• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * jdhuff.c
3  *
4  * Copyright (C) 1991-1997, Thomas G. Lane.
5  * This file is part of the Independent JPEG Group's software.
6  * For conditions of distribution and use, see the accompanying README file.
7  *
8  * This file contains Huffman entropy decoding routines.
9  *
10  * Much of the complexity here has to do with supporting input suspension.
11  * If the data source module demands suspension, we want to be able to back
12  * up to the start of the current MCU.  To do this, we copy state variables
13  * into local working storage, and update them back to the permanent
14  * storage only upon successful completion of an MCU.
15  */
16 
17 #define JPEG_INTERNALS
18 #include "jinclude.h"
19 #include "jpeglib.h"
20 #include "jdhuff.h"		/* Declarations shared with jdphuff.c */
21 
22 /*
23  * Expanded entropy decoder object for Huffman decoding.
24  *
25  * The savable_state subrecord contains fields that change within an MCU,
26  * but must not be updated permanently until we complete the MCU.
27  */
28 
29 typedef struct {
30   int last_dc_val[MAX_COMPS_IN_SCAN]; /* last DC coef for each component */
31 } savable_state;
32 
33 /* This macro is to work around compilers with missing or broken
34  * structure assignment.  You'll need to fix this code if you have
35  * such a compiler and you change MAX_COMPS_IN_SCAN.
36  */
37 
38 #ifndef NO_STRUCT_ASSIGN
39 #define ASSIGN_STATE(dest,src)  ((dest) = (src))
40 #else
41 #if MAX_COMPS_IN_SCAN == 4
42 #define ASSIGN_STATE(dest,src)  \
43 	((dest).last_dc_val[0] = (src).last_dc_val[0], \
44 	 (dest).last_dc_val[1] = (src).last_dc_val[1], \
45 	 (dest).last_dc_val[2] = (src).last_dc_val[2], \
46 	 (dest).last_dc_val[3] = (src).last_dc_val[3])
47 #endif
48 #endif
49 
50 
51 typedef struct {
52   struct jpeg_entropy_decoder pub; /* public fields */
53 
54   /* These fields are loaded into local variables at start of each MCU.
55    * In case of suspension, we exit WITHOUT updating them.
56    */
57   bitread_perm_state bitstate;	/* Bit buffer at start of MCU */
58   savable_state saved;		/* Other state at start of MCU */
59 
60   /* These fields are NOT loaded into local working state. */
61   unsigned int restarts_to_go;	/* MCUs left in this restart interval */
62 
63   /* Pointers to derived tables (these workspaces have image lifespan) */
64   d_derived_tbl * dc_derived_tbls[NUM_HUFF_TBLS];
65   d_derived_tbl * ac_derived_tbls[NUM_HUFF_TBLS];
66 
67   /* Precalculated info set up by start_pass for use in decode_mcu: */
68 
69   /* Pointers to derived tables to be used for each block within an MCU */
70   d_derived_tbl * dc_cur_tbls[D_MAX_BLOCKS_IN_MCU];
71   d_derived_tbl * ac_cur_tbls[D_MAX_BLOCKS_IN_MCU];
72   /* Whether we care about the DC and AC coefficient values for each block */
73   boolean dc_needed[D_MAX_BLOCKS_IN_MCU];
74   boolean ac_needed[D_MAX_BLOCKS_IN_MCU];
75 } huff_entropy_decoder;
76 
77 typedef huff_entropy_decoder * huff_entropy_ptr;
78 
79 
80 /*
81  * Initialize for a Huffman-compressed scan.
82  */
83 
84 METHODDEF(void)
start_pass_huff_decoder(j_decompress_ptr cinfo)85 start_pass_huff_decoder (j_decompress_ptr cinfo)
86 {
87   huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
88   int ci, blkn, dctbl, actbl;
89   jpeg_component_info * compptr;
90 
91   /* Check that the scan parameters Ss, Se, Ah/Al are OK for sequential JPEG.
