1<html> 2<head> 3<meta http-equiv="Content-Type" content="text/html; charset=ISO-8859-1"> 4<title>3.�Using and understanding the Valgrind core: Advanced Topics</title> 5<link rel="stylesheet" type="text/css" href="vg_basic.css"> 6<meta name="generator" content="DocBook XSL Stylesheets V1.79.1"> 7<link rel="home" href="index.html" title="Valgrind Documentation"> 8<link rel="up" href="manual.html" title="Valgrind User Manual"> 9<link rel="prev" href="manual-core.html" title="2.�Using and understanding the Valgrind core"> 10<link rel="next" href="mc-manual.html" title="4.�Memcheck: a memory error detector"> 11</head> 12<body bgcolor="white" text="black" link="#0000FF" vlink="#840084" alink="#0000FF"> 13<div><table class="nav" width="100%" cellspacing="3" cellpadding="3" border="0" summary="Navigation header"><tr> 14<td width="22px" align="center" valign="middle"><a accesskey="p" href="manual-core.html"><img src="images/prev.png" width="18" height="21" border="0" alt="Prev"></a></td> 15<td width="25px" align="center" valign="middle"><a accesskey="u" href="manual.html"><img src="images/up.png" width="21" height="18" border="0" alt="Up"></a></td> 16<td width="31px" align="center" valign="middle"><a accesskey="h" href="index.html"><img src="images/home.png" width="27" height="20" border="0" alt="Up"></a></td> 17<th align="center" valign="middle">Valgrind User Manual</th> 18<td width="22px" align="center" valign="middle"><a accesskey="n" href="mc-manual.html"><img src="images/next.png" width="18" height="21" border="0" alt="Next"></a></td> 19</tr></table></div> 20<div class="chapter"> 21<div class="titlepage"><div><div><h1 class="title"> 22<a name="manual-core-adv"></a>3.�Using and understanding the Valgrind core: Advanced Topics</h1></div></div></div> 23<div class="toc"> 24<p><b>Table of Contents</b></p> 25<dl class="toc"> 26<dt><span class="sect1"><a href="manual-core-adv.html#manual-core-adv.clientreq">3.1. The Client Request mechanism</a></span></dt> 27<dt><span class="sect1"><a href="manual-core-adv.html#manual-core-adv.gdbserver">3.2. Debugging your program using Valgrind gdbserver and GDB</a></span></dt> 28<dd><dl> 29<dt><span class="sect2"><a href="manual-core-adv.html#manual-core-adv.gdbserver-simple">3.2.1. Quick Start: debugging in 3 steps</a></span></dt> 30<dt><span class="sect2"><a href="manual-core-adv.html#manual-core-adv.gdbserver-concept">3.2.2. Valgrind gdbserver overall organisation</a></span></dt> 31<dt><span class="sect2"><a href="manual-core-adv.html#manual-core-adv.gdbserver-gdb">3.2.3. Connecting GDB to a Valgrind gdbserver</a></span></dt> 32<dt><span class="sect2"><a href="manual-core-adv.html#manual-core-adv.gdbserver-gdb-android">3.2.4. Connecting to an Android gdbserver</a></span></dt> 33<dt><span class="sect2"><a href="manual-core-adv.html#manual-core-adv.gdbserver-commandhandling">3.2.5. Monitor command handling by the Valgrind gdbserver</a></span></dt> 34<dt><span class="sect2"><a href="manual-core-adv.html#manual-core-adv.gdbserver-threads">3.2.6. Valgrind gdbserver thread information</a></span></dt> 35<dt><span class="sect2"><a href="manual-core-adv.html#manual-core-adv.gdbserver-shadowregisters">3.2.7. Examining and modifying Valgrind shadow registers</a></span></dt> 36<dt><span class="sect2"><a href="manual-core-adv.html#manual-core-adv.gdbserver-limitations">3.2.8. Limitations of the Valgrind gdbserver</a></span></dt> 37<dt><span class="sect2"><a href="manual-core-adv.html#manual-core-adv.vgdb">3.2.9. vgdb command line options</a></span></dt> 38<dt><span class="sect2"><a href="manual-core-adv.html#manual-core-adv.valgrind-monitor-commands">3.2.10. Valgrind monitor commands</a></span></dt> 39</dl></dd> 40<dt><span class="sect1"><a href="manual-core-adv.html#manual-core-adv.wrapping">3.3. Function wrapping</a></span></dt> 41<dd><dl> 42<dt><span class="sect2"><a href="manual-core-adv.html#manual-core-adv.wrapping.example">3.3.1. A Simple Example</a></span></dt> 43<dt><span class="sect2"><a href="manual-core-adv.html#manual-core-adv.wrapping.specs">3.3.2. Wrapping Specifications</a></span></dt> 44<dt><span class="sect2"><a href="manual-core-adv.html#manual-core-adv.wrapping.semantics">3.3.3. Wrapping Semantics</a></span></dt> 45<dt><span class="sect2"><a href="manual-core-adv.html#manual-core-adv.wrapping.debugging">3.3.4. Debugging</a></span></dt> 46<dt><span class="sect2"><a href="manual-core-adv.html#manual-core-adv.wrapping.limitations-cf">3.3.5. Limitations - control flow</a></span></dt> 47<dt><span class="sect2"><a href="manual-core-adv.html#manual-core-adv.wrapping.limitations-sigs">3.3.6. Limitations - original function signatures</a></span></dt> 48<dt><span class="sect2"><a href="manual-core-adv.html#manual-core-adv.wrapping.examples">3.3.7. Examples</a></span></dt> 49</dl></dd> 50</dl> 51</div> 52<p>This chapter describes advanced aspects of the Valgrind core 53services, which are mostly of interest to power users who wish to 54customise and modify Valgrind's default behaviours in certain useful 55ways. The subjects covered are:</p> 56<div class="itemizedlist"><ul class="itemizedlist" style="list-style-type: disc; "> 57<li class="listitem"><p>The "Client Request" mechanism</p></li> 58<li class="listitem"><p>Debugging your program using Valgrind's gdbserver 59 and GDB</p></li> 60<li class="listitem"><p>Function Wrapping</p></li> 61</ul></div> 62<div class="sect1"> 63<div class="titlepage"><div><div><h2 class="title" style="clear: both"> 64<a name="manual-core-adv.clientreq"></a>3.1.�The Client Request mechanism</h2></div></div></div> 65<p>Valgrind has a trapdoor mechanism via which the client 66program can pass all manner of requests and queries to Valgrind 67and the current tool. Internally, this is used extensively 68to make various things work, although that's not visible from the 69outside.</p> 70<p>For your convenience, a subset of these so-called client 71requests is provided to allow you to tell Valgrind facts about 72the behaviour of your program, and also to make queries. 73In particular, your program can tell Valgrind about things that it 74otherwise would not know, leading to better results. 75</p> 76<p>Clients need to include a header file to make this work. 77Which header file depends on which client requests you use. Some 78client requests are handled by the core, and are defined in the 79header file <code class="filename">valgrind/valgrind.h</code>. Tool-specific 80header files are named after the tool, e.g. 81<code class="filename">valgrind/memcheck.h</code>. Each tool-specific header file 82includes <code class="filename">valgrind/valgrind.h</code> so you don't need to 83include it in your client if you include a tool-specific header. All header 84files can be found in the <code class="literal">include/valgrind</code> directory of 85wherever Valgrind was installed.</p> 86<p>The macros in these header files have the magical property 87that they generate code in-line which Valgrind can spot. 88However, the code does nothing when not run on Valgrind, so you 89are not forced to run your program under Valgrind just because you 90use the macros in this file. Also, you are not required to link your 91program with any extra supporting libraries.</p> 92<p>The code added to your binary has negligible performance impact: 93on x86, amd64, ppc32, ppc64 and ARM, the overhead is 6 simple integer 94instructions and is probably undetectable except in tight loops. 95However, if you really wish to compile out the client requests, you 96can compile with <code class="option">-DNVALGRIND</code> (analogous to 97<code class="option">-DNDEBUG</code>'s effect on 98<code class="function">assert</code>). 99</p> 100<p>You are encouraged to copy the <code class="filename">valgrind/*.h</code> headers 101into your project's include directory, so your program doesn't have a 102compile-time dependency on Valgrind being installed. The Valgrind headers, 103unlike most of the rest of the code, are under a BSD-style license so you may 104include them without worrying about license incompatibility.</p> 105<p>Here is a brief description of the macros available in 106<code class="filename">valgrind.h</code>, which work with more than one 107tool (see the tool-specific documentation for explanations of the 108tool-specific macros).</p> 109<div class="variablelist"><dl class="variablelist"> 110<dt><span class="term"><span class="command"><strong><code class="computeroutput">RUNNING_ON_VALGRIND</code></strong></span>:</span></dt> 111<dd><p>Returns 1 if running on Valgrind, 0 if running on the 112 real CPU. If you are running Valgrind on itself, returns the 113 number of layers of Valgrind emulation you're running on. 114 </p></dd> 115<dt><span class="term"><span class="command"><strong><code class="computeroutput">VALGRIND_DISCARD_TRANSLATIONS</code>:</strong></span></span></dt> 116<dd> 117<p>Discards translations of code in the specified address 118 range. Useful if you are debugging a JIT compiler or some other 119 dynamic code generation system. After this call, attempts to 120 execute code in the invalidated address range will cause 121 Valgrind to make new translations of that code, which is 122 probably the semantics you want. Note that code invalidations 123 are expensive because finding all the relevant translations 124 quickly is very difficult, so try not to call it often. 125 Note that you can be clever about 126 this: you only need to call it when an area which previously 127 contained code is overwritten with new code. You can choose 128 to write code into fresh memory, and just call this 129 occasionally to discard large chunks of old code all at 130 once.</p> 131<p> 132 Alternatively, for transparent self-modifying-code support, 133 use<code class="option">--smc-check=all</code>, or run 134 on ppc32/Linux, ppc64/Linux or ARM/Linux. 135 </p> 136</dd> 137<dt><span class="term"><span class="command"><strong><code class="computeroutput">VALGRIND_COUNT_ERRORS</code>:</strong></span></span></dt> 138<dd><p>Returns the number of errors found so far by Valgrind. Can be 139 useful in test harness code when combined with the 140 <code class="option">--log-fd=-1</code> option; this runs Valgrind silently, 141 but the client program can detect when errors occur. Only useful 142 for tools that report errors, e.g. it's useful for Memcheck, but for 143 Cachegrind it will always return zero because Cachegrind doesn't 144 report errors.</p></dd> 145<dt><span class="term"><span class="command"><strong><code class="computeroutput">VALGRIND_MALLOCLIKE_BLOCK</code>:</strong></span></span></dt> 146<dd><p>If your program manages its own memory instead of using 147 the standard <code class="function">malloc</code> / 148 <code class="function">new</code> / 149 <code class="function">new[]</code>, tools that track 150 information about heap blocks will not do nearly as good a 151 job. For example, Memcheck won't detect nearly as many 152 errors, and the error messages won't be as informative. To 153 improve this situation, use this macro just after your custom 154 allocator allocates some new memory. See the comments in 155 <code class="filename">valgrind.h</code> for information on how to use 156 it.</p></dd> 157<dt><span class="term"><span class="command"><strong><code class="computeroutput">VALGRIND_FREELIKE_BLOCK</code>:</strong></span></span></dt> 158<dd><p>This should be used in conjunction with 159 <code class="computeroutput">VALGRIND_MALLOCLIKE_BLOCK</code>. 160 Again, see <code class="filename">valgrind.h</code> for 161 information on how to use it.