• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // This file is part of Eigen, a lightweight C++ template library
2 // for linear algebra.
3 //
4 // Copyright (C) 2009-2011 Jitse Niesen <jitse@maths.leeds.ac.uk>
5 //
6 // This Source Code Form is subject to the terms of the Mozilla
7 // Public License v. 2.0. If a copy of the MPL was not distributed
8 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
9 
10 #include "main.h"
11 #include <unsupported/Eigen/MatrixFunctions>
12 
13 // For complex matrices, any matrix is fine.
14 template<typename MatrixType, int IsComplex = NumTraits<typename internal::traits<MatrixType>::Scalar>::IsComplex>
15 struct processTriangularMatrix
16 {
runprocessTriangularMatrix17   static void run(MatrixType&, MatrixType&, const MatrixType&)
18   { }
19 };
20 
21 // For real matrices, make sure none of the eigenvalues are negative.
22 template<typename MatrixType>
23 struct processTriangularMatrix<MatrixType,0>
24 {
25   static void run(MatrixType& m, MatrixType& T, const MatrixType& U)
26   {
27     const Index size = m.cols();
28 
29     for (Index i=0; i < size; ++i) {
30       if (i == size - 1 || T.coeff(i+1,i) == 0)
31         T.coeffRef(i,i) = std::abs(T.coeff(i,i));
32       else
33         ++i;
34     }
35     m = U * T * U.transpose();
36   }
37 };
38 
39 template <typename MatrixType, int IsComplex = NumTraits<typename internal::traits<MatrixType>::Scalar>::IsComplex>
40 struct generateTestMatrix;
41 
42 template <typename MatrixType>
43 struct generateTestMatrix<MatrixType,0>
44 {
45   static void run(MatrixType& result, typename MatrixType::Index size)
46   {
47     result = MatrixType::Random(size, size);
48     RealSchur<MatrixType> schur(result);
49     MatrixType T = schur.matrixT();
50     processTriangularMatrix<MatrixType>::run(result, T, schur.matrixU());
51   }
52 };
53 
54 template <typename MatrixType>
55 struct generateTestMatrix<MatrixType,1>
56 {
57   static void run(MatrixType& result, typename MatrixType::Index size)
58   {
59     result = MatrixType::Random(size, size);
60   }
61 };
62 
63 template <typename Derived, typename OtherDerived>
64 typename Derived::RealScalar relerr(const MatrixBase<Derived>& A, const MatrixBase<OtherDerived>& B)
65 {
66   return std::sqrt((A - B).cwiseAbs2().sum() / (std::min)(A.cwiseAbs2().sum(), B.cwiseAbs2().sum()));
67 }
68