse_ - Tracks register usage.
169 SmallVector<unsigned, 32> regUse_;
170 SmallVector<unsigned, 32> regUseBackUp_;
171
172 /// vrm_ - Tracks register assignments.
173 VirtRegMap* vrm_;
174
175 std::auto_ptr<VirtRegRewriter> rewriter_;
176
177 std::auto_ptr<Spiller> spiller_;
178
179 // The queue of recently-used registers.
180 SmallVector<unsigned, 4> RecentRegs;
181 SmallVector<unsigned, 4>::iterator RecentNext;
182
183 // Last write-after-write register written.
184 unsigned avoidWAW_;
185
186 // Record that we just picked this register.
recordRecentlyUsed__anon11fdba0a0111::RALinScan187 void recordRecentlyUsed(unsigned reg) {
188 assert(reg != 0 && "Recently used register is NOREG!");
189 if (!RecentRegs.empty()) {
190 *RecentNext++ = reg;
191 if (RecentNext == RecentRegs.end())
192 RecentNext = RecentRegs.begin();
193 }
194 }
195
196 public:
getPassName__anon11fdba0a0111::RALinScan197 virtual const char* getPassName() const {
198 return "Linear Scan Register Allocator";
199 }
200
getAnalysisUsage__anon11fdba0a0111::RALinScan201 virtual void getAnalysisUsage(AnalysisUsage &AU) const {
202 AU.setPreservesCFG();
203 AU.addRequired<AliasAnalysis>();
204 AU.addPreserved<AliasAnalysis>();
205 AU.addRequired<LiveIntervals>();
206 AU.addPreserved<SlotIndexes>();
207 if (StrongPHIElim)
208 AU.addRequiredID(StrongPHIEliminationID);
209 // Make sure PassManager knows which analyses to make available
210 // to coalescing and which analyses coalescing invalidates.
211 AU.addRequiredTransitiveID(RegisterCoalescerPassID);
212 AU.addRequired<CalculateSpillWeights>();
213 AU.addRequiredID(LiveStacksID);
214 AU.addPreservedID(LiveStacksID);
215 AU.addRequired<MachineLoopInfo>();
216 AU.addPreserved<MachineLoopInfo>();
217 AU.addRequired<VirtRegMap>();
218 AU.addPreserved<VirtRegMap>();
219 AU.addRequired<LiveDebugVariables>();
220 AU.addPreserved<LiveDebugVariables>();
221 AU.addRequiredID(MachineDominatorsID);
222 AU.addPreservedID(MachineDominatorsID);
223 MachineFunctionPass::getAnalysisUsage(AU);
224 }
225
226 /// runOnMachineFunction - register allocate the whole function
227 bool runOnMachineFunction(MachineFunction&);
228
229 // Determine if we skip this register due to its being recently used.
isRecentlyUsed__anon11fdba0a0111::RALinScan230 bool isRecentlyUsed(unsigned reg) const {
231 return reg == avoidWAW_ ||
232 std::find(RecentRegs.begin(), RecentRegs.end(), reg) != RecentRegs.end();
233 }
234
235 private:
236 /// linearScan - the linear scan algorithm
237 void linearScan();
238
239 /// initIntervalSets - initialize the interval sets.
240 ///
241 void initIntervalSets();
242
243 /// processActiveIntervals - expire old intervals and move non-overlapping
244 /// ones to the inactive list.
245 void processActiveIntervals(SlotIndex CurPoint);
246
247 /// processInactiveIntervals - expire old intervals and move overlapping
248 /// ones to the active list.
249 void processInactiveIntervals(SlotIndex CurPoint);
250
251 /// hasNextReloadInterval - Return the next liveinterval that's being
252 /// defined by a reload from the same SS as the specified one.
253 LiveInterval *hasNextReloadInterval(LiveInterval *cur);
254
255 /// DowngradeRegister - Downgrade a register for allocation.
256 void DowngradeRegister(LiveInterval *li, unsigned Reg);
257
258 /// UpgradeRegister - Upgrade a register for allocation.
259 void UpgradeRegister(unsigned Reg);
260
261 /// assignRegOrStackSlotAtInterval - assign a register if one
262 /// is available, or spill.
263 void assignRegOrStackSlotAtInterval(LiveInterval* cur);
264
265 void updateSpillWeights(std::vector<float> &Weights,
266 unsigned reg, float weight,
267 const TargetRegisterClass *RC);
268
269 /// findIntervalsToSpill - Determine the intervals to spill for the
270 /// specified interval. It's passed the physical registers whose spill
271 /// weight is the lowest among all the registers whose live intervals
272 /// conflict with the interval.
273 void findIntervalsToSpill(LiveInterval *cur,
274 std::vector<std::pair<unsigned,float> > &Candidates,
275 unsigned NumCands,
276 SmallVector<LiveInterval*, 8> &SpillIntervals);
277
278 /// attemptTrivialCoalescing - If a simple interval is defined by a copy,
279 /// try to allocate the definition to the same register as the source,
280 /// if the register is not defined during the life time of the interval.
281 /// This eliminates a copy, and is used to coalesce copies which were not
282 /// coalesced away before allocation either due to dest and src being in
283 /// different register classes or because the coalescer was overly
284 /// conservative.
285 unsigned attemptTrivialCoalescing(LiveInterval &cur, unsigned Reg);
286
287 ///
288 /// Register usage / availability tracking helpers.
289 ///
290
initRegUses__anon11fdba0a0111::RALinScan291 void initRegUses() {
292 regUse_.resize(tri_->getNumRegs(), 0);
293 regUseBackUp_.resize(tri_->getNumRegs(), 0);
294 }
295
finalizeRegUses__anon11fdba0a0111::RALinScan296 void finalizeRegUses() {
297 #ifndef NDEBUG
298 // Verify all the registers are "freed".
299 bool Error = false;
300 for (unsigned i = 0, e = tri_->getNumRegs(); i != e; ++i) {
301 if (regUse_[i] != 0) {
302 dbgs() << tri_->getName(i) << " is still in use!\n";
303 Error = true;
304 }
305 }
306 if (Error)
307 llvm_unreachable(0);
308 #endif
309 regUse_.clear();
310 regUseBackUp_.clear();
311 }
312
addRegUse__anon11fdba0a0111::RALinScan313 void addRegUse(unsigned physReg) {
314 assert(TargetRegisterInfo::isPhysicalRegister(physReg) &&
315 "should be physical register!");
316 ++regUse_[physReg];
317 for (const unsigned* as = tri_->getAliasSet(physReg); *as; ++as)
318 ++regUse_[*as];
319 }
320
delRegUse__anon11fdba0a0111::RALinScan321 void delRegUse(unsigned physReg) {
322 assert(TargetRegisterInfo::isPhysicalRegister(physReg) &&
323 "should be physical register!");
324 assert(regUse_[physReg] != 0);
325 --regUse_[physReg];
326 for (const unsigned* as = tri_->getAliasSet(physReg); *as; ++as) {
327 assert(regUse_[*as] != 0);
328 --regUse_[*as];
329 }
330 }
331
isRegAvail__anon11fdba0a0111::RALinScan332 bool isRegAvail(unsigned physReg) const {
333 assert(TargetRegisterInfo::isPhysicalRegister(physReg) &&
334 "should be physical register!");
335 return regUse_[physReg] == 0;
336 }
337
backUpRegUses__anon11fdba0a0111::RALinScan338 void backUpRegUses() {
339 regUseBackUp_ = regUse_;
340 }
341
restoreRegUses__anon11fdba0a0111::RALinScan342 void restoreRegUses() {
343 regUse_ = regUseBackUp_;
344 }
345
346 ///
347 /// Register handling helpers.
348 ///
349
350 /// getFreePhysReg - return a free physical register for this virtual
351 /// register interval if we have one, otherwise return 0.