</p></dd> 162<dt><span class="term"><span class="command"><strong><code class="computeroutput">VALGRIND_RESIZEINPLACE_BLOCK</code>:</strong></span></span></dt> 163<dd><p>Informs a Valgrind tool that the size of an allocated block has been 164 modified but not its address. See <code class="filename">valgrind.h</code> for 165 more information on how to use it.</p></dd> 166<dt><span class="term"> 167 <span class="command"><strong><code class="computeroutput">VALGRIND_CREATE_MEMPOOL</code></strong></span>, 168 <span class="command"><strong><code class="computeroutput">VALGRIND_DESTROY_MEMPOOL</code></strong></span>, 169 <span class="command"><strong><code class="computeroutput">VALGRIND_MEMPOOL_ALLOC</code></strong></span>, 170 <span class="command"><strong><code class="computeroutput">VALGRIND_MEMPOOL_FREE</code></strong></span>, 171 <span class="command"><strong><code class="computeroutput">VALGRIND_MOVE_MEMPOOL</code></strong></span>, 172 <span class="command"><strong><code class="computeroutput">VALGRIND_MEMPOOL_CHANGE</code></strong></span>, 173 <span class="command"><strong><code class="computeroutput">VALGRIND_MEMPOOL_EXISTS</code></strong></span>: 174 </span></dt> 175<dd><p>These are similar to 176 <code class="computeroutput">VALGRIND_MALLOCLIKE_BLOCK</code> and 177 <code class="computeroutput">VALGRIND_FREELIKE_BLOCK</code> 178 but are tailored towards code that uses memory pools. See 179 <a class="xref" href="mc-manual.html#mc-manual.mempools" title="4.8.�Memory Pools: describing and working with custom allocators">Memory Pools</a> for a detailed description.</p></dd> 180<dt><span class="term"><span class="command"><strong><code class="computeroutput">VALGRIND_NON_SIMD_CALL[0123]</code>:</strong></span></span></dt> 181<dd> 182<p>Executes a function in the client program on the 183 <span class="emphasis"><em>real</em></span> CPU, not the virtual CPU that Valgrind 184 normally runs code on. The function must take an integer (holding a 185 thread ID) as the first argument and then 0, 1, 2 or 3 more arguments 186 (depending on which client request is used). These are used in various 187 ways internally to Valgrind. They might be useful to client 188 programs.</p> 189<p><span class="command"><strong>Warning:</strong></span> Only use these if you 190 <span class="emphasis"><em>really</em></span> know what you are doing. They aren't 191 entirely reliable, and can cause Valgrind to crash. See 192 <code class="filename">valgrind.h</code> for more details. 193 </p> 194</dd> 195<dt><span class="term"><span class="command"><strong><code class="computeroutput">VALGRIND_PRINTF(format, ...)</code>:</strong></span></span></dt> 196<dd><p>Print a printf-style message to the Valgrind log file. The 197 message is prefixed with the PID between a pair of 198 <code class="computeroutput">**</code> markers. (Like all client requests, 199 nothing is output if the client program is not running under Valgrind.) 200 Output is not produced until a newline is encountered, or subsequent 201 Valgrind output is printed; this allows you to build up a single line of 202 output over multiple calls. Returns the number of characters output, 203 excluding the PID prefix.</p></dd> 204<dt><span class="term"><span class="command"><strong><code class="computeroutput">VALGRIND_PRINTF_BACKTRACE(format, ...)</code>:</strong></span></span></dt> 205<dd><p>Like <code class="computeroutput">VALGRIND_PRINTF</code> (in 206 particular, the return value is identical), but prints a stack backtrace 207 immediately afterwards.</p></dd> 208<dt><span class="term"><span class="command"><strong><code class="computeroutput">VALGRIND_MONITOR_COMMAND(command)</code>:</strong></span></span></dt> 209<dd><p>Execute the given monitor command (a string). 210 Returns 0 if command is recognised. Returns 1 if command is not recognised. 211 Note that some monitor commands provide access to a functionality 212 also accessible via a specific client request. For example, 213 memcheck leak search can be requested from the client program 214 using VALGRIND_DO_LEAK_CHECK or via the monitor command "leak_search". 215 Note that the syntax of the command string is only verified at 216 run-time. So, if it exists, it is preferable to use a specific 217 client request to have better compile time verifications of the 218 arguments. 219 </p></dd> 220<dt><span class="term"><span class="command"><strong><code class="computeroutput">VALGRIND_STACK_REGISTER(start, end)</code>:</strong></span></span></dt> 221<dd> 222<p>Registers a new stack. Informs Valgrind that the memory range 223 between start and end is a unique stack. Returns a stack identifier 224 that can be used with other 225 <code class="computeroutput">VALGRIND_STACK_*</code> calls.</p> 226<p>Valgrind will use this information to determine if a change 227 to the stack pointer is an item pushed onto the stack or a change 228 over to a new stack. Use this if you're using a user-level thread 229 package and are noticing crashes in stack trace recording or 230 spurious errors from Valgrind about uninitialized memory 231 reads.</p> 232<p><span class="command"><strong>Warning:</strong></span> Unfortunately, this client request is 233 unreliable and best avoided.</p> 234</dd> 235<dt><span class="term"><span class="command"><strong><code class="computeroutput">VALGRIND_STACK_DEREGISTER(id)</code>:</strong></span></span></dt> 236<dd> 237<p>Deregisters a previously registered stack. Informs 238 Valgrind that previously registered memory range with stack id 239 <code class="computeroutput">id</code> is no longer a stack.</p> 240<p><span class="command"><strong>Warning:</strong></span> Unfortunately, this client request is 241 unreliable and best avoided.</p> 242</dd> 243<dt><span class="term"><span class="command"><strong><code class="computeroutput">VALGRIND_STACK_CHANGE(id, start, end)</code>:</strong></span></span></dt> 244<dd> 245<p>Changes a previously registered stack. Informs 246 Valgrind that the previously registered stack with stack id 247 <code class="computeroutput">id</code> has changed its start and end 248 values. Use this if your user-level thread package implements 249 stack growth.</p> 250<p><span class="command"><strong>Warning:</strong></span> Unfortunately, this client request is 251 unreliable and best avoided.</p> 252</dd> 253</dl></div> 254</div> 255<div class="sect1"> 256<div class="titlepage"><div><div><h2 class="title" style="clear: both"> 257<a name="manual-core-adv.gdbserver"></a>3.2.�Debugging your program using Valgrind gdbserver and GDB</h2></div></div></div> 258<p>A program running under Valgrind is not executed directly by the 259CPU. Instead it runs on a synthetic CPU provided by Valgrind. This is 260why a debugger cannot debug your program when it runs on Valgrind. 261</p> 262<p> 263This section describes how GDB can interact with the 264Valgrind gdbserver to provide a fully debuggable program under 265Valgrind. Used in this way, GDB also provides an interactive usage of 266Valgrind core or tool functionalities, including incremental leak search 267under Memcheck and on-demand Massif snapshot production. 268</p> 269<div class="sect2"> 270<div class="titlepage"><div><div><h3 class="title"> 271<a name="manual-core-adv.gdbserver-simple"></a>3.2.1.�Quick Start: debugging in 3 steps</h3></div></div></div> 272<p>The simplest way to get started is to run Valgrind with the 273flag <code class="option">--vgdb-error=0</code>. Then follow the on-screen 274directions, which give you the precise commands needed to start GDB 275and connect it to your program.</p> 276<p>Otherwise, here's a slightly more verbose overview.</p> 277<p>If you want to debug a program with GDB when using the Memcheck 278tool, start Valgrind like this: 279</p> 280<pre class="screen"> 281valgrind --vgdb=yes --vgdb-error=0 prog 282</pre> 283<p>In another shell, start GDB: 284</p> 285<pre class="screen"> 286gdb prog 287</pre> 288<p>Then give the following command to GDB: 289</p> 290<pre class="screen"> 291(gdb) target remote | vgdb 292</pre> 293<p>You can now debug your program e.g. by inserting a breakpoint 294and then using the GDB <code class="computeroutput">continue</code> 295command.</p> 296<p>This quick start information is enough for basic usage of the 297Valgrind gdbserver. The sections below describe more advanced 298functionality provided by the combination of Valgrind and GDB. Note 299that the command line flag <code class="option">--vgdb=yes</code> can be omitted, 300as this is the default value. 301</p> 302</div> 303<div class="sect2"> 304<div class="titlepage"><div><div><h3 class="title"> 305<a name="manual-core-adv.gdbserver-concept"></a>3.2.2.�Valgrind gdbserver overall organisation</h3></div></div></div> 306<p>The GNU GDB debugger is typically used to debug a process 307running on the same machine. In this mode, GDB uses system calls to 308control and query the program being debugged. This works well, but 309only allows GDB to debug a program running on the same computer. 310</p> 311<p>GDB can also debug processes running on a different computer. 312To achieve this, GDB defines a protocol (that is, a set of query and 313reply packets) that facilitates fetching the value of memory or 314registers, setting breakpoints, etc. A gdbserver is an implementation 315of this "GDB remote debugging" protocol. To debug a process running 316on a remote computer, a gdbserver (sometimes called a GDB stub) 317must run at the remote computer side. 318</p> 319<p>The Valgrind core provides a built-in gdbserver implementation, 320which is activated using <code class="option">--vgdb=yes</code> 321or <code class="option">--vgdb=full</code>. This gdbserver allows the process 322running on Valgrind's synthetic CPU to be debugged remotely. 323GDB sends protocol query packets (such as "get register contents") to 324the Valgrind embedded gdbserver. The gdbserver executes the queries 325(for example, it will get the register values of the synthetic CPU) 326and gives the results back to GDB. 327</p> 328<p>GDB can use various kinds of channels (TCP/IP, serial line, etc) 329to communicate with the gdbserver. In the case of Valgrind's 330gdbserver, communication is done via a pipe and a small helper program 331called <a class="xref" href="manual-core-adv.html#manual-core-adv.vgdb" title="3.2.9.�vgdb command line options">vgdb</a>, which acts as an 332intermediary. If no GDB is in use, vgdb can also be 333used to send monitor commands to the Valgrind gdbserver from a shell 334command line. 335</p> 336</div> 337<div class="sect2"> 338<div class="titlepage"><div><div><h3 class="title"> 339<a name="manual-core-adv.gdbserver-gdb"></a>3.2.3.�Connecting GDB to a Valgrind gdbserver</h3></div></div></div> 340<p>To debug a program "<code class="filename">prog</code>" running under 341Valgrind, you must ensure that the Valgrind gdbserver is activated by 342specifying either <code class="option">--vgdb=yes</code> 343or <code class="option">--vgdb=full</code>. A secondary command line option, 344<code class="option">--vgdb-error=number</code>, can be used to tell the gdbserver 345only to become active once the specified number of errors have been 346shown. A value of zero will therefore cause 347the gdbserver to become active at startup, which allows you to 348insert breakpoints before starting the run. For example: 349</p> 350<pre class="screen"> 351valgrind --tool=memcheck --vgdb=yes --vgdb-error=0 ./prog 352</pre> 353<p>The Valgrind gdbserver is invoked at startup 354and indicates it is waiting for a connection from a GDB:</p> 355<pre class="programlisting"> 356==2418== Memcheck, a memory error detector 357==2418== Copyright (C) 2002-2017, and GNU GPL'd, by Julian Seward et al. 358==2418== Using Valgrind-3.13.0.SVN and LibVEX; rerun with -h for copyright info 359==2418== Command: ./prog 360==2418== 361==2418== (action at startup) vgdb me ... 