1 //=-- lsan_common.cc ------------------------------------------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file is a part of LeakSanitizer.
11 // Implementation of common leak checking functionality.
12 //
13 //===----------------------------------------------------------------------===//
14
15 #include "lsan_common.h"
16
17 #include "sanitizer_common/sanitizer_common.h"
18 #include "sanitizer_common/sanitizer_flags.h"
19 #include "sanitizer_common/sanitizer_flag_parser.h"
20 #include "sanitizer_common/sanitizer_placement_new.h"
21 #include "sanitizer_common/sanitizer_procmaps.h"
22 #include "sanitizer_common/sanitizer_stackdepot.h"
23 #include "sanitizer_common/sanitizer_stacktrace.h"
24 #include "sanitizer_common/sanitizer_suppressions.h"
25 #include "sanitizer_common/sanitizer_report_decorator.h"
26 #include "sanitizer_common/sanitizer_tls_get_addr.h"
27
28 #if CAN_SANITIZE_LEAKS
29 namespace __lsan {
30
31 // This mutex is used to prevent races between DoLeakCheck and IgnoreObject, and
32 // also to protect the global list of root regions.
33 BlockingMutex global_mutex(LINKER_INITIALIZED);
34
35 THREADLOCAL int disable_counter;
DisabledInThisThread()36 bool DisabledInThisThread() { return disable_counter > 0; }
DisableInThisThread()37 void DisableInThisThread() { disable_counter++; }
EnableInThisThread()38 void EnableInThisThread() {
39 if (!disable_counter && common_flags()->detect_leaks) {
40 Report("Unmatched call to __lsan_enable().\n");
41 Die();
42 }
43 disable_counter--;
44 }
45
46 Flags lsan_flags;
47
SetDefaults()48 void Flags::SetDefaults() {
49 #define LSAN_FLAG(Type, Name, DefaultValue, Description) Name = DefaultValue;
50 #include "lsan_flags.inc"
51 #undef LSAN_FLAG
52 }
53
RegisterLsanFlags(FlagParser * parser,Flags * f)54 void RegisterLsanFlags(FlagParser *parser, Flags *f) {
55 #define LSAN_FLAG(Type, Name, DefaultValue, Description) \
56 RegisterFlag(parser, #Name, Description, &f->Name);
57 #include "lsan_flags.inc"
58 #undef LSAN_FLAG
59 }
60
61 #define LOG_POINTERS(...) \
62 do { \
63 if (flags()->log_pointers) Report(__VA_ARGS__); \
64 } while (0);
65
66 #define LOG_THREADS(...) \
67 do { \
68 if (flags()->log_threads) Report(__VA_ARGS__); \
69 } while (0);
70
71 ALIGNED(64) static char suppression_placeholder[sizeof(SuppressionContext)];
72 static SuppressionContext *suppression_ctx = nullptr;
73 static const char kSuppressionLeak[] = "leak";
74 static const char *kSuppressionTypes[] = { kSuppressionLeak };
75
InitializeSuppressions()76 void InitializeSuppressions() {
77 CHECK_EQ(nullptr, suppression_ctx);
78 suppression_ctx = new (suppression_placeholder) // NOLINT
79 SuppressionContext(kSuppressionTypes, ARRAY_SIZE(kSuppressionTypes));
80 suppression_ctx->ParseFromFile(flags()->suppressions);
81 if (&__lsan_default_suppressions)
82 suppression_ctx->Parse(__lsan_default_suppressions());
83 }
84
GetSuppressionContext()85 static SuppressionContext *GetSuppressionContext() {
86 CHECK(suppression_ctx);
87 return suppression_ctx;
88 }
89
90 struct RootRegion {
91 const void *begin;
92 uptr size;
93 };
94
95 InternalMmapVector<RootRegion> *root_regions;
96
InitializeRootRegions()97 void InitializeRootRegions() {
98 CHECK(!root_regions);
99 ALIGNED(64) static char placeholder[sizeof(InternalMmapVector<RootRegion>)];
100 root_regions = new(placeholder) InternalMmapVector<RootRegion>(1);
101 }
102
InitCommonLsan()103 void InitCommonLsan() {
104 InitializeRootRegions();
105 if (common_flags()->detect_leaks) {
106 // Initialization which can fail or print warnings should only be done if
107 // LSan is actually enabled.