92    * This ought to be an error condition, but we make it a warning because
93    * there are some baseline files out there with all zeroes in these bytes.
94    */
95   if (cinfo->Ss != 0 || cinfo->Se != DCTSIZE2-1 ||
96       cinfo->Ah != 0 || cinfo->Al != 0)
97     WARNMS(cinfo, JWRN_NOT_SEQUENTIAL);
98 
99   for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
100     compptr = cinfo->cur_comp_info[ci];
101     dctbl = compptr->dc_tbl_no;
102     actbl = compptr->ac_tbl_no;
103     /* Compute derived values for Huffman tables */
104     /* We may do this more than once for a table, but it's not expensive */
105     jpeg_make_d_derived_tbl(cinfo, TRUE, dctbl,
106 			    & entropy->dc_derived_tbls[dctbl]);
107     jpeg_make_d_derived_tbl(cinfo, FALSE, actbl,
108 			    & entropy->ac_derived_tbls[actbl]);
109     /* Initialize DC predictions to 0 */
110     entropy->saved.last_dc_val[ci] = 0;
111   }
112 
113   /* Precalculate decoding info for each block in an MCU of this scan */
114   for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
115     ci = cinfo->MCU_membership[blkn];
116     compptr = cinfo->cur_comp_info[ci];
117     /* Precalculate which table to use for each block */
118     entropy->dc_cur_tbls[blkn] = entropy->dc_derived_tbls[compptr->dc_tbl_no];
119     entropy->ac_cur_tbls[blkn] = entropy->ac_derived_tbls[compptr->ac_tbl_no];
120     /* Decide whether we really care about the coefficient values */
121     if (compptr->component_needed) {
122       entropy->dc_needed[blkn] = TRUE;
123       /* we don't need the ACs if producing a 1/8th-size image */
124       entropy->ac_needed[blkn] = (compptr->DCT_scaled_size > 1);
125     } else {
126       entropy->dc_needed[blkn] = entropy->ac_needed[blkn] = FALSE;
127     }
128   }
129 
130   /* Initialize bitread state variables */
131   entropy->bitstate.bits_left = 0;
132   entropy->bitstate.get_buffer = 0; /* unnecessary, but keeps Purify quiet */
133   entropy->pub.insufficient_data = FALSE;
134 
135   /* Initialize restart counter */
136   entropy->restarts_to_go = cinfo->restart_interval;
137 }
138 
139 
140 /*
141  * Compute the derived values for a Huffman table.
142  * This routine also performs some validation checks on the table.
143  *
144  * Note this is also used by jdphuff.c.
145  */
146 
147 GLOBAL(void)
jpeg_make_d_derived_tbl(j_decompress_ptr cinfo,boolean isDC,int tblno,d_derived_tbl ** pdtbl)148 jpeg_make_d_derived_tbl (j_decompress_ptr cinfo, boolean isDC, int tblno,
149 			 d_derived_tbl ** pdtbl)
150 {
151   JHUFF_TBL *htbl;
152   d_derived_tbl *dtbl;
153   int p, i, l, _si, numsymbols;
154   int lookbits, ctr;
155   char huffsize[257];
156   unsigned int huffcode[257];
157   unsigned int code;
158 
159   /* Note that huffsize[] and huffcode[] are filled in code-length order,
160    * paralleling the order of the symbols themselves in htbl->huffval[].