362</pre> 363<p>GDB (in another shell) can then be connected to the Valgrind gdbserver. 364For this, GDB must be started on the program <code class="filename">prog</code>: 365</p> 366<pre class="screen"> 367gdb ./prog 368</pre> 369<p>You then indicate to GDB that you want to debug a remote target: 370</p> 371<pre class="screen"> 372(gdb) target remote | vgdb 373</pre> 374<p> 375GDB then starts a vgdb relay application to communicate with the 376Valgrind embedded gdbserver:</p> 377<pre class="programlisting"> 378(gdb) target remote | vgdb 379Remote debugging using | vgdb 380relaying data between gdb and process 2418 381Reading symbols from /lib/ld-linux.so.2...done. 382Reading symbols from /usr/lib/debug/lib/ld-2.11.2.so.debug...done. 383Loaded symbols for /lib/ld-linux.so.2 384[Switching to Thread 2418] 3850x001f2850 in _start () from /lib/ld-linux.so.2 386(gdb) 387</pre> 388<p>Note that vgdb is provided as part of the Valgrind 389distribution. You do not need to install it separately.</p> 390<p>If vgdb detects that there are multiple Valgrind gdbservers that 391can be connected to, it will list all such servers and their PIDs, and 392then exit. You can then reissue the GDB "target" command, but 393specifying the PID of the process you want to debug: 394</p> 395<pre class="programlisting"> 396(gdb) target remote | vgdb 397Remote debugging using | vgdb 398no --pid= arg given and multiple valgrind pids found: 399use --pid=2479 for valgrind --tool=memcheck --vgdb=yes --vgdb-error=0 ./prog 400use --pid=2481 for valgrind --tool=memcheck --vgdb=yes --vgdb-error=0 ./prog 401use --pid=2483 for valgrind --vgdb=yes --vgdb-error=0 ./another_prog 402Remote communication error: Resource temporarily unavailable. 403(gdb) target remote | vgdb --pid=2479 404Remote debugging using | vgdb --pid=2479 405relaying data between gdb and process 2479 406Reading symbols from /lib/ld-linux.so.2...done. 407Reading symbols from /usr/lib/debug/lib/ld-2.11.2.so.debug...done. 408Loaded symbols for /lib/ld-linux.so.2 409[Switching to Thread 2479] 4100x001f2850 in _start () from /lib/ld-linux.so.2 411(gdb) 412</pre> 413<p>Once GDB is connected to the Valgrind gdbserver, it can be used 414in the same way as if you were debugging the program natively:</p> 415<div class="itemizedlist"><ul class="itemizedlist" style="list-style-type: disc; "> 416<li class="listitem"><p>Breakpoints can be inserted or deleted.</p></li> 417<li class="listitem"><p>Variables and register values can be examined or modified. 418 </p></li> 419<li class="listitem"><p>Signal handling can be configured (printing, ignoring). 420 </p></li> 421<li class="listitem"><p>Execution can be controlled (continue, step, next, stepi, etc). 422 </p></li> 423<li class="listitem"><p>Program execution can be interrupted using Control-C.</p></li> 424</ul></div> 425<p>And so on. Refer to the GDB user manual for a complete 426description of GDB's functionality. 427</p> 428</div> 429<div class="sect2"> 430<div class="titlepage"><div><div><h3 class="title"> 431<a name="manual-core-adv.gdbserver-gdb-android"></a>3.2.4.�Connecting to an Android gdbserver</h3></div></div></div> 432<p> When developping applications for Android, you will typically use 433a development system (on which the Android NDK is installed) to compile your 434application. An Android target system or emulator will be used to run 435the application. 436In this setup, Valgrind and vgdb will run on the Android system, 437while GDB will run on the development system. GDB will connect 438to the vgdb running on the Android system using the Android NDK 439'adb forward' application. 440</p> 441<p> Example: on the Android system, execute the following: 442 </p> 443<pre class="screen"> 444valgrind --vgdb-error=0 --vgdb=yes prog 445# and then in another shell, run: 446vgdb --port=1234 447</pre> 448<p> 449</p> 450<p> On the development system, execute the following commands: 451</p> 452<pre class="screen"> 453adb forward tcp:1234 tcp:1234 454gdb prog 455(gdb) target remote :1234 456</pre> 457<p> 458GDB will use a local tcp/ip connection to connect to the Android adb forwarder. 459Adb will establish a relay connection between the host system and the Android 460target system. Be sure to use the GDB delivered in the 461Android NDK system (typically, arm-linux-androideabi-gdb), as the host 462GDB is probably not able to debug Android arm applications. 463Note that the local port nr (used by GDB) must not necessarily be equal 464to the port number used by vgdb: adb can forward tcp/ip between different 465port numbers. 466</p> 467<p>In the current release, the GDB server is not enabled by default 468for Android, due to problems in establishing a suitable directory in 469which Valgrind can create the necessary FIFOs (named pipes) for 470communication purposes. You can stil try to use the GDB server, but 471you will need to explicitly enable it using the flag 472<code class="computeroutput">--vgdb=yes</code> or 473<code class="computeroutput">--vgdb=full</code>. 474</p> 475<p>Additionally, you 476will need to select a temporary directory which is (a) writable 477by Valgrind, and (b) supports FIFOs. This is the main difficult 478point. Often, <code class="computeroutput">/sdcard</code> satisfies 479requirement (a), but fails for (b) because it is a VFAT file system 480and VFAT does not support pipes. Possibilities you could try are 481<code class="computeroutput">/data/local</code>, 482<code class="computeroutput">/data/local/Inst</code> (if you 483installed Valgrind there), or 484<code class="computeroutput">/data/data/name.of.my.app</code>, if you 485are running a specific application and it has its own directory of 486that form. This last possibility may have the highest probability 487of success.</p> 488<p>You can specify the temporary directory to use either via 489the <code class="computeroutput">--with-tmpdir=</code> configure time 490flag, or by setting environment variable TMPDIR when running Valgrind 491(on the Android device, not on the Android NDK development host). 492Another alternative is to specify the directory for the FIFOs using 493the <code class="computeroutput">--vgdb-prefix=</code> Valgrind command 494line option. 495</p> 496<p>We hope to have a better story for temporary directory handling 497on Android in the future. The difficulty is that, unlike in standard 498Unixes, there is no single temporary file directory that reliably 499works across all devices and scenarios. 500</p> 501</div> 502<div class="sect2"> 503<div class="titlepage"><div><div><h3 class="title"> 504<a name="manual-core-adv.gdbserver-commandhandling"></a>3.2.5.�Monitor command handling by the Valgrind gdbserver</h3></div></div></div> 505<p> The Valgrind gdbserver provides additional Valgrind-specific 506functionality via "monitor commands". Such monitor commands can be 507sent from the GDB command line or from the shell command line or 508requested by the client program using the VALGRIND_MONITOR_COMMAND 509client request. See 510<a class="xref" href="manual-core-adv.html#manual-core-adv.valgrind-monitor-commands" title="3.2.10.�Valgrind monitor commands">Valgrind monitor commands</a> for the 511list of the Valgrind core monitor commands available regardless of the 512Valgrind tool selected. 513</p> 514<p>The following tools provide tool-specific monitor commands: 515 </p> 516<div class="itemizedlist"><ul class="itemizedlist" style="list-style-type: disc; "> 517<li class="listitem"><p><a class="xref" href="mc-manual.html#mc-manual.monitor-commands" title="4.6.�Memcheck Monitor Commands">Memcheck Monitor Commands</a></p></li> 518<li class="listitem"><p><a class="xref" href="cl-manual.html#cl-manual.monitor-commands" title="6.4.�Callgrind Monitor Commands">Callgrind Monitor Commands</a></p></li> 519<li class="listitem"><p><a class="xref" href="ms-manual.html#ms-manual.monitor-commands" title="9.4.�Massif Monitor Commands">Massif Monitor Commands</a></p></li> 520<li class="listitem"><p><a class="xref" href="hg-manual.html#hg-manual.monitor-commands" title="7.7.�Helgrind Monitor Commands">Helgrind Monitor Commands</a></p></li> 521</ul></div> 522<p> 523</p> 524<p>An example of a tool specific monitor command is the Memcheck monitor 525command <code class="computeroutput">leak_check full 526reachable any</code>. This requests a full reporting of the 527allocated memory blocks. To have this leak check executed, use the GDB 528command: 529</p> 530<pre class="screen"> 531(gdb) monitor leak_check full reachable any 532</pre> 533<p> 534</p> 535<p>GDB will send the <code class="computeroutput">leak_check</code> 536command to the Valgrind gdbserver. The Valgrind gdbserver will 537execute the monitor command itself, if it recognises it to be a Valgrind core 538monitor command. If it is not recognised as such, it is assumed to 539be tool-specific and is handed to the tool for execution. For example: 540</p> 541<pre class="programlisting"> 542(gdb) monitor leak_check full reachable any 543==2418== 100 bytes in 1 blocks are still reachable in loss record 1 of 1 544==2418== at 0x4006E9E: malloc (vg_replace_malloc.c:236) 545==2418== by 0x804884F: main (prog.c:88) 546==2418== 547==2418== LEAK SUMMARY: 548==2418== definitely lost: 0 bytes in 0 blocks 549==2418== indirectly lost: 0 bytes in 0 blocks 550==2418== possibly lost: 0 bytes in 0 blocks 551==2418== still reachable: 100 bytes in 1 blocks 552==2418== suppressed: 0 bytes in 0 blocks 553==2418== 554(gdb) 555</pre> 556<p>As with other GDB commands, the Valgrind gdbserver will accept 557abbreviated monitor command names and arguments, as long as the given 558abbreviation is unambiguous. For example, the above 559<code class="computeroutput">leak_check</code> 560command can also be typed as: 561</p> 562<pre class="screen"> 563(gdb) mo l f r a 564</pre> 565<p> 566 567The letters <code class="computeroutput">mo</code> are recognised by GDB as being 568an abbreviation for <code class="computeroutput">monitor</code>. So GDB sends the 569string <code class="computeroutput">l f r a</code> to the Valgrind 570gdbserver. The letters provided in this string are unambiguous for the 571Valgrind gdbserver. This therefore gives the same output as the 572unabbreviated command and arguments. If the provided abbreviation is 573ambiguous, the Valgrind gdbserver will report the list of commands (or 574argument values) that can match: 575</p> 576<pre class="programlisting"> 577(gdb) mo v. n 578v. can match v.set v.info v.wait v.kill v.translate v.do 579(gdb) mo v.i n 580n_errs_found 0 n_errs_shown 0 (vgdb-error 0) 581(gdb) 582</pre> 583<p> 584</p> 585<p>Instead of sending a monitor command from GDB, you can also send 586these from a shell command line. For example, the following command 587lines, when given in a shell, will cause the same leak search to be executed 588by the process 3145: 589</p> 590<pre class="screen"> 591vgdb --pid=3145 leak_check full reachable any 592vgdb --pid=3145 l f r a 593</pre> 594<p>Note that the Valgrind gdbserver automatically continues the 595execution of the program after a standalone invocation of 596vgdb. Monitor commands sent from GDB do not cause the program to 597continue: the program execution is controlled explicitly using GDB 598commands such as "continue" or "next".</p> 599</div> 600<div class="sect2"> 601<div class="titlepage"><div><div><h3 class="title"> 602<a name="manual-core-adv.gdbserver-threads"></a>3.2.6.�Valgrind gdbserver thread information</h3></div></div></div> 603<p>Valgrind's gdbserver enriches the output of the 604GDB <code class="computeroutput">info threads</code> command 605with Valgrind-specific information. 