352 unsigned getFreePhysReg(LiveInterval* cur);
353 unsigned getFreePhysReg(LiveInterval* cur,
354 const TargetRegisterClass *RC,
355 unsigned MaxInactiveCount,
356 SmallVector<unsigned, 256> &inactiveCounts,
357 bool SkipDGRegs);
358
359 /// getFirstNonReservedPhysReg - return the first non-reserved physical
360 /// register in the register class.
getFirstNonReservedPhysReg__anon11fdba0a0111::RALinScan361 unsigned getFirstNonReservedPhysReg(const TargetRegisterClass *RC) {
362 ArrayRef<unsigned> O = RegClassInfo.getOrder(RC);
363 assert(!O.empty() && "All registers reserved?!");
364 return O.front();
365 }
366
367 void ComputeRelatedRegClasses();
368
369 template <typename ItTy>
printIntervals__anon11fdba0a0111::RALinScan370 void printIntervals(const char* const str, ItTy i, ItTy e) const {
371 DEBUG({
372 if (str)
373 dbgs() << str << " intervals:\n";
374
375 for (; i != e; ++i) {
376 dbgs() << '\t' << *i->first << " -> ";
377
378 unsigned reg = i->first->reg;
379 if (TargetRegisterInfo::isVirtualRegister(reg))
380 reg = vrm_->getPhys(reg);
381
382 dbgs() << tri_->getName(reg) << '\n';
383 }
384 });
385 }
386 };
387 char RALinScan::ID = 0;
388 }
389
390 INITIALIZE_PASS_BEGIN(RALinScan, "linearscan-regalloc",
391 "Linear Scan Register Allocator", false, false)
INITIALIZE_PASS_DEPENDENCY(LiveIntervals)392 INITIALIZE_PASS_DEPENDENCY(LiveIntervals)
393 INITIALIZE_PASS_DEPENDENCY(StrongPHIElimination)
394 INITIALIZE_PASS_DEPENDENCY(CalculateSpillWeights)
395 INITIALIZE_PASS_DEPENDENCY(LiveStacks)
396 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
397 INITIALIZE_PASS_DEPENDENCY(VirtRegMap)
398 INITIALIZE_PASS_DEPENDENCY(RegisterCoalescer)
399 INITIALIZE_AG_DEPENDENCY(AliasAnalysis)
400 INITIALIZE_PASS_END(RALinScan, "linearscan-regalloc",
401 "Linear Scan Register Allocator", false, false)
402
403 void RALinScan::ComputeRelatedRegClasses() {
404 // First pass, add all reg classes to the union, and determine at least one
405 // reg class that each register is in.
406 bool HasAliases = false;
407 for (TargetRegisterInfo::regclass_iterator RCI = tri_->regclass_begin(),
408 E = tri_->regclass_end(); RCI != E; ++RCI) {
409 RelatedRegClasses.insert(*RCI);
410 for (TargetRegisterClass::iterator I = (*RCI)->begin(), E = (*RCI)->end();
411 I != E; ++I) {
412 HasAliases = HasAliases || *tri_->getAliasSet(*I) != 0;
413
414 const TargetRegisterClass *&PRC = OneClassForEachPhysReg[*I];
415 if (PRC) {
416 // Already processed this register. Just make sure we know that
417 // multiple register classes share a register.
418 RelatedRegClasses.unionSets(PRC, *RCI);
419 } else {
420 PRC = *RCI;
421 }
422 }
423 }
424
425 // Second pass, now that we know conservatively what register classes each reg
426 // belongs to, add info about aliases. We don't need to do this for targets
427 // without register aliases.
428 if (HasAliases)
429 for (DenseMap<unsigned, const TargetRegisterClass*>::iterator
430 I = OneClassForEachPhysReg.begin(), E = OneClassForEachPhysReg.end();
431 I != E; ++I)
432 for (const unsigned *AS = tri_->getAliasSet(I->first); *AS; ++AS) {
433 const TargetRegisterClass *AliasClass =
434 OneClassForEachPhysReg.lookup(*AS);
435 if (AliasClass)
436 RelatedRegClasses.unionSets(I->second, AliasClass);
437 }
438 }
439
440 /// attemptTrivialCoalescing - If a simple interval is defined by a copy, try
441 /// allocate the definition the same register as the source register if the
442 /// register is not defined during live time of the interval. If the interval is
443 /// killed by a copy, try to use the destination register. This eliminates a
444 /// copy. This is used to coalesce copies which were not coalesced away before
445 /// allocation either due to dest and src being in different register classes or
446 /// because the coalescer was overly conservative.
attemptTrivialCoalescing(LiveInterval & cur,unsigned Reg)447 unsigned RALinScan::attemptTrivialCoalescing(LiveInterval &cur, unsigned Reg) {
448 unsigned Preference = vrm_->getRegAllocPref(cur.reg);
449 if ((Preference && Preference == Reg) || !cur.containsOneValue())
450 return Reg;
451
452 // We cannot handle complicated live ranges. Simple linear stuff only.
453 if (cur.ranges.size() != 1)
454 return Reg;
455
456 const LiveRange &range = cur.ranges.front();
457
458 VNInfo *vni = range.valno;
459 if (vni->isUnused() || !vni->def.isValid())
460 return Reg;
461
462 unsigned CandReg;
463 {
464 MachineInstr *CopyMI;
465 if ((CopyMI = li_->getInstructionFromIndex(vni->def)) && CopyMI->isCopy())
466 // Defined by a copy, try to extend SrcReg forward
467 CandReg = CopyMI->getOperand(1).getReg();
468 else if (TrivCoalesceEnds &&
469 (CopyMI = li_->getInstructionFromIndex(range.end.getBaseIndex())) &&
470 CopyMI->isCopy() && cur.reg == CopyMI->getOperand(1).getReg())
471 // Only used by a copy, try to extend DstReg backwards
472 CandReg = CopyMI->getOperand(0).getReg();
473 else
474 return Reg;
475
476 // If the target of the copy is a sub-register then don't coalesce.
477 if(CopyMI->getOperand(0).getSubReg())
478 return Reg;
479 }
480
481 if (TargetRegisterInfo::isVirtualRegister(CandReg)) {
482 if (!vrm_->isAssignedReg(CandReg))
483 return Reg;
484 CandReg = vrm_->getPhys(CandReg);
485 }
486 if (Reg == CandReg)
487 return Reg;
488
489 const TargetRegisterClass *RC = mri_->getRegClass(cur.reg);
490 if (!RC->contains(CandReg))
491 return Reg;
492
493 if (li_->conflictsWithPhysReg(cur, *vrm_, CandReg))
494 return Reg;
495
496 // Try to coalesce.
497 DEBUG(dbgs() << "Coalescing: " << cur << " -> " << tri_->getName(CandReg)
498 << '\n');
499 vrm_->clearVirt(cur.reg);
500 vrm_->assignVirt2Phys(cur.reg, CandReg);
501
502 ++NumCoalesce;
503 return CandReg;
504 }
505
runOnMachineFunction(MachineFunction & fn)506 bool RALinScan::runOnMachineFunction(MachineFunction &fn) {
507 mf_ = &fn;
508 mri_ = &fn.getRegInfo();
509 tm_ = &fn.getTarget();
510 tri_ = tm_->getRegisterInfo();
511 tii_ = tm_->getInstrInfo();
512 allocatableRegs_ = tri_->getAllocatableSet(fn);
513 reservedRegs_ = tri_->getReservedRegs(fn);
514 li_ = &getAnalysis<LiveIntervals>();
515 loopInfo = &getAnalysis<MachineLoopInfo>();
516 RegClassInfo.runOnMachineFunction(fn);
517
518 // We don't run the coalescer here because we have no reason to
519 // interact with it. If the coalescer requires interaction, it
520 // won't do anything. If it doesn't require interaction, we assume
521 // it was run as a separate pass.
522
523 // If this is the first function compiled, compute the related reg classes.
524 if (RelatedRegClasses.empty())
525 ComputeRelatedRegClasses();
526
527 // Also resize register usage trackers.
