• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright © 2014 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Connor Abbott (cwabbott0@gmail.com)
25  *
26  */
27 
28 /**
29  * This header file defines all the available intrinsics in one place. It
30  * expands to a list of macros of the form:
31  *
32  * INTRINSIC(name, num_srcs, src_components, has_dest, dest_components,
33  *              num_variables, num_indices, idx0, idx1, idx2, flags)
34  *
35  * Which should correspond one-to-one with the nir_intrinsic_info structure. It
36  * is included in both ir.h to create the nir_intrinsic enum (with members of
37  * the form nir_intrinsic_(name)) and and in opcodes.c to create
38  * nir_intrinsic_infos, which is a const array of nir_intrinsic_info structures
39  * for each intrinsic.
40  */
41 
42 #define ARR(...) { __VA_ARGS__ }
43 
44 INTRINSIC(nop, 0, ARR(0), false, 0, 0, 0, xx, xx, xx,
45           NIR_INTRINSIC_CAN_ELIMINATE)
46 
47 INTRINSIC(load_var, 0, ARR(0), true, 0, 1, 0, xx, xx, xx, NIR_INTRINSIC_CAN_ELIMINATE)
48 INTRINSIC(store_var, 1, ARR(0), false, 0, 1, 1, WRMASK, xx, xx, 0)
49 INTRINSIC(copy_var, 0, ARR(0), false, 0, 2, 0, xx, xx, xx, 0)
50 
51 /*
52  * Interpolation of input.  The interp_var_at* intrinsics are similar to the
53  * load_var intrinsic acting on a shader input except that they interpolate
54  * the input differently.  The at_sample and at_offset intrinsics take an
55  * additional source that is an integer sample id or a vec2 position offset
56  * respectively.
57  */
58 
59 INTRINSIC(interp_var_at_centroid, 0, ARR(0), true, 0, 1, 0, xx, xx, xx,
60           NIR_INTRINSIC_CAN_ELIMINATE | NIR_INTRINSIC_CAN_REORDER)
61 INTRINSIC(interp_var_at_sample, 1, ARR(1), true, 0, 1, 0, xx, xx, xx,
62           NIR_INTRINSIC_CAN_ELIMINATE | NIR_INTRINSIC_CAN_REORDER)
63 INTRINSIC(interp_var_at_offset, 1, ARR(2), true, 0, 1, 0, xx, xx, xx,
64           NIR_INTRINSIC_CAN_ELIMINATE | NIR_INTRINSIC_CAN_REORDER)
65 
66 /*
67  * Ask the driver for the size of a given buffer. It takes the buffer index
68  * as source.
69  */
70 INTRINSIC(get_buffer_size, 1, ARR(1), true, 1, 0, 0, xx, xx, xx,
71           NIR_INTRINSIC_CAN_ELIMINATE | NIR_INTRINSIC_CAN_REORDER)
72 
73 /*
74  * a barrier is an intrinsic with no inputs/outputs but which can't be moved
75  * around/optimized in general
76  */
77 #define BARRIER(name) INTRINSIC(name, 0, ARR(0), false, 0, 0, 0, xx, xx, xx, 0)
78 
79 BARRIER(barrier)
80 BARRIER(discard)
81 
82 /*
83  * Memory barrier with semantics analogous to the memoryBarrier() GLSL
84  * intrinsic.
85  */
86 BARRIER(memory_barrier)
87 
88 /*
89  * Shader clock intrinsic with semantics analogous to the clock2x32ARB()
90  * GLSL intrinsic.
91  * The latter can be used as code motion barrier, which is currently not
92  * feasible with NIR.
93  */
94 INTRINSIC(shader_clock, 0, ARR(0), true, 1, 0, 0, xx, xx, xx, NIR_INTRINSIC_CAN_ELIMINATE)
95 
96 /*
97  * Memory barrier with semantics analogous to the compute shader
98  * groupMemoryBarrier(), memoryBarrierAtomicCounter(), memoryBarrierBuffer(),
99  * memoryBarrierImage() and memoryBarrierShared() GLSL intrinsics.