161    */
162 
163   /* Find the input Huffman table */
164   if (tblno < 0 || tblno >= NUM_HUFF_TBLS)
165     ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, tblno);
166   htbl =
167     isDC ? cinfo->dc_huff_tbl_ptrs[tblno] : cinfo->ac_huff_tbl_ptrs[tblno];
168   if (htbl == NULL)
169     ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, tblno);
170 
171   /* Allocate a workspace if we haven't already done so. */
172   if (*pdtbl == NULL)
173     *pdtbl = (d_derived_tbl *)
174       (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
175 				  SIZEOF(d_derived_tbl));
176   dtbl = *pdtbl;
177   dtbl->pub = htbl;		/* fill in back link */
178 
179   /* Figure C.1: make table of Huffman code length for each symbol */
180 
181   p = 0;
182   for (l = 1; l <= 16; l++) {
183     i = (int) htbl->bits[l];
184     if (i < 0 || p + i > 256)	/* protect against table overrun */
185       ERREXIT(cinfo, JERR_BAD_HUFF_TABLE);
186     while (i--)
187       huffsize[p++] = (char) l;
188   }
189   huffsize[p] = 0;
190   numsymbols = p;
191 
192   /* Figure C.2: generate the codes themselves */
193   /* We also validate that the counts represent a legal Huffman code tree. */
194 
195   code = 0;
196   _si = huffsize[0];
197   p = 0;
198   while (huffsize[p]) {
199     while (((int) huffsize[p]) == _si) {
200       huffcode[p++] = code;
201       code++;
202     }
203     /* code is now 1 more than the last code used for codelength si; but
204      * it must still fit in si bits, since no code is allowed to be all ones.
205      */
206     if (((INT32) code) >= (((INT32) 1) << _si))
207       ERREXIT(cinfo, JERR_BAD_HUFF_TABLE);
208     code <<= 1;
209     _si++;
210   }
211 
212   /* Figure F.15: generate decoding tables for bit-sequential decoding */
213 
214   p = 0;
215   for (l = 1; l <= 16; l++) {
216     if (htbl->bits[l]) {
217       /* valoffset[l] = huffval[] index of 1st symbol of code length l,
218        * minus the minimum code of length l
219        */
220       dtbl->valoffset[l] = (INT32) p - (INT32) huffcode[p];
221       p += htbl->bits[l];
222       dtbl->maxcode[l] = huffcode[p-1]; /* maximum code of length l */
223     } else {
224       dtbl->maxcode[l] = -1;	/* -1 if no codes of this length */
225     }
226   }
227   dtbl->maxcode[17] = 0xFFFFFL; /* ensures jpeg_huff_decode terminates */
228 
229   /* Compute lookahead tables to speed up decoding.
230    * First we set all the table entries to 0, indicating "too long";
231    * then we iterate through the Huffman codes that are short enough and
232    * fill in all the entries that correspond to bit sequences starting
233    * with that code.
234    */
235 
236   MEMZERO(dtbl->look_nbits, SIZEOF(dtbl->look_nbits));
237 
238   p = 0;
239   for (l = 1; l <= HUFF_LOOKAHEAD; l++) {
240     for (i = 1; i <= (int) htbl->bits[l]; i++, p++) {
241       /* l = current code's length, p = its index in huffcode[] & huffval[]. */
242       /* Generate left-justified code followed by all possible bit sequences */
243       lookbits = huffcode[p] << (HUFF_LOOKAHEAD-l);
244       for (ctr = 1 << (HUFF_LOOKAHEAD-l); ctr > 0; ctr--) {
245 	dtbl->look_nbits[lookbits] = l;
246 	dtbl->look_sym[lookbits] = htbl->huffval[p];
247 	lookbits++;
248       }
249     }
250   }
251 
252   /* Validate symbols as being reasonable.
253    * For AC tables, we make no check, but accept all byte values 0..255.
254    * For DC tables, we require the symbols to be in range 0..15.
255    * (Tighter bounds could be applied depending on the data depth and mode,
256    * but this is sufficient to ensure safe decoding.)
257    */
258   if (isDC) {
259     for (i = 0; i < numsymbols; i++) {
260       int sym = htbl->huffval[i];
261       if (sym < 0 || sym > 15)
262 	ERREXIT(cinfo, JERR_BAD_HUFF_TABLE);
263     }
264   }
265 }
266 
267 
268 /*
269  * Out-of-line code for bit fetching (shared with jdphuff.c).
270  * See jdhuff.h for info about usage.