528 initRegUses();
529
530 vrm_ = &getAnalysis<VirtRegMap>();
531 if (!rewriter_.get()) rewriter_.reset(createVirtRegRewriter());
532
533 spiller_.reset(createSpiller(*this, *mf_, *vrm_));
534
535 initIntervalSets();
536
537 linearScan();
538
539 // Rewrite spill code and update the PhysRegsUsed set.
540 rewriter_->runOnMachineFunction(*mf_, *vrm_, li_);
541
542 // Write out new DBG_VALUE instructions.
543 getAnalysis<LiveDebugVariables>().emitDebugValues(vrm_);
544
545 assert(unhandled_.empty() && "Unhandled live intervals remain!");
546
547 finalizeRegUses();
548
549 fixed_.clear();
550 active_.clear();
551 inactive_.clear();
552 handled_.clear();
553 NextReloadMap.clear();
554 DowngradedRegs.clear();
555 DowngradeMap.clear();
556 spiller_.reset(0);
557
558 return true;
559 }
560
561 /// initIntervalSets - initialize the interval sets.
562 ///
initIntervalSets()563 void RALinScan::initIntervalSets()
564 {
565 assert(unhandled_.empty() && fixed_.empty() &&
566 active_.empty() && inactive_.empty() &&
567 "interval sets should be empty on initialization");
568
569 handled_.reserve(li_->getNumIntervals());
570
571 for (LiveIntervals::iterator i = li_->begin(), e = li_->end(); i != e; ++i) {
572 if (TargetRegisterInfo::isPhysicalRegister(i->second->reg)) {
573 if (!i->second->empty() && allocatableRegs_.test(i->second->reg)) {
574 mri_->setPhysRegUsed(i->second->reg);
575 fixed_.push_back(std::make_pair(i->second, i->second->begin()));
576 }
577 } else {
578 if (i->second->empty()) {
579 assignRegOrStackSlotAtInterval(i->second);
580 }
581 else
582 unhandled_.push(i->second);
583 }
584 }
585 }
586
linearScan()587 void RALinScan::linearScan() {
588 // linear scan algorithm
589 DEBUG({
590 dbgs() << "********** LINEAR SCAN **********\n"
591 << "********** Function: "
592 << mf_->getFunction()->getName() << '\n';
593 printIntervals("fixed", fixed_.begin(), fixed_.end());
594 });
595
596 while (!unhandled_.empty()) {
597 // pick the interval with the earliest start point
598 LiveInterval* cur = unhandled_.top();
599 unhandled_.pop();
600 ++NumIters;
601 DEBUG(dbgs() << "\n*** CURRENT ***: " << *cur << '\n');
602
603 assert(!cur->empty() && "Empty interval in unhandled set.");
604
605 processActiveIntervals(cur->beginIndex());
606 processInactiveIntervals(cur->beginIndex());
607
608 assert(TargetRegisterInfo::isVirtualRegister(cur->reg) &&
609 "Can only allocate virtual registers!");
610
611 // Allocating a virtual register. try to find a free
612 // physical register or spill an interval (possibly this one) in order to
613 // assign it one.
614 assignRegOrStackSlotAtInterval(cur);
615
616 DEBUG({
617 printIntervals("active", active_.begin(), active_.end());
618 printIntervals("inactive", inactive_.begin(), inactive_.end());
619 });
620 }
621
622 // Expire any remaining active intervals
623 while (!active_.empty()) {
624 IntervalPtr &IP = active_.back();
625 unsigned reg = IP.first->reg;
626 DEBUG(dbgs() << "\tinterval " << *IP.first << " expired\n");
627 assert(TargetRegisterInfo::isVirtualRegister(reg) &&
628 "Can only allocate virtual registers!");
629 reg = vrm_->getPhys(reg);
630 delRegUse(reg);
631 active_.pop_back();
632 }
633
634 // Expire any remaining inactive intervals
635 DEBUG({
636 for (IntervalPtrs::reverse_iterator
637 i = inactive_.rbegin(); i != inactive_.rend(); ++i)
638 dbgs() << "\tinterval " << *i->first << " expired\n";
639 });
640 inactive_.clear();
641
642 // Add live-ins to every BB except for entry. Also perform trivial coalescing.
643 MachineFunction::iterator EntryMBB = mf_->begin();
644 SmallVector<MachineBasicBlock*, 8> LiveInMBBs;
645 for (LiveIntervals::iterator i = li_->begin(), e = li_->end(); i != e; ++i) {
646 LiveInterval &cur = *i->second;
647 unsigned Reg = 0;
648 bool isPhys = TargetRegisterInfo::isPhysicalRegister(cur.reg);
649 if (isPhys)
650 Reg = cur.reg;
651 else if (vrm_->isAssignedReg(cur.reg))
652 Reg = attemptTrivialCoalescing(cur, vrm_->getPhys(cur.reg));
653 if (!Reg)
654 continue;
655 // Ignore splited live intervals.
656 if (!isPhys && vrm_->getPreSplitReg(cur.reg))
657 continue;
658
659 for (LiveInterval::Ranges::const_iterator I = cur.begin(), E = cur.end();
660 I != E; ++I) {
661 const LiveRange &LR = *I;
662 if (li_->findLiveInMBBs(LR.start, LR.end, LiveInMBBs)) {
663 for (unsigned i = 0, e = LiveInMBBs.size(); i != e; ++i)
664 if (LiveInMBBs[i] != EntryMBB) {
665 assert(TargetRegisterInfo::isPhysicalRegister(Reg) &&
666 "Adding a virtual register to livein set?");
667 LiveInMBBs[i]->addLiveIn(Reg);
668 }
669 LiveInMBBs.clear();
670 }
671 }
672 }
673
674 DEBUG(dbgs() << *vrm_);
675
676 // Look for physical registers that end up not being allocated even though
677 // register allocator had to spill other registers in its register class.
678 if (!vrm_->FindUnusedRegisters(li_))
679 return;
680 }
681
682 /// processActiveIntervals - expire old intervals and move non-overlapping ones
683 /// to the inactive list.
processActiveIntervals(SlotIndex CurPoint)684 void RALinScan::processActiveIntervals(SlotIndex CurPoint)
685 {
686 DEBUG(dbgs() << "\tprocessing active intervals:\n");
687
688 for (unsigned i = 0, e = active_.size(); i != e; ++i) {
689 LiveInterval *Interval = active_[i].first;
690 LiveInterval::iterator IntervalPos = active_[i].second;
691 unsigned reg = Interval->reg;
692
693 IntervalPos = Interval->advanceTo(IntervalPos, CurPoint);
694
695 if (IntervalPos == Interval->end()) { // Remove expired intervals.
696 DEBUG(dbgs() << "\t\tinterval " << *Interval << " expired\n");
697 assert(TargetRegisterInfo::isVirtualRegister(reg) &&
698 "Can only allocate virtual registers!");
699 reg = vrm_->getPhys(reg);
700 delRegUse(reg);
701
702 // Pop off the end of the list.
703 active_[i] = active_.back();
704 active_.pop_back();
705 --i; --e;
706
707 } else if (IntervalPos->start > CurPoint) {
708 // Move inactive intervals to inactive list.
709 DEBUG(dbgs() << "\t\tinterval " << *Interval << " inactive\n");
710 assert(TargetRegisterInfo::isVirtualRegister(reg) &&
711 "Can only allocate virtual registers!");
712 reg = vrm_->getPhys(reg);
713 delRegUse(reg);
714 // add to inactive.
715 inactive_.push_back(std::make_pair(Interval, IntervalPos));
716
717 // Pop off the end of the list.
718 active_[i] = active_.back();
719 active_.pop_back();
720 --i; --e;
721 } else {
722 // Otherwise, just update the iterator position.