606The operating system's thread number is followed 607by Valgrind's internal index for that thread ("tid") and by 608the Valgrind scheduler thread state:</p> 609<pre class="programlisting"> 610(gdb) info threads 611 4 Thread 6239 (tid 4 VgTs_Yielding) 0x001f2832 in _dl_sysinfo_int80 () from /lib/ld-linux.so.2 612* 3 Thread 6238 (tid 3 VgTs_Runnable) make_error (s=0x8048b76 "called from London") at prog.c:20 613 2 Thread 6237 (tid 2 VgTs_WaitSys) 0x001f2832 in _dl_sysinfo_int80 () from /lib/ld-linux.so.2 614 1 Thread 6234 (tid 1 VgTs_Yielding) main (argc=1, argv=0xbedcc274) at prog.c:105 615(gdb) 616</pre> 617</div> 618<div class="sect2"> 619<div class="titlepage"><div><div><h3 class="title"> 620<a name="manual-core-adv.gdbserver-shadowregisters"></a>3.2.7.�Examining and modifying Valgrind shadow registers</h3></div></div></div> 621<p> When the option <code class="option">--vgdb-shadow-registers=yes</code> is 622given, the Valgrind gdbserver will let GDB examine and/or modify 623Valgrind's shadow registers. GDB version 7.1 or later is needed for this 624to work. For x86 and amd64, GDB version 7.2 or later is needed.</p> 625<p>For each CPU register, the Valgrind core maintains two 626shadow register sets. These shadow registers can be accessed from 627GDB by giving a postfix <code class="computeroutput">s1</code> 628or <code class="computeroutput">s2</code> for respectively the first 629and second shadow register. For example, the x86 register 630<code class="computeroutput">eax</code> and its two shadows 631can be examined using the following commands:</p> 632<pre class="programlisting"> 633(gdb) p $eax 634$1 = 0 635(gdb) p $eaxs1 636$2 = 0 637(gdb) p $eaxs2 638$3 = 0 639(gdb) 640</pre> 641<p>Float shadow registers are shown by GDB as unsigned integer 642values instead of float values, as it is expected that these 643shadow values are mostly used for memcheck validity bits. </p> 644<p>Intel/amd64 AVX registers <code class="computeroutput">ymm0</code> 645to <code class="computeroutput">ymm15</code> have also their shadow 646registers. However, GDB presents the shadow values using two 647"half" registers. For example, the half shadow registers for 648<code class="computeroutput">ymm9</code> are 649<code class="computeroutput">xmm9s1</code> (lower half for set 1), 650<code class="computeroutput">ymm9hs1</code> (upper half for set 1), 651<code class="computeroutput">xmm9s2</code> (lower half for set 2), 652<code class="computeroutput">ymm9hs2</code> (upper half for set 2). 653Note the inconsistent notation for the names of the half registers: 654the lower part starts with an <code class="computeroutput">x</code>, 655the upper part starts with an <code class="computeroutput">y</code> 656and has an <code class="computeroutput">h</code> before the shadow postfix. 657</p> 658<p>The special presentation of the AVX shadow registers is due to 659the fact that GDB independently retrieves the lower and upper half of 660the <code class="computeroutput">ymm</code> registers. GDB does not 661however know that the shadow half registers have to be shown combined. 662</p> 663</div> 664<div class="sect2"> 665<div class="titlepage"><div><div><h3 class="title"> 666<a name="manual-core-adv.gdbserver-limitations"></a>3.2.8.�Limitations of the Valgrind gdbserver</h3></div></div></div> 667<p>Debugging with the Valgrind gdbserver is very similar to native 668debugging. Valgrind's gdbserver implementation is quite 669complete, and so provides most of the GDB debugging functionality. There 670are however some limitations and peculiarities:</p> 671<div class="itemizedlist"><ul class="itemizedlist" style="list-style-type: disc; "> 672<li class="listitem"> 673<p>Precision of "stop-at" commands.</p> 674<p> 675 GDB commands such as "step", "next", "stepi", breakpoints 676 and watchpoints, will stop the execution of the process. With 677 the option <code class="option">--vgdb=yes</code>, the process might not 678 stop at the exact requested instruction. Instead, it might 679 continue execution of the current basic block and stop at one 680 of the following basic blocks. This is linked to the fact that 681 Valgrind gdbserver has to instrument a block to allow stopping 682 at the exact instruction requested. Currently, 683 re-instrumentation of the block currently being executed is not 684 supported. So, if the action requested by GDB (e.g. single 685 stepping or inserting a breakpoint) implies re-instrumentation 686 of the current block, the GDB action may not be executed 687 precisely. 688 </p> 689<p> 690 This limitation applies when the basic block 691 currently being executed has not yet been instrumented for debugging. 692 This typically happens when the gdbserver is activated due to the 693 tool reporting an error or to a watchpoint. If the gdbserver 694 block has been activated following a breakpoint, or if a 695 breakpoint has been inserted in the block before its execution, 696 then the block has already been instrumented for debugging. 697 </p> 698<p> 699 If you use the option <code class="option">--vgdb=full</code>, then GDB 700 "stop-at" commands will be obeyed precisely. The 701 downside is that this requires each instruction to be 702 instrumented with an additional call to a gdbserver helper 703 function, which gives considerable overhead (+500% for memcheck) 704 compared to <code class="option">--vgdb=no</code>. 705 Option <code class="option">--vgdb=yes</code> has neglectible overhead compared 706 to <code class="option">--vgdb=no</code>. 707 </p> 708</li> 709<li class="listitem"> 710<p>Processor registers and flags values.</p> 711<p>When Valgrind gdbserver stops on an error, on a breakpoint 712 or when single stepping, registers and flags values might not be always 713 up to date due to the optimisations done by the Valgrind core. 714 The default value 715 <code class="option">--vex-iropt-register-updates=unwindregs-at-mem-access</code> 716 ensures that the registers needed to make a stack trace (typically 717 PC/SP/FP) are up to date at each memory access (i.e. memory exception 718 points). 719 Disabling some optimisations using the following values will increase 720 the precision of registers and flags values (a typical performance 721 impact for memcheck is given for each option). 722 </p> 723<div class="itemizedlist"><ul class="itemizedlist" style="list-style-type: circle; "> 724<li class="listitem"> 725<code class="option">--vex-iropt-register-updates=allregs-at-mem-access</code> (+10%) 726 ensures that all registers and flags are up to date at each memory 727 access. 728 </li> 729<li class="listitem"> 730<code class="option">--vex-iropt-register-updates=allregs-at-each-insn</code> (+25%) 731 ensures that all registers and flags are up to date at each instruction. 732 </li> 733</ul></div> 734<p> 735 Note that <code class="option">--vgdb=full</code> (+500%, see above 736 Precision of "stop-at" commands) automatically 737 activates <code class="option">--vex-iropt-register-updates=allregs-at-each-insn</code>. 738 </p> 739</li> 740<li class="listitem"> 741<p>Hardware watchpoint support by the Valgrind 742 gdbserver.</p> 743<p> The Valgrind gdbserver can simulate hardware watchpoints 744 if the selected tool provides support for it. Currently, 745 only Memcheck provides hardware watchpoint simulation. The 746 hardware watchpoint simulation provided by Memcheck is much 747 faster that GDB software watchpoints, which are implemented by 748 GDB checking the value of the watched zone(s) after each 749 instruction. Hardware watchpoint simulation also provides read 750 watchpoints. The hardware watchpoint simulation by Memcheck has 751 some limitations compared to real hardware 752 watchpoints. However, the number and length of simulated 753 watchpoints are not limited. 754 </p> 755<p>Typically, the number of (real) hardware watchpoints is 756 limited. For example, the x86 architecture supports a maximum of 757 4 hardware watchpoints, each watchpoint watching 1, 2, 4 or 8 758 bytes. The Valgrind gdbserver does not have any limitation on the 759 number of simulated hardware watchpoints. It also has no 760 limitation on the length of the memory zone being 761 watched. Using GDB version 7.4 or later allow full use of the 762 flexibility of the Valgrind gdbserver's simulated hardware watchpoints. 763 Previous GDB versions do not understand that Valgrind gdbserver 764 watchpoints have no length limit. 765 </p> 766<p>Memcheck implements hardware watchpoint simulation by 767 marking the watched address ranges as being unaddressable. When 768 a hardware watchpoint is removed, the range is marked as 769 addressable and defined. Hardware watchpoint simulation of 770 addressable-but-undefined memory zones works properly, but has 771 the undesirable side effect of marking the zone as defined when 772 the watchpoint is removed. 773 </p> 774<p>Write watchpoints might not be reported at the 775 exact instruction that writes the monitored area, 776 unless option <code class="option">--vgdb=full</code> is given. Read watchpoints 777 will always be reported at the exact instruction reading the 778 watched memory. 779 </p> 780<p>It is better to avoid using hardware watchpoint of not 781 addressable (yet) memory: in such a case, GDB will fall back to 782 extremely slow software watchpoints. Also, if you do not quit GDB 783 between two debugging sessions, the hardware watchpoints of the 784 previous sessions will be re-inserted as software watchpoints if 785 the watched memory zone is not addressable at program startup. 786 </p> 787</li> 788<li class="listitem"> 789<p>Stepping inside shared libraries on ARM.</p> 790<p>For unknown reasons, stepping inside shared 791 libraries on ARM may fail. A workaround is to use the 792 <code class="computeroutput">ldd</code> command 793 to find the list of shared libraries and their loading address 794 and inform GDB of the loading address using the GDB command 795 "add-symbol-file". Example: 796 </p> 797<pre class="programlisting"> 798(gdb) shell ldd ./prog 799 libc.so.6 => /lib/libc.so.6 (0x4002c000) 800 /lib/ld-linux.so.3 (0x40000000) 801(gdb) add-symbol-file /lib/libc.so.6 0x4002c000 802add symbol table from file "/lib/libc.so.6" at 803 .text_addr = 0x4002c000 804(y or n) y 805Reading symbols from /lib/libc.so.6...(no debugging symbols found)...done. 806(gdb) 807</pre> 808<p> 809 </p> 810</li> 811<li class="listitem"> 812<p>GDB version needed for ARM and PPC32/64.</p> 813<p>You must use a GDB version which is able to read XML 814 target description sent by a gdbserver. This is the standard setup 815 if GDB was configured and built with the "expat" 816 library. If your GDB was not configured with XML support, it 817 will report an error message when using the "target" 818 command. Debugging will not work because GDB will then not be 819 able to fetch the registers from the Valgrind gdbserver. 820 For ARM programs using the Thumb instruction set, you must use 821 a GDB version of 7.1 or later, as earlier versions have problems 822 with next/step/breakpoints in Thumb code. 823 </p> 824</li> 825<li class="listitem"> 826<p>Stack unwinding on PPC32/PPC64. </p> 827<p>On PPC32/PPC64, stack unwinding for leaf functions 828 (functions that do not call any other functions) works properly 829 only when you give the option 830 <code class="option">--vex-iropt-register-updates=allregs-at-mem-access</code> 831 or <code class="option">--vex-iropt-register-updates=allregs-at-each-insn</code>. 832 You must also pass this option in order to get a precise stack when 833 a signal is trapped by GDB. 834 </p> 835</li> 836<li class="listitem"> 837<p>Breakpoints encountered multiple times.