• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /***********************************************************************
2 Copyright (c) 2006-2011, Skype Limited. All rights reserved.
3 Redistribution and use in source and binary forms, with or without
4 modification, are permitted provided that the following conditions
5 are met:
6 - Redistributions of source code must retain the above copyright notice,
7 this list of conditions and the following disclaimer.
8 - Redistributions in binary form must reproduce the above copyright
9 notice, this list of conditions and the following disclaimer in the
10 documentation and/or other materials provided with the distribution.
11 - Neither the name of Internet Society, IETF or IETF Trust, nor the
12 names of specific contributors, may be used to endorse or promote
13 products derived from this software without specific prior written
14 permission.
15 THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
16 AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
17 IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
18 ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
19 LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
20 CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
21 SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
22 INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
23 CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
24 ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
25 POSSIBILITY OF SUCH DAMAGE.
26 ***********************************************************************/
27 
28 #ifdef HAVE_CONFIG_H
29 #include "config.h"
30 #endif
31 
32 #include "main_FIX.h"
33 #include "stack_alloc.h"
34 #include "tuning_parameters.h"
35 
36 /* Compute gain to make warped filter coefficients have a zero mean log frequency response on a   */
37 /* non-warped frequency scale. (So that it can be implemented with a minimum-phase monic filter.) */
38 /* Note: A monic filter is one with the first coefficient equal to 1.0. In Silk we omit the first */
39 /* coefficient in an array of coefficients, for monic filters.                                    */
warped_gain(const opus_int32 * coefs_Q24,opus_int lambda_Q16,opus_int order)40 static OPUS_INLINE opus_int32 warped_gain( /* gain in Q16*/
41     const opus_int32     *coefs_Q24,
42     opus_int             lambda_Q16,
43     opus_int             order
44 ) {
45     opus_int   i;
46     opus_int32 gain_Q24;
47 
48     lambda_Q16 = -lambda_Q16;
49     gain_Q24 = coefs_Q24[ order - 1 ];
50     for( i = order - 2; i >= 0; i-- ) {
51         gain_Q24 = silk_SMLAWB( coefs_Q24[ i ], gain_Q24, lambda_Q16 );
52     }
53     gain_Q24  = silk_SMLAWB( SILK_FIX_CONST( 1.0, 24 ), gain_Q24, -lambda_Q16 );
54     return silk_INVERSE32_varQ( gain_Q24, 40 );
55 }
56 
57 /* Convert warped filter coefficients to monic pseudo-warped coefficients and limit maximum     */
58 /* amplitude of monic warped coefficients by using bandwidth expansion on the true coefficients */
limit_warped_coefs(opus_int32 * coefs_syn_Q24,opus_int32 * coefs_ana_Q24,opus_int lambda_Q16,opus_int32 limit_Q24,opus_int order)59 static OPUS_INLINE void limit_warped_coefs(
60     opus_int32           *coefs_syn_Q24,
61     opus_int32           *coefs_ana_Q24,