271  * Note: current values of get_buffer and bits_left are passed as parameters,
272  * but are returned in the corresponding fields of the state struct.
273  *
274  * On most machines MIN_GET_BITS should be 25 to allow the full 32-bit width
275  * of get_buffer to be used.  (On machines with wider words, an even larger
276  * buffer could be used.)  However, on some machines 32-bit shifts are
277  * quite slow and take time proportional to the number of places shifted.
278  * (This is true with most PC compilers, for instance.)  In this case it may
279  * be a win to set MIN_GET_BITS to the minimum value of 15.  This reduces the
280  * average shift distance at the cost of more calls to jpeg_fill_bit_buffer.
281  */
282 
283 #ifdef SLOW_SHIFT_32
284 #define MIN_GET_BITS  15	/* minimum allowable value */
285 #else
286 #define MIN_GET_BITS  (BIT_BUF_SIZE-7)
287 #endif
288 
289 
290 GLOBAL(boolean)
jpeg_fill_bit_buffer(bitread_working_state * state,register bit_buf_type get_buffer,register int bits_left,int nbits)291 jpeg_fill_bit_buffer (bitread_working_state * state,
292 		      register bit_buf_type get_buffer, register int bits_left,
293 		      int nbits)
294 /* Load up the bit buffer to a depth of at least nbits */
295 {
296   /* Copy heavily used state fields into locals (hopefully registers) */
297   register const JOCTET * next_input_byte = state->next_input_byte;
298   register size_t bytes_in_buffer = state->bytes_in_buffer;
299   j_decompress_ptr cinfo = state->cinfo;
300 
301   /* Attempt to load at least MIN_GET_BITS bits into get_buffer. */
302   /* (It is assumed that no request will be for more than that many bits.) */
303   /* We fail to do so only if we hit a marker or are forced to suspend. */
304 
305   if (cinfo->unread_marker == 0) {	/* cannot advance past a marker */
306     while (bits_left < MIN_GET_BITS) {
307       register int c;
308 
309       /* Attempt to read a byte */
310       if (bytes_in_buffer == 0) {
311 	if (! (*cinfo->src->fill_input_buffer) (cinfo))
312 	  return FALSE;
313 	next_input_byte = cinfo->src->next_input_byte;
314 	bytes_in_buffer = cinfo->src->bytes_in_buffer;
315       }
316       bytes_in_buffer--;
317       c = GETJOCTET(*next_input_byte++);
318 
319       /* If it's 0xFF, check and discard stuffed zero byte */
320       if (c == 0xFF) {
321 	/* Loop here to discard any padding FF's on terminating marker,
322 	 * so that we can save a valid unread_marker value.  NOTE: we will
323 	 * accept multiple FF's followed by a 0 as meaning a single FF data
324 	 * byte.  This data pattern is not valid according to the standard.
325 	 */
326 	do {
327 	  if (bytes_in_buffer == 0) {
328 	    if (! (*cinfo->src->fill_input_buffer) (cinfo))
329 	      return FALSE;
330 	    next_input_byte = cinfo->src->next_input_byte;
331 	    bytes_in_buffer = cinfo->src->bytes_in_buffer;
332 	  }
333 	  bytes_in_buffer--;
334 	  c = GETJOCTET(*next_input_byte++);
335 	} while (c == 0xFF);
336 
337 	if (c == 0) {
338 	  /* Found FF/00, which represents an FF data byte */
339 	  c = 0xFF;
340 	} else {
341 	  /* Oops, it's actually a marker indicating end of compressed data.
342 	   * Save the marker code for later use.
343 	   * Fine point: it might appear that we should save the marker into
344 	   * bitread working state, not straight into permanent state.  But
345 	   * once we have hit a marker, we cannot need to suspend within the
346 	   * current MCU, because we will read no more bytes from the data
347 	   * source.  So it is OK to update permanent state right away.