108 InitializeSuppressions();
109 InitializePlatformSpecificModules();
110 }
111 }
112
113 class Decorator: public __sanitizer::SanitizerCommonDecorator {
114 public:
Decorator()115 Decorator() : SanitizerCommonDecorator() { }
Error()116 const char *Error() { return Red(); }
Leak()117 const char *Leak() { return Blue(); }
End()118 const char *End() { return Default(); }
119 };
120
CanBeAHeapPointer(uptr p)121 static inline bool CanBeAHeapPointer(uptr p) {
122 // Since our heap is located in mmap-ed memory, we can assume a sensible lower
123 // bound on heap addresses.
124 const uptr kMinAddress = 4 * 4096;
125 if (p < kMinAddress) return false;
126 #if defined(__x86_64__)
127 // Accept only canonical form user-space addresses.
128 return ((p >> 47) == 0);
129 #elif defined(__mips64)
130 return ((p >> 40) == 0);
131 #elif defined(__aarch64__)
132 unsigned runtimeVMA =
133 (MostSignificantSetBitIndex(GET_CURRENT_FRAME()) + 1);
134 return ((p >> runtimeVMA) == 0);
135 #else
136 return true;
137 #endif
138 }
139
140 // Scans the memory range, looking for byte patterns that point into allocator
141 // chunks. Marks those chunks with |tag| and adds them to |frontier|.
142 // There are two usage modes for this function: finding reachable chunks
143 // (|tag| = kReachable) and finding indirectly leaked chunks
144 // (|tag| = kIndirectlyLeaked). In the second case, there's no flood fill,
145 // so |frontier| = 0.
ScanRangeForPointers(uptr begin,uptr end,Frontier * frontier,const char * region_type,ChunkTag tag)146 void ScanRangeForPointers(uptr begin, uptr end,
147 Frontier *frontier,
148 const char *region_type, ChunkTag tag) {
149 CHECK(tag == kReachable || tag == kIndirectlyLeaked);
150 const uptr alignment = flags()->pointer_alignment();
151 LOG_POINTERS("Scanning %s range %p-%p.\n", region_type, begin, end);
152 uptr pp = begin;
153 if (pp % alignment)
154 pp = pp + alignment - pp % alignment;
155 for (; pp + sizeof(void *) <= end; pp += alignment) { // NOLINT
156 void *p = *reinterpret_cast<void **>(pp);
157 if (!CanBeAHeapPointer(reinterpret_cast<uptr>(p))) continue;
158 uptr chunk = PointsIntoChunk(p);
159 if (!chunk) continue;
160 // Pointers to self don't count. This matters when tag == kIndirectlyLeaked.
161 if (chunk == begin) continue;
162 LsanMetadata m(chunk);
163 if (m.tag() == kReachable || m.tag() == kIgnored) continue;
164
165 // Do this check relatively late so we can log only the interesting cases.
166 if (!flags()->use_poisoned && WordIsPoisoned(pp)) {
167 LOG_POINTERS(
168 "%p is poisoned: ignoring %p pointing into chunk %p-%p of size "
169 "%zu.\n",
170 pp, p, chunk, chunk + m.requested_size(), m.requested_size());
171 continue;
172 }
173
174 m.set_tag(tag);
175 LOG_POINTERS("%p: found %p pointing into chunk %p-%p of size %zu.\n", pp, p,
176 chunk, chunk + m.requested_size(), m.requested_size());
177 if (frontier)
178 frontier->push_back(chunk);
179 }
180 }
181
ForEachExtraStackRangeCb(uptr begin,uptr end,void * arg)182 void ForEachExtraStackRangeCb(uptr begin, uptr end, void* arg) {
183 Frontier *frontier = reinterpret_cast<Frontier *>(arg);
184 ScanRangeForPointers(begin, end, frontier, "FAKE STACK", kReachable);
185 }
186
187 // Scans thread data (stacks and TLS) for heap pointers.
