1 /** Compute the matrix inverse via Gauss-Jordan elimination.
2 * This program uses OpenMP separate computation steps but no
3 * mutexes. It is an example of a race-free program on which no data races
4 * are reported by the happens-before algorithm (drd), but a lot of data races
5 * (all false positives) are reported by the Eraser-algorithm (helgrind).
6 */
7
8
9 #define _GNU_SOURCE
10
11 /***********************/
12 /* Include directives. */
13 /***********************/
14
15 #include <assert.h>
16 #include <math.h>
17 #include <omp.h>
18 #include <stdio.h>
19 #include <stdlib.h>
20 #include <unistd.h> // getopt()
21
22
23 /*********************/
24 /* Type definitions. */
25 /*********************/
26
27 typedef double elem_t;
28
29
30 /********************/
31 /* Local variables. */
32 /********************/
33
34 static int s_trigger_race;
35
36
37 /*************************/
38 /* Function definitions. */
39 /*************************/
40
41 /** Allocate memory for a matrix with the specified number of rows and
42 * columns.
43 */
new_matrix(const int rows,const int cols)44 static elem_t* new_matrix(const int rows, const int cols)
45 {
46 assert(rows > 0);
47 assert(cols > 0);
48 return malloc(rows * cols * sizeof(elem_t));
49 }
50
51 /** Free the memory that was allocated for a matrix. */
delete_matrix(elem_t * const a)52 static void delete_matrix(elem_t* const a)
53 {
54 free(a);
55 }
56
57 /** Fill in some numbers in a matrix. */
init_matrix(elem_t * const a,const int rows,const int cols)58 static void init_matrix(elem_t* const a, const int rows, const int cols)
59 {
60 int i, j;
61 for (i = 0; i < rows; i++)
62 {
63 for (j = 0; j < rows; j++)
64 {
65 a[i * cols + j] = 1.0 / (1 + abs(i-j));
66 }
67 }
68 }
69
70 /** Print all elements of a matrix. */
print_matrix(const char * const label,const elem_t * const a,const int rows,const int cols)71 void print_matrix(const char* const label,
72 const elem_t* const a, const int rows, const int cols)
73 {
74 int i, j;
75 printf("%s:\n", label);
76 for (i = 0; i < rows; i++)
77 {
78 for (j = 0; j < cols; j++)
79 {
80 printf("%g ", a[i * cols + j]);
81 }
82 printf("\n");
83 }
84 }
85
86 /** Copy a subset of the elements of a matrix into another matrix. */
copy_matrix(const elem_t * const from,const int from_rows,const int from_cols,const int from_row_first,const int from_row_last,const int from_col_first,const int from_col_last,elem_t * const to,const int to_rows,const int to_cols,const int to_row_first,const int to_row_last,const int to_col_first,const int to_col_last)87 static void copy_matrix(const elem_t* const from,
88 const int from_rows,
89 const int from_cols,
90 const int from_row_first,
91 const int from_row_last,
92 const int from_col_first,
93 const int from_col_last,
94 elem_t* const to,
95 const int to_rows,
96 const int to_cols,
97 const int to_row_first,
98 const int to_row_last,
99 const int to_col_first,
100 const int to_col_last)
101 {
102 int i, j;
103
104 assert(from_row_last - from_row_first == to_row_last - to_row_first);
105 assert(from_col_last - from_col_first == to_col_last - to_col_first);
106
107 for (i = from_row_first; i < from_row_last; i++)
108 {
109 assert(i < from_rows);
110 assert(i - from_row_first + to_row_first < to_rows);
111 for (j = from_col_first; j < from_col_last; j++)
112 {
113 assert(j < from_cols);
114 assert(j - from_col_first + to_col_first < to_cols);
115 to[(i - from_row_first + to_col_first) * to_cols
116 + (j - from_col_first + to_col_first)]
117 = from[i * from_cols + j];
118 }
119 }
120 }
121
122 /** Compute the matrix product of a1 and a2. */
multiply_matrices(const elem_t * const a1,const int rows1,const int cols1,const elem_t * const a2,const int rows2,const int cols2)123 static elem_t* multiply_matrices(const elem_t* const a1,
124 const int rows1,
125 const int cols1,
126 const elem_t* const a2,
127 const int rows2,
128 const int cols2)
129 {
130 int i, j, k;
131 elem_t* prod;
132
133 assert(cols1 == rows2);
134
135 prod = new_matrix(rows1, cols2);
136 for (i = 0; i < rows1; i++)
137 {
138 for (j = 0; j < cols2; j++)
139 {
140 prod[i * cols2 + j] = 0;
141 for (k = 0; k < cols1; k++)
142 {
143 prod[i * cols2 + j] += a1[i * cols1 + k] * a2[k * cols2 + j];
144 }
145 }
146 }
147 return prod;
148 }
149
150 /** Apply the Gauss-Jordan elimination algorithm on the matrix p->a starting
151 * at row r0 and up to but not including row r1. It is assumed that as many
152 * threads execute this function concurrently as the count barrier p->b was
153 * initialized with. If the matrix p->a is nonsingular, and if matrix p->a
154 * has at least as many columns as rows, the result of this algorithm is that
155 * submatrix p->a[0..p->rows-1,0..p->rows-1] is the identity matrix.
156 * @see http://en.wikipedia.org/wiki/Gauss-Jordan_elimination
157 */
gj(elem_t * const a,const int rows,const int cols)158 static void gj(elem_t* const a, const int rows, const int cols)
159 {
160 int i, j, k;
161
162 for (i = 0; i < rows; i++)
163 {
164 {
165 // Pivoting.