723 active_[i].second = IntervalPos;
724 }
725 }
726 }
727
728 /// processInactiveIntervals - expire old intervals and move overlapping
729 /// ones to the active list.
processInactiveIntervals(SlotIndex CurPoint)730 void RALinScan::processInactiveIntervals(SlotIndex CurPoint)
731 {
732 DEBUG(dbgs() << "\tprocessing inactive intervals:\n");
733
734 for (unsigned i = 0, e = inactive_.size(); i != e; ++i) {
735 LiveInterval *Interval = inactive_[i].first;
736 LiveInterval::iterator IntervalPos = inactive_[i].second;
737 unsigned reg = Interval->reg;
738
739 IntervalPos = Interval->advanceTo(IntervalPos, CurPoint);
740
741 if (IntervalPos == Interval->end()) { // remove expired intervals.
742 DEBUG(dbgs() << "\t\tinterval " << *Interval << " expired\n");
743
744 // Pop off the end of the list.
745 inactive_[i] = inactive_.back();
746 inactive_.pop_back();
747 --i; --e;
748 } else if (IntervalPos->start <= CurPoint) {
749 // move re-activated intervals in active list
750 DEBUG(dbgs() << "\t\tinterval " << *Interval << " active\n");
751 assert(TargetRegisterInfo::isVirtualRegister(reg) &&
752 "Can only allocate virtual registers!");
753 reg = vrm_->getPhys(reg);
754 addRegUse(reg);
755 // add to active
756 active_.push_back(std::make_pair(Interval, IntervalPos));
757
758 // Pop off the end of the list.
759 inactive_[i] = inactive_.back();
760 inactive_.pop_back();
761 --i; --e;
762 } else {
763 // Otherwise, just update the iterator position.
764 inactive_[i].second = IntervalPos;
765 }
766 }
767 }
768
769 /// updateSpillWeights - updates the spill weights of the specifed physical
770 /// register and its weight.
updateSpillWeights(std::vector<float> & Weights,unsigned reg,float weight,const TargetRegisterClass * RC)771 void RALinScan::updateSpillWeights(std::vector<float> &Weights,
772 unsigned reg, float weight,
773 const TargetRegisterClass *RC) {
774 SmallSet<unsigned, 4> Processed;
775 SmallSet<unsigned, 4> SuperAdded;
776 SmallVector<unsigned, 4> Supers;
777 Weights[reg] += weight;
778 Processed.insert(reg);
779 for (const unsigned* as = tri_->getAliasSet(reg); *as; ++as) {
780 Weights[*as] += weight;
781 Processed.insert(*as);
782 if (tri_->isSubRegister(*as, reg) &&
783 SuperAdded.insert(*as) &&
784 RC->contains(*as)) {
785 Supers.push_back(*as);
786 }
787 }
788
789 // If the alias is a super-register, and the super-register is in the
790 // register class we are trying to allocate. Then add the weight to all
791 // sub-registers of the super-register even if they are not aliases.
792 // e.g. allocating for GR32, bh is not used, updating bl spill weight.
793 // bl should get the same spill weight otherwise it will be chosen
794 // as a spill candidate since spilling bh doesn't make ebx available.
795 for (unsigned i = 0, e = Supers.size(); i != e; ++i) {
796 for (const unsigned *sr = tri_->getSubRegisters(Supers[i]); *sr; ++sr)
797 if (!Processed.count(*sr))
798 Weights[*sr] += weight;
799 }
800 }
801
802 static
803 RALinScan::IntervalPtrs::iterator
FindIntervalInVector(RALinScan::IntervalPtrs & IP,LiveInterval * LI)804 FindIntervalInVector(RALinScan::IntervalPtrs &IP, LiveInterval *LI) {
805 for (RALinScan::IntervalPtrs::iterator I = IP.begin(), E = IP.end();
806 I != E; ++I)
807 if (I->first == LI) return I;
808 return IP.end();
809 }
810
RevertVectorIteratorsTo(RALinScan::IntervalPtrs & V,SlotIndex Point)811 static void RevertVectorIteratorsTo(RALinScan::IntervalPtrs &V,
812 SlotIndex Point){
813 for (unsigned i = 0, e = V.size(); i != e; ++i) {
814 RALinScan::IntervalPtr &IP = V[i];
815 LiveInterval::iterator I = std::upper_bound(IP.first->begin(),
816 IP.second, Point);
817 if (I != IP.first->begin()) --I;
818 IP.second = I;
819 }
820 }
821
822 /// getConflictWeight - Return the number of conflicts between cur
823 /// live interval and defs and uses of Reg weighted by loop depthes.
824 static
getConflictWeight(LiveInterval * cur,unsigned Reg,LiveIntervals * li_,MachineRegisterInfo * mri_,MachineLoopInfo * loopInfo)825 float getConflictWeight(LiveInterval *cur, unsigned Reg, LiveIntervals *li_,
826 MachineRegisterInfo *mri_,
827 MachineLoopInfo *loopInfo) {
828 float Conflicts = 0;
829 for (MachineRegisterInfo::reg_iterator I = mri_->reg_begin(Reg),
830 E = mri_->reg_end(); I != E; ++I) {
831 MachineInstr *MI = &*I;
832 if (cur->liveAt(li_->getInstructionIndex(MI))) {
833 unsigned loopDepth = loopInfo->getLoopDepth(MI->getParent());
834 Conflicts += std::pow(10.0f, (float)loopDepth);
835 }
836 }
837 return Conflicts;
838 }
839
840 /// findIntervalsToSpill - Determine the intervals to spill for the
841 /// specified interval. It's passed the physical registers whose spill
842 /// weight is the lowest among all the registers whose live intervals
843 /// conflict with the interval.
findIntervalsToSpill(LiveInterval * cur,std::vector<std::pair<unsigned,float>> & Candidates,unsigned NumCands,SmallVector<LiveInterval *,8> & SpillIntervals)844 void RALinScan::findIntervalsToSpill(LiveInterval *cur,
845 std::vector<std::pair<unsigned,float> > &Candidates,
846 unsigned NumCands,
847 SmallVector<LiveInterval*, 8> &SpillIntervals) {
848 // We have figured out the *best* register to spill. But there are other
849 // registers that are pretty good as well (spill weight within 3%). Spill
850 // the one that has fewest defs and uses that conflict with cur.
851 float Conflicts[3] = { 0.0f, 0.0f, 0.0f };
852 SmallVector<LiveInterval*, 8> SLIs[3];
853
854 DEBUG({
855 dbgs() << "\tConsidering " << NumCands << " candidates: ";
856 for (unsigned i = 0; i != NumCands; ++i)
857 dbgs() << tri_->getName(Candidates[i].first) << " ";
858 dbgs() << "\n";
859 });
860
861 // Calculate the number of conflicts of each candidate.
862 for (IntervalPtrs::iterator i = active_.begin(); i != active_.end(); ++i) {
863 unsigned Reg = i->first->reg;
864 unsigned PhysReg = vrm_->getPhys(Reg);
865 if (!cur->overlapsFrom(*i->first, i->second))
866 continue;
867 for (unsigned j = 0; j < NumCands; ++j) {
868 unsigned Candidate = Candidates[j].first;
869 if (tri_->regsOverlap(PhysReg, Candidate)) {
870 if (NumCands > 1)
871 Conflicts[j] += getConflictWeight(cur, Reg, li_, mri_, loopInfo);
872 SLIs[j].push_back(i->first);
873 }
874 }
875 }
876
877 for (IntervalPtrs::iterator i = inactive_.begin(); i != inactive_.end(); ++i){
878 unsigned Reg = i->first->reg;
879 unsigned PhysReg = vrm_->getPhys(Reg);
880 if (!cur->overlapsFrom(*i->first, i->second-1))
881 continue;
882 for (unsigned j = 0; j < NumCands; ++j) {
883 unsigned Candidate = Candidates[j].first;
884 if (tri_->regsOverlap(PhysReg, Candidate)) {
885 if (NumCands > 1)
886 Conflicts[j] += getConflictWeight(cur, Reg, li_, mri_, loopInfo);
887 SLIs[j].push_back(i->first);
888 }
889 }
890 }
891
892 // Which is the best candidate?