ProcessThreads(SuspendedThreadsList const & suspended_threads,Frontier * frontier)188 static void ProcessThreads(SuspendedThreadsList const &suspended_threads,
189 Frontier *frontier) {
190 InternalScopedBuffer<uptr> registers(SuspendedThreadsList::RegisterCount());
191 uptr registers_begin = reinterpret_cast<uptr>(registers.data());
192 uptr registers_end = registers_begin + registers.size();
193 for (uptr i = 0; i < suspended_threads.thread_count(); i++) {
194 uptr os_id = static_cast<uptr>(suspended_threads.GetThreadID(i));
195 LOG_THREADS("Processing thread %d.\n", os_id);
196 uptr stack_begin, stack_end, tls_begin, tls_end, cache_begin, cache_end;
197 DTLS *dtls;
198 bool thread_found = GetThreadRangesLocked(os_id, &stack_begin, &stack_end,
199 &tls_begin, &tls_end,
200 &cache_begin, &cache_end, &dtls);
201 if (!thread_found) {
202 // If a thread can't be found in the thread registry, it's probably in the
203 // process of destruction. Log this event and move on.
204 LOG_THREADS("Thread %d not found in registry.\n", os_id);
205 continue;
206 }
207 uptr sp;
208 bool have_registers =
209 (suspended_threads.GetRegistersAndSP(i, registers.data(), &sp) == 0);
210 if (!have_registers) {
211 Report("Unable to get registers from thread %d.\n");
212 // If unable to get SP, consider the entire stack to be reachable.
213 sp = stack_begin;
214 }
215
216 if (flags()->use_registers && have_registers)
217 ScanRangeForPointers(registers_begin, registers_end, frontier,
218 "REGISTERS", kReachable);
219
220 if (flags()->use_stacks) {
221 LOG_THREADS("Stack at %p-%p (SP = %p).\n", stack_begin, stack_end, sp);
222 if (sp < stack_begin || sp >= stack_end) {
223 // SP is outside the recorded stack range (e.g. the thread is running a
224 // signal handler on alternate stack, or swapcontext was used).
225 // Again, consider the entire stack range to be reachable.
226 LOG_THREADS("WARNING: stack pointer not in stack range.\n");
227 uptr page_size = GetPageSizeCached();
228 int skipped = 0;
229 while (stack_begin < stack_end &&
230 !IsAccessibleMemoryRange(stack_begin, 1)) {
231 skipped++;
232 stack_begin += page_size;
233 }
234 LOG_THREADS("Skipped %d guard page(s) to obtain stack %p-%p.\n",
235 skipped, stack_begin, stack_end);
236 } else {
237 // Shrink the stack range to ignore out-of-scope values.
238 stack_begin = sp;
239 }
240 ScanRangeForPointers(stack_begin, stack_end, frontier, "STACK",
241 kReachable);
242 ForEachExtraStackRange(os_id, ForEachExtraStackRangeCb, frontier);
243 }
244
245 if (flags()->use_tls) {
246 LOG_THREADS("TLS at %p-%p.\n", tls_begin, tls_end);
247 if (cache_begin == cache_end) {
248 ScanRangeForPointers(tls_begin, tls_end, frontier, "TLS", kReachable);
249 } else {
250 // Because LSan should not be loaded with dlopen(), we can assume
251 // that allocator cache will be part of static TLS image.
252 CHECK_LE(tls_begin, cache_begin);
253 CHECK_GE(tls_end, cache_end);
254 if (tls_begin < cache_begin)
255 ScanRangeForPointers(tls_begin, cache_begin, frontier, "TLS",
256 kReachable);
257 if (tls_end > cache_end)
258 ScanRangeForPointers(cache_end, tls_end, frontier, "TLS", kReachable);
259 }
260 if (dtls) {
261 for (uptr j = 0; j < dtls->dtv_size; ++j) {
262 uptr dtls_beg = dtls->dtv[j].beg;
263 uptr dtls_end = dtls_beg + dtls->dtv[j].size;
264 if (dtls_beg < dtls_end) {
265 LOG_THREADS("DTLS %zu at %p-%p.\n", j, dtls_beg, dtls_end);
266 ScanRangeForPointers(dtls_beg, dtls_end, frontier, "DTLS",
267 kReachable);
268 }
269 }
270 }
271 }
272 }
273 }
274
ProcessRootRegion(Frontier * frontier,uptr root_begin,uptr root_end)275 static void ProcessRootRegion(Frontier *frontier, uptr root_begin,
276 uptr root_end) {
277 MemoryMappingLayout proc_maps(/*cache_enabled*/true);
278 uptr begin, end, prot;
279 while (proc_maps.Next(&begin, &end,
280 /*offset*/ nullptr, /*filename*/ nullptr,
281 /*filename_size*/ 0, &prot)) {
282 uptr intersection_begin = Max(root_begin, begin);
283 uptr intersection_end = Min(end, root_end);
284 if (intersection_begin >= intersection_end) continue;
285 bool is_readable = prot & MemoryMappingLayout::kProtectionRead;
286 LOG_POINTERS("Root region %p-%p intersects with mapped region %p-%p (%s)\n",
287 root_begin, root_end, begin, end,
288 is_readable ? "readable" : "unreadable");
289 if (is_readable)
290 ScanRangeForPointers(intersection_begin, intersection_end, frontier,
291 "ROOT", kReachable);
292 }
293 }
294
295 // Scans root regions for heap pointers.
