• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //===- LowerTypeTests.h - type metadata lowering pass -----------*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines parts of the type test lowering pass implementation that
11 // may be usefully unit tested.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #ifndef LLVM_TRANSFORMS_IPO_LOWERTYPETESTS_H
16 #define LLVM_TRANSFORMS_IPO_LOWERTYPETESTS_H
17 
18 #include "llvm/ADT/DenseMap.h"
19 #include "llvm/ADT/SmallVector.h"
20 #include "llvm/IR/Module.h"
21 #include "llvm/IR/PassManager.h"
22 
23 #include <cstdint>
24 #include <cstring>
25 #include <limits>
26 #include <set>
27 #include <vector>
28 
29 namespace llvm {
30 
31 class DataLayout;
32 class GlobalObject;
33 class Value;
34 class raw_ostream;
35 
36 namespace lowertypetests {
37 
38 struct BitSetInfo {
39   // The indices of the set bits in the bitset.
40   std::set<uint64_t> Bits;
41 
42   // The byte offset into the combined global represented by the bitset.
43   uint64_t ByteOffset;
44 
45   // The size of the bitset in bits.
46   uint64_t BitSize;
47 
48   // Log2 alignment of the bit set relative to the combined global.
49   // For example, a log2 alignment of 3 means that bits in the bitset
50   // represent addresses 8 bytes apart.
51   unsigned AlignLog2;
52 
isSingleOffsetBitSetInfo53   bool isSingleOffset() const {
54     return Bits.size() == 1;
55   }
56 
isAllOnesBitSetInfo57   bool isAllOnes() const {
58     return Bits.size() == BitSize;
59   }
60 
61   bool containsGlobalOffset(uint64_t Offset) const;
62 
63   bool containsValue(const DataLayout &DL,
64                      const DenseMap<GlobalObject *, uint64_t> &GlobalLayout,
65                      Value *V, uint64_t COffset = 0) const;
66 
67   void print(raw_ostream &OS) const;
68 };
69 
70 struct BitSetBuilder {
71   SmallVector<uint64_t, 16> Offsets;
72   uint64_t Min, Max;
73 
BitSetBuilderBitSetBuilder74   BitSetBuilder() : Min(std::numeric_limits<uint64_t>::max()), Max(0) {}
75 
addOffsetBitSetBuilder76   void addOffset(uint64_t Offset) {
77     if (Min > Offset)
78       Min = Offset;
79     if (Max < Offset)
80       Max = Offset;
81 
82     Offsets.push_back(Offset);
83   }
84 
85   BitSetInfo build();
86 };
87 
88 /// This class implements a layout algorithm for globals referenced by bit sets
89 /// that tries to keep members of small bit sets together. This can
90 /// significantly reduce bit set sizes in many cases.
91 ///
92 /// It works by assembling fragments of layout from sets of referenced globals.
93 /// Each set of referenced globals causes the algorithm to create a new
94 /// fragment, which is assembled by appending each referenced global in the set
95 /// into the fragment. If a referenced global has already been referenced by an
96 /// fragment created earlier, we instead delete that fragment and append its
97 /// contents into the fragment we are assembling.
98 ///
99 /// By starting with the smallest fragments, we minimize the size of the
100 /// fragments that are copied into larger fragments. This is most intuitively
101 /// thought about when considering the case where the globals are virtual tables
102 /// and the bit sets represent their derived classes: in a single inheritance
103 /// hierarchy, the optimum layout would involve a depth-first search of the
104 /// class hierarchy (and in fact the computed layout ends up looking a lot like
105 /// a DFS), but a naive DFS would not work well in the presence of multiple
106 /// inheritance. This aspect of the algorithm ends up fitting smaller
107 /// hierarchies inside larger ones where that would be beneficial.
108 ///
109 /// For example, consider this class hierarchy:
110 ///
111 /// A       B
112 ///   \   / | \
113 ///     C   D   E
114 ///
115 /// We have five bit sets: bsA (A, C), bsB (B, C, D, E), bsC (C), bsD (D) and
116 /// bsE (E). If we laid out our objects by DFS traversing B followed by A, our
117 /// layout would be {B, C, D, E, A}. This is optimal for bsB as it needs to
118 /// cover the only 4 objects in its hierarchy, but not for bsA as it needs to
119 /// cover 5 objects, i.e. the entire layout. Our algorithm proceeds as follows:
120 ///
121 /// Add bsC, fragments {{C}}
122 /// Add bsD, fragments {{C}, {D}}
123 /// Add bsE, fragments {{C}, {D}, {E}}
124 /// Add bsA, fragments {{A, C}, {D}, {E}}
125 /// Add bsB, fragments {{B, A, C, D, E}}
126 ///
127 /// This layout is optimal for bsA, as it now only needs to cover two (i.e. 3
128 /// fewer) objects, at the cost of bsB needing to cover 1 more object.