</p> 838<p>Some instructions (e.g. x86 "rep movsb") 839 are translated by Valgrind using a loop. If a breakpoint is placed 840 on such an instruction, the breakpoint will be encountered 841 multiple times -- once for each step of the "implicit" loop 842 implementing the instruction. 843 </p> 844</li> 845<li class="listitem"> 846<p>Execution of Inferior function calls by the Valgrind 847 gdbserver.</p> 848<p>GDB allows the user to "call" functions inside the process 849 being debugged. Such calls are named "inferior calls" in the GDB 850 terminology. A typical use of an inferior call is to execute 851 a function that prints a human-readable version of a complex data 852 structure. To make an inferior call, use the GDB "print" command 853 followed by the function to call and its arguments. As an 854 example, the following GDB command causes an inferior call to the 855 libc "printf" function to be executed by the process 856 being debugged: 857 </p> 858<pre class="programlisting"> 859(gdb) p printf("process being debugged has pid %d\n", getpid()) 860$5 = 36 861(gdb) 862</pre> 863<p>The Valgrind gdbserver supports inferior function calls. 864 Whilst an inferior call is running, the Valgrind tool will report 865 errors as usual. If you do not want to have such errors stop the 866 execution of the inferior call, you can 867 use <code class="computeroutput">v.set vgdb-error</code> to set a 868 big value before the call, then manually reset it to its original 869 value when the call is complete.</p> 870<p>To execute inferior calls, GDB changes registers such as 871 the program counter, and then continues the execution of the 872 program. In a multithreaded program, all threads are continued, 873 not just the thread instructed to make the inferior call. If 874 another thread reports an error or encounters a breakpoint, the 875 evaluation of the inferior call is abandoned.</p> 876<p>Note that inferior function calls are a powerful GDB 877 feature, but should be used with caution. For example, if 878 the program being debugged is stopped inside the function "printf", 879 forcing a recursive call to printf via an inferior call will 880 very probably create problems. The Valgrind tool might also add 881 another level of complexity to inferior calls, e.g. by reporting 882 tool errors during the Inferior call or due to the 883 instrumentation done. 884 </p> 885</li> 886<li class="listitem"> 887<p>Connecting to or interrupting a Valgrind process blocked in 888 a system call.</p> 889<p>Connecting to or interrupting a Valgrind process blocked in 890 a system call requires the "ptrace" system call to be usable. 891 This may be disabled in your kernel for security reasons. 892 </p> 893<p>When running your program, Valgrind's scheduler 894 periodically checks whether there is any work to be handled by 895 the gdbserver. Unfortunately this check is only done if at least 896 one thread of the process is runnable. If all the threads of the 897 process are blocked in a system call, then the checks do not 898 happen, and the Valgrind scheduler will not invoke the gdbserver. 899 In such a case, the vgdb relay application will "force" the 900 gdbserver to be invoked, without the intervention of the Valgrind 901 scheduler. 902 </p> 903<p>Such forced invocation of the Valgrind gdbserver is 904 implemented by vgdb using ptrace system calls. On a properly 905 implemented kernel, the ptrace calls done by vgdb will not 906 influence the behaviour of the program running under Valgrind. 907 If however they do, giving the 908 option <code class="option">--max-invoke-ms=0</code> to the vgdb relay 909 application will disable the usage of ptrace calls. The 910 consequence of disabling ptrace usage in vgdb is that a Valgrind 911 process blocked in a system call cannot be woken up or 912 interrupted from GDB until it executes enough basic blocks to let 913 the Valgrind scheduler's normal checking take effect. 914 </p> 915<p>When ptrace is disabled in vgdb, you can increase the 916 responsiveness of the Valgrind gdbserver to commands or 917 interrupts by giving a lower value to the 918 option <code class="option">--vgdb-poll</code>. If your application is 919 blocked in system calls most of the time, using a very low value 920 for <code class="option">--vgdb-poll</code> will cause a the gdbserver to be 921 invoked sooner. The gdbserver polling done by Valgrind's 922 scheduler is very efficient, so the increased polling frequency 923 should not cause significant performance degradation. 924 </p> 925<p>When ptrace is disabled in vgdb, a query packet sent by GDB 926 may take significant time to be handled by the Valgrind 927 gdbserver. In such cases, GDB might encounter a protocol 928 timeout. To avoid this, 929 you can increase the value of the timeout by using the GDB 930 command "set remotetimeout". 931 </p> 932<p>Ubuntu versions 10.10 and later may restrict the scope of 933 ptrace to the children of the process calling ptrace. As the 934 Valgrind process is not a child of vgdb, such restricted scoping 935 causes the ptrace calls to fail. To avoid that, Valgrind will 936 automatically allow all processes belonging to the same userid to 937 "ptrace" a Valgrind process, by using PR_SET_PTRACER.</p> 938<p>Unblocking processes blocked in system calls is not 939 currently implemented on Mac OS X and Android. So you cannot 940 connect to or interrupt a process blocked in a system call on Mac 941 OS X or Android. 942 </p> 943<p>Unblocking processes blocked in system calls is implemented 944 via agent thread on Solaris. This is quite a different approach 945 than using ptrace on Linux, but leads to equivalent result - Valgrind 946 gdbserver is invoked. Note that agent thread is a Solaris OS 947 feature and cannot be disabled. 948 </p> 949</li> 950<li class="listitem"> 951<p>Changing register values.</p> 952<p>The Valgrind gdbserver will only modify the values of the 953 thread's registers when the thread is in status Runnable or 954 Yielding. In other states (typically, WaitSys), attempts to 955 change register values will fail. Amongst other things, this 956 means that inferior calls are not executed for a thread which is 957 in a system call, since the Valgrind gdbserver does not implement 958 system call restart. 959 </p> 960</li> 961<li class="listitem"> 962<p>Unsupported GDB functionality.</p> 963<p>GDB provides a lot of debugging functionality and not all 964 of it is supported. Specifically, the following are not 965 supported: reversible debugging and tracepoints. 966 </p> 967</li> 968<li class="listitem"> 969<p>Unknown limitations or problems.</p> 970<p>The combination of GDB, Valgrind and the Valgrind gdbserver 971 probably has unknown other limitations and problems. If you 972 encounter strange or unexpected behaviour, feel free to report a 973 bug. But first please verify that the limitation or problem is 974 not inherent to GDB or the GDB remote protocol. You may be able 975 to do so by checking the behaviour when using standard gdbserver 976 part of the GDB package. 977 </p> 978</li> 979</ul></div> 980</div> 981<div class="sect2"> 982<div class="titlepage"><div><div><h3 class="title"> 983<a name="manual-core-adv.vgdb"></a>3.2.9.�vgdb command line options</h3></div></div></div> 984<p> Usage: <code class="computeroutput">vgdb [OPTION]... [[-c] COMMAND]...</code></p> 985<p> vgdb ("Valgrind to GDB") is a small program that is used as an 986intermediary between Valgrind and GDB or a shell. 987Therefore, it has two usage modes: 988</p> 989<div class="orderedlist"> 990<a name="vgdb.desc.modes"></a><ol class="orderedlist" type="1"> 991<li class="listitem"><p><a name="manual-core-adv.vgdb-standalone"></a>As a standalone utility, it is used from a shell command 992 line to send monitor commands to a process running under 993 Valgrind. For this usage, the vgdb OPTION(s) must be followed by 994 the monitor command to send. To send more than one command, 995 separate them with the <code class="option">-c</code> option. 996 </p></li> 997<li class="listitem"><p><a name="manual-core-adv.vgdb-relay"></a>In combination with GDB "target remote |" command, it is 998 used as the relay application between GDB and the Valgrind 999 gdbserver. For this usage, only OPTION(s) can be given, but no 1000 COMMAND can be given. 1001 </p></li> 1002</ol> 1003</div> 1004<p><code class="computeroutput">vgdb</code> accepts the following 1005options:</p> 1006<div class="variablelist"> 1007<a name="vgdb.opts.list"></a><dl class="variablelist"> 1008<dt><span class="term"><code class="option">--pid=<number></code></span></dt> 1009<dd><p>Specifies the PID of 1010 the process to which vgdb must connect to. This option is useful 1011 in case more than one Valgrind gdbserver can be connected to. If 1012 the <code class="option">--pid</code> argument is not given and multiple 1013 Valgrind gdbserver processes are running, vgdb will report the 1014 list of such processes and then exit.</p></dd> 1015<dt><span class="term"><code class="option">--vgdb-prefix</code></span></dt> 1016<dd><p>Must be given to both 1017 Valgrind and vgdb if you want to change the default prefix for the 1018 FIFOs (named pipes) used for communication between the Valgrind 1019 gdbserver and vgdb.</p></dd> 1020<dt><span class="term"><code class="option">--wait=<number></code></span></dt> 1021<dd><p>Instructs vgdb to 1022 search for available Valgrind gdbservers for the specified number 1023 of seconds. This makes it possible start a vgdb process 1024 before starting the Valgrind gdbserver with which you intend the 1025 vgdb to communicate. This option is useful when used in 1026 conjunction with a <code class="option">--vgdb-prefix</code> that is 1027 unique to the process you want to wait for. 1028 Also, if you use the <code class="option">--wait</code> argument in the GDB 1029 "target remote" command, you must set the GDB remotetimeout to a 1030 value bigger than the --wait argument value. See option 1031 <code class="option">--max-invoke-ms</code> (just below) 1032 for an example of setting the remotetimeout value.</p></dd> 1033<dt><span class="term"><code class="option">--max-invoke-ms=<number></code></span></dt> 1034<dd> 1035<p>Gives the 1036 number of milliseconds after which vgdb will force the invocation 1037 of gdbserver embedded in Valgrind. The default value is 100 1038 milliseconds. A value of 0 disables forced invocation. The forced 1039 invocation is used when vgdb is connected to a Valgrind gdbserver, 1040 and the Valgrind process has all its threads blocked in a system 1041 call. 1042 </p> 1043<p>If you specify a large value, you might need to increase the 1044 GDB "remotetimeout" value from its default value of 2 seconds. 1045 You should ensure that the timeout (in seconds) is 1046 bigger than the <code class="option">--max-invoke-ms</code> value. For 1047 example, for <code class="option">--max-invoke-ms=5000</code>, the following 1048 GDB command is suitable: 1049 </p> 1050<pre class="screen"> 1051 (gdb) set remotetimeout 6 1052 </pre> 1053<p> 1054 </p> 1055</dd> 1056<dt><span class="term"><code class="option">--cmd-time-out=<number></code></span></dt> 1057<dd><p>Instructs a 1058 standalone vgdb to exit if the Valgrind gdbserver it is connected 1059 to does not process a command in the specified number of seconds. 1060 The default value is to never time out.</p></dd> 1061<dt><span class="term"><code class="option">--port=<portnr></code></span></dt> 1062<dd> 1063<p>Instructs vgdb to 1064 use tcp/ip and listen for GDB on the specified port nr rather than 1065 to use a pipe to communicate with GDB. Using tcp/ip allows to have 1066 GDB running on one computer and debugging a Valgrind process 1067 running on another target computer. 