ProcessRootRegions(Frontier * frontier)296 static void ProcessRootRegions(Frontier *frontier) {
297 if (!flags()->use_root_regions) return;
298 CHECK(root_regions);
299 for (uptr i = 0; i < root_regions->size(); i++) {
300 RootRegion region = (*root_regions)[i];
301 uptr begin_addr = reinterpret_cast<uptr>(region.begin);
302 ProcessRootRegion(frontier, begin_addr, begin_addr + region.size);
303 }
304 }
305
FloodFillTag(Frontier * frontier,ChunkTag tag)306 static void FloodFillTag(Frontier *frontier, ChunkTag tag) {
307 while (frontier->size()) {
308 uptr next_chunk = frontier->back();
309 frontier->pop_back();
310 LsanMetadata m(next_chunk);
311 ScanRangeForPointers(next_chunk, next_chunk + m.requested_size(), frontier,
312 "HEAP", tag);
313 }
314 }
315
316 // ForEachChunk callback. If the chunk is marked as leaked, marks all chunks
317 // which are reachable from it as indirectly leaked.
MarkIndirectlyLeakedCb(uptr chunk,void * arg)318 static void MarkIndirectlyLeakedCb(uptr chunk, void *arg) {
319 chunk = GetUserBegin(chunk);
320 LsanMetadata m(chunk);
321 if (m.allocated() && m.tag() != kReachable) {
322 ScanRangeForPointers(chunk, chunk + m.requested_size(),
323 /* frontier */ nullptr, "HEAP", kIndirectlyLeaked);
324 }
325 }
326
327 // ForEachChunk callback. If chunk is marked as ignored, adds its address to
328 // frontier.
CollectIgnoredCb(uptr chunk,void * arg)329 static void CollectIgnoredCb(uptr chunk, void *arg) {
330 CHECK(arg);
331 chunk = GetUserBegin(chunk);
332 LsanMetadata m(chunk);
333 if (m.allocated() && m.tag() == kIgnored) {
334 LOG_POINTERS("Ignored: chunk %p-%p of size %zu.\n",
335 chunk, chunk + m.requested_size(), m.requested_size());
336 reinterpret_cast<Frontier *>(arg)->push_back(chunk);
337 }
338 }
339
340 // Sets the appropriate tag on each chunk.
ClassifyAllChunks(SuspendedThreadsList const & suspended_threads)341 static void ClassifyAllChunks(SuspendedThreadsList const &suspended_threads) {
342 // Holds the flood fill frontier.
343 Frontier frontier(1);
344
345 ForEachChunk(CollectIgnoredCb, &frontier);
346 ProcessGlobalRegions(&frontier);
347 ProcessThreads(suspended_threads, &frontier);
348 ProcessRootRegions(&frontier);
349 FloodFillTag(&frontier, kReachable);
350
351 // The check here is relatively expensive, so we do this in a separate flood
352 // fill. That way we can skip the check for chunks that are reachable
353 // otherwise.
354 LOG_POINTERS("Processing platform-specific allocations.\n");
355 CHECK_EQ(0, frontier.size());
356 ProcessPlatformSpecificAllocations(&frontier);
357 FloodFillTag(&frontier, kReachable);
358
359 // Iterate over leaked chunks and mark those that are reachable from other
360 // leaked chunks.
361 LOG_POINTERS("Scanning leaked chunks.\n");
362 ForEachChunk(MarkIndirectlyLeakedCb, nullptr);
363 }
364
365 // ForEachChunk callback. Resets the tags to pre-leak-check state.