348 	   */
349 	  cinfo->unread_marker = c;
350 	  /* See if we need to insert some fake zero bits. */
351 	  goto no_more_bytes;
352 	}
353       }
354 
355       /* OK, load c into get_buffer */
356       get_buffer = (get_buffer << 8) | c;
357       bits_left += 8;
358     } /* end while */
359   } else {
360   no_more_bytes:
361     /* We get here if we've read the marker that terminates the compressed
362      * data segment.  There should be enough bits in the buffer register
363      * to satisfy the request; if so, no problem.
364      */
365     if (nbits > bits_left) {
366       /* Uh-oh.  Report corrupted data to user and stuff zeroes into
367        * the data stream, so that we can produce some kind of image.
368        * We use a nonvolatile flag to ensure that only one warning message
369        * appears per data segment.
370        */
371       if (! cinfo->entropy->insufficient_data) {
372 	WARNMS(cinfo, JWRN_HIT_MARKER);
373 	cinfo->entropy->insufficient_data = TRUE;
374       }
375       /* Fill the buffer with zero bits */
376       get_buffer <<= MIN_GET_BITS - bits_left;
377       bits_left = MIN_GET_BITS;
378     }
379   }
380 
381   /* Unload the local registers */
382   state->next_input_byte = next_input_byte;
383   state->bytes_in_buffer = bytes_in_buffer;
384   state->get_buffer = get_buffer;
385   state->bits_left = bits_left;
386 
387   return TRUE;
388 }
389 
390 
391 /*
392  * Out-of-line code for Huffman code decoding.
393  * See jdhuff.h for info about usage.
394  */
395 
396 GLOBAL(int)
jpeg_huff_decode(bitread_working_state * state,register bit_buf_type get_buffer,register int bits_left,d_derived_tbl * htbl,int min_bits)397 jpeg_huff_decode (bitread_working_state * state,
398 		  register bit_buf_type get_buffer, register int bits_left,
399 		  d_derived_tbl * htbl, int min_bits)
400 {
401   register int l = min_bits;
402   register INT32 code;
403 
404   /* HUFF_DECODE has determined that the code is at least min_bits */
405   /* bits long, so fetch that many bits in one swoop. */
406 
407   CHECK_BIT_BUFFER(*state, l, return -1);
408   code = GET_BITS(l);
409 
410   /* Collect the rest of the Huffman code one bit at a time. */
411   /* This is per Figure F.16 in the JPEG spec. */
412 
413   while (code > htbl->maxcode[l]) {
414     code <<= 1;
415     CHECK_BIT_BUFFER(*state, 1, return -1);
416     code |= GET_BITS(1);
417     l++;
418   }
419 
420   /* Unload the local registers */
421   state->get_buffer = get_buffer;
422   state->bits_left = bits_left;
423 
424   /* With garbage input we may reach the sentinel value l = 17. */
425 
426   if (l > 16) {
427     WARNMS(state->cinfo, JWRN_HUFF_BAD_CODE);
428     return 0;			/* fake a zero as the safest result */
429   }
430 
431   return htbl->pub->huffval[ (int) (code + htbl->valoffset[l]) ];
432 }
433 
434 
435 /*
436  * Figure F.12: extend sign bit.
437  * On some machines, a shift and add will be faster than a table lookup.
438  */
439 
440 #ifdef AVOID_TABLES
441 
442 #define HUFF_EXTEND(x,s)  ((x) < (1<<((s)-1)) ? (x) + (((-1)<<(s)) + 1) : (x))
443 
444 #else
445 
446 #define HUFF_EXTEND(x,s)  ((x) < extend_test[s] ? (x) + extend_offset[s] : (x))
447 
448 static const int extend_test[16] =   /* entry n is 2**(n-1) */
449   { 0, 0x0001, 0x0002, 0x0004, 0x0008, 0x0010, 0x0020, 0x0040, 0x0080,
450     0x0100, 0x0200, 0x0400, 0x0800, 0x1000, 0x2000, 0x4000 };
451 
452 static const int extend_offset[16] = /* entry n is (-1 << n) + 1 */
453   { 0, ((-1)<<1) + 1, ((-1)<<2) + 1, ((-1)<<3) + 1, ((-1)<<4) + 1,
454     ((-1)<<5) + 1, ((-1)<<6) + 1, ((-1)<<7) + 1, ((-1)<<8) + 1,
455     ((-1)<<9) + 1, ((-1)<<10) + 1, ((-1)<<11) + 1, ((-1)<<12) + 1,
456     ((-1)<<13) + 1, ((-1)<<14) + 1, ((-1)<<15) + 1 };
457 
458 #endif /* AVOID_TABLES */
459 
460 
461 /*
462  * Check for a restart marker & resynchronize decoder.