100  */
101 BARRIER(group_memory_barrier)
102 BARRIER(memory_barrier_atomic_counter)
103 BARRIER(memory_barrier_buffer)
104 BARRIER(memory_barrier_image)
105 BARRIER(memory_barrier_shared)
106 
107 /** A conditional discard, with a single boolean source. */
108 INTRINSIC(discard_if, 1, ARR(1), false, 0, 0, 0, xx, xx, xx, 0)
109 
110 /**
111  * Basic Geometry Shader intrinsics.
112  *
113  * emit_vertex implements GLSL's EmitStreamVertex() built-in.  It takes a single
114  * index, which is the stream ID to write to.
115  *
116  * end_primitive implements GLSL's EndPrimitive() built-in.
117  */
118 INTRINSIC(emit_vertex,   0, ARR(0), false, 0, 0, 1, STREAM_ID, xx, xx, 0)
119 INTRINSIC(end_primitive, 0, ARR(0), false, 0, 0, 1, STREAM_ID, xx, xx, 0)
120 
121 /**
122  * Geometry Shader intrinsics with a vertex count.
123  *
124  * Alternatively, drivers may implement these intrinsics, and use
125  * nir_lower_gs_intrinsics() to convert from the basic intrinsics.
126  *
127  * These maintain a count of the number of vertices emitted, as an additional
128  * unsigned integer source.
129  */
130 INTRINSIC(emit_vertex_with_counter, 1, ARR(1), false, 0, 0, 1, STREAM_ID, xx, xx, 0)
131 INTRINSIC(end_primitive_with_counter, 1, ARR(1), false, 0, 0, 1, STREAM_ID, xx, xx, 0)
132 INTRINSIC(set_vertex_count, 1, ARR(1), false, 0, 0, 0, xx, xx, xx, 0)
133 
134 /*
135  * Atomic counters
136  *
137  * The *_var variants take an atomic_uint nir_variable, while the other,
138  * lowered, variants take a constant buffer index and register offset.
139  */
140 
141 #define ATOMIC(name, flags) \
142    INTRINSIC(name##_var, 0, ARR(0), true, 1, 1, 0, xx, xx, xx, flags) \
143    INTRINSIC(name, 1, ARR(1), true, 1, 0, 1, BASE, xx, xx, flags)
144 #define ATOMIC2(name) \
145    INTRINSIC(name##_var, 1, ARR(1), true, 1, 1, 0, xx, xx, xx, 0) \
146    INTRINSIC(name, 2, ARR(1, 1), true, 1, 0, 1, BASE, xx, xx, 0)
147 #define ATOMIC3(name) \
148    INTRINSIC(name##_var, 2, ARR(1, 1), true, 1, 1, 0, xx, xx, xx, 0) \
149    INTRINSIC(name, 3, ARR(1, 1, 1), true, 1, 0, 1, BASE, xx, xx, 0)
150 
151 ATOMIC(atomic_counter_inc, 0)
152 ATOMIC(atomic_counter_dec, 0)
153 ATOMIC(atomic_counter_read, NIR_INTRINSIC_CAN_ELIMINATE)
154 ATOMIC2(atomic_counter_add)
155 ATOMIC2(atomic_counter_min)
156 ATOMIC2(atomic_counter_max)
157 ATOMIC2(atomic_counter_and)
158 ATOMIC2(atomic_counter_or)
159 ATOMIC2(atomic_counter_xor)
160 ATOMIC2(atomic_counter_exchange)
161 ATOMIC3(atomic_counter_comp_swap)
162 
163 /*
164  * Image load, store and atomic intrinsics.
165  *
166  * All image intrinsics take an image target passed as a nir_variable.  Image
167  * variables contain a number of memory and layout qualifiers that influence
168  * the semantics of the intrinsic.