ResetTagsCb(uptr chunk,void * arg)366 static void ResetTagsCb(uptr chunk, void *arg) {
367 (void)arg;
368 chunk = GetUserBegin(chunk);
369 LsanMetadata m(chunk);
370 if (m.allocated() && m.tag() != kIgnored)
371 m.set_tag(kDirectlyLeaked);
372 }
373
PrintStackTraceById(u32 stack_trace_id)374 static void PrintStackTraceById(u32 stack_trace_id) {
375 CHECK(stack_trace_id);
376 StackDepotGet(stack_trace_id).Print();
377 }
378
379 // ForEachChunk callback. Aggregates information about unreachable chunks into
380 // a LeakReport.
CollectLeaksCb(uptr chunk,void * arg)381 static void CollectLeaksCb(uptr chunk, void *arg) {
382 CHECK(arg);
383 LeakReport *leak_report = reinterpret_cast<LeakReport *>(arg);
384 chunk = GetUserBegin(chunk);
385 LsanMetadata m(chunk);
386 if (!m.allocated()) return;
387 if (m.tag() == kDirectlyLeaked || m.tag() == kIndirectlyLeaked) {
388 u32 resolution = flags()->resolution;
389 u32 stack_trace_id = 0;
390 if (resolution > 0) {
391 StackTrace stack = StackDepotGet(m.stack_trace_id());
392 stack.size = Min(stack.size, resolution);
393 stack_trace_id = StackDepotPut(stack);
394 } else {
395 stack_trace_id = m.stack_trace_id();
396 }
397 leak_report->AddLeakedChunk(chunk, stack_trace_id, m.requested_size(),
398 m.tag());
399 }
400 }
401
PrintMatchedSuppressions()402 static void PrintMatchedSuppressions() {
403 InternalMmapVector<Suppression *> matched(1);
404 GetSuppressionContext()->GetMatched(&matched);
405 if (!matched.size())
406 return;
407 const char *line = "-----------------------------------------------------";
408 Printf("%s\n", line);
409 Printf("Suppressions used:\n");
410 Printf(" count bytes template\n");
411 for (uptr i = 0; i < matched.size(); i++)
412 Printf("%7zu %10zu %s\n", static_cast<uptr>(atomic_load_relaxed(
413 &matched[i]->hit_count)), matched[i]->weight, matched[i]->templ);
414 Printf("%s\n\n", line);
415 }
416
417 struct CheckForLeaksParam {
418 bool success;
419 LeakReport leak_report;
420 };
421
CheckForLeaksCallback(const SuspendedThreadsList & suspended_threads,void * arg)422 static void CheckForLeaksCallback(const SuspendedThreadsList &suspended_threads,
423 void *arg) {
424 CheckForLeaksParam *param = reinterpret_cast<CheckForLeaksParam *>(arg);
425 CHECK(param);
426 CHECK(!param->success);
427 ClassifyAllChunks(suspended_threads);
428 ForEachChunk(CollectLeaksCb, ¶m->leak_report);
429 // Clean up for subsequent leak checks. This assumes we did not overwrite any
430 // kIgnored tags.
431 ForEachChunk(ResetTagsCb, nullptr);
432 param->success = true;
433 }
434
CheckForLeaks()435 static bool CheckForLeaks() {
436 if (&__lsan_is_turned_off && __lsan_is_turned_off())
437 return false;
438 EnsureMainThreadIDIsCorrect();
439 CheckForLeaksParam param;
440 param.success = false;
441 LockThreadRegistry();
442 LockAllocator();
443 DoStopTheWorld(CheckForLeaksCallback, ¶m);
444 UnlockAllocator();
445 UnlockThreadRegistry();
446
447 if (!param.success) {
448 Report("LeakSanitizer has encountered a fatal error.\n");
449 Report(
450 "HINT: For debugging, try setting environment variable "
451 "LSAN_OPTIONS=verbosity=1:log_threads=1\n");
452 Die();
453 }
454 param.leak_report.ApplySuppressions();
455 uptr unsuppressed_count = param.leak_report.UnsuppressedLeakCount();
456 if (unsuppressed_count > 0) {
457 Decorator d;
458 Printf("\n"
459 "================================================================="
460 "\n");
461 Printf("%s", d.Error());
462 Report("ERROR: LeakSanitizer: detected memory leaks\n");
463 Printf("%s", d.End());
464 param.leak_report.ReportTopLeaks(flags()->max_leaks);
465 }
466 if (common_flags()->print_suppressions)
467 PrintMatchedSuppressions();
468 if (unsuppressed_count > 0) {
469 param.leak_report.PrintSummary();
470 return true;
471 }
472 return false;
473 }
474
DoLeakCheck()475 void DoLeakCheck() {
476 BlockingMutexLock l(&global_mutex);
477 static bool already_done;
478 if (already_done) return;
479 already_done = true;
480 bool have_leaks = CheckForLeaks();
481 if (!have_leaks) {
482 return;
483 }
484 if (common_flags()->exitcode) {
485 Die();
486 }
487 }
488
DoRecoverableLeakCheck()489 static int DoRecoverableLeakCheck() {
490 BlockingMutexLock l(&global_mutex);
491 bool have_leaks = CheckForLeaks();
492 return have_leaks ? 1 : 0;
493 }
494
GetSuppressionForAddr(uptr addr)495 static Suppression *GetSuppressionForAddr(uptr addr) {
496 Suppression *s = nullptr;
497
498 // Suppress by module name.