1068 Example: 1069 </p> 1070<pre class="screen"> 1071# On the target computer, start your program under valgrind using 1072valgrind --vgdb-error=0 prog 1073# and then in another shell, run: 1074vgdb --port=1234 1075</pre> 1076<p>On the computer which hosts GDB, execute the command: 1077 </p> 1078<pre class="screen"> 1079gdb prog 1080(gdb) target remote targetip:1234 1081</pre> 1082<p> 1083 where targetip is the ip address or hostname of the target computer. 1084 </p> 1085</dd> 1086<dt><span class="term"><code class="option">-c</code></span></dt> 1087<dd> 1088<p>To give more than one command to a 1089 standalone vgdb, separate the commands by an 1090 option <code class="option">-c</code>. Example: 1091 </p> 1092<pre class="screen"> 1093vgdb v.set log_output -c leak_check any 1094</pre> 1095</dd> 1096<dt><span class="term"><code class="option">-l</code></span></dt> 1097<dd><p>Instructs a standalone vgdb to report 1098 the list of the Valgrind gdbserver processes running and then 1099 exit.</p></dd> 1100<dt><span class="term"><code class="option">-D</code></span></dt> 1101<dd><p>Instructs a standalone vgdb to show the 1102 state of the shared memory used by the Valgrind gdbserver. vgdb 1103 will exit after having shown the Valgrind gdbserver shared memory 1104 state.</p></dd> 1105<dt><span class="term"><code class="option">-d</code></span></dt> 1106<dd><p>Instructs vgdb to produce debugging 1107 output. Give multiple <code class="option">-d</code> args to increase the 1108 verbosity. When giving <code class="option">-d</code> to a relay vgdb, you better 1109 redirect the standard error (stderr) of vgdb to a file to avoid 1110 interaction between GDB and vgdb debugging output.</p></dd> 1111</dl> 1112</div> 1113</div> 1114<div class="sect2"> 1115<div class="titlepage"><div><div><h3 class="title"> 1116<a name="manual-core-adv.valgrind-monitor-commands"></a>3.2.10.�Valgrind monitor commands</h3></div></div></div> 1117<p>This section describes the Valgrind monitor commands, available 1118regardless of the Valgrind tool selected. For the tool specific 1119commands, refer to <a class="xref" href="mc-manual.html#mc-manual.monitor-commands" title="4.6.�Memcheck Monitor Commands">Memcheck Monitor Commands</a>, 1120<a class="xref" href="hg-manual.html#hg-manual.monitor-commands" title="7.7.�Helgrind Monitor Commands">Helgrind Monitor Commands</a>, 1121<a class="xref" href="cl-manual.html#cl-manual.monitor-commands" title="6.4.�Callgrind Monitor Commands">Callgrind Monitor Commands</a> and 1122<a class="xref" href="ms-manual.html#ms-manual.monitor-commands" title="9.4.�Massif Monitor Commands">Massif Monitor Commands</a>. </p> 1123<p> The monitor commands can be sent either from a shell command line, by using a 1124standalone vgdb, or from GDB, by using GDB's "monitor" 1125command (see <a class="xref" href="manual-core-adv.html#manual-core-adv.gdbserver-commandhandling" title="3.2.5.�Monitor command handling by the Valgrind gdbserver">Monitor command handling by the Valgrind gdbserver</a>). 1126They can also be launched by the client program, using the VALGRIND_MONITOR_COMMAND 1127client request. 1128</p> 1129<div class="itemizedlist"><ul class="itemizedlist" style="list-style-type: disc; "> 1130<li class="listitem"><p><code class="varname">help [debug]</code> instructs Valgrind's gdbserver 1131 to give the list of all monitor commands of the Valgrind core and 1132 of the tool. The optional "debug" argument tells to also give help 1133 for the monitor commands aimed at Valgrind internals debugging. 1134 </p></li> 1135<li class="listitem"><p><code class="varname">v.info all_errors</code> shows all errors found 1136 so far.</p></li> 1137<li class="listitem"><p><code class="varname">v.info last_error</code> shows the last error 1138 found.</p></li> 1139<li class="listitem"> 1140<p><code class="varname">v.info location <addr></code> outputs 1141 information about the location <addr>. Possibly, the 1142 following are described: global variables, local (stack) 1143 variables, allocated or freed blocks, ... The information 1144 produced depends on the tool and on the options given to valgrind. 1145 Some tools (e.g. memcheck and helgrind) produce more detailed 1146 information for client heap blocks. For example, these tools show 1147 the stacktrace where the heap block was allocated. If a tool does 1148 not replace the malloc/free/... functions, then client heap blocks 1149 will not be described. Use the 1150 option <code class="varname">--read-var-info=yes</code> to obtain more 1151 detailed information about global or local (stack) variables. 1152 </p> 1153<pre class="programlisting"> 1154(gdb) monitor v.info location 0x8050b20 1155 Location 0x8050b20 is 0 bytes inside global var "mx" 1156 declared at tc19_shadowmem.c:19 1157 1158(gdb) mo v.in loc 0x582f33c 1159 Location 0x582f33c is 0 bytes inside local var "info" 1160 declared at tc19_shadowmem.c:282, in frame #1 of thread 3 1161(gdb) 1162</pre> 1163</li> 1164<li class="listitem"><p><code class="varname">v.info n_errs_found [msg]</code> shows the number of 1165 errors found so far, the nr of errors shown so far and the current 1166 value of the <code class="option">--vgdb-error</code> argument. The optional 1167 <code class="computeroutput">msg</code> (one or more words) is appended. 1168 Typically, this can be used to insert markers in a process output 1169 file between several tests executed in sequence by a process 1170 started only once. This allows to associate the errors reported 1171 by Valgrind with the specific test that produced these errors. 1172 </p></li> 1173<li class="listitem"><p><code class="varname">v.info open_fds</code> shows the list of open file 1174 descriptors and details related to the file descriptor. 1175 This only works if <code class="option">--track-fds=yes</code> 1176 was given at Valgrind startup.</p></li> 1177<li class="listitem"> 1178<p><code class="varname">v.set {gdb_output | log_output | 1179 mixed_output}</code> allows redirection of the Valgrind output 1180 (e.g. the errors detected by the tool). The default setting is 1181 <code class="computeroutput">mixed_output</code>.</p> 1182<p>With <code class="computeroutput">mixed_output</code>, the 1183 Valgrind output goes to the Valgrind log (typically stderr) while 1184 the output of the interactive GDB monitor commands (e.g. 1185 <code class="computeroutput">v.info last_error</code>) 1186 is displayed by GDB.</p> 1187<p>With <code class="computeroutput">gdb_output</code>, both the 1188 Valgrind output and the interactive GDB monitor commands output are 1189 displayed by GDB.</p> 1190<p>With <code class="computeroutput">log_output</code>, both the 1191 Valgrind output and the interactive GDB monitor commands output go 1192 to the Valgrind log.</p> 1193</li> 1194<li class="listitem"><p><code class="varname">v.wait [ms (default 0)]</code> instructs 1195 Valgrind gdbserver to sleep "ms" milli-seconds and then 1196 continue. When sent from a standalone vgdb, if this is the last 1197 command, the Valgrind process will continue the execution of the 1198 guest process. The typical usage of this is to use vgdb to send a 1199 "no-op" command to a Valgrind gdbserver so as to continue the 1200 execution of the guest process. 1201 </p></li> 1202<li class="listitem"><p><code class="varname">v.kill</code> requests the gdbserver to kill 1203 the process. This can be used from a standalone vgdb to properly 1204 kill a Valgrind process which is currently expecting a vgdb 1205 connection.</p></li> 1206<li class="listitem"><p><code class="varname">v.set vgdb-error <errornr></code> 1207 dynamically changes the value of the 1208 <code class="option">--vgdb-error</code> argument. A 1209 typical usage of this is to start with 1210 <code class="option">--vgdb-error=0</code> on the 1211 command line, then set a few breakpoints, set the vgdb-error value 1212 to a huge value and continue execution.</p></li> 1213<li class="listitem"><p><code class="varname">xtmemory [<filename> default xtmemory.kcg.%p.%n]</code> 1214 requests the tool to produce an xtree heap memory report. 1215 See <a class="xref" href="manual-core.html#manual-core.xtree" title="2.9.�Execution Trees">Execution Trees</a> for 1216 a detailed explanation about execution trees. </p></li> 1217</ul></div> 1218<p>The following Valgrind monitor commands are useful for 1219investigating the behaviour of Valgrind or its gdbserver in case of 1220problems or bugs.</p> 1221<div class="itemizedlist"><ul class="itemizedlist" style="list-style-type: disc; "> 1222<li class="listitem"><p><code class="varname">v.do expensive_sanity_check_general</code> 1223 executes various sanity checks. In particular, the sanity of the 1224 Valgrind heap is verified. This can be useful if you suspect that 1225 your program and/or Valgrind has a bug corrupting Valgrind data 1226 structure. It can also be used when a Valgrind tool 1227 reports a client error to the connected GDB, in order to verify 1228 the sanity of Valgrind before continuing the execution. 1229 </p></li> 1230<li class="listitem"><p><code class="varname">v.info gdbserver_status</code> shows the 1231 gdbserver status. In case of problems (e.g. of communications), 1232 this shows the values of some relevant Valgrind gdbserver internal 1233 variables. Note that the variables related to breakpoints and 1234 watchpoints (e.g. the number of breakpoint addresses and the number of 1235 watchpoints) will be zero, as GDB by default removes all 1236 watchpoints and breakpoints when execution stops, and re-inserts 1237 them when resuming the execution of the debugged process. You can 1238 change this GDB behaviour by using the GDB command 1239 <code class="computeroutput">set breakpoint always-inserted on</code>. 1240 </p></li> 1241<li class="listitem"><p><code class="varname">v.info memory [aspacemgr]</code> shows the statistics of 1242 Valgrind's internal heap management. If 1243 option <code class="option">--profile-heap=yes</code> was given, detailed 1244 statistics will be output. With the optional argument 1245 <code class="computeroutput">aspacemgr</code>. the segment list maintained 1246 by valgrind address space manager will be output. Note that 1247 this list of segments is always output on the Valgrind log. 1248 </p></li> 1249<li class="listitem"><p><code class="varname">v.info exectxt</code> shows information about 1250 the "executable contexts" (i.e. the stack traces) recorded by 1251 Valgrind. For some programs, Valgrind can record a very high 1252 number of such stack traces, causing a high memory usage. This 1253 monitor command shows all the recorded stack traces, followed by 1254 some statistics. This can be used to analyse the reason for having 1255 a big number of stack traces. Typically, you will use this command 1256 if <code class="varname">v.info memory</code> has shown significant memory 1257 usage by the "exectxt" arena. 1258 </p></li> 1259<li class="listitem"> 1260<p><code class="varname">v.info scheduler</code> shows various 1261 information about threads. First, it outputs the host stack trace, 1262 i.e. the Valgrind code being executed. Then, for each thread, it 1263 outputs the thread state. For non terminated threads, the state is 1264 followed by the guest (client) stack trace. Finally, for each 1265 active thread or for each terminated thread slot not yet re-used, 1266 it shows the max usage of the valgrind stack.