893 unsigned BestCandidate = 0;
894 float MinConflicts = Conflicts[0];
895 for (unsigned i = 1; i != NumCands; ++i) {
896 if (Conflicts[i] < MinConflicts) {
897 BestCandidate = i;
898 MinConflicts = Conflicts[i];
899 }
900 }
901
902 std::copy(SLIs[BestCandidate].begin(), SLIs[BestCandidate].end(),
903 std::back_inserter(SpillIntervals));
904 }
905
906 namespace {
907 struct WeightCompare {
908 private:
909 const RALinScan &Allocator;
910
911 public:
WeightCompare__anon11fdba0a0211::WeightCompare912 WeightCompare(const RALinScan &Alloc) : Allocator(Alloc) {}
913
914 typedef std::pair<unsigned, float> RegWeightPair;
operator ()__anon11fdba0a0211::WeightCompare915 bool operator()(const RegWeightPair &LHS, const RegWeightPair &RHS) const {
916 return LHS.second < RHS.second && !Allocator.isRecentlyUsed(LHS.first);
917 }
918 };
919 }
920
weightsAreClose(float w1,float w2)921 static bool weightsAreClose(float w1, float w2) {
922 if (!NewHeuristic)
923 return false;
924
925 float diff = w1 - w2;
926 if (diff <= 0.02f) // Within 0.02f
927 return true;
928 return (diff / w2) <= 0.05f; // Within 5%.
929 }
930
hasNextReloadInterval(LiveInterval * cur)931 LiveInterval *RALinScan::hasNextReloadInterval(LiveInterval *cur) {
932 DenseMap<unsigned, unsigned>::iterator I = NextReloadMap.find(cur->reg);
933 if (I == NextReloadMap.end())
934 return 0;
935 return &li_->getInterval(I->second);
936 }
937
DowngradeRegister(LiveInterval * li,unsigned Reg)938 void RALinScan::DowngradeRegister(LiveInterval *li, unsigned Reg) {
939 for (const unsigned *AS = tri_->getOverlaps(Reg); *AS; ++AS) {
940 bool isNew = DowngradedRegs.insert(*AS);
941 (void)isNew; // Silence compiler warning.
942 assert(isNew && "Multiple reloads holding the same register?");
943 DowngradeMap.insert(std::make_pair(li->reg, *AS));
944 }
945 ++NumDowngrade;
946 }
947
UpgradeRegister(unsigned Reg)948 void RALinScan::UpgradeRegister(unsigned Reg) {
949 if (Reg) {
950 DowngradedRegs.erase(Reg);
951 for (const unsigned *AS = tri_->getAliasSet(Reg); *AS; ++AS)
952 DowngradedRegs.erase(*AS);
953 }
954 }
955
956 namespace {
957 struct LISorter {
operator ()__anon11fdba0a0311::LISorter958 bool operator()(LiveInterval* A, LiveInterval* B) {
959 return A->beginIndex() < B->beginIndex();
960 }
961 };
962 }
963
964 /// assignRegOrStackSlotAtInterval - assign a register if one is available, or
965 /// spill.
assignRegOrStackSlotAtInterval(LiveInterval * cur)966 void RALinScan::assignRegOrStackSlotAtInterval(LiveInterval* cur) {
967 const TargetRegisterClass *RC = mri_->getRegClass(cur->reg);
968 DEBUG(dbgs() << "\tallocating current interval from "
969 << RC->getName() << ": ");
970
971 // This is an implicitly defined live interval, just assign any register.
972 if (cur->empty()) {
973 unsigned physReg = vrm_->getRegAllocPref(cur->reg);
974 if (!physReg)
975 physReg = getFirstNonReservedPhysReg(RC);
976 DEBUG(dbgs() << tri_->getName(physReg) << '\n');
977 // Note the register is not really in use.
978 vrm_->assignVirt2Phys(cur->reg, physReg);
979 return;
980 }
981
982 backUpRegUses();
983
984 std::vector<std::pair<unsigned, float> > SpillWeightsToAdd;
985 SlotIndex StartPosition = cur->beginIndex();
986 const TargetRegisterClass *RCLeader = RelatedRegClasses.getLeaderValue(RC);
987
988 // If start of this live interval is defined by a move instruction and its
989 // source is assigned a physical register that is compatible with the target
990 // register class, then we should try to assign it the same register.
991 // This can happen when the move is from a larger register class to a smaller
992 // one, e.g. X86::mov32to32_. These move instructions are not coalescable.
993 if (!vrm_->getRegAllocPref(cur->reg) && cur->hasAtLeastOneValue()) {
994 VNInfo *vni = cur->begin()->valno;
995 if (!vni->isUnused() && vni->def.isValid()) {
996 MachineInstr *CopyMI = li_->getInstructionFromIndex(vni->def);
997 if (CopyMI && CopyMI->isCopy()) {
998 unsigned DstSubReg = CopyMI->getOperand(0).getSubReg();
999 unsigned SrcReg = CopyMI->getOperand(1).getReg();
1000 unsigned SrcSubReg = CopyMI->getOperand(1).getSubReg();
1001 unsigned Reg = 0;
1002 if (TargetRegisterInfo::isPhysicalRegister(SrcReg))
1003 Reg = SrcReg;
1004 else if (vrm_->isAssignedReg(SrcReg))
1005 Reg = vrm_->getPhys(SrcReg);
1006 if (Reg) {
1007 if (SrcSubReg)
1008 Reg = tri_->getSubReg(Reg, SrcSubReg);
1009 if (DstSubReg)
1010 Reg = tri_->getMatchingSuperReg(Reg, DstSubReg, RC);
1011 if (Reg && allocatableRegs_[Reg] && RC->contains(Reg))
1012 mri_->setRegAllocationHint(cur->reg, 0, Reg);
1013 }
1014 }
1015 }
1016 }
1017
1018 // For every interval in inactive we overlap with, mark the
1019 // register as not free and update spill weights.
1020 for (IntervalPtrs::const_iterator i = inactive_.begin(),
1021 e = inactive_.end(); i != e; ++i) {
1022 unsigned Reg = i->first->reg;
1023 assert(TargetRegisterInfo::isVirtualRegister(Reg) &&
1024 "Can only allocate virtual registers!");
1025 const TargetRegisterClass *RegRC = mri_->getRegClass(Reg);
1026 // If this is not in a related reg class to the register we're allocating,
1027 // don't check it.
1028 if (RelatedRegClasses.getLeaderValue(RegRC) == RCLeader &&
1029 cur->overlapsFrom(*i->first, i->second-1)) {
1030 Reg = vrm_->getPhys(Reg);
1031 addRegUse(Reg);
1032 SpillWeightsToAdd.push_back(std::make_pair(Reg, i->first->weight));
1033 }
1034 }
1035
1036 // Speculatively check to see if we can get a register right now. If not,
1037 // we know we won't be able to by adding more constraints. If so, we can
1038 // check to see if it is valid. Doing an exhaustive search of the fixed_ list
1039 // is very bad (it contains all callee clobbered registers for any functions
1040 // with a call), so we want to avoid doing that if possible.
1041 unsigned physReg = getFreePhysReg(cur);
1042 unsigned BestPhysReg = physReg;
1043 if (physReg) {
1044 // We got a register. However, if it's in the fixed_ list, we might
1045 // conflict with it. Check to see if we conflict with it or any of its
1046 // aliases.
1047 SmallSet<unsigned, 8> RegAliases;
1048 for (const unsigned *AS = tri_->getAliasSet(physReg); *AS; ++AS)
1049 RegAliases.insert(*AS);
1050
1051 bool ConflictsWithFixed = false;
1052 for (unsigned i = 0, e = fixed_.size(); i != e; ++i) {
1053 IntervalPtr &IP = fixed_[i];
1054 if (physReg == IP.first->reg || RegAliases.count(IP.first->reg)) {
1055 // Okay, this reg is on the fixed list. Check to see if we actually
1056 // conflict.