169  *
170  * All image intrinsics take a four-coordinate vector and a sample index as
171  * first two sources, determining the location within the image that will be
172  * accessed by the intrinsic.  Components not applicable to the image target
173  * in use are undefined.  Image store takes an additional four-component
174  * argument with the value to be written, and image atomic operations take
175  * either one or two additional scalar arguments with the same meaning as in
176  * the ARB_shader_image_load_store specification.
177  */
178 INTRINSIC(image_load, 2, ARR(4, 1), true, 4, 1, 0, xx, xx, xx,
179           NIR_INTRINSIC_CAN_ELIMINATE)
180 INTRINSIC(image_store, 3, ARR(4, 1, 4), false, 0, 1, 0, xx, xx, xx, 0)
181 INTRINSIC(image_atomic_add, 3, ARR(4, 1, 1), true, 1, 1, 0, xx, xx, xx, 0)
182 INTRINSIC(image_atomic_min, 3, ARR(4, 1, 1), true, 1, 1, 0, xx, xx, xx, 0)
183 INTRINSIC(image_atomic_max, 3, ARR(4, 1, 1), true, 1, 1, 0, xx, xx, xx, 0)
184 INTRINSIC(image_atomic_and, 3, ARR(4, 1, 1), true, 1, 1, 0, xx, xx, xx, 0)
185 INTRINSIC(image_atomic_or, 3, ARR(4, 1, 1), true, 1, 1, 0, xx, xx, xx, 0)
186 INTRINSIC(image_atomic_xor, 3, ARR(4, 1, 1), true, 1, 1, 0, xx, xx, xx, 0)
187 INTRINSIC(image_atomic_exchange, 3, ARR(4, 1, 1), true, 1, 1, 0, xx, xx, xx, 0)
188 INTRINSIC(image_atomic_comp_swap, 4, ARR(4, 1, 1, 1), true, 1, 1, 0, xx, xx, xx, 0)
189 INTRINSIC(image_size, 0, ARR(0), true, 4, 1, 0, xx, xx, xx,
190           NIR_INTRINSIC_CAN_ELIMINATE | NIR_INTRINSIC_CAN_REORDER)
191 INTRINSIC(image_samples, 0, ARR(0), true, 1, 1, 0, xx, xx, xx,
192           NIR_INTRINSIC_CAN_ELIMINATE | NIR_INTRINSIC_CAN_REORDER)
193 
194 /*
195  * Vulkan descriptor set intrinsic
196  *
197  * The Vulkan API uses a different binding model from GL.  In the Vulkan
198  * API, all external resources are represented by a tuple:
199  *
200  * (descriptor set, binding, array index)
201  *
202  * where the array index is the only thing allowed to be indirect.  The
203  * vulkan_surface_index intrinsic takes the descriptor set and binding as
204  * its first two indices and the array index as its source.  The third
205  * index is a nir_variable_mode in case that's useful to the backend.
206  *
207  * The intended usage is that the shader will call vulkan_surface_index to
208  * get an index and then pass that as the buffer index ubo/ssbo calls.
209  */
210 INTRINSIC(vulkan_resource_index, 1, ARR(1), true, 1, 0, 2,
211           DESC_SET, BINDING, xx,
212           NIR_INTRINSIC_CAN_ELIMINATE | NIR_INTRINSIC_CAN_REORDER)
213 
214 /*
215  * variable atomic intrinsics
216  *
217  * All of these variable atomic memory operations read a value from memory,
218  * compute a new value using one of the operations below, write the new value
219  * to memory, and return the original value read.
220  *
221  * All operations take 1 source except CompSwap that takes 2. These sources
222  * represent:
223  *
224  * 0: The data parameter to the atomic function (i.e. the value to add
225  *    in shared_atomic_add, etc).
226  * 1: For CompSwap only: the second data parameter.
227  *
228  * All operations take 1 variable deref.