463  * Returns FALSE if must suspend.
464  */
465 
466 LOCAL(boolean)
process_restart(j_decompress_ptr cinfo)467 process_restart (j_decompress_ptr cinfo)
468 {
469   huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
470   int ci;
471 
472   /* Throw away any unused bits remaining in bit buffer; */
473   /* include any full bytes in next_marker's count of discarded bytes */
474   cinfo->marker->discarded_bytes += entropy->bitstate.bits_left / 8;
475   entropy->bitstate.bits_left = 0;
476 
477   /* Advance past the RSTn marker */
478   if (! (*cinfo->marker->read_restart_marker) (cinfo))
479     return FALSE;
480 
481   /* Re-initialize DC predictions to 0 */
482   for (ci = 0; ci < cinfo->comps_in_scan; ci++)
483     entropy->saved.last_dc_val[ci] = 0;
484 
485   /* Reset restart counter */
486   entropy->restarts_to_go = cinfo->restart_interval;
487 
488   /* Reset out-of-data flag, unless read_restart_marker left us smack up
489    * against a marker.  In that case we will end up treating the next data
490    * segment as empty, and we can avoid producing bogus output pixels by
491    * leaving the flag set.
492    */
493   if (cinfo->unread_marker == 0)
494     entropy->pub.insufficient_data = FALSE;
495 
496   return TRUE;
497 }
498 
499 
500 /*
501  * Decode and return one MCU's worth of Huffman-compressed coefficients.
502  * The coefficients are reordered from zigzag order into natural array order,
503  * but are not dequantized.
504  *
505  * The i'th block of the MCU is stored into the block pointed to by
506  * MCU_data[i].  WE ASSUME THIS AREA HAS BEEN ZEROED BY THE CALLER.
507  * (Wholesale zeroing is usually a little faster than retail...)
508  *
509  * Returns FALSE if data source requested suspension.  In that case no
510  * changes have been made to permanent state.  (Exception: some output
511  * coefficients may already have been assigned.  This is harmless for
512  * this module, since we'll just re-assign them on the next call.)
513  */
514 
515 METHODDEF(boolean)
decode_mcu(j_decompress_ptr cinfo,JBLOCKROW * MCU_data)516 decode_mcu (j_decompress_ptr cinfo, JBLOCKROW *MCU_data)
517 {
518   huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
519   int blkn;
520   BITREAD_STATE_VARS;
521   savable_state state;
522 
523   /* Process restart marker if needed; may have to suspend */
524   if (cinfo->restart_interval) {
525     if (entropy->restarts_to_go == 0)
526       if (! process_restart(cinfo))
527 	return FALSE;
528   }
529 
530   /* If we've run out of data, just leave the MCU set to zeroes.
531    * This way, we return uniform gray for the remainder of the segment.