62     opus_int             lambda_Q16,
63     opus_int32           limit_Q24,
64     opus_int             order
65 ) {
66     opus_int   i, iter, ind = 0;
67     opus_int32 tmp, maxabs_Q24, chirp_Q16, gain_syn_Q16, gain_ana_Q16;
68     opus_int32 nom_Q16, den_Q24;
69 
70     /* Convert to monic coefficients */
71     lambda_Q16 = -lambda_Q16;
72     for( i = order - 1; i > 0; i-- ) {
73         coefs_syn_Q24[ i - 1 ] = silk_SMLAWB( coefs_syn_Q24[ i - 1 ], coefs_syn_Q24[ i ], lambda_Q16 );
74         coefs_ana_Q24[ i - 1 ] = silk_SMLAWB( coefs_ana_Q24[ i - 1 ], coefs_ana_Q24[ i ], lambda_Q16 );
75     }
76     lambda_Q16 = -lambda_Q16;
77     nom_Q16  = silk_SMLAWB( SILK_FIX_CONST( 1.0, 16 ), -(opus_int32)lambda_Q16,        lambda_Q16 );
78     den_Q24  = silk_SMLAWB( SILK_FIX_CONST( 1.0, 24 ), coefs_syn_Q24[ 0 ], lambda_Q16 );
79     gain_syn_Q16 = silk_DIV32_varQ( nom_Q16, den_Q24, 24 );
80     den_Q24  = silk_SMLAWB( SILK_FIX_CONST( 1.0, 24 ), coefs_ana_Q24[ 0 ], lambda_Q16 );
81     gain_ana_Q16 = silk_DIV32_varQ( nom_Q16, den_Q24, 24 );
82     for( i = 0; i < order; i++ ) {
83         coefs_syn_Q24[ i ] = silk_SMULWW( gain_syn_Q16, coefs_syn_Q24[ i ] );
84         coefs_ana_Q24[ i ] = silk_SMULWW( gain_ana_Q16, coefs_ana_Q24[ i ] );
85     }
86 
87     for( iter = 0; iter < 10; iter++ ) {
88         /* Find maximum absolute value */
89         maxabs_Q24 = -1;
90         for( i = 0; i < order; i++ ) {
91             tmp = silk_max( silk_abs_int32( coefs_syn_Q24[ i ] ), silk_abs_int32( coefs_ana_Q24[ i ] ) );
92             if( tmp > maxabs_Q24 ) {
93                 maxabs_Q24 = tmp;
94                 ind = i;
95             }
96         }
97         if( maxabs_Q24 <= limit_Q24 ) {
98             /* Coefficients are within range - done */
99             return;
100         }
101 
102         /* Convert back to true warped coefficients */
103         for( i = 1; i < order; i++ ) {
104             coefs_syn_Q24[ i - 1 ] = silk_SMLAWB( coefs_syn_Q24[ i - 1 ], coefs_syn_Q24[ i ], lambda_Q16 );
105             coefs_ana_Q24[ i - 1 ] = silk_SMLAWB( coefs_ana_Q24[ i - 1 ], coefs_ana_Q24[ i ], lambda_Q16 );
106         }
107         gain_syn_Q16 = silk_INVERSE32_varQ( gain_syn_Q16, 32 );
108         gain_ana_Q16 = silk_INVERSE32_varQ( gain_ana_Q16, 32 );
109         for( i = 0; i < order; i++ ) {
110             coefs_syn_Q24[ i ] = silk_SMULWW( gain_syn_Q16, coefs_syn_Q24[ i ] );
111             coefs_ana_Q24[ i ] = silk_SMULWW( gain_ana_Q16, coefs_ana_Q24[ i ] );
112         }
113 
114         /* Apply bandwidth expansion */
115         chirp_Q16 = SILK_FIX_CONST( 0.99, 16 ) - silk_DIV32_varQ(
116             silk_SMULWB( maxabs_Q24 - limit_Q24, silk_SMLABB( SILK_FIX_CONST( 0.8, 10 ), SILK_FIX_CONST( 0.1, 10 ), iter ) ),
117             silk_MUL( maxabs_Q24, ind + 1 ), 22 );
118         silk_bwexpander_32( coefs_syn_Q24, order, chirp_Q16 );
119         silk_bwexpander_32( coefs_ana_Q24, order, chirp_Q16 );
120 
121         /* Convert to monic warped coefficients */
122         lambda_Q16 = -lambda_Q16;
123         for( i = order - 1; i > 0; i-- ) {
124             coefs_syn_Q24[ i - 1 ] = silk_SMLAWB( coefs_syn_Q24[ i - 1 ], coefs_syn_Q24[ i ], lambda_Q16 );