229  */
230 INTRINSIC(var_atomic_add, 1, ARR(1), true, 1, 1, 0, xx, xx, xx, 0)
231 INTRINSIC(var_atomic_imin, 1, ARR(1), true, 1, 1, 0, xx, xx, xx, 0)
232 INTRINSIC(var_atomic_umin, 1, ARR(1), true, 1, 1, 0, xx, xx, xx, 0)
233 INTRINSIC(var_atomic_imax, 1, ARR(1), true, 1, 1, 0, xx, xx, xx, 0)
234 INTRINSIC(var_atomic_umax, 1, ARR(1), true, 1, 1, 0, xx, xx, xx, 0)
235 INTRINSIC(var_atomic_and, 1, ARR(1), true, 1, 1, 0, xx, xx, xx, 0)
236 INTRINSIC(var_atomic_or, 1, ARR(1), true, 1, 1, 0, xx, xx, xx, 0)
237 INTRINSIC(var_atomic_xor, 1, ARR(1), true, 1, 1, 0, xx, xx, xx, 0)
238 INTRINSIC(var_atomic_exchange, 1, ARR(1), true, 1, 1, 0, xx, xx, xx, 0)
239 INTRINSIC(var_atomic_comp_swap, 2, ARR(1, 1), true, 1, 1, 0, xx, xx, xx, 0)
240 
241 /*
242  * SSBO atomic intrinsics
243  *
244  * All of the SSBO atomic memory operations read a value from memory,
245  * compute a new value using one of the operations below, write the new
246  * value to memory, and return the original value read.
247  *
248  * All operations take 3 sources except CompSwap that takes 4. These
249  * sources represent:
250  *
251  * 0: The SSBO buffer index.
252  * 1: The offset into the SSBO buffer of the variable that the atomic
253  *    operation will operate on.
254  * 2: The data parameter to the atomic function (i.e. the value to add
255  *    in ssbo_atomic_add, etc).
256  * 3: For CompSwap only: the second data parameter.
257  */
258 INTRINSIC(ssbo_atomic_add, 3, ARR(1, 1, 1), true, 1, 0, 0, xx, xx, xx, 0)
259 INTRINSIC(ssbo_atomic_imin, 3, ARR(1, 1, 1), true, 1, 0, 0, xx, xx, xx, 0)
260 INTRINSIC(ssbo_atomic_umin, 3, ARR(1, 1, 1), true, 1, 0, 0, xx, xx, xx, 0)
261 INTRINSIC(ssbo_atomic_imax, 3, ARR(1, 1, 1), true, 1, 0, 0, xx, xx, xx, 0)
262 INTRINSIC(ssbo_atomic_umax, 3, ARR(1, 1, 1), true, 1, 0, 0, xx, xx, xx, 0)
263 INTRINSIC(ssbo_atomic_and, 3, ARR(1, 1, 1), true, 1, 0, 0, xx, xx, xx, 0)
264 INTRINSIC(ssbo_atomic_or, 3, ARR(1, 1, 1), true, 1, 0, 0, xx, xx, xx, 0)
265 INTRINSIC(ssbo_atomic_xor, 3, ARR(1, 1, 1), true, 1, 0, 0, xx, xx, xx, 0)
266 INTRINSIC(ssbo_atomic_exchange, 3, ARR(1, 1, 1), true, 1, 0, 0, xx, xx, xx, 0)
267 INTRINSIC(ssbo_atomic_comp_swap, 4, ARR(1, 1, 1, 1), true, 1, 0, 0, xx, xx, xx, 0)
268 
269 /*
270  * CS shared variable atomic intrinsics
271  *
272  * All of the shared variable atomic memory operations read a value from
273  * memory, compute a new value using one of the operations below, write the
274  * new value to memory, and return the original value read.
275  *
276  * All operations take 2 sources except CompSwap that takes 3. These
277  * sources represent:
278  *
279  * 0: The offset into the shared variable storage region that the atomic
280  *    operation will operate on.
281  * 1: The data parameter to the atomic function (i.e. the value to add
282  *    in shared_atomic_add, etc).
283  * 2: For CompSwap only: the second data parameter.