</p> 1267<p>Showing the client stack traces allows to compare the stack 1268 traces produced by the Valgrind unwinder with the stack traces 1269 produced by GDB+Valgrind gdbserver. Pay attention that GDB and 1270 Valgrind scheduler status have their own thread numbering 1271 scheme. To make the link between the GDB thread number and the 1272 corresponding Valgrind scheduler thread number, use the GDB 1273 command <code class="computeroutput">info threads</code>. The output 1274 of this command shows the GDB thread number and the valgrind 1275 'tid'. The 'tid' is the thread number output 1276 by <code class="computeroutput">v.info scheduler</code>. When using 1277 the callgrind tool, the callgrind monitor command 1278 <code class="computeroutput">status</code> outputs internal callgrind 1279 information about the stack/call graph it maintains. 1280 </p> 1281</li> 1282<li class="listitem"><p><code class="varname">v.info stats</code> shows various valgrind core and 1283 tool statistics. With this, Valgrind and tool statistics can 1284 be examined while running, even without option <code class="option">--stats=yes</code>. 1285 </p></li> 1286<li class="listitem"><p><code class="varname">v.info unwind <addr> [<len>]</code> shows 1287 the CFI unwind debug info for the address range [addr, addr+len-1]. 1288 The default value of <len> is 1, giving the unwind information 1289 for the instruction at <addr>. 1290 </p></li> 1291<li class="listitem"><p><code class="varname">v.set debuglog <intvalue></code> sets the 1292 Valgrind debug log level to <intvalue>. This allows to 1293 dynamically change the log level of Valgrind e.g. when a problem 1294 is detected.</p></li> 1295<li class="listitem"> 1296<p><code class="varname">v.set hostvisibility [yes*|no]</code> The value 1297 "yes" indicates to gdbserver that GDB can look at the Valgrind 1298 'host' (internal) status/memory. "no" disables this access. 1299 When hostvisibility is activated, GDB can e.g. look at Valgrind 1300 global variables. As an example, to examine a Valgrind global 1301 variable of the memcheck tool on an x86, do the following setup:</p> 1302<pre class="screen"> 1303(gdb) monitor v.set hostvisibility yes 1304(gdb) add-symbol-file /path/to/tool/executable/file/memcheck-x86-linux 0x58000000 1305add symbol table from file "/path/to/tool/executable/file/memcheck-x86-linux" at 1306 .text_addr = 0x58000000 1307(y or n) y 1308Reading symbols from /path/to/tool/executable/file/memcheck-x86-linux...done. 1309(gdb) 1310</pre> 1311<p>After that, variables defined in memcheck-x86-linux can be accessed, e.g.</p> 1312<pre class="screen"> 1313(gdb) p /x vgPlain_threads[1].os_state 1314$3 = {lwpid = 0x4688, threadgroup = 0x4688, parent = 0x0, 1315 valgrind_stack_base = 0x62e78000, valgrind_stack_init_SP = 0x62f79fe0, 1316 exitcode = 0x0, fatalsig = 0x0} 1317(gdb) p vex_control 1318$5 = {iropt_verbosity = 0, iropt_level = 2, 1319 iropt_register_updates = VexRegUpdUnwindregsAtMemAccess, 1320 iropt_unroll_thresh = 120, guest_max_insns = 60, guest_chase_thresh = 10, 1321 guest_chase_cond = 0 '\000'} 1322(gdb) 1323</pre> 1324</li> 1325<li class="listitem"> 1326<p><code class="varname">v.translate <address> 1327 [<traceflags>]</code> shows the translation of the block 1328 containing <code class="computeroutput">address</code> with the given 1329 trace flags. The <code class="computeroutput">traceflags</code> value 1330 bit patterns have similar meaning to Valgrind's 1331 <code class="option">--trace-flags</code> option. It can be given 1332 in hexadecimal (e.g. 0x20) or decimal (e.g. 32) or in binary 1s 1333 and 0s bit (e.g. 0b00100000). The default value of the traceflags 1334 is 0b00100000, corresponding to "show after instrumentation". 1335 The output of this command always goes to the Valgrind 1336 log.</p> 1337<p>The additional bit flag 0b100000000 (bit 8) 1338 has no equivalent in the <code class="option">--trace-flags</code> option. 1339 It enables tracing of the gdbserver specific instrumentation. Note 1340 that this bit 8 can only enable the addition of gdbserver 1341 instrumentation in the trace. Setting it to 0 will not 1342 disable the tracing of the gdbserver instrumentation if it is 1343 active for some other reason, for example because there is a breakpoint at 1344 this address or because gdbserver is in single stepping 1345 mode.</p> 1346</li> 1347</ul></div> 1348</div> 1349</div> 1350<div class="sect1"> 1351<div class="titlepage"><div><div><h2 class="title" style="clear: both"> 1352<a name="manual-core-adv.wrapping"></a>3.3.�Function wrapping</h2></div></div></div> 1353<p> 1354Valgrind allows calls to some specified functions to be intercepted and 1355rerouted to a different, user-supplied function. This can do whatever it 1356likes, typically examining the arguments, calling onwards to the original, 1357and possibly examining the result. Any number of functions may be 1358wrapped.</p> 1359<p> 1360Function wrapping is useful for instrumenting an API in some way. For 1361example, Helgrind wraps functions in the POSIX pthreads API so it can know 1362about thread status changes, and the core is able to wrap 1363functions in the MPI (message-passing) API so it can know 1364of memory status changes associated with message arrival/departure. 1365Such information is usually passed to Valgrind by using client 1366requests in the wrapper functions, although the exact mechanism may vary. 1367</p> 1368<div class="sect2"> 1369<div class="titlepage"><div><div><h3 class="title"> 1370<a name="manual-core-adv.wrapping.example"></a>3.3.1.�A Simple Example</h3></div></div></div> 1371<p>Supposing we want to wrap some function</p> 1372<pre class="programlisting"> 1373int foo ( int x, int y ) { return x + y; }</pre> 1374<p>A wrapper is a function of identical type, but with a special name 1375which identifies it as the wrapper for <code class="computeroutput">foo</code>. 1376Wrappers need to include 1377supporting macros from <code class="filename">valgrind.h</code>. 1378Here is a simple wrapper which prints the arguments and return value:</p> 1379<pre class="programlisting"> 1380#include <stdio.h> 1381#include "valgrind.h" 1382int I_WRAP_SONAME_FNNAME_ZU(NONE,foo)( int x, int y ) 1383{ 1384 int result; 1385 OrigFn fn; 1386 VALGRIND_GET_ORIG_FN(fn); 1387 printf("foo's wrapper: args %d %d\n", x, y); 1388 CALL_FN_W_WW(result, fn, x,y); 1389 printf("foo's wrapper: result %d\n", result); 1390 return result; 1391} 1392</pre> 1393<p>To become active, the wrapper merely needs to be present in a text 1394section somewhere in the same process' address space as the function 1395it wraps, and for its ELF symbol name to be visible to Valgrind. In 1396practice, this means either compiling to a 1397<code class="computeroutput">.o</code> and linking it in, or 1398compiling to a <code class="computeroutput">.so</code> and 1399<code class="computeroutput">LD_PRELOAD</code>ing it in. The latter is more 1400convenient in that it doesn't require relinking.</p> 1401<p>All wrappers have approximately the above form. There are three 1402crucial macros:</p> 1403<p><code class="computeroutput">I_WRAP_SONAME_FNNAME_ZU</code>: 1404this generates the real name of the wrapper. 1405This is an encoded name which Valgrind notices when reading symbol 1406table information. What it says is: I am the wrapper for any function 1407named <code class="computeroutput">foo</code> which is found in 1408an ELF shared object with an empty 1409("<code class="computeroutput">NONE</code>") soname field. The specification 1410mechanism is powerful in 1411that wildcards are allowed for both sonames and function names. 1412The details are discussed below.</p> 1413<p><code class="computeroutput">VALGRIND_GET_ORIG_FN</code>: 1414once in the wrapper, the first priority is 1415to get hold of the address of the original (and any other supporting 1416information needed). This is stored in a value of opaque 1417type <code class="computeroutput">OrigFn</code>. 1418The information is acquired using 1419<code class="computeroutput">VALGRIND_GET_ORIG_FN</code>. It is crucial 1420to make this macro call before calling any other wrapped function 1421in the same thread.</p> 1422<p><code class="computeroutput">CALL_FN_W_WW</code>: eventually we will 1423want to call the function being 1424wrapped. Calling it directly does not work, since that just gets us 1425back to the wrapper and leads to an infinite loop. Instead, the result 1426lvalue, 1427<code class="computeroutput">OrigFn</code> and arguments are 1428handed to one of a family of macros of the form 1429<code class="computeroutput">CALL_FN_*</code>. These 1430cause Valgrind to call the original and avoid recursion back to the 1431wrapper.</p> 1432</div> 1433<div class="sect2"> 1434<div class="titlepage"><div><div><h3 class="title"> 1435<a name="manual-core-adv.wrapping.specs"></a>3.3.2.�Wrapping Specifications</h3></div></div></div> 1436<p>This scheme has the advantage of being self-contained. A library of 1437wrappers can be compiled to object code in the normal way, and does 1438not rely on an external script telling Valgrind which wrappers pertain 1439to which originals.</p> 1440<p>Each wrapper has a name which, in the most general case says: I am the 1441wrapper for any function whose name matches FNPATT and whose ELF 1442"soname" matches SOPATT. Both FNPATT and SOPATT may contain wildcards 1443(asterisks) and other characters (spaces, dots, @, etc) which are not 1444generally regarded as valid C identifier names.</p> 1445<p>This flexibility is needed to write robust wrappers for POSIX pthread 1446functions, where typically we are not completely sure of either the 1447function name or the soname, or alternatively we want to wrap a whole 1448set of functions at once.</p> 1449<p>For example, <code class="computeroutput">pthread_create</code> 1450in GNU libpthread is usually a 1451versioned symbol - one whose name ends in, eg, 1452<code class="computeroutput">@GLIBC_2.3</code>. Hence we 1453are not sure what its real name is. We also want to cover any soname 1454of the form <code class="computeroutput">libpthread.so*</code>. 1455So the header of the wrapper will be</p> 1456<pre class="programlisting"> 1457int I_WRAP_SONAME_FNNAME_ZZ(libpthreadZdsoZd0,pthreadZucreateZAZa) 1458 ( ... formals ... ) 1459 { ... body ... } 1460</pre> 1461<p>In order to write unusual characters as valid C function names, a 1462Z-encoding scheme is used. Names are written literally, except that 1463a capital Z acts as an escape character, with the following encoding:</p> 1464<pre class="programlisting"> 1465 Za encodes * 1466 Zp + 1467 Zc : 1468 Zd . 1469 Zu _ 1470 Zh - 1471 Zs (space) 1472 ZA @ 1473 ZZ Z 1474 ZL ( # only in valgrind 3.3.0 and later 1475 ZR ) # only in valgrind 3.3.0 and later 1476</pre> 1477<p>Hence <code class="computeroutput">libpthreadZdsoZd0</code> is an 1478encoding of the soname <code class="computeroutput">libpthread.so.0</code> 1479and <code class="computeroutput">pthreadZucreateZAZa</code> is an encoding 1480of the function name <code class="computeroutput">pthread_create@*</code>. 1481</p> 1482<p>The macro <code class="computeroutput">I_WRAP_SONAME_FNNAME_ZZ</code> 1483constructs a wrapper name in which 1484both the soname (first component) and function name (second component) 1485are Z-encoded. Encoding the function name can be tiresome and is 1486often unnecessary, so a second macro, 1487<code class="computeroutput">I_WRAP_SONAME_FNNAME_ZU</code>, can be 1488used instead. The <code class="computeroutput">_ZU</code> variant is 1489also useful for writing wrappers for 1490C++ functions, in which the function name is usually already mangled 1491using some other convention in which Z plays an important role. Having 1492to encode a second time quickly becomes confusing.