166 j = i;
167 for (k = i + 1; k < rows; k++)
168 {
169 if (a[k * cols + i] > a[j * cols + i])
170 {
171 j = k;
172 }
173 }
174 if (j != i)
175 {
176 for (k = 0; k < cols; k++)
177 {
178 const elem_t t = a[i * cols + k];
179 a[i * cols + k] = a[j * cols + k];
180 a[j * cols + k] = t;
181 }
182 }
183 // Normalize row i.
184 if (a[i * cols + i] != 0)
185 {
186 for (k = cols - 1; k >= 0; k--)
187 {
188 a[i * cols + k] /= a[i * cols + i];
189 }
190 }
191 }
192
193 // Reduce all rows j != i.
194
195 if (s_trigger_race)
196 {
197 # pragma omp parallel for private(j)
198 for (j = 0; j < rows; j++)
199 {
200 if (i != j)
201 {
202 const elem_t factor = a[j * cols + i];
203 for (k = 0; k < cols; k++)
204 {
205 a[j * cols + k] -= a[i * cols + k] * factor;
206 }
207 }
208 }
209 }
210 else
211 {
212 # pragma omp parallel for private(j, k)
213 for (j = 0; j < rows; j++)
214 {
215 if (i != j)
216 {
217 const elem_t factor = a[j * cols + i];
218 for (k = 0; k < cols; k++)
219 {
220 a[j * cols + k] -= a[i * cols + k] * factor;
221 }
222 }
223 }
224 }
225 }
226 }
227
228 /** Matrix inversion via the Gauss-Jordan algorithm. */
invert_matrix(const elem_t * const a,const int n)229 static elem_t* invert_matrix(const elem_t* const a, const int n)
230 {
231 int i, j;
232 elem_t* const inv = new_matrix(n, n);
233 elem_t* const tmp = new_matrix(n, 2*n);
234 copy_matrix(a, n, n, 0, n, 0, n, tmp, n, 2 * n, 0, n, 0, n);
235 for (i = 0; i < n; i++)
236 for (j = 0; j < n; j++)
237 tmp[i * 2 * n + n + j] = (i == j);
238 gj(tmp, n, 2*n);
239 copy_matrix(tmp, n, 2*n, 0, n, n, 2*n, inv, n, n, 0, n, 0, n);
240 delete_matrix(tmp);
241 return inv;
242 }
243
244 /** Compute the average square error between the identity matrix and the
245 * product of matrix a with its inverse matrix.
246 */
identity_error(const elem_t * const a,const int n)247 static double identity_error(const elem_t* const a, const int n)
248 {
249 int i, j;
250 elem_t e = 0;
251 for (i = 0; i < n; i++)
252 {
253 for (j = 0; j < n; j++)
254 {
255 const elem_t d = a[i * n + j] - (i == j);
256 e += d * d;
257 }
258 }
259 return sqrt(e / (n * n));
260 }
261
262 /** Compute epsilon for the numeric type elem_t. Epsilon is defined as the
263 * smallest number for which the sum of one and that number is different of
264 * one. It is assumed that the underlying representation of elem_t uses
265 * base two.
266 */
epsilon()267 static elem_t epsilon()
268 {
269 elem_t eps;
270 for (eps = 1; 1 + eps != 1; eps /= 2)
271 ;
272 return 2 * eps;
273 }
274
usage(const char * const exe)275 static void usage(const char* const exe)
276 {
277 printf("Usage: %s [-h] [-q] [-r] [-t<n>] <m>\n"
278 "-h: display this information.\n"
279 "-q: quiet mode -- do not print computed error.\n"
280 "-r: trigger a race condition.\n"
281 "-t<n>: use <n> threads.\n"
282 "<m>: matrix size.\n",
283 exe);
284 }
285
main(int argc,char ** argv)286 int main(int argc, char** argv)
287 {
288 int matrix_size;
289 int nthread = 1;
290 int silent = 0;
291 int optchar;
292 elem_t *a, *inv, *prod;
293 elem_t eps;
294 double error;
295 double ratio;
296
297 while ((optchar = getopt(argc, argv, "hqrt:")) != EOF)
298 {
299 switch (optchar)
300 {
301 case 'h': usage(argv[0]); return 1;
302 case 'q': silent = 1; break;
303 case 'r': s_trigger_race = 1; break;
304 case 't': nthread = atoi(optarg); break;
305 default:
306 return 1;
307 }
308 }
309
310 if (optind + 1 != argc)
311 {
312 fprintf(stderr, "Error: wrong number of arguments.\n");
313 return 1;
314 }
315 matrix_size = atoi(argv[optind]);
316
317 /* Error checking. */
318 assert(matrix_size >= 1);
319 assert(nthread >= 1);
320
321 omp_set_num_threads(nthread);
322 omp_set_dynamic(0);
323
324 eps = epsilon();
325 a = new_matrix(matrix_size, matrix_size);
326 init_matrix(a, matrix_size, matrix_size);
327 inv = invert_matrix(a, matrix_size);
328 prod = multiply_matrices(a, matrix_size, matrix_size,
329 inv, matrix_size, matrix_size);
330 error = identity_error(prod, matrix_size);
331 ratio = error / (eps * matrix_size);
332 if (! silent)
333 {
334 printf("error = %g; epsilon = %g; error / (epsilon * n) = %g\n",
335 error, eps, ratio);
336 }
337 if (isfinite(ratio) && ratio < 100)
338 printf("Error within bounds.\n");
339 else
340 printf("Error out of bounds.\n");
341 delete_matrix(prod);
342 delete_matrix(inv);
343 delete_matrix(a);
344
345 return 0;
346 }
347