125             coefs_ana_Q24[ i - 1 ] = silk_SMLAWB( coefs_ana_Q24[ i - 1 ], coefs_ana_Q24[ i ], lambda_Q16 );
126         }
127         lambda_Q16 = -lambda_Q16;
128         nom_Q16  = silk_SMLAWB( SILK_FIX_CONST( 1.0, 16 ), -(opus_int32)lambda_Q16,        lambda_Q16 );
129         den_Q24  = silk_SMLAWB( SILK_FIX_CONST( 1.0, 24 ), coefs_syn_Q24[ 0 ], lambda_Q16 );
130         gain_syn_Q16 = silk_DIV32_varQ( nom_Q16, den_Q24, 24 );
131         den_Q24  = silk_SMLAWB( SILK_FIX_CONST( 1.0, 24 ), coefs_ana_Q24[ 0 ], lambda_Q16 );
132         gain_ana_Q16 = silk_DIV32_varQ( nom_Q16, den_Q24, 24 );
133         for( i = 0; i < order; i++ ) {
134             coefs_syn_Q24[ i ] = silk_SMULWW( gain_syn_Q16, coefs_syn_Q24[ i ] );
135             coefs_ana_Q24[ i ] = silk_SMULWW( gain_ana_Q16, coefs_ana_Q24[ i ] );
136         }
137     }
138     silk_assert( 0 );
139 }
140 
141 #if defined(MIPSr1_ASM)
142 #include "mips/noise_shape_analysis_FIX_mipsr1.h"
143 #endif
144 
145 /**************************************************************/
146 /* Compute noise shaping coefficients and initial gain values */
147 /**************************************************************/
148 #ifndef OVERRIDE_silk_noise_shape_analysis_FIX
silk_noise_shape_analysis_FIX(silk_encoder_state_FIX * psEnc,silk_encoder_control_FIX * psEncCtrl,const opus_int16 * pitch_res,const opus_int16 * x,int arch)149 void silk_noise_shape_analysis_FIX(
150     silk_encoder_state_FIX          *psEnc,                                 /* I/O  Encoder state FIX                                                           */
151     silk_encoder_control_FIX        *psEncCtrl,                             /* I/O  Encoder control FIX                                                         */
152     const opus_int16                *pitch_res,                             /* I    LPC residual from pitch analysis                                            */
153     const opus_int16                *x,                                     /* I    Input signal [ frame_length + la_shape ]                                    */
154     int                              arch                                   /* I    Run-time architecture                                                       */
155 )
156 {
157     silk_shape_state_FIX *psShapeSt = &psEnc->sShape;
158     opus_int     k, i, nSamples, Qnrg, b_Q14, warping_Q16, scale = 0;
159     opus_int32   SNR_adj_dB_Q7, HarmBoost_Q16, HarmShapeGain_Q16, Tilt_Q16, tmp32;
160     opus_int32   nrg, pre_nrg_Q30, log_energy_Q7, log_energy_prev_Q7, energy_variation_Q7;
161     opus_int32   delta_Q16, BWExp1_Q16, BWExp2_Q16, gain_mult_Q16, gain_add_Q16, strength_Q16, b_Q8;
162     opus_int32   auto_corr[     MAX_SHAPE_LPC_ORDER + 1 ];
163     opus_int32   refl_coef_Q16[ MAX_SHAPE_LPC_ORDER ];
164     opus_int32   AR1_Q24[       MAX_SHAPE_LPC_ORDER ];
165     opus_int32   AR2_Q24[       MAX_SHAPE_LPC_ORDER ];
166     VARDECL( opus_int16, x_windowed );
167     const opus_int16 *x_ptr, *pitch_res_ptr;
168     SAVE_STACK;
169 
170     /* Point to start of first LPC analysis block */
171     x_ptr = x - psEnc->sCmn.la_shape;
172 
173     /****************/
174     /* GAIN CONTROL */
175     /****************/
176     SNR_adj_dB_Q7 = psEnc->sCmn.SNR_dB_Q7;
177 