284  */
285 INTRINSIC(shared_atomic_add, 2, ARR(1, 1), true, 1, 0, 1, BASE, xx, xx, 0)
286 INTRINSIC(shared_atomic_imin, 2, ARR(1, 1), true, 1, 0, 1, BASE, xx, xx, 0)
287 INTRINSIC(shared_atomic_umin, 2, ARR(1, 1), true, 1, 0, 1, BASE, xx, xx, 0)
288 INTRINSIC(shared_atomic_imax, 2, ARR(1, 1), true, 1, 0, 1, BASE, xx, xx, 0)
289 INTRINSIC(shared_atomic_umax, 2, ARR(1, 1), true, 1, 0, 1, BASE, xx, xx, 0)
290 INTRINSIC(shared_atomic_and, 2, ARR(1, 1), true, 1, 0, 1, BASE, xx, xx, 0)
291 INTRINSIC(shared_atomic_or, 2, ARR(1, 1), true, 1, 0, 1, BASE, xx, xx, 0)
292 INTRINSIC(shared_atomic_xor, 2, ARR(1, 1), true, 1, 0, 1, BASE, xx, xx, 0)
293 INTRINSIC(shared_atomic_exchange, 2, ARR(1, 1), true, 1, 0, 1, BASE, xx, xx, 0)
294 INTRINSIC(shared_atomic_comp_swap, 3, ARR(1, 1, 1), true, 1, 0, 1, BASE, xx, xx, 0)
295 
296 /* Used by nir_builder.h to generate loader helpers for the system values. */
297 #ifndef DEFINE_SYSTEM_VALUE
298 #define DEFINE_SYSTEM_VALUE(name)
299 #endif
300 
301 #define SYSTEM_VALUE(name, components, num_indices, idx0, idx1, idx2) \
302    DEFINE_SYSTEM_VALUE(name) \
303    INTRINSIC(load_##name, 0, ARR(0), true, components, 0, num_indices, \
304    idx0, idx1, idx2, \
305    NIR_INTRINSIC_CAN_ELIMINATE | NIR_INTRINSIC_CAN_REORDER)
306 
307 SYSTEM_VALUE(front_face, 1, 0, xx, xx, xx)
308 SYSTEM_VALUE(vertex_id, 1, 0, xx, xx, xx)
309 SYSTEM_VALUE(vertex_id_zero_base, 1, 0, xx, xx, xx)
310 SYSTEM_VALUE(base_vertex, 1, 0, xx, xx, xx)
311 SYSTEM_VALUE(instance_id, 1, 0, xx, xx, xx)
312 SYSTEM_VALUE(base_instance, 1, 0, xx, xx, xx)
313 SYSTEM_VALUE(draw_id, 1, 0, xx, xx, xx)
314 SYSTEM_VALUE(sample_id, 1, 0, xx, xx, xx)
315 SYSTEM_VALUE(sample_pos, 2, 0, xx, xx, xx)
316 SYSTEM_VALUE(sample_mask_in, 1, 0, xx, xx, xx)
317 SYSTEM_VALUE(primitive_id, 1, 0, xx, xx, xx)
318 SYSTEM_VALUE(invocation_id, 1, 0, xx, xx, xx)
319 SYSTEM_VALUE(tess_coord, 3, 0, xx, xx, xx)
320 SYSTEM_VALUE(tess_level_outer, 4, 0, xx, xx, xx)
321 SYSTEM_VALUE(tess_level_inner, 2, 0, xx, xx, xx)
322 SYSTEM_VALUE(patch_vertices_in, 1, 0, xx, xx, xx)
323 SYSTEM_VALUE(local_invocation_id, 3, 0, xx, xx, xx)
324 SYSTEM_VALUE(local_invocation_index, 1, 0, xx, xx, xx)
325 SYSTEM_VALUE(work_group_id, 3, 0, xx, xx, xx)
326 SYSTEM_VALUE(user_clip_plane, 4, 1, UCP_ID, xx, xx)
327 SYSTEM_VALUE(num_work_groups, 3, 0, xx, xx, xx)
328 SYSTEM_VALUE(helper_invocation, 1, 0, xx, xx, xx)
329 SYSTEM_VALUE(channel_num, 1, 0, xx, xx, xx)
330 SYSTEM_VALUE(alpha_ref_float, 1, 0, xx, xx, xx)
331 SYSTEM_VALUE(layer_id, 1, 0, xx, xx, xx)
332 
333 /* Blend constant color values.  Float values are clamped. */
334 SYSTEM_VALUE(blend_const_color_r_float, 1, 0, xx, xx, xx)
335 SYSTEM_VALUE(blend_const_color_g_float, 1, 0, xx, xx, xx)