129 ///
130 /// The bit set lowering pass assigns an object index to each object that needs
131 /// to be laid out, and calls addFragment for each bit set passing the object
132 /// indices of its referenced globals. It then assembles a layout from the
133 /// computed layout in the Fragments field.
134 struct GlobalLayoutBuilder {
135   /// The computed layout. Each element of this vector contains a fragment of
136   /// layout (which may be empty) consisting of object indices.
137   std::vector<std::vector<uint64_t>> Fragments;
138 
139   /// Mapping from object index to fragment index.
140   std::vector<uint64_t> FragmentMap;
141 
GlobalLayoutBuilderGlobalLayoutBuilder142   GlobalLayoutBuilder(uint64_t NumObjects)
143       : Fragments(1), FragmentMap(NumObjects) {}
144 
145   /// Add F to the layout while trying to keep its indices contiguous.
146   /// If a previously seen fragment uses any of F's indices, that
147   /// fragment will be laid out inside F.
148   void addFragment(const std::set<uint64_t> &F);
149 };
150 
151 /// This class is used to build a byte array containing overlapping bit sets. By
152 /// loading from indexed offsets into the byte array and applying a mask, a
153 /// program can test bits from the bit set with a relatively short instruction
154 /// sequence. For example, suppose we have 15 bit sets to lay out:
155 ///
156 /// A (16 bits), B (15 bits), C (14 bits), D (13 bits), E (12 bits),
157 /// F (11 bits), G (10 bits), H (9 bits), I (7 bits), J (6 bits), K (5 bits),
158 /// L (4 bits), M (3 bits), N (2 bits), O (1 bit)
159 ///
160 /// These bits can be laid out in a 16-byte array like this:
161 ///
162 ///       Byte Offset
163 ///     0123456789ABCDEF
164 /// Bit
165 ///   7 HHHHHHHHHIIIIIII
166 ///   6 GGGGGGGGGGJJJJJJ
167 ///   5 FFFFFFFFFFFKKKKK
168 ///   4 EEEEEEEEEEEELLLL
169 ///   3 DDDDDDDDDDDDDMMM
170 ///   2 CCCCCCCCCCCCCCNN
171 ///   1 BBBBBBBBBBBBBBBO
172 ///   0 AAAAAAAAAAAAAAAA
173 ///
174 /// For example, to test bit X of A, we evaluate ((bits[X] & 1) != 0), or to
175 /// test bit X of I, we evaluate ((bits[9 + X] & 0x80) != 0). This can be done
176 /// in 1-2 machine instructions on x86, or 4-6 instructions on ARM.
177 ///
178 /// This is a byte array, rather than (say) a 2-byte array or a 4-byte array,
179 /// because for one thing it gives us better packing (the more bins there are,
180 /// the less evenly they will be filled), and for another, the instruction
181 /// sequences can be slightly shorter, both on x86 and ARM.
182 struct ByteArrayBuilder {
183   /// The byte array built so far.
184   std::vector<uint8_t> Bytes;
185 
186   enum { BitsPerByte = 8 };
187 
188   /// The number of bytes allocated so far for each of the bits.
189   uint64_t BitAllocs[BitsPerByte];
190 
ByteArrayBuilderByteArrayBuilder191   ByteArrayBuilder() {
192     memset(BitAllocs, 0, sizeof(BitAllocs));
193   }
194 
195   /// Allocate BitSize bits in the byte array where Bits contains the bits to
196   /// set. AllocByteOffset is set to the offset within the byte array and
197   /// AllocMask is set to the bitmask for those bits. This uses the LPT (Longest
198   /// Processing Time) multiprocessor scheduling algorithm to lay out the bits
199   /// efficiently; the pass allocates bit sets in decreasing size order.
200   void allocate(const std::set<uint64_t> &Bits, uint64_t BitSize,
201                 uint64_t &AllocByteOffset, uint8_t &AllocMask);
202 };
203 
204 } // end namespace lowertypetests
205 
206 class LowerTypeTestsPass : public PassInfoMixin<LowerTypeTestsPass> {
207 public:
208   PreservedAnalyses run(Module &M, AnalysisManager<Module> &AM);
209 };
210 
211 } // end namespace llvm
212 
213 #endif // LLVM_TRANSFORMS_IPO_LOWERTYPETESTS_H
214