178     /* Input quality is the average of the quality in the lowest two VAD bands */
179     psEncCtrl->input_quality_Q14 = ( opus_int )silk_RSHIFT( (opus_int32)psEnc->sCmn.input_quality_bands_Q15[ 0 ]
180         + psEnc->sCmn.input_quality_bands_Q15[ 1 ], 2 );
181 
182     /* Coding quality level, between 0.0_Q0 and 1.0_Q0, but in Q14 */
183     psEncCtrl->coding_quality_Q14 = silk_RSHIFT( silk_sigm_Q15( silk_RSHIFT_ROUND( SNR_adj_dB_Q7 -
184         SILK_FIX_CONST( 20.0, 7 ), 4 ) ), 1 );
185 
186     /* Reduce coding SNR during low speech activity */
187     if( psEnc->sCmn.useCBR == 0 ) {
188         b_Q8 = SILK_FIX_CONST( 1.0, 8 ) - psEnc->sCmn.speech_activity_Q8;
189         b_Q8 = silk_SMULWB( silk_LSHIFT( b_Q8, 8 ), b_Q8 );
190         SNR_adj_dB_Q7 = silk_SMLAWB( SNR_adj_dB_Q7,
191             silk_SMULBB( SILK_FIX_CONST( -BG_SNR_DECR_dB, 7 ) >> ( 4 + 1 ), b_Q8 ),                                       /* Q11*/
192             silk_SMULWB( SILK_FIX_CONST( 1.0, 14 ) + psEncCtrl->input_quality_Q14, psEncCtrl->coding_quality_Q14 ) );     /* Q12*/
193     }
194 
195     if( psEnc->sCmn.indices.signalType == TYPE_VOICED ) {
196         /* Reduce gains for periodic signals */
197         SNR_adj_dB_Q7 = silk_SMLAWB( SNR_adj_dB_Q7, SILK_FIX_CONST( HARM_SNR_INCR_dB, 8 ), psEnc->LTPCorr_Q15 );
198     } else {
199         /* For unvoiced signals and low-quality input, adjust the quality slower than SNR_dB setting */
200         SNR_adj_dB_Q7 = silk_SMLAWB( SNR_adj_dB_Q7,
201             silk_SMLAWB( SILK_FIX_CONST( 6.0, 9 ), -SILK_FIX_CONST( 0.4, 18 ), psEnc->sCmn.SNR_dB_Q7 ),
202             SILK_FIX_CONST( 1.0, 14 ) - psEncCtrl->input_quality_Q14 );
203     }
204 
205     /*************************/
206     /* SPARSENESS PROCESSING */
207     /*************************/
208     /* Set quantizer offset */
209     if( psEnc->sCmn.indices.signalType == TYPE_VOICED ) {
210         /* Initially set to 0; may be overruled in process_gains(..) */
211         psEnc->sCmn.indices.quantOffsetType = 0;
212         psEncCtrl->sparseness_Q8 = 0;
213     } else {
214         /* Sparseness measure, based on relative fluctuations of energy per 2 milliseconds */
215         nSamples = silk_LSHIFT( psEnc->sCmn.fs_kHz, 1 );
216         energy_variation_Q7 = 0;
217         log_energy_prev_Q7  = 0;
218         pitch_res_ptr = pitch_res;
219         for( k = 0; k < silk_SMULBB( SUB_FRAME_LENGTH_MS, psEnc->sCmn.nb_subfr ) / 2; k++ ) {
220             silk_sum_sqr_shift( &nrg, &scale, pitch_res_ptr, nSamples );
221             nrg += silk_RSHIFT( nSamples, scale );           /* Q(-scale)*/
222 
223             log_energy_Q7 = silk_lin2log( nrg );
224             if( k > 0 ) {
225                 energy_variation_Q7 += silk_abs( log_energy_Q7 - log_energy_prev_Q7 );
226             }
227             log_energy_prev_Q7 = log_energy_Q7;
228             pitch_res_ptr += nSamples;
229         }
230 
231         psEncCtrl->sparseness_Q8 = silk_RSHIFT( silk_sigm_Q15( silk_SMULWB( energy_variation_Q7 -
232             SILK_FIX_CONST( 5.0, 7 ), SILK_FIX_CONST( 0.1, 16 ) ) ), 7 );
233 
234         /* Set quantization offset depending on sparseness measure */
235         if( psEncCtrl->sparseness_Q8 > SILK_FIX_CONST( SPARSENESS_THRESHOLD_QNT_OFFSET, 8 ) ) {