336 SYSTEM_VALUE(blend_const_color_b_float, 1, 0, xx, xx, xx)
337 SYSTEM_VALUE(blend_const_color_a_float, 1, 0, xx, xx, xx)
338 SYSTEM_VALUE(blend_const_color_rgba8888_unorm, 1, 0, xx, xx, xx)
339 SYSTEM_VALUE(blend_const_color_aaaa8888_unorm, 1, 0, xx, xx, xx)
340 
341 /**
342  * Barycentric coordinate intrinsics.
343  *
344  * These set up the barycentric coordinates for a particular interpolation.
345  * The first three are for the simple cases: pixel, centroid, or per-sample
346  * (at gl_SampleID).  The next two handle interpolating at a specified
347  * sample location, or interpolating with a vec2 offset,
348  *
349  * The interp_mode index should be either the INTERP_MODE_SMOOTH or
350  * INTERP_MODE_NOPERSPECTIVE enum values.
351  *
352  * The vec2 value produced by these intrinsics is intended for use as the
353  * barycoord source of a load_interpolated_input intrinsic.
354  */
355 
356 #define BARYCENTRIC(name, sources, source_components) \
357    INTRINSIC(load_barycentric_##name, sources, ARR(source_components), \
358              true, 2, 0, 1, INTERP_MODE, xx, xx, \
359              NIR_INTRINSIC_CAN_ELIMINATE | NIR_INTRINSIC_CAN_REORDER)
360 
361 /* no sources.  const_index[] = { interp_mode } */
362 BARYCENTRIC(pixel, 0, 0)
363 BARYCENTRIC(centroid, 0, 0)
364 BARYCENTRIC(sample, 0, 0)
365 /* src[] = { sample_id }.  const_index[] = { interp_mode } */
366 BARYCENTRIC(at_sample, 1, 1)
367 /* src[] = { offset.xy }.  const_index[] = { interp_mode } */
368 BARYCENTRIC(at_offset, 1, 2)
369 
370 /*
371  * Load operations pull data from some piece of GPU memory.  All load
372  * operations operate in terms of offsets into some piece of theoretical
373  * memory.  Loads from externally visible memory (UBO and SSBO) simply take a
374  * byte offset as a source.  Loads from opaque memory (uniforms, inputs, etc.)
375  * take a base+offset pair where the base (const_index[0]) gives the location
376  * of the start of the variable being loaded and and the offset source is a
377  * offset into that variable.
378  *
379  * Uniform load operations have a second "range" index that specifies the
380  * range (starting at base) of the data from which we are loading.  If
381  * const_index[1] == 0, then the range is unknown.
382  *
383  * Some load operations such as UBO/SSBO load and per_vertex loads take an
384  * additional source to specify which UBO/SSBO/vertex to load from.
385  *
386  * The exact address type depends on the lowering pass that generates the
387  * load/store intrinsics.  Typically, this is vec4 units for things such as
388  * varying slots and float units for fragment shader inputs.  UBO and SSBO
389  * offsets are always in bytes.