1057 LiveInterval *I = IP.first;
1058 if (I->endIndex() > StartPosition) {
1059 LiveInterval::iterator II = I->advanceTo(IP.second, StartPosition);
1060 IP.second = II;
1061 if (II != I->begin() && II->start > StartPosition)
1062 --II;
1063 if (cur->overlapsFrom(*I, II)) {
1064 ConflictsWithFixed = true;
1065 break;
1066 }
1067 }
1068 }
1069 }
1070
1071 // Okay, the register picked by our speculative getFreePhysReg call turned
1072 // out to be in use. Actually add all of the conflicting fixed registers to
1073 // regUse_ so we can do an accurate query.
1074 if (ConflictsWithFixed) {
1075 // For every interval in fixed we overlap with, mark the register as not
1076 // free and update spill weights.
1077 for (unsigned i = 0, e = fixed_.size(); i != e; ++i) {
1078 IntervalPtr &IP = fixed_[i];
1079 LiveInterval *I = IP.first;
1080
1081 const TargetRegisterClass *RegRC = OneClassForEachPhysReg[I->reg];
1082 if (RelatedRegClasses.getLeaderValue(RegRC) == RCLeader &&
1083 I->endIndex() > StartPosition) {
1084 LiveInterval::iterator II = I->advanceTo(IP.second, StartPosition);
1085 IP.second = II;
1086 if (II != I->begin() && II->start > StartPosition)
1087 --II;
1088 if (cur->overlapsFrom(*I, II)) {
1089 unsigned reg = I->reg;
1090 addRegUse(reg);
1091 SpillWeightsToAdd.push_back(std::make_pair(reg, I->weight));
1092 }
1093 }
1094 }
1095
1096 // Using the newly updated regUse_ object, which includes conflicts in the
1097 // future, see if there are any registers available.
1098 physReg = getFreePhysReg(cur);
1099 }
1100 }
1101
1102 // Restore the physical register tracker, removing information about the
1103 // future.
1104 restoreRegUses();
1105
1106 // If we find a free register, we are done: assign this virtual to
1107 // the free physical register and add this interval to the active
1108 // list.
1109 if (physReg) {
1110 DEBUG(dbgs() << tri_->getName(physReg) << '\n');
1111 assert(RC->contains(physReg) && "Invalid candidate");
1112 vrm_->assignVirt2Phys(cur->reg, physReg);
1113 addRegUse(physReg);
1114 active_.push_back(std::make_pair(cur, cur->begin()));
1115 handled_.push_back(cur);
1116
1117 // Remember physReg for avoiding a write-after-write hazard in the next
1118 // instruction.
1119 if (AvoidWAWHazard &&
1120 tri_->avoidWriteAfterWrite(mri_->getRegClass(cur->reg)))
1121 avoidWAW_ = physReg;
1122
1123 // "Upgrade" the physical register since it has been allocated.
1124 UpgradeRegister(physReg);
1125 if (LiveInterval *NextReloadLI = hasNextReloadInterval(cur)) {
1126 // "Downgrade" physReg to try to keep physReg from being allocated until
1127 // the next reload from the same SS is allocated.
1128 mri_->setRegAllocationHint(NextReloadLI->reg, 0, physReg);
1129 DowngradeRegister(cur, physReg);
1130 }
1131 return;
1132 }
1133 DEBUG(dbgs() << "no free registers\n");
1134
1135 // Compile the spill weights into an array that is better for scanning.
1136 std::vector<float> SpillWeights(tri_->getNumRegs(), 0.0f);
1137 for (std::vector<std::pair<unsigned, float> >::iterator
1138 I = SpillWeightsToAdd.begin(), E = SpillWeightsToAdd.end(); I != E; ++I)
1139 updateSpillWeights(SpillWeights, I->first, I->second, RC);
1140
1141 // for each interval in active, update spill weights.
1142 for (IntervalPtrs::const_iterator i = active_.begin(), e = active_.end();
1143 i != e; ++i) {
1144 unsigned reg = i->first->reg;
1145 assert(TargetRegisterInfo::isVirtualRegister(reg) &&
1146 "Can only allocate virtual registers!");
1147 reg = vrm_->getPhys(reg);
1148 updateSpillWeights(SpillWeights, reg, i->first->weight, RC);
1149 }
1150
1151 DEBUG(dbgs() << "\tassigning stack slot at interval "<< *cur << ":\n");
1152
1153 // Find a register to spill.
1154 float minWeight = HUGE_VALF;
1155 unsigned minReg = 0;
1156
1157 bool Found = false;
1158 std::vector<std::pair<unsigned,float> > RegsWeights;
1159 ArrayRef<unsigned> Order = RegClassInfo.getOrder(RC);
1160 if (!minReg || SpillWeights[minReg] == HUGE_VALF)
1161 for (unsigned i = 0; i != Order.size(); ++i) {
1162 unsigned reg = Order[i];
1163 float regWeight = SpillWeights[reg];
1164 // Skip recently allocated registers and reserved registers.
1165 if (minWeight > regWeight && !isRecentlyUsed(reg))
1166 Found = true;
1167 RegsWeights.push_back(std::make_pair(reg, regWeight));
1168 }
1169
1170 // If we didn't find a register that is spillable, try aliases?
1171 if (!Found) {
1172 for (unsigned i = 0; i != Order.size(); ++i) {
1173 unsigned reg = Order[i];
1174 // No need to worry about if the alias register size < regsize of RC.
1175 // We are going to spill all registers that alias it anyway.
1176 for (const unsigned* as = tri_->getAliasSet(reg); *as; ++as)
1177 RegsWeights.push_back(std::make_pair(*as, SpillWeights[*as]));
1178 }
1179 }
1180
1181 // Sort all potential spill candidates by weight.
1182 std::sort(RegsWeights.begin(), RegsWeights.end(), WeightCompare(*this));
1183 minReg = RegsWeights[0].first;
1184 minWeight = RegsWeights[0].second;
1185 if (minWeight == HUGE_VALF) {
1186 // All registers must have inf weight. Just grab one!
1187 minReg = BestPhysReg ? BestPhysReg : getFirstNonReservedPhysReg(RC);
1188 if (cur->weight == HUGE_VALF ||
1189 li_->getApproximateInstructionCount(*cur) == 0) {
1190 // Spill a physical register around defs and uses.
1191 if (li_->spillPhysRegAroundRegDefsUses(*cur, minReg, *vrm_)) {
1192 // spillPhysRegAroundRegDefsUses may have invalidated iterator stored
1193 // in fixed_. Reset them.
1194 for (unsigned i = 0, e = fixed_.size(); i != e; ++i) {
1195 IntervalPtr &IP = fixed_[i];
1196 LiveInterval *I = IP.first;
1197 if (I->reg == minReg || tri_->isSubRegister(minReg, I->reg))
1198 IP.second = I->advanceTo(I->begin(), StartPosition);
1199 }
1200
1201 DowngradedRegs.clear();
1202 assignRegOrStackSlotAtInterval(cur);
1203 } else {
1204 assert(false && "Ran out of registers during register allocation!");
1205 report_fatal_error("Ran out of registers during register allocation!");
1206 }
1207 return;
1208 }
1209 }
1210
1211 // Find up to 3 registers to consider as spill candidates.
1212 unsigned LastCandidate = RegsWeights.size() >= 3 ? 3 : 1;
1213 while (LastCandidate > 1) {
1214 if (weightsAreClose(RegsWeights[LastCandidate-1].second, minWeight))
1215 break;
1216 --LastCandidate;
1217 }
1218
1219 DEBUG({
1220 dbgs() << "\t\tregister(s) with min weight(s): ";
1221
1222 for (unsigned i = 0; i != LastCandidate; ++i)
1223 dbgs() << tri_->getName(RegsWeights[i].first)
1224 << " (" << RegsWeights[i].second << ")\n";
1225 });
1226
1227 // If the current has the minimum weight, we need to spill it and
1228 // add any added intervals back to unhandled, and restart
1229 // linearscan.