236             psEnc->sCmn.indices.quantOffsetType = 0;
237         } else {
238             psEnc->sCmn.indices.quantOffsetType = 1;
239         }
240 
241         /* Increase coding SNR for sparse signals */
242         SNR_adj_dB_Q7 = silk_SMLAWB( SNR_adj_dB_Q7, SILK_FIX_CONST( SPARSE_SNR_INCR_dB, 15 ), psEncCtrl->sparseness_Q8 - SILK_FIX_CONST( 0.5, 8 ) );
243     }
244 
245     /*******************************/
246     /* Control bandwidth expansion */
247     /*******************************/
248     /* More BWE for signals with high prediction gain */
249     strength_Q16 = silk_SMULWB( psEncCtrl->predGain_Q16, SILK_FIX_CONST( FIND_PITCH_WHITE_NOISE_FRACTION, 16 ) );
250     BWExp1_Q16 = BWExp2_Q16 = silk_DIV32_varQ( SILK_FIX_CONST( BANDWIDTH_EXPANSION, 16 ),
251         silk_SMLAWW( SILK_FIX_CONST( 1.0, 16 ), strength_Q16, strength_Q16 ), 16 );
252     delta_Q16  = silk_SMULWB( SILK_FIX_CONST( 1.0, 16 ) - silk_SMULBB( 3, psEncCtrl->coding_quality_Q14 ),
253         SILK_FIX_CONST( LOW_RATE_BANDWIDTH_EXPANSION_DELTA, 16 ) );
254     BWExp1_Q16 = silk_SUB32( BWExp1_Q16, delta_Q16 );
255     BWExp2_Q16 = silk_ADD32( BWExp2_Q16, delta_Q16 );
256     /* BWExp1 will be applied after BWExp2, so make it relative */
257     BWExp1_Q16 = silk_DIV32_16( silk_LSHIFT( BWExp1_Q16, 14 ), silk_RSHIFT( BWExp2_Q16, 2 ) );
258 
259     if( psEnc->sCmn.warping_Q16 > 0 ) {
260         /* Slightly more warping in analysis will move quantization noise up in frequency, where it's better masked */
261         warping_Q16 = silk_SMLAWB( psEnc->sCmn.warping_Q16, (opus_int32)psEncCtrl->coding_quality_Q14, SILK_FIX_CONST( 0.01, 18 ) );
262     } else {
263         warping_Q16 = 0;
264     }
265 
266     /********************************************/
267     /* Compute noise shaping AR coefs and gains */
268     /********************************************/
269     ALLOC( x_windowed, psEnc->sCmn.shapeWinLength, opus_int16 );
270     for( k = 0; k < psEnc->sCmn.nb_subfr; k++ ) {
271         /* Apply window: sine slope followed by flat part followed by cosine slope */
272         opus_int shift, slope_part, flat_part;
273         flat_part = psEnc->sCmn.fs_kHz * 3;
274         slope_part = silk_RSHIFT( psEnc->sCmn.shapeWinLength - flat_part, 1 );
275 
276         silk_apply_sine_window( x_windowed, x_ptr, 1, slope_part );
277         shift = slope_part;
278         silk_memcpy( x_windowed + shift, x_ptr + shift, flat_part * sizeof(opus_int16) );
279         shift += flat_part;
280         silk_apply_sine_window( x_windowed + shift, x_ptr + shift, 2, slope_part );
281 
282         /* Update pointer: next LPC analysis block */
283         x_ptr += psEnc->sCmn.subfr_length;
284 
285         if( psEnc->sCmn.warping_Q16 > 0 ) {
286             /* Calculate warped auto correlation */
287             silk_warped_autocorrelation_FIX( auto_corr, &scale, x_windowed, warping_Q16, psEnc->sCmn.shapeWinLength, psEnc->sCmn.shapingLPCOrder );
288         } else {
289             /* Calculate regular auto correlation */
290             silk_autocorr( auto_corr, &scale, x_windowed, psEnc->sCmn.shapeWinLength, psEnc->sCmn.shapingLPCOrder + 1, arch );
291         }
292 
293         /* Add white noise, as a fraction of energy */