499 SuppressionContext *suppressions = GetSuppressionContext();
500 if (const char *module_name =
501 Symbolizer::GetOrInit()->GetModuleNameForPc(addr))
502 if (suppressions->Match(module_name, kSuppressionLeak, &s))
503 return s;
504
505 // Suppress by file or function name.
506 SymbolizedStack *frames = Symbolizer::GetOrInit()->SymbolizePC(addr);
507 for (SymbolizedStack *cur = frames; cur; cur = cur->next) {
508 if (suppressions->Match(cur->info.function, kSuppressionLeak, &s) ||
509 suppressions->Match(cur->info.file, kSuppressionLeak, &s)) {
510 break;
511 }
512 }
513 frames->ClearAll();
514 return s;
515 }
516
GetSuppressionForStack(u32 stack_trace_id)517 static Suppression *GetSuppressionForStack(u32 stack_trace_id) {
518 StackTrace stack = StackDepotGet(stack_trace_id);
519 for (uptr i = 0; i < stack.size; i++) {
520 Suppression *s = GetSuppressionForAddr(
521 StackTrace::GetPreviousInstructionPc(stack.trace[i]));
522 if (s) return s;
523 }
524 return nullptr;
525 }
526
527 ///// LeakReport implementation. /////
528
529 // A hard limit on the number of distinct leaks, to avoid quadratic complexity
530 // in LeakReport::AddLeakedChunk(). We don't expect to ever see this many leaks
531 // in real-world applications.
532 // FIXME: Get rid of this limit by changing the implementation of LeakReport to
533 // use a hash table.
534 const uptr kMaxLeaksConsidered = 5000;
535
AddLeakedChunk(uptr chunk,u32 stack_trace_id,uptr leaked_size,ChunkTag tag)536 void LeakReport::AddLeakedChunk(uptr chunk, u32 stack_trace_id,
537 uptr leaked_size, ChunkTag tag) {
538 CHECK(tag == kDirectlyLeaked || tag == kIndirectlyLeaked);
539 bool is_directly_leaked = (tag == kDirectlyLeaked);
540 uptr i;
541 for (i = 0; i < leaks_.size(); i++) {
542 if (leaks_[i].stack_trace_id == stack_trace_id &&
543 leaks_[i].is_directly_leaked == is_directly_leaked) {
544 leaks_[i].hit_count++;
545 leaks_[i].total_size += leaked_size;
546 break;
547 }
548 }
549 if (i == leaks_.size()) {
550 if (leaks_.size() == kMaxLeaksConsidered) return;
551 Leak leak = { next_id_++, /* hit_count */ 1, leaked_size, stack_trace_id,
552 is_directly_leaked, /* is_suppressed */ false };
553 leaks_.push_back(leak);
554 }
555 if (flags()->report_objects) {
556 LeakedObject obj = {leaks_[i].id, chunk, leaked_size};
557 leaked_objects_.push_back(obj);
558 }
559 }
560
LeakComparator(const Leak & leak1,const Leak & leak2)561 static bool LeakComparator(const Leak &leak1, const Leak &leak2) {
562 if (leak1.is_directly_leaked == leak2.is_directly_leaked)
563 return leak1.total_size > leak2.total_size;
564 else
565 return leak1.is_directly_leaked;
566 }
567
ReportTopLeaks(uptr num_leaks_to_report)568 void LeakReport::ReportTopLeaks(uptr num_leaks_to_report) {
569 CHECK(leaks_.size() <= kMaxLeaksConsidered);
570 Printf("\n");
571 if (leaks_.size() == kMaxLeaksConsidered)
572 Printf("Too many leaks! Only the first %zu leaks encountered will be "
573 "reported.\n",
574 kMaxLeaksConsidered);
575
576 uptr unsuppressed_count = UnsuppressedLeakCount();
577 if (num_leaks_to_report > 0 && num_leaks_to_report < unsuppressed_count)
578 Printf("The %zu top leak(s):\n", num_leaks_to_report);