1230 if (cur->weight != HUGE_VALF && cur->weight <= minWeight) {
1231 DEBUG(dbgs() << "\t\t\tspilling(c): " << *cur << '\n');
1232 SmallVector<LiveInterval*, 8> added;
1233 LiveRangeEdit LRE(*cur, added);
1234 spiller_->spill(LRE);
1235
1236 std::sort(added.begin(), added.end(), LISorter());
1237 if (added.empty())
1238 return; // Early exit if all spills were folded.
1239
1240 // Merge added with unhandled. Note that we have already sorted
1241 // intervals returned by addIntervalsForSpills by their starting
1242 // point.
1243 // This also update the NextReloadMap. That is, it adds mapping from a
1244 // register defined by a reload from SS to the next reload from SS in the
1245 // same basic block.
1246 MachineBasicBlock *LastReloadMBB = 0;
1247 LiveInterval *LastReload = 0;
1248 int LastReloadSS = VirtRegMap::NO_STACK_SLOT;
1249 for (unsigned i = 0, e = added.size(); i != e; ++i) {
1250 LiveInterval *ReloadLi = added[i];
1251 if (ReloadLi->weight == HUGE_VALF &&
1252 li_->getApproximateInstructionCount(*ReloadLi) == 0) {
1253 SlotIndex ReloadIdx = ReloadLi->beginIndex();
1254 MachineBasicBlock *ReloadMBB = li_->getMBBFromIndex(ReloadIdx);
1255 int ReloadSS = vrm_->getStackSlot(ReloadLi->reg);
1256 if (LastReloadMBB == ReloadMBB && LastReloadSS == ReloadSS) {
1257 // Last reload of same SS is in the same MBB. We want to try to
1258 // allocate both reloads the same register and make sure the reg
1259 // isn't clobbered in between if at all possible.
1260 assert(LastReload->beginIndex() < ReloadIdx);
1261 NextReloadMap.insert(std::make_pair(LastReload->reg, ReloadLi->reg));
1262 }
1263 LastReloadMBB = ReloadMBB;
1264 LastReload = ReloadLi;
1265 LastReloadSS = ReloadSS;
1266 }
1267 unhandled_.push(ReloadLi);
1268 }
1269 return;
1270 }
1271
1272 ++NumBacktracks;
1273
1274 // Push the current interval back to unhandled since we are going
1275 // to re-run at least this iteration. Since we didn't modify it it
1276 // should go back right in the front of the list
1277 unhandled_.push(cur);
1278
1279 assert(TargetRegisterInfo::isPhysicalRegister(minReg) &&
1280 "did not choose a register to spill?");
1281
1282 // We spill all intervals aliasing the register with
1283 // minimum weight, rollback to the interval with the earliest
1284 // start point and let the linear scan algorithm run again
1285 SmallVector<LiveInterval*, 8> spillIs;
1286
1287 // Determine which intervals have to be spilled.
1288 findIntervalsToSpill(cur, RegsWeights, LastCandidate, spillIs);
1289
1290 // Set of spilled vregs (used later to rollback properly)
1291 SmallSet<unsigned, 8> spilled;
1292
1293 // The earliest start of a Spilled interval indicates up to where
1294 // in handled we need to roll back
1295 assert(!spillIs.empty() && "No spill intervals?");
1296 SlotIndex earliestStart = spillIs[0]->beginIndex();
1297
1298 // Spill live intervals of virtual regs mapped to the physical register we
1299 // want to clear (and its aliases). We only spill those that overlap with the
1300 // current interval as the rest do not affect its allocation. we also keep
1301 // track of the earliest start of all spilled live intervals since this will
1302 // mark our rollback point.
1303 SmallVector<LiveInterval*, 8> added;
1304 while (!spillIs.empty()) {
1305 LiveInterval *sli = spillIs.back();
1306 spillIs.pop_back();
1307 DEBUG(dbgs() << "\t\t\tspilling(a): " << *sli << '\n');
1308 if (sli->beginIndex() < earliestStart)
1309 earliestStart = sli->beginIndex();
1310 LiveRangeEdit LRE(*sli, added, 0, &spillIs);
1311 spiller_->spill(LRE);
1312 spilled.insert(sli->reg);
1313 }
1314
1315 // Include any added intervals in earliestStart.
1316 for (unsigned i = 0, e = added.size(); i != e; ++i) {
1317 SlotIndex SI = added[i]->beginIndex();
1318 if (SI < earliestStart)
1319 earliestStart = SI;
1320 }
1321
1322 DEBUG(dbgs() << "\t\trolling back to: " << earliestStart << '\n');
1323
1324 // Scan handled in reverse order up to the earliest start of a
1325 // spilled live interval and undo each one, restoring the state of
1326 // unhandled.
1327 while (!handled_.empty()) {
1328 LiveInterval* i = handled_.back();
1329 // If this interval starts before t we are done.
1330 if (!i->empty() && i->beginIndex() < earliestStart)
1331 break;
1332 DEBUG(dbgs() << "\t\t\tundo changes for: " << *i << '\n');
1333 handled_.pop_back();
1334
1335 // When undoing a live interval allocation we must know if it is active or
1336 // inactive to properly update regUse_ and the VirtRegMap.
1337 IntervalPtrs::iterator it;
1338 if ((it = FindIntervalInVector(active_, i)) != active_.end()) {
1339 active_.erase(it);
1340 assert(!TargetRegisterInfo::isPhysicalRegister(i->reg));
1341 if (!spilled.count(i->reg))
1342 unhandled_.push(i);
1343 delRegUse(vrm_->getPhys(i->reg));
1344 vrm_->clearVirt(i->reg);
1345 } else if ((it = FindIntervalInVector(inactive_, i)) != inactive_.end()) {
1346 inactive_.erase(it);
1347 assert(!TargetRegisterInfo::isPhysicalRegister(i->reg));
1348 if (!spilled.count(i->reg))
1349 unhandled_.push(i);
1350 vrm_->clearVirt(i->reg);
1351 } else {
1352 assert(TargetRegisterInfo::isVirtualRegister(i->reg) &&
1353 "Can only allocate virtual registers!");
1354 vrm_->clearVirt(i->reg);
1355 unhandled_.push(i);
1356 }
1357
1358 DenseMap<unsigned, unsigned>::iterator ii = DowngradeMap.find(i->reg);
1359 if (ii == DowngradeMap.end())
1360 // It interval has a preference, it must be defined by a copy. Clear the
1361 // preference now since the source interval allocation may have been
1362 // undone as well.
1363 mri_->setRegAllocationHint(i->reg, 0, 0);
1364 else {
1365 UpgradeRegister(ii->second);
1366 }
1367 }
1368
1369 // Rewind the iterators in the active, inactive, and fixed lists back to the
1370 // point we reverted to.
1371 RevertVectorIteratorsTo(active_, earliestStart);
1372 RevertVectorIteratorsTo(inactive_, earliestStart);
1373 RevertVectorIteratorsTo(fixed_, earliestStart);
1374
1375 // Scan the rest and undo each interval that expired after t and
1376 // insert it in active (the next iteration of the algorithm will
1377 // put it in inactive if required)
1378 for (unsigned i = 0, e = handled_.size(); i != e; ++i) {
1379 LiveInterval *HI = handled_[i];
1380 if (!HI->expiredAt(earliestStart) &&
1381 HI->expiredAt(cur->beginIndex())) {
1382 DEBUG(dbgs() << "\t\t\tundo changes for: " << *HI << '\n');
1383 active_.push_back(std::make_pair(HI, HI->begin()));
1384 assert(!TargetRegisterInfo::isPhysicalRegister(HI->reg));
1385 addRegUse(vrm_->getPhys(HI->reg));
1386 }
1387 }
1388
1389 // Merge added with unhandled.