390  */
391 
392 #define LOAD(name, srcs, num_indices, idx0, idx1, idx2, flags) \
393    INTRINSIC(load_##name, srcs, ARR(1, 1, 1, 1), true, 0, 0, num_indices, idx0, idx1, idx2, flags)
394 
395 /* src[] = { offset }. const_index[] = { base, range } */
396 LOAD(uniform, 1, 2, BASE, RANGE, xx, NIR_INTRINSIC_CAN_ELIMINATE | NIR_INTRINSIC_CAN_REORDER)
397 /* src[] = { buffer_index, offset }. No const_index */
398 LOAD(ubo, 2, 0, xx, xx, xx, NIR_INTRINSIC_CAN_ELIMINATE | NIR_INTRINSIC_CAN_REORDER)
399 /* src[] = { offset }. const_index[] = { base, component } */
400 LOAD(input, 1, 2, BASE, COMPONENT, xx, NIR_INTRINSIC_CAN_ELIMINATE | NIR_INTRINSIC_CAN_REORDER)
401 /* src[] = { vertex, offset }. const_index[] = { base, component } */
402 LOAD(per_vertex_input, 2, 2, BASE, COMPONENT, xx, NIR_INTRINSIC_CAN_ELIMINATE | NIR_INTRINSIC_CAN_REORDER)
403 /* src[] = { barycoord, offset }. const_index[] = { base, component } */
404 INTRINSIC(load_interpolated_input, 2, ARR(2, 1), true, 0, 0,
405           2, BASE, COMPONENT, xx,
406           NIR_INTRINSIC_CAN_ELIMINATE | NIR_INTRINSIC_CAN_REORDER)
407 
408 /* src[] = { buffer_index, offset }. No const_index */
409 LOAD(ssbo, 2, 0, xx, xx, xx, NIR_INTRINSIC_CAN_ELIMINATE)
410 /* src[] = { offset }. const_index[] = { base, component } */
411 LOAD(output, 1, 1, BASE, COMPONENT, xx, NIR_INTRINSIC_CAN_ELIMINATE)
412 /* src[] = { vertex, offset }. const_index[] = { base, component } */
413 LOAD(per_vertex_output, 2, 1, BASE, COMPONENT, xx, NIR_INTRINSIC_CAN_ELIMINATE)
414 /* src[] = { offset }. const_index[] = { base } */
415 LOAD(shared, 1, 1, BASE, xx, xx, NIR_INTRINSIC_CAN_ELIMINATE)
416 /* src[] = { offset }. const_index[] = { base, range } */
417 LOAD(push_constant, 1, 2, BASE, RANGE, xx,
418      NIR_INTRINSIC_CAN_ELIMINATE | NIR_INTRINSIC_CAN_REORDER)
419 
420 /*
421  * Stores work the same way as loads, except now the first source is the value
422  * to store and the second (and possibly third) source specify where to store
423  * the value.  SSBO and shared memory stores also have a write mask as
424  * const_index[0].
425  */
426 
427 #define STORE(name, srcs, num_indices, idx0, idx1, idx2, flags) \
428    INTRINSIC(store_##name, srcs, ARR(0, 1, 1, 1), false, 0, 0, num_indices, idx0, idx1, idx2, flags)
429 
430 /* src[] = { value, offset }. const_index[] = { base, write_mask, component } */
431 STORE(output, 2, 3, BASE, WRMASK, COMPONENT, 0)
432 /* src[] = { value, vertex, offset }.
433  * const_index[] = { base, write_mask, component }
434  */
435 STORE(per_vertex_output, 3, 3, BASE, WRMASK, COMPONENT, 0)
436 /* src[] = { value, block_index, offset }. const_index[] = { write_mask } */
437 STORE(ssbo, 3, 1, WRMASK, xx, xx, 0)
438 /* src[] = { value, offset }. const_index[] = { base, write_mask } */
439 STORE(shared, 2, 2, BASE, WRMASK, xx, 0)
440 
441 LAST_INTRINSIC(store_shared)
442 
443 #undef DEFINE_SYSTEM_VALUE
444 #undef INTRINSIC
445 #undef LAST_INTRINSIC
446