</p> 1493<p>Since the function name field may contain wildcards, it can be 1494anything, including just <code class="computeroutput">*</code>. 1495The same is true for the soname. 1496However, some ELF objects - specifically, main executables - do not 1497have sonames. Any object lacking a soname is treated as if its soname 1498was <code class="computeroutput">NONE</code>, which is why the original 1499example above had a name 1500<code class="computeroutput">I_WRAP_SONAME_FNNAME_ZU(NONE,foo)</code>.</p> 1501<p>Note that the soname of an ELF object is not the same as its 1502file name, although it is often similar. You can find the soname of 1503an object <code class="computeroutput">libfoo.so</code> using the command 1504<code class="computeroutput">readelf -a libfoo.so | grep soname</code>.</p> 1505</div> 1506<div class="sect2"> 1507<div class="titlepage"><div><div><h3 class="title"> 1508<a name="manual-core-adv.wrapping.semantics"></a>3.3.3.�Wrapping Semantics</h3></div></div></div> 1509<p>The ability for a wrapper to replace an infinite family of functions 1510is powerful but brings complications in situations where ELF objects 1511appear and disappear (are dlopen'd and dlclose'd) on the fly. 1512Valgrind tries to maintain sensible behaviour in such situations.</p> 1513<p>For example, suppose a process has dlopened (an ELF object with 1514soname) <code class="filename">object1.so</code>, which contains 1515<code class="computeroutput">function1</code>. It starts to use 1516<code class="computeroutput">function1</code> immediately.</p> 1517<p>After a while it dlopens <code class="filename">wrappers.so</code>, 1518which contains a wrapper 1519for <code class="computeroutput">function1</code> in (soname) 1520<code class="filename">object1.so</code>. All subsequent calls to 1521<code class="computeroutput">function1</code> are rerouted to the wrapper.</p> 1522<p>If <code class="filename">wrappers.so</code> is 1523later dlclose'd, calls to <code class="computeroutput">function1</code> are 1524naturally routed back to the original.</p> 1525<p>Alternatively, if <code class="filename">object1.so</code> 1526is dlclose'd but <code class="filename">wrappers.so</code> remains, 1527then the wrapper exported by <code class="filename">wrappers.so</code> 1528becomes inactive, since there 1529is no way to get to it - there is no original to call any more. However, 1530Valgrind remembers that the wrapper is still present. If 1531<code class="filename">object1.so</code> is 1532eventually dlopen'd again, the wrapper will become active again.</p> 1533<p>In short, valgrind inspects all code loading/unloading events to 1534ensure that the set of currently active wrappers remains consistent.</p> 1535<p>A second possible problem is that of conflicting wrappers. It is 1536easily possible to load two or more wrappers, both of which claim 1537to be wrappers for some third function. In such cases Valgrind will 1538complain about conflicting wrappers when the second one appears, and 1539will honour only the first one.</p> 1540</div> 1541<div class="sect2"> 1542<div class="titlepage"><div><div><h3 class="title"> 1543<a name="manual-core-adv.wrapping.debugging"></a>3.3.4.�Debugging</h3></div></div></div> 1544<p>Figuring out what's going on given the dynamic nature of wrapping 1545can be difficult. The 1546<code class="option">--trace-redir=yes</code> option makes 1547this possible 1548by showing the complete state of the redirection subsystem after 1549every 1550<code class="function">mmap</code>/<code class="function">munmap</code> 1551event affecting code (text).</p> 1552<p>There are two central concepts:</p> 1553<div class="itemizedlist"><ul class="itemizedlist" style="list-style-type: disc; "> 1554<li class="listitem"><p>A "redirection specification" is a binding of 1555 a (soname pattern, fnname pattern) pair to a code address. 1556 These bindings are created by writing functions with names 1557 made with the 1558 <code class="computeroutput">I_WRAP_SONAME_FNNAME_{ZZ,_ZU}</code> 1559 macros.</p></li> 1560<li class="listitem"><p>An "active redirection" is a code-address to 1561 code-address binding currently in effect.</p></li> 1562</ul></div> 1563<p>The state of the wrapping-and-redirection subsystem comprises a set of 1564specifications and a set of active bindings. The specifications are 1565acquired/discarded by watching all 1566<code class="function">mmap</code>/<code class="function">munmap</code> 1567events on code (text) 1568sections. The active binding set is (conceptually) recomputed from 1569the specifications, and all known symbol names, following any change 1570to the specification set.</p> 1571<p><code class="option">--trace-redir=yes</code> shows the contents 1572of both sets following any such event.</p> 1573<p><code class="option">-v</code> prints a line of text each 1574time an active specification is used for the first time.</p> 1575<p>Hence for maximum debugging effectiveness you will need to use both 1576options.</p> 1577<p>One final comment. The function-wrapping facility is closely 1578tied to Valgrind's ability to replace (redirect) specified 1579functions, for example to redirect calls to 1580<code class="function">malloc</code> to its 1581own implementation. Indeed, a replacement function can be 1582regarded as a wrapper function which does not call the original. 1583However, to make the implementation more robust, the two kinds 1584of interception (wrapping vs replacement) are treated differently. 1585</p> 1586<p><code class="option">--trace-redir=yes</code> shows 1587specifications and bindings for both 1588replacement and wrapper functions. To differentiate the 1589two, replacement bindings are printed using 1590<code class="computeroutput">R-></code> whereas 1591wraps are printed using <code class="computeroutput">W-></code>. 1592</p> 1593</div> 1594<div class="sect2"> 1595<div class="titlepage"><div><div><h3 class="title"> 1596<a name="manual-core-adv.wrapping.limitations-cf"></a>3.3.5.�Limitations - control flow</h3></div></div></div> 1597<p>For the most part, the function wrapping implementation is robust. 1598The only important caveat is: in a wrapper, get hold of 1599the <code class="computeroutput">OrigFn</code> information using 1600<code class="computeroutput">VALGRIND_GET_ORIG_FN</code> before calling any 1601other wrapped function. Once you have the 1602<code class="computeroutput">OrigFn</code>, arbitrary 1603calls between, recursion between, and longjumps out of wrappers 1604should work correctly. There is never any interaction between wrapped 1605functions and merely replaced functions 1606(eg <code class="function">malloc</code>), so you can call 1607<code class="function">malloc</code> etc safely from within wrappers. 1608</p> 1609<p>The above comments are true for {x86,amd64,ppc32,arm,mips32,s390}-linux. 1610On 1611ppc64-linux function wrapping is more fragile due to the (arguably 1612poorly designed) ppc64-linux ABI. This mandates the use of a shadow 1613stack which tracks entries/exits of both wrapper and replacement 1614functions. This gives two limitations: firstly, longjumping out of 1615wrappers will rapidly lead to disaster, since the shadow stack will 1616not get correctly cleared. Secondly, since the shadow stack has 1617finite size, recursion between wrapper/replacement functions is only 1618possible to a limited depth, beyond which Valgrind has to abort the 1619run. This depth is currently 16 calls.</p> 1620<p>For all platforms ({x86,amd64,ppc32,ppc64,arm,mips32,s390}-linux) 1621all the above 1622comments apply on a per-thread basis. In other words, wrapping is 1623thread-safe: each thread must individually observe the above 1624restrictions, but there is no need for any kind of inter-thread 1625cooperation.</p> 1626</div> 1627<div class="sect2"> 1628<div class="titlepage"><div><div><h3 class="title"> 1629<a name="manual-core-adv.wrapping.limitations-sigs"></a>3.3.6.�Limitations - original function signatures</h3></div></div></div> 1630<p>As shown in the above example, to call the original you must use a 1631macro of the form <code class="computeroutput">CALL_FN_*</code>. 1632For technical reasons it is impossible 1633to create a single macro to deal with all argument types and numbers, 1634so a family of macros covering the most common cases is supplied. In 1635what follows, 'W' denotes a machine-word-typed value (a pointer or a 1636C <code class="computeroutput">long</code>), 1637and 'v' denotes C's <code class="computeroutput">void</code> type. 1638The currently available macros are:</p> 1639<pre class="programlisting"> 1640CALL_FN_v_v -- call an original of type void fn ( void ) 1641CALL_FN_W_v -- call an original of type long fn ( void ) 1642 1643CALL_FN_v_W -- call an original of type void fn ( long ) 1644CALL_FN_W_W -- call an original of type long fn ( long ) 1645 1646CALL_FN_v_WW -- call an original of type void fn ( long, long ) 1647CALL_FN_W_WW -- call an original of type long fn ( long, long ) 1648 1649CALL_FN_v_WWW -- call an original of type void fn ( long, long, long ) 1650CALL_FN_W_WWW -- call an original of type long fn ( long, long, long ) 1651 1652CALL_FN_W_WWWW -- call an original of type long fn ( long, long, long, long ) 1653CALL_FN_W_5W -- call an original of type long fn ( long, long, long, long, long ) 1654CALL_FN_W_6W -- call an original of type long fn ( long, long, long, long, long, long ) 1655and so on, up to 1656CALL_FN_W_12W 1657</pre> 1658<p>The set of supported types can be expanded as needed. It is 1659regrettable that this limitation exists. Function wrapping has proven 1660difficult to implement, with a certain apparently unavoidable level of 1661ickiness. After several implementation attempts, the present 1662arrangement appears to be the least-worst tradeoff. At least it works 1663reliably in the presence of dynamic linking and dynamic code 1664loading/unloading.</p> 1665<p>You should not attempt to wrap a function of one type signature with a 1666wrapper of a different type signature. Such trickery will surely lead 1667to crashes or strange behaviour. This is not a limitation 1668of the function wrapping implementation, merely a reflection of the 1669fact that it gives you sweeping powers to shoot yourself in the foot 1670if you are not careful. Imagine the instant havoc you could wreak by 1671writing a wrapper which matched any function name in any soname - in 1672effect, one which claimed to be a wrapper for all functions in the 1673process.</p> 1674</div> 1675<div class="sect2"> 1676<div class="titlepage"><div><div><h3 class="title"> 1677<a name="manual-core-adv.wrapping.examples"></a>3.3.7.�Examples</h3></div></div></div> 1678<p>In the source tree, 1679<code class="filename">memcheck/tests/wrap[1-8].c</code> provide a series of 1680examples, ranging from very simple to quite advanced.</p> 1681<p><code class="filename">mpi/libmpiwrap.c</code> is an example 1682of wrapping a big, complex API (the MPI-2 interface). This file defines 1683almost 300 different wrappers.</p> 1684</div> 1685</div> 1686</div> 1687<div> 1688<br><table class="nav" width="100%" cellspacing="3" cellpadding="2" border="0" summary="Navigation footer"> 1689<tr> 1690<td rowspan="2" width="40%" align="left"> 1691<a accesskey="p" href="manual-core.html"><<�2.�Using and understanding the Valgrind core</a>�</td> 1692<td width="20%" align="center"><a accesskey="u" href="manual.html">Up</a></td> 1693<td rowspan="2" width="40%" align="right">�<a accesskey="n" href="mc-manual.html">4.�Memcheck: a memory error detector�>></a> 1694</td> 1695</tr> 1696<tr><td width="20%" align="center"><a accesskey="h" href="index.html">Home</a></td></tr> 1697</table> 1698</div> 1699</body> 1700</html> 1701