1390 // This also update the NextReloadMap. That is, it adds mapping from a
1391 // register defined by a reload from SS to the next reload from SS in the
1392 // same basic block.
1393 MachineBasicBlock *LastReloadMBB = 0;
1394 LiveInterval *LastReload = 0;
1395 int LastReloadSS = VirtRegMap::NO_STACK_SLOT;
1396 std::sort(added.begin(), added.end(), LISorter());
1397 for (unsigned i = 0, e = added.size(); i != e; ++i) {
1398 LiveInterval *ReloadLi = added[i];
1399 if (ReloadLi->weight == HUGE_VALF &&
1400 li_->getApproximateInstructionCount(*ReloadLi) == 0) {
1401 SlotIndex ReloadIdx = ReloadLi->beginIndex();
1402 MachineBasicBlock *ReloadMBB = li_->getMBBFromIndex(ReloadIdx);
1403 int ReloadSS = vrm_->getStackSlot(ReloadLi->reg);
1404 if (LastReloadMBB == ReloadMBB && LastReloadSS == ReloadSS) {
1405 // Last reload of same SS is in the same MBB. We want to try to
1406 // allocate both reloads the same register and make sure the reg
1407 // isn't clobbered in between if at all possible.
1408 assert(LastReload->beginIndex() < ReloadIdx);
1409 NextReloadMap.insert(std::make_pair(LastReload->reg, ReloadLi->reg));
1410 }
1411 LastReloadMBB = ReloadMBB;
1412 LastReload = ReloadLi;
1413 LastReloadSS = ReloadSS;
1414 }
1415 unhandled_.push(ReloadLi);
1416 }
1417 }
1418
getFreePhysReg(LiveInterval * cur,const TargetRegisterClass * RC,unsigned MaxInactiveCount,SmallVector<unsigned,256> & inactiveCounts,bool SkipDGRegs)1419 unsigned RALinScan::getFreePhysReg(LiveInterval* cur,
1420 const TargetRegisterClass *RC,
1421 unsigned MaxInactiveCount,
1422 SmallVector<unsigned, 256> &inactiveCounts,
1423 bool SkipDGRegs) {
1424 unsigned FreeReg = 0;
1425 unsigned FreeRegInactiveCount = 0;
1426
1427 std::pair<unsigned, unsigned> Hint = mri_->getRegAllocationHint(cur->reg);
1428 // Resolve second part of the hint (if possible) given the current allocation.
1429 unsigned physReg = Hint.second;
1430 if (TargetRegisterInfo::isVirtualRegister(physReg) && vrm_->hasPhys(physReg))
1431 physReg = vrm_->getPhys(physReg);
1432
1433 ArrayRef<unsigned> Order;
1434 if (Hint.first)
1435 Order = tri_->getRawAllocationOrder(RC, Hint.first, physReg, *mf_);
1436 else
1437 Order = RegClassInfo.getOrder(RC);
1438
1439 assert(!Order.empty() && "No allocatable register in this register class!");
1440
1441 // Scan for the first available register.
1442 for (unsigned i = 0; i != Order.size(); ++i) {
1443 unsigned Reg = Order[i];
1444 // Ignore "downgraded" registers.
1445 if (SkipDGRegs && DowngradedRegs.count(Reg))
1446 continue;
1447 // Skip reserved registers.
1448 if (reservedRegs_.test(Reg))
1449 continue;
1450 // Skip recently allocated registers.
1451 if (isRegAvail(Reg) && (!SkipDGRegs || !isRecentlyUsed(Reg))) {
1452 FreeReg = Reg;
1453 if (FreeReg < inactiveCounts.size())
1454 FreeRegInactiveCount = inactiveCounts[FreeReg];
1455 else
1456 FreeRegInactiveCount = 0;
1457 break;
1458 }
1459 }
1460
1461 // If there are no free regs, or if this reg has the max inactive count,
1462 // return this register.
1463 if (FreeReg == 0 || FreeRegInactiveCount == MaxInactiveCount) {
1464 // Remember what register we picked so we can skip it next time.
1465 if (FreeReg != 0) recordRecentlyUsed(FreeReg);
1466 return FreeReg;
1467 }
1468
1469 // Continue scanning the registers, looking for the one with the highest
1470 // inactive count. Alkis found that this reduced register pressure very
1471 // slightly on X86 (in rev 1.94 of this file), though this should probably be
1472 // reevaluated now.
1473 for (unsigned i = 0; i != Order.size(); ++i) {
1474 unsigned Reg = Order[i];
1475 // Ignore "downgraded" registers.
1476 if (SkipDGRegs && DowngradedRegs.count(Reg))
1477 continue;
1478 // Skip reserved registers.
1479 if (reservedRegs_.test(Reg))
1480 continue;
1481 if (isRegAvail(Reg) && Reg < inactiveCounts.size() &&
1482 FreeRegInactiveCount < inactiveCounts[Reg] &&
1483 (!SkipDGRegs || !isRecentlyUsed(Reg))) {
1484 FreeReg = Reg;
1485 FreeRegInactiveCount = inactiveCounts[Reg];
1486 if (FreeRegInactiveCount == MaxInactiveCount)
1487 break; // We found the one with the max inactive count.
1488 }
1489 }
1490
1491 // Remember what register we picked so we can skip it next time.
1492 recordRecentlyUsed(FreeReg);
1493
1494 return FreeReg;
1495 }
1496
1497 /// getFreePhysReg - return a free physical register for this virtual register
1498 /// interval if we have one, otherwise return 0.
getFreePhysReg(LiveInterval * cur)1499 unsigned RALinScan::getFreePhysReg(LiveInterval *cur) {
1500 SmallVector<unsigned, 256> inactiveCounts;
1501 unsigned MaxInactiveCount = 0;
1502
1503 const TargetRegisterClass *RC = mri_->getRegClass(cur->reg);
1504 const TargetRegisterClass *RCLeader = RelatedRegClasses.getLeaderValue(RC);
1505
1506 for (IntervalPtrs::iterator i = inactive_.begin(), e = inactive_.end();
1507 i != e; ++i) {
1508 unsigned reg = i->first->reg;
1509 assert(TargetRegisterInfo::isVirtualRegister(reg) &&
1510 "Can only allocate virtual registers!");
1511
1512 // If this is not in a related reg class to the register we're allocating,
1513 // don't check it.
1514 const TargetRegisterClass *RegRC = mri_->getRegClass(reg);
1515 if (RelatedRegClasses.getLeaderValue(RegRC) == RCLeader) {
1516 reg = vrm_->getPhys(reg);
1517 if (inactiveCounts.size() <= reg)
1518 inactiveCounts.resize(reg+1);
1519 ++inactiveCounts[reg];
1520 MaxInactiveCount = std::max(MaxInactiveCount, inactiveCounts[reg]);
1521 }
1522 }
1523
1524 // If copy coalescer has assigned a "preferred" register, check if it's
1525 // available first.
1526 unsigned Preference = vrm_->getRegAllocPref(cur->reg);
1527 if (Preference) {
1528 DEBUG(dbgs() << "(preferred: " << tri_->getName(Preference) << ") ");
1529 if (isRegAvail(Preference) &&
1530 RC->contains(Preference))
1531 return Preference;
1532 }
1533
1534 unsigned FreeReg = getFreePhysReg(cur, RC, MaxInactiveCount, inactiveCounts,
1535 true);
1536 if (FreeReg)
1537 return FreeReg;
1538 return getFreePhysReg(cur, RC, MaxInactiveCount, inactiveCounts, false);
1539 }
1540
createLinearScanRegisterAllocator()1541 FunctionPass* llvm::createLinearScanRegisterAllocator() {
1542 return new RALinScan();
1543 }
1544