294         auto_corr[0] = silk_ADD32( auto_corr[0], silk_max_32( silk_SMULWB( silk_RSHIFT( auto_corr[ 0 ], 4 ),
295             SILK_FIX_CONST( SHAPE_WHITE_NOISE_FRACTION, 20 ) ), 1 ) );
296 
297         /* Calculate the reflection coefficients using schur */
298         nrg = silk_schur64( refl_coef_Q16, auto_corr, psEnc->sCmn.shapingLPCOrder );
299         silk_assert( nrg >= 0 );
300 
301         /* Convert reflection coefficients to prediction coefficients */
302         silk_k2a_Q16( AR2_Q24, refl_coef_Q16, psEnc->sCmn.shapingLPCOrder );
303 
304         Qnrg = -scale;          /* range: -12...30*/
305         silk_assert( Qnrg >= -12 );
306         silk_assert( Qnrg <=  30 );
307 
308         /* Make sure that Qnrg is an even number */
309         if( Qnrg & 1 ) {
310             Qnrg -= 1;
311             nrg >>= 1;
312         }
313 
314         tmp32 = silk_SQRT_APPROX( nrg );
315         Qnrg >>= 1;             /* range: -6...15*/
316 
317         psEncCtrl->Gains_Q16[ k ] = silk_LSHIFT_SAT32( tmp32, 16 - Qnrg );
318 
319         if( psEnc->sCmn.warping_Q16 > 0 ) {
320             /* Adjust gain for warping */
321             gain_mult_Q16 = warped_gain( AR2_Q24, warping_Q16, psEnc->sCmn.shapingLPCOrder );
322             silk_assert( psEncCtrl->Gains_Q16[ k ] >= 0 );
323             if ( silk_SMULWW( silk_RSHIFT_ROUND( psEncCtrl->Gains_Q16[ k ], 1 ), gain_mult_Q16 ) >= ( silk_int32_MAX >> 1 ) ) {
324                psEncCtrl->Gains_Q16[ k ] = silk_int32_MAX;
325             } else {
326                psEncCtrl->Gains_Q16[ k ] = silk_SMULWW( psEncCtrl->Gains_Q16[ k ], gain_mult_Q16 );
327             }
328         }
329 
330         /* Bandwidth expansion for synthesis filter shaping */
331         silk_bwexpander_32( AR2_Q24, psEnc->sCmn.shapingLPCOrder, BWExp2_Q16 );
332 
333         /* Compute noise shaping filter coefficients */
334         silk_memcpy( AR1_Q24, AR2_Q24, psEnc->sCmn.shapingLPCOrder * sizeof( opus_int32 ) );
335 
336         /* Bandwidth expansion for analysis filter shaping */
337         silk_assert( BWExp1_Q16 <= SILK_FIX_CONST( 1.0, 16 ) );
338         silk_bwexpander_32( AR1_Q24, psEnc->sCmn.shapingLPCOrder, BWExp1_Q16 );
339 
340         /* Ratio of prediction gains, in energy domain */
341         pre_nrg_Q30 = silk_LPC_inverse_pred_gain_Q24( AR2_Q24, psEnc->sCmn.shapingLPCOrder );
342         nrg         = silk_LPC_inverse_pred_gain_Q24( AR1_Q24, psEnc->sCmn.shapingLPCOrder );
343 
344         /*psEncCtrl->GainsPre[ k ] = 1.0f - 0.7f * ( 1.0f - pre_nrg / nrg ) = 0.3f + 0.7f * pre_nrg / nrg;*/
345         pre_nrg_Q30 = silk_LSHIFT32( silk_SMULWB( pre_nrg_Q30, SILK_FIX_CONST( 0.7, 15 ) ), 1 );
346         psEncCtrl->GainsPre_Q14[ k ] = ( opus_int ) SILK_FIX_CONST( 0.3, 14 ) + silk_DIV32_varQ( pre_nrg_Q30, nrg, 14 );
347 
348         /* Convert to monic warped prediction coefficients and limit absolute values */
349         limit_warped_coefs( AR2_Q24, AR1_Q24, warping_Q16, SILK_FIX_CONST( 3.999, 24 ), psEnc->sCmn.shapingLPCOrder );
350 
351         /* Convert from Q24 to Q13 and store in int16 */
352         for( i = 0; i < psEnc->sCmn.shapingLPCOrder; i++ ) {
353             psEncCtrl->AR1_Q13[ k * MAX_SHAPE_LPC_ORDER + i ] = (opus_int16)silk_SAT16( silk_RSHIFT_ROUND( AR1_Q24[ i ], 11 ) );