579 InternalSort(&leaks_, leaks_.size(), LeakComparator);
580 uptr leaks_reported = 0;
581 for (uptr i = 0; i < leaks_.size(); i++) {
582 if (leaks_[i].is_suppressed) continue;
583 PrintReportForLeak(i);
584 leaks_reported++;
585 if (leaks_reported == num_leaks_to_report) break;
586 }
587 if (leaks_reported < unsuppressed_count) {
588 uptr remaining = unsuppressed_count - leaks_reported;
589 Printf("Omitting %zu more leak(s).\n", remaining);
590 }
591 }
592
PrintReportForLeak(uptr index)593 void LeakReport::PrintReportForLeak(uptr index) {
594 Decorator d;
595 Printf("%s", d.Leak());
596 Printf("%s leak of %zu byte(s) in %zu object(s) allocated from:\n",
597 leaks_[index].is_directly_leaked ? "Direct" : "Indirect",
598 leaks_[index].total_size, leaks_[index].hit_count);
599 Printf("%s", d.End());
600
601 PrintStackTraceById(leaks_[index].stack_trace_id);
602
603 if (flags()->report_objects) {
604 Printf("Objects leaked above:\n");
605 PrintLeakedObjectsForLeak(index);
606 Printf("\n");
607 }
608 }
609
PrintLeakedObjectsForLeak(uptr index)610 void LeakReport::PrintLeakedObjectsForLeak(uptr index) {
611 u32 leak_id = leaks_[index].id;
612 for (uptr j = 0; j < leaked_objects_.size(); j++) {
613 if (leaked_objects_[j].leak_id == leak_id)
614 Printf("%p (%zu bytes)\n", leaked_objects_[j].addr,
615 leaked_objects_[j].size);
616 }
617 }
618
PrintSummary()619 void LeakReport::PrintSummary() {
620 CHECK(leaks_.size() <= kMaxLeaksConsidered);
621 uptr bytes = 0, allocations = 0;
622 for (uptr i = 0; i < leaks_.size(); i++) {
623 if (leaks_[i].is_suppressed) continue;
624 bytes += leaks_[i].total_size;
625 allocations += leaks_[i].hit_count;
626 }
627 InternalScopedString summary(kMaxSummaryLength);
628 summary.append("%zu byte(s) leaked in %zu allocation(s).", bytes,
629 allocations);
630 ReportErrorSummary(summary.data());
631 }
632
ApplySuppressions()633 void LeakReport::ApplySuppressions() {
634 for (uptr i = 0; i < leaks_.size(); i++) {
635 Suppression *s = GetSuppressionForStack(leaks_[i].stack_trace_id);
636 if (s) {
637 s->weight += leaks_[i].total_size;
638 atomic_store_relaxed(&s->hit_count, atomic_load_relaxed(&s->hit_count) +
639 leaks_[i].hit_count);
640 leaks_[i].is_suppressed = true;
641 }
642 }
643 }
644
UnsuppressedLeakCount()645 uptr LeakReport::UnsuppressedLeakCount() {
646 uptr result = 0;
647 for (uptr i = 0; i < leaks_.size(); i++)
648 if (!leaks_[i].is_suppressed) result++;
649 return result;
650 }
651
652 } // namespace __lsan
653 #else // CAN_SANITIZE_LEAKS
654 namespace __lsan {
InitCommonLsan()655 void InitCommonLsan() { }
DoLeakCheck()656 void DoLeakCheck() { }
DisableInThisThread()657 void DisableInThisThread() { }
EnableInThisThread()658 void EnableInThisThread() { }
659 }
660 #endif // CAN_SANITIZE_LEAKS
661
662 using namespace __lsan; // NOLINT
663
664 extern "C" {
665 SANITIZER_INTERFACE_ATTRIBUTE
__lsan_ignore_object(const void * p)666 void __lsan_ignore_object(const void *p) {
667 #if CAN_SANITIZE_LEAKS
668 if (!common_flags()->detect_leaks)
669 return;
670 // Cannot use PointsIntoChunk or LsanMetadata here, since the allocator is not
671 // locked.