532    */
533   if (! entropy->pub.insufficient_data) {
534 
535     /* Load up working state */
536     BITREAD_LOAD_STATE(cinfo,entropy->bitstate);
537     ASSIGN_STATE(state, entropy->saved);
538 
539     /* Outer loop handles each block in the MCU */
540 
541     for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
542       JBLOCKROW block = MCU_data[blkn];
543       d_derived_tbl * dctbl = entropy->dc_cur_tbls[blkn];
544       d_derived_tbl * actbl = entropy->ac_cur_tbls[blkn];
545       register int s, k, r;
546 
547       /* Decode a single block's worth of coefficients */
548 
549       /* Section F.2.2.1: decode the DC coefficient difference */
550       HUFF_DECODE(s, br_state, dctbl, return FALSE, label1);
551       if (s) {
552 	CHECK_BIT_BUFFER(br_state, s, return FALSE);
553 	r = GET_BITS(s);
554 	s = HUFF_EXTEND(r, s);
555       }
556 
557       if (entropy->dc_needed[blkn]) {
558 	/* Convert DC difference to actual value, update last_dc_val */
559 	int ci = cinfo->MCU_membership[blkn];
560 	s += state.last_dc_val[ci];
561 	state.last_dc_val[ci] = s;
562 	/* Output the DC coefficient (assumes jpeg_natural_order[0] = 0) */
563 	(*block)[0] = (JCOEF) s;
564       }
565 
566       if (entropy->ac_needed[blkn]) {
567 
568 	/* Section F.2.2.2: decode the AC coefficients */
569 	/* Since zeroes are skipped, output area must be cleared beforehand */
570 	for (k = 1; k < DCTSIZE2; k++) {
571 	  HUFF_DECODE(s, br_state, actbl, return FALSE, label2);
572 
573 	  r = s >> 4;
574 	  s &= 15;
575 
576 	  if (s) {
577 	    k += r;
578 	    CHECK_BIT_BUFFER(br_state, s, return FALSE);
579 	    r = GET_BITS(s);
580 	    s = HUFF_EXTEND(r, s);
581 	    /* Output coefficient in natural (dezigzagged) order.
582 	     * Note: the extra entries in jpeg_natural_order[] will save us
583 	     * if k >= DCTSIZE2, which could happen if the data is corrupted.
584 	     */
585 	    (*block)[jpeg_natural_order[k]] = (JCOEF) s;
586 	  } else {
587 	    if (r != 15)
588 	      break;
589 	    k += 15;
590 	  }
591 	}
592 
593       } else {
594 
595 	/* Section F.2.2.2: decode the AC coefficients */
596 	/* In this path we just discard the values */
597 	for (k = 1; k < DCTSIZE2; k++) {
598 	  HUFF_DECODE(s, br_state, actbl, return FALSE, label3);
599 
600 	  r = s >> 4;
601 	  s &= 15;
602 
603 	  if (s) {
604 	    k += r;
605 	    CHECK_BIT_BUFFER(br_state, s, return FALSE);
606 	    DROP_BITS(s);
607 	  } else {
608 	    if (r != 15)
609 	      break;
610 	    k += 15;
611 	  }
612 	}
613 
614       }
615     }
616 
617     /* Completed MCU, so update state */
618     BITREAD_SAVE_STATE(cinfo,entropy->bitstate);
619     ASSIGN_STATE(entropy->saved, state);
620   }
621 
622   /* Account for restart interval (no-op if not using restarts) */
623   entropy->restarts_to_go--;
624 
625   return TRUE;
626 }
627 
628 
629 /*
630  * Module initialization routine for Huffman entropy decoding.
631  */
632 
633 GLOBAL(void)
jinit_huff_decoder(j_decompress_ptr cinfo)634 jinit_huff_decoder (j_decompress_ptr cinfo)
635 {
636   huff_entropy_ptr entropy;
637   int i;
638 
639   entropy = (huff_entropy_ptr)
640     (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
641 				SIZEOF(huff_entropy_decoder));
642   cinfo->entropy = (struct jpeg_entropy_decoder *) entropy;
643   entropy->pub.start_pass = start_pass_huff_decoder;
644   entropy->pub.decode_mcu = decode_mcu;
645 
646   /* Mark tables unallocated */
647   for (i = 0; i < NUM_HUFF_TBLS; i++) {
648     entropy->dc_derived_tbls[i] = entropy->ac_derived_tbls[i] = NULL;
649   }
650 }
651