354             psEncCtrl->AR2_Q13[ k * MAX_SHAPE_LPC_ORDER + i ] = (opus_int16)silk_SAT16( silk_RSHIFT_ROUND( AR2_Q24[ i ], 11 ) );
355         }
356     }
357 
358     /*****************/
359     /* Gain tweaking */
360     /*****************/
361     /* Increase gains during low speech activity and put lower limit on gains */
362     gain_mult_Q16 = silk_log2lin( -silk_SMLAWB( -SILK_FIX_CONST( 16.0, 7 ), SNR_adj_dB_Q7, SILK_FIX_CONST( 0.16, 16 ) ) );
363     gain_add_Q16  = silk_log2lin(  silk_SMLAWB(  SILK_FIX_CONST( 16.0, 7 ), SILK_FIX_CONST( MIN_QGAIN_DB, 7 ), SILK_FIX_CONST( 0.16, 16 ) ) );
364     silk_assert( gain_mult_Q16 > 0 );
365     for( k = 0; k < psEnc->sCmn.nb_subfr; k++ ) {
366         psEncCtrl->Gains_Q16[ k ] = silk_SMULWW( psEncCtrl->Gains_Q16[ k ], gain_mult_Q16 );
367         silk_assert( psEncCtrl->Gains_Q16[ k ] >= 0 );
368         psEncCtrl->Gains_Q16[ k ] = silk_ADD_POS_SAT32( psEncCtrl->Gains_Q16[ k ], gain_add_Q16 );
369     }
370 
371     gain_mult_Q16 = SILK_FIX_CONST( 1.0, 16 ) + silk_RSHIFT_ROUND( silk_MLA( SILK_FIX_CONST( INPUT_TILT, 26 ),
372         psEncCtrl->coding_quality_Q14, SILK_FIX_CONST( HIGH_RATE_INPUT_TILT, 12 ) ), 10 );
373     for( k = 0; k < psEnc->sCmn.nb_subfr; k++ ) {
374         psEncCtrl->GainsPre_Q14[ k ] = silk_SMULWB( gain_mult_Q16, psEncCtrl->GainsPre_Q14[ k ] );
375     }
376 
377     /************************************************/
378     /* Control low-frequency shaping and noise tilt */
379     /************************************************/
380     /* Less low frequency shaping for noisy inputs */
381     strength_Q16 = silk_MUL( SILK_FIX_CONST( LOW_FREQ_SHAPING, 4 ), silk_SMLAWB( SILK_FIX_CONST( 1.0, 12 ),
382         SILK_FIX_CONST( LOW_QUALITY_LOW_FREQ_SHAPING_DECR, 13 ), psEnc->sCmn.input_quality_bands_Q15[ 0 ] - SILK_FIX_CONST( 1.0, 15 ) ) );
383     strength_Q16 = silk_RSHIFT( silk_MUL( strength_Q16, psEnc->sCmn.speech_activity_Q8 ), 8 );
384     if( psEnc->sCmn.indices.signalType == TYPE_VOICED ) {
385         /* Reduce low frequencies quantization noise for periodic signals, depending on pitch lag */
386         /*f = 400; freqz([1, -0.98 + 2e-4 * f], [1, -0.97 + 7e-4 * f], 2^12, Fs); axis([0, 1000, -10, 1])*/
387         opus_int fs_kHz_inv = silk_DIV32_16( SILK_FIX_CONST( 0.2, 14 ), psEnc->sCmn.fs_kHz );
388         for( k = 0; k < psEnc->sCmn.nb_subfr; k++ ) {
389             b_Q14 = fs_kHz_inv + silk_DIV32_16( SILK_FIX_CONST( 3.0, 14 ), psEncCtrl->pitchL[ k ] );
390             /* Pack two coefficients in one int32 */
391             psEncCtrl->LF_shp_Q14[ k ]  = silk_LSHIFT( SILK_FIX_CONST( 1.0, 14 ) - b_Q14 - silk_SMULWB( strength_Q16, b_Q14 ), 16 );
392             psEncCtrl->LF_shp_Q14[ k ] |= (opus_uint16)( b_Q14 - SILK_FIX_CONST( 1.0, 14 ) );
393         }
394         silk_assert( SILK_FIX_CONST( HARM_HP_NOISE_COEF, 24 ) < SILK_FIX_CONST( 0.5, 24 ) ); /* Guarantees that second argument to SMULWB() is within range of an opus_int16*/
395         Tilt_Q16 = - SILK_FIX_CONST( HP_NOISE_COEF, 16 ) -
396             silk_SMULWB( SILK_FIX_CONST( 1.0, 16 ) - SILK_FIX_CONST( HP_NOISE_COEF, 16 ),
397                 silk_SMULWB( SILK_FIX_CONST( HARM_HP_NOISE_COEF, 24 ), psEnc->sCmn.speech_activity_Q8 ) );
398     } else {
399         b_Q14 = silk_DIV32_16( 21299, psEnc->sCmn.fs_kHz ); /* 1.3_Q0 = 21299_Q14*/