672 BlockingMutexLock l(&global_mutex);
673 IgnoreObjectResult res = IgnoreObjectLocked(p);
674 if (res == kIgnoreObjectInvalid)
675 VReport(1, "__lsan_ignore_object(): no heap object found at %p", p);
676 if (res == kIgnoreObjectAlreadyIgnored)
677 VReport(1, "__lsan_ignore_object(): "
678 "heap object at %p is already being ignored\n", p);
679 if (res == kIgnoreObjectSuccess)
680 VReport(1, "__lsan_ignore_object(): ignoring heap object at %p\n", p);
681 #endif // CAN_SANITIZE_LEAKS
682 }
683
684 SANITIZER_INTERFACE_ATTRIBUTE
__lsan_register_root_region(const void * begin,uptr size)685 void __lsan_register_root_region(const void *begin, uptr size) {
686 #if CAN_SANITIZE_LEAKS
687 BlockingMutexLock l(&global_mutex);
688 CHECK(root_regions);
689 RootRegion region = {begin, size};
690 root_regions->push_back(region);
691 VReport(1, "Registered root region at %p of size %llu\n", begin, size);
692 #endif // CAN_SANITIZE_LEAKS
693 }
694
695 SANITIZER_INTERFACE_ATTRIBUTE
__lsan_unregister_root_region(const void * begin,uptr size)696 void __lsan_unregister_root_region(const void *begin, uptr size) {
697 #if CAN_SANITIZE_LEAKS
698 BlockingMutexLock l(&global_mutex);
699 CHECK(root_regions);
700 bool removed = false;
701 for (uptr i = 0; i < root_regions->size(); i++) {
702 RootRegion region = (*root_regions)[i];
703 if (region.begin == begin && region.size == size) {
704 removed = true;
705 uptr last_index = root_regions->size() - 1;
706 (*root_regions)[i] = (*root_regions)[last_index];
707 root_regions->pop_back();
708 VReport(1, "Unregistered root region at %p of size %llu\n", begin, size);
709 break;
710 }
711 }
712 if (!removed) {
713 Report(
714 "__lsan_unregister_root_region(): region at %p of size %llu has not "
715 "been registered.\n",
716 begin, size);
717 Die();
718 }
719 #endif // CAN_SANITIZE_LEAKS
720 }
721
722 SANITIZER_INTERFACE_ATTRIBUTE
__lsan_disable()723 void __lsan_disable() {
724 #if CAN_SANITIZE_LEAKS
725 __lsan::DisableInThisThread();
726 #endif
727 }
728
729 SANITIZER_INTERFACE_ATTRIBUTE
__lsan_enable()730 void __lsan_enable() {
731 #if CAN_SANITIZE_LEAKS
732 __lsan::EnableInThisThread();
733 #endif
734 }
735
736 SANITIZER_INTERFACE_ATTRIBUTE
__lsan_do_leak_check()737 void __lsan_do_leak_check() {
738 #if CAN_SANITIZE_LEAKS
739 if (common_flags()->detect_leaks)
740 __lsan::DoLeakCheck();
741 #endif // CAN_SANITIZE_LEAKS
742 }
743
744 SANITIZER_INTERFACE_ATTRIBUTE
__lsan_do_recoverable_leak_check()745 int __lsan_do_recoverable_leak_check() {
746 #if CAN_SANITIZE_LEAKS
747 if (common_flags()->detect_leaks)
748 return __lsan::DoRecoverableLeakCheck();
749 #endif // CAN_SANITIZE_LEAKS
750 return 0;
751 }
752
753 #if !SANITIZER_SUPPORTS_WEAK_HOOKS
754 SANITIZER_INTERFACE_ATTRIBUTE SANITIZER_WEAK_ATTRIBUTE
__lsan_is_turned_off()755 int __lsan_is_turned_off() {
756 return 0;
757 }
758 #endif
759 } // extern "C"
760