400         /* Pack two coefficients in one int32 */
401         psEncCtrl->LF_shp_Q14[ 0 ]  = silk_LSHIFT( SILK_FIX_CONST( 1.0, 14 ) - b_Q14 -
402             silk_SMULWB( strength_Q16, silk_SMULWB( SILK_FIX_CONST( 0.6, 16 ), b_Q14 ) ), 16 );
403         psEncCtrl->LF_shp_Q14[ 0 ] |= (opus_uint16)( b_Q14 - SILK_FIX_CONST( 1.0, 14 ) );
404         for( k = 1; k < psEnc->sCmn.nb_subfr; k++ ) {
405             psEncCtrl->LF_shp_Q14[ k ] = psEncCtrl->LF_shp_Q14[ 0 ];
406         }
407         Tilt_Q16 = -SILK_FIX_CONST( HP_NOISE_COEF, 16 );
408     }
409 
410     /****************************/
411     /* HARMONIC SHAPING CONTROL */
412     /****************************/
413     /* Control boosting of harmonic frequencies */
414     HarmBoost_Q16 = silk_SMULWB( silk_SMULWB( SILK_FIX_CONST( 1.0, 17 ) - silk_LSHIFT( psEncCtrl->coding_quality_Q14, 3 ),
415         psEnc->LTPCorr_Q15 ), SILK_FIX_CONST( LOW_RATE_HARMONIC_BOOST, 16 ) );
416 
417     /* More harmonic boost for noisy input signals */
418     HarmBoost_Q16 = silk_SMLAWB( HarmBoost_Q16,
419         SILK_FIX_CONST( 1.0, 16 ) - silk_LSHIFT( psEncCtrl->input_quality_Q14, 2 ), SILK_FIX_CONST( LOW_INPUT_QUALITY_HARMONIC_BOOST, 16 ) );
420 
421     if( USE_HARM_SHAPING && psEnc->sCmn.indices.signalType == TYPE_VOICED ) {
422         /* More harmonic noise shaping for high bitrates or noisy input */
423         HarmShapeGain_Q16 = silk_SMLAWB( SILK_FIX_CONST( HARMONIC_SHAPING, 16 ),
424                 SILK_FIX_CONST( 1.0, 16 ) - silk_SMULWB( SILK_FIX_CONST( 1.0, 18 ) - silk_LSHIFT( psEncCtrl->coding_quality_Q14, 4 ),
425                 psEncCtrl->input_quality_Q14 ), SILK_FIX_CONST( HIGH_RATE_OR_LOW_QUALITY_HARMONIC_SHAPING, 16 ) );
426 
427         /* Less harmonic noise shaping for less periodic signals */
428         HarmShapeGain_Q16 = silk_SMULWB( silk_LSHIFT( HarmShapeGain_Q16, 1 ),
429             silk_SQRT_APPROX( silk_LSHIFT( psEnc->LTPCorr_Q15, 15 ) ) );
430     } else {
431         HarmShapeGain_Q16 = 0;
432     }
433 
434     /*************************/
435     /* Smooth over subframes */
436     /*************************/
437     for( k = 0; k < MAX_NB_SUBFR; k++ ) {
438         psShapeSt->HarmBoost_smth_Q16 =
439             silk_SMLAWB( psShapeSt->HarmBoost_smth_Q16,     HarmBoost_Q16     - psShapeSt->HarmBoost_smth_Q16,     SILK_FIX_CONST( SUBFR_SMTH_COEF, 16 ) );
440         psShapeSt->HarmShapeGain_smth_Q16 =
441             silk_SMLAWB( psShapeSt->HarmShapeGain_smth_Q16, HarmShapeGain_Q16 - psShapeSt->HarmShapeGain_smth_Q16, SILK_FIX_CONST( SUBFR_SMTH_COEF, 16 ) );
442         psShapeSt->Tilt_smth_Q16 =
443             silk_SMLAWB( psShapeSt->Tilt_smth_Q16,          Tilt_Q16          - psShapeSt->Tilt_smth_Q16,          SILK_FIX_CONST( SUBFR_SMTH_COEF, 16 ) );
444 
445         psEncCtrl->HarmBoost_Q14[ k ]     = ( opus_int )silk_RSHIFT_ROUND( psShapeSt->HarmBoost_smth_Q16,     2 );
446         psEncCtrl->HarmShapeGain_Q14[ k ] = ( opus_int )silk_RSHIFT_ROUND( psShapeSt->HarmShapeGain_smth_Q16, 2 );
447         psEncCtrl->Tilt_Q14[ k ]          = ( opus_int )silk_RSHIFT_ROUND( psShapeSt->Tilt_smth_Q16,          2 );
448     }
449     RESTORE_STACK;
450 }
451 #endif /* OVERRIDE_silk_noise_shape